Lalucque, Hervé; Malagnac, Fabienne; Brun, Sylvain; Kicka, Sébastien; Silar, Philippe
2012-06-01
The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism.
Lalucque, Hervé; Malagnac, Fabienne; Brun, Sylvain; Kicka, Sébastien; Silar, Philippe
2012-01-01
The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism. PMID:22426880
Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan
2017-01-01
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.
Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei
2017-01-01
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the “neurotrophin-MAPK signaling pathway” was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment. PMID:28900628
Borrie, Sarah C; Brems, Hilde; Legius, Eric; Bagni, Claudia
2017-08-31
The Ras-MAPK and PI3K-AKT-mTOR signaling cascades were originally identified as cancer regulatory pathways but have now been demonstrated to be critical for synaptic plasticity and behavior. Neurodevelopmental disorders arising from mutations in these pathways exhibit related neurological phenotypes, including cognitive dysfunction, autism, and intellectual disability. The downstream targets of these pathways include regulation of transcription and protein synthesis. Other disorders that affect protein translation include fragile X syndrome (an important cause of syndromal autism), and other translational regulators are now also linked to autism. Here, we review how mechanisms of synaptic plasticity have been revealed by studies of mouse models for Ras-MAPK, PI3K-AKT-mTOR, and translation regulatory pathway disorders. We discuss the face validity of these mouse models and review current progress in clinical trials directed at ameliorating cognitive and behavioral symptoms.
The Fourth International Symposium on Genetic Disorders of the Ras/MAPK Pathway
Stevenson, David A.; Schill, Lisa; Schoyer, Lisa; Andresen, Brage S.; Bakker, Annette; Bayrak-Toydemir, Pinar; Burkitt-Wright, Emma; Chatfield, Kathryn; Elefteriou, Florent; Elgersma, Ype; Fisher, Michael J.; Franz, David; Gelb, Bruce D.; Goriely, Anne; Gripp, Karen W.; Hardan, Antonio Y.; Keppler-Noreuil, Kim M.; Kerr, Bronwyn; Korf, Bruce; Leoni, Chiara; McCormick, Frank; Plotkin, Scott R.; Rauen, Katherine A.; Reilly, Karlyne; Roberts, Amy; Sandler, Abby; Siegel, Dawn; Walsh, Karin; Widemann, Brigitte C.
2016-01-01
The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation–arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field. PMID:27155140
Current and Future Trials of Targeted Therapies in Cutaneous Melanoma
Madhunapantula, SubbaRao V.; Robertson, Gavin P.; Drabick, Joseph J.
2013-01-01
In order to effectively treat melanoma, targeted inhibition of key mechanistic events regulating melanoma development such as cell proliferation, survival, angiogenesis and invasion or metastasis needs to be accomplished. The Mitogen Activated Protein Kinase (MAPK) pathway has been identified as a key player in melanoma development making this cascade an important therapeutic target. However, identification of the ideal pathway member to therapeutically target for maximal clinical benefit remains a challenge. In normal cells, the MAPK pathway relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, which promote cancer development. Dysregulation of the MAPK pathway occurs frequently in many human cancers including melanoma. Mutations in the B-RAF and RAS genes, genetic or epigenetic modifications are the key aberrations observed in this signaling cascade. Constitutive activation of this pathway causes oncogenic transformation of cells by promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. This review provides an overview of (a) key members of MAPK signaling regulating melanoma development; (b) key proteins which can serve as biomarkers to assess disease progression; (c) the clinical efficacy of various pharmacological agents targeting MAPK pathway; (d) current clinical trials evaluating downstream targets of the MAPK pathway; (e) issues associated with pharmacological agents such as drug resistance, induction of cancers; and finally (e) various strategies overcoming drug resistance. PMID:23288642
Lee, Myon-Hee; Yoon, Dong Suk
2017-01-01
Stem cells have the ability to self-renew and to generate differentiated cell types. A regulatory network that controls this balance is critical for stem cell homeostasis and normal animal development. Particularly, Ras-ERK/MAPK signaling pathway is critical for stem cell self-renewal and differentiation in mammals, including humans. Aberrant regulation of Ras-ERK/MAPK signaling pathway results in either stem cell or overproliferation. Therefore, the identification of Ras-ERK/MAPK signaling pathway-associated regulators is critical to understand the mechanism of stem cell (possibly cancer stem cell) control. In this report, using the nematode C. elegans mutants, we developed a methodology for a phenotype-based RNAi screening that identifies stem cell regulator genes associated with Ras-ERK/MAPK signaling within the context of a whole organism. Importantly, this phenotype-based RNAi screening can be applied for other stem cell-associated signaling pathways such as Wnt/β-catenin and Notch using the C. elegans.
Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR
Xu, Xiaohua; Balsiger, Robert; Tyrrell, Jean; Boyaka, Prosper N.; Tarran, Robert; Cormet-Boyaka, Estelle
2015-01-01
Background CFTR plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date. Methods The molecular mechanisms leading to down-regulation of CFTR by cigarette smoke were determined using pharmacologic inhibitors and silencing RNAs. Results Using human bronchial epithelial cells, here we show that cigarette smoke induces degradation of CFTR that is attenuated by the lysosomal inhibitors, but not proteasome inhibitors. Cigarette smoke can activate multiple signaling pathways in airway epithelial cells, including the MEK/Erk1/2 MAPK pathway regulating cell survival. Interestingly, pharmacological inhibition of the MEK/Erk1/2 MAPK pathway prevented the loss of plasma membrane CFTR upon cigarette smoke exposure. Similarly, decreased expression of Erk1/2 using silencing RNAs prevented the suppression of CFTR protein by cigarette smoke. Conversely, specific inhibitors of the JNK or p38 MAPK pathways had no effect on CFTR decrease after cigarette smoke exposure. In addition, inhibition of the MEK/Erk1/2 MAPK pathway prevented the reduction of the airway surface liquid observed upon cigarette smoke exposure of primary human airway epithelial cells. Finally, addition of the antioxidant NAC inhibited activation of Erk1/2 by cigarette smoke and precluded the cigarette smoke-induced decrease of CFTR. Conclusions These results show that the MEK/Erk1/2 MAPK pathway regulates plasma membrane CFTR in human airway cells. General Significance The MEK/Erk1/2 MAPK pathway should be considered as a target for strategies to maintain/restore CFTR expression in the lung of smokers. PMID:25697727
Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection.
Qi, Feifei; Bai, Song; Wang, Dandan; Xu, Lei; Hu, Haiyan; Zeng, Sheng; Chai, Ruonan; Liu, Beixing
2017-07-01
It has been reported that RSV infection can enhance IL-33 production in lung macrophages. However, little is known about specific signaling pathways for activation of macrophages during RSV infection. In the present study, by using real-time RT-PCR as well as western blot assay, it became clear that RSV infection can enhance not only the expression of mRNAs for MAPK molecules (including p38, JNK1/2, and ERK1/2), but also the levels of MAPK proteins in lung macrophages as well as RAW264.7 cells. Furthermore, infection with RSV resulted in an increased level of phosphorylated MAPK proteins in RAW264.7 cells, suggesting that MAPK signaling pathway may participate in the process of RSV-induced IL-33 secretion by macrophages. In fact, the elevated production of IL-33 in RAW264.7 was attenuated significantly by pretreatment of the cells with special MAPK inhibitor before RSV infection, further confirming the function of MAPKs pathway in RSV-induced IL-33 production in macrophages. In contrast, the expression of NF-κB mRNA as well as the production of NF-κB protein in lung macrophages and RAW264.7 cells was not enhanced markedly after RSV infection. Moreover, RSV infection failed to induce the phosphorylation of NF-κB in RAW264.7 cells, suggesting that NF-κB signaling pathway may be not involved in RSV-induced IL-33 production in macrophages. Conclusion, these results indicate that RSV-induced production of IL-33 in macrophages is dependent on the activation of MAPK signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor.
Zheng, X; Goodwin, A F; Tian, H; Jheon, A H; Klein, O D
2017-11-01
The role of Ras signaling during tooth development is poorly understood. Ras proteins-which are activated by many upstream pathways, including receptor tyrosine kinase cascades-signal through multiple effectors, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways. Here, we utilized the mouse incisor as a model to study how the MAPK and PI3K pathways regulate dental epithelial stem cells and amelogenesis. The rodent incisor-which grows continuously throughout the life of the animal due to the presence of epithelial and mesenchymal stem cells-provides a model for the study of ectodermal organ renewal and regeneration. Utilizing models of Ras dysregulation as well as inhibitors of the MAPK and PI3K pathways, we found that MAPK and PI3K regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation in the mouse incisor.
Constitutive activation of MAPK cascade in acute quadriplegic myopathy.
Di Giovanni, Simone; Molon, Annamaria; Broccolini, Aldobrando; Melcon, Gisela; Mirabella, Massimiliano; Hoffman, Eric P; Servidei, Serenella
2004-02-01
Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-beta receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-beta pathway in myofibers. The acute stimulation of the TGF-beta/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients.
Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.
2013-01-01
Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677
Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M
2010-11-01
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.
Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.
2010-01-01
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410
Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N
2016-10-01
The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.
Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan
2013-03-22
Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.
2013-01-01
Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865
Liang, Zhaofeng; Wu, Rui; Xie, Wei; Xie, Chunfeng; Wu, Jieshu; Geng, Shanshan; Li, Xiaoting; Zhu, Mingming; Zhu, Weiwei; Zhu, Jianyun; Huang, Cong; Ma, Xiao; Xu, Wenrong; Zhong, Caiyun; Han, Hongyu
2017-08-01
Tobacco smoke is a major risk factor for hepatic cancer. Epithelial-mesenchymal transition (EMT) induced by tobacco smoke is crucially involved in the initiation and development of cancer. Mitogen-activated protein kinase (MAPK) pathways play important roles in tobacco smoke-associated carcinogenesis including EMT process. The chemopreventive effect of curcumin supplementation against cancers has been reported. In this study, we investigated the effects of tobacco smoke on MAPK pathway activation and EMT alterations, and then the preventive effect of curcumin was examined in the liver of BALB/c mice. Our results indicated that exposure of mice to tobacco smoke for 12 weeks led to activation of ERK1/2, JNK, p38 and ERK5 pathways as well as activator protein-1 (AP-1) proteins in liver tissue. Exposure of mice to tobacco smoke reduced the hepatic mRNA and protein expression of the epithelial markers, while the hepatic mRNA and protein levels of the mesenchymal markers were increased. Treatment of curcumin effectively attenuated tobacco smoke-induced activation of ERK1/2 and JNK MAPK pathways, AP-1 proteins and EMT alterations in the mice liver. Our data suggested the protective effect of curcumin in tobacco smoke-triggered MAPK pathway activation and EMT in the liver of BALB/c mice, thus providing new insights into the chemoprevention of tobacco smoke-associated hepatic cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling
Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.
2011-01-01
Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362
PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.
Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C
2012-07-19
Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.
In vivo gene manipulation reveals the impact of stress-responsive MAPK pathways on tumor progression
Kamiyama, Miki; Naguro, Isao; Ichijo, Hidenori
2015-01-01
It has been widely accepted that tumor cells and normal stromal cells in the host environment coordinately modulate tumor progression. Mitogen-activated protein kinase pathways are the representative stress-responsive cascades that exert proper cellular responses to divergent environmental stimuli. Genetically engineered mouse models and chemically induced tumorigenesis models have revealed that components of the MAPK pathway not only regulate the behavior of tumor cells themselves but also that of surrounding normal stromal cells in the host environment during cancer pathogenesis. The individual functions of MAPK pathway components in tumor initiation and progression vary depending on the stimuli and the stromal cell types involved in tumor progression, in addition to the molecular isoforms of the components and the origins of the tumor. Recent studies have indicated that MAPK pathway components synergize with environmental factors (e.g. tobacco smoke and diet) to affect tumor initiation and progression. Moreover, some components play distinct roles in the course of tumor progression, such as before and after the establishment of tumors. Hence, a comprehensive understanding of the multifaceted functions of MAPK pathway components in tumor initiation and progression is essential for the improvement of cancer therapy. In this review, we focus on the reports that utilized knockout, conditional knockout, and transgenic mice of MAPK pathway components to investigate the effects of MAPK pathway components on tumor initiation and progression in the host environment. PMID:25880821
The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy.
Akabane, Hugo; Sullivan, Ryan J
2016-02-01
Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.
Patterson, Jesse C.; Klimenko, Evguenia S.; Thorner, Jeremy
2014-01-01
Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding G protein-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescent localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour timescale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to co-stimulation. Thus, signaling specificity is achieved through an “insulation” mechanism, not a “cross-inhibition” mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway. PMID:20959523
Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike
2016-01-01
Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235
Yang, Jung-Bo; Quan, Juan-Hua; Kim, Ye-Eun; Rhee, Yun-Ee; Kang, Byung-Hyun; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha
2015-08-01
Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.
Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway
Adhikari, Hema; Cullen, Paul J.
2014-01-01
Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552
Lu, Shishi; Zhang, Yanmei; Zhong, Shuping; Gao, Fenfei; Chen, Yicun; Li, Weiqiu; Zheng, Fuchun; Shi, Ganggang
2017-01-01
Endothelium dysfunction induced by reactive oxygen species (ROS) is an important initial event at the onset of myocardial ischemia/reperfusion in which the Egr-1 transcription factor often serves as a master switch for various damage pathways following reperfusion injury. We hypothesized that an intracellular ROS/MAPK/Egr-1 signaling pathway is activated in cardiac microvascular endothelial cells (CMECs) following hypoxia/reoxygenation (H/R). ROS generation, by either H/R or the ROS donor xanthine oxidase-hypoxanthine (XO/HX) activated all three MAPKs (ERK1/2, JNK, p38), and induced Egr-1 expression and Egr-1 DNA-binding activity in CMECs, whereas ROS scavengers (EDA and NAC) had the opposite effect following H/R. Inhibitors of all three MAPKs individually inhibited induction of Egr-1 expression by H/R in CMECs. Moreover, N-n-butyl haloperidol (F2), previously shown to protect cardiomyocytes subjected to I/R, dose-dependently downregulated H/R-induced ROS generation, MAPK activation, and Egr-1 expression and activity in CMECs, whereas XO/HX and MAPK activators (EGF, anisomycin) antagonized the effects of F2. Inhibition of the ROS/MAPK/Egr-1 signaling pathway, by either F2, NAC, or inhibition of MAPK, increased CMEC viability and the GSH/GSSG ratio, and decreased Egr-1 nuclear translocation. These results show that the ROS/MAPK/Egr-1 signaling pathway mediates H/R injury in CMECs, and F2 blocks this pathway to protect against H/R injury and further alleviate myocardial I/R injury. PMID:28111550
de Dios, Carmen Herrero; Román, Elvira; Monge, Rebeca Alonso; Pla, Jesús
2010-12-01
In recent years, Mitogen-Activated Protein Kinase (MAPK) pathways have emerged as major regulators of cellular physiology. In the fungal pathogen Candida albicans, three different MAPK pathways have been characterized in the last years. The HOG pathway is mainly a stress response pathway that is activated in response to osmotic and oxidative stress and also participates regulating other pathways. The SVG pathway (or mediated by the Cek1 MAPK) is involved in cell wall formation under vegetative and filamentous growth, while the Mkc1-mediated pathway is involved in cell wall integrity. Oxidative stress is one of the types of stress that every fungal cell has to face during colonization of the host, where the cell encounters both hypoxia niches (i.e. gut) and high concentrations of reactive oxygen species (upon challenge with immune cells). Two pathways have been shown to be activated in response to oxidative stress: the HOG pathway and the MKC1-mediated pathway while the third, the Cek1 pathway is deactivated. The timing, kinetics, stimuli and functional responses generated upon oxidative stress differ among them; however, they have essential functional consequences that severely influence pathogenesis. MAPK pathways are, therefore, valuable targets to be explored in antifungal research.
Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui
2017-07-01
Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (P<0.05). In addition, we observed that administration of the inhibitors of MAPK/Wnt/NF-κB pathways statistically further increased the levels of CDMP1 and SOX9 (P<0.05). Suppression of BMP-2 decreased the levels of CDMP1 and SOX9 and activated MAPK/Wnt/NF-κB pathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (P<0.05). The results showed that CT protects chondrocytes from LPS-induced apoptosis and inflammatory response by regulating BMP-2 and thus blocking MAPK/Wnt/NF-κB pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Yu; He, Mao-xian
2016-01-01
The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653
Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos.
Wang, Yingchun; Wang, Fangfei; Sun, Tong; Trostinskaia, Anna; Wygle, Dana; Puscheck, Elizabeth; Rappolee, Daniel A
2004-09-01
To understand how mitogenic signals are transduced into the trophoblasts in preimplantation embryos, the expression of mitogen-activated protein kinase (MAPK) pathway molecules was tested. We used immunocytochemical means and reverse transcriptase-polymerase chain reaction to test whether MAPK pathway molecule gene products exist at the protein and phosphoprotein level in the zygote and the RNA level in the egg and zygote. In addition, all antibodies detected the correct-sized major band in Westerns of placental cell lines representing the most prevalent cell type in preimplantation embryos. A majority of mRNA transcripts of MAPK pathway genes were detected in unfertilized eggs, and all were expressed in the zygote. We found that the MAPK pathway protein set consisting of the following gene products was present: FRS2 alpha, GRB2, GAB1, SOS1, Ha-ras, Raf1/RafB, MEK1,2,5, MAPK/ERK1,2, MAPK/ERK5, and RSK1,2,3 (see abbreviations). These proteins were detected in trophoblasts in embryonic day (E) 3.5 embryos when they could mediate mitogenic fibroblast growth factor signals from the embryo or colony stimulating factor-1 signals from the uterus. The phosphorylation state and position of the phosphoproteins in the cells suggested that they might function in mediating mitogenic signals. Interestingly, a subtle transition from maternal MAPK function to zygotic function was suggested by the localization for three MAPK pathway enzymes between E2.5 and E3.5, Raf1 phospho is largely cell membrane-localized at E2.5 and E3.5, and MEK1,2 phospho accumulates in the nucleus on E2.5 and E3.5. However, MAPK phospho shifts from nuclear accumulation at E2.5 to cytoplasmic accumulation at E3.5. This finding is similar to the cytoplasmic MAPK phospho localization reported in fibroblast growth factor signaling fields in postimplantation embryos (Corson et al. [2003] Development 130:4527-4537). This spatial and temporal expression study lays a foundation to plan and analyze perturbation studies aimed at understanding the role of the major mitogenic pathway in preimplantation mouse embryos.
Lynch, Jennifer; Fay, Joanna; Meehan, Maria; Bryan, Kenneth; Watters, Karen M.; Murphy, Derek M.; Stallings, Raymond L.
2012-01-01
Transforming growth factor-β (TGF-β) signaling regulates many diverse cellular activities through both canonical (SMAD-dependent) and non-canonical branches, which includes the mitogen-activated protein kinase (MAPK), Rho-like guanosine triphosphatase and phosphatidylinositol-3-kinase/AKT pathways. Here, we demonstrate that miR-335 directly targets and downregulates genes in the TGF-β non-canonical pathways, including the Rho-associated coiled-coil containing protein (ROCK1) and MAPK1, resulting in reduced phosphorylation of downstream pathway members. Specifically, inhibition of ROCK1 and MAPK1 reduces phosphorylation levels of the motor protein myosin light chain (MLC) leading to a significant inhibition of the invasive and migratory potential of neuroblastoma cells. Additionally, miR-335 targets the leucine-rich alpha-2-glycoprotein 1 (LRG1) messenger RNA, which similarly results in a significant reduction in the phosphorylation status of MLC and a decrease in neuroblastoma cell migration and invasion. Thus, we link LRG1 to the migratory machinery of the cell, altering its activity presumably by exerting its effect within the non-canonical TGF-β pathway. Moreover, we demonstrate that the MYCN transcription factor, whose coding sequence is highly amplified in a particularly clinically aggressive neuroblastoma tumor subtype, directly binds to a region immediately upstream of the miR-335 transcriptional start site, resulting in transcriptional repression. We conclude that MYCN contributes to neuroblastoma cell migration and invasion, by directly downregulating miR-335, resulting in the upregulation of the TGF-β signaling pathway members ROCK1, MAPK1 and putative member LRG1, which positively promote this process. Our results provide novel insight into the direct regulation of TGF-β non-canonical signaling by miR-335, which in turn is downregulated by MYCN. PMID:22382496
Functional analysis of the MAPK pathways in fungi.
Martínez-Soto, Domingo; Ruiz-Herrera, José
The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
MAP kinase pathways in the yeast Saccharomyces cerevisiae
NASA Technical Reports Server (NTRS)
Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)
1998-01-01
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco
2011-01-01
Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175
Wijenayake, Sanoji; Luu, Bryan E; Zhang, Jing; Tessier, Shannon N; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B
2017-12-14
Hibernation is a period of torpor and heterothermy that is typically associated with a strong reduction in metabolic rate, global suppression of transcription and translation, and upregulation of various genes/proteins that are central to the cellular stress response such as protein kinases, antioxidants, and heat shock proteins. The current study examined cell signaling cascades in hibernating monito del monte, Dromiciops gliroides, a South American marsupial of the Order Microbiotheria. Responses to hibernation by members of the mitogen-activated protein kinase (MAPK) pathways, and their roles in coordinating hibernator metabolism were examined in liver, kidney, heart and brain of control and versus hibernating (4days continuous torpor) D. gliroides. The targets evaluated included key protein kinases in their activated phosphorylated forms (p-ERK/MAPK 1/2, p-MEK1, p-MSK1, p-p38, p-JNK) and related target proteins (p-CREB 2, p-ATF2, p-c-Jun and p-p53). Liver exhibited a strong coordinated response by MAPK members to hibernation with significant increases in protein phosphorylation levels of p-MEK1, p-ERK/MAPK1/2, p-MSK1, p-JNK and target proteins c-Jun, and p-ATF2, all combining to signify a strong activation of MAPK signaling during hibernation. Kidney also showed activation of MAPK cascades with significant increases in p-MEK1, p-ERK/MAPK1/2, p-p38, and p-c-Jun levels in hibernating animals. By contrast, responses by heart and brain indicated reduced MAPK pathway function during torpor with reduced phosphorylation of targets including p-ERK/MAPK 1/2 in both tissues as well as lower p-p38 and p-JNK content in heart. Overall, the data indicate a vital role for MAPK signaling in regulating the cell stress response during marsupial hibernation. Copyright © 2017 Elsevier Inc. All rights reserved.
Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B
2014-03-25
Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Response to Hyperosmotic Stress
Saito, Haruo; Posas, Francesc
2012-01-01
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast. PMID:23028184
Liu, Jian-Zhong; Horstman, Heidi D.; Braun, Edward; Graham, Michelle A.; Zhang, Chunquan; Navarre, Duroy; Qiu, Wen-Li; Lee, Yeunsook; Nettleton, Dan; Hill, John H.; Whitham, Steven A.
2011-01-01
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species. PMID:21878550
Niemeyer, Charlotte M.
2014-01-01
RAS genes encode a family of 21 kDa proteins that are an essential hub for a number of survival, proliferation, differentiation and senescence pathways. Signaling of the RAS-GTPases through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade is essential in development. A group of genetic syndromes, named “RASopathies”, had been identified which are caused by heterozygosity for germline mutations in genes that encode protein components of the RAS/MAPK pathway. Several of these clinically overlapping disorders, including Noonan syndrome, Noonan-like CBL syndrome, Costello syndrome, cardio-facio-cutaneous (CFC) syndrome, neurofibromatosis type I, and Legius syndrome, predispose to cancer and abnormal myelopoiesis in infancy. This review focuses on juvenile myelomonocytic leukemia (JMML), a malignancy of early childhood characterized by initiating germline and/or somatic mutations in five genes of the RAS/MAPK pathway: PTPN11, CBL, NF-1, KRAS and NRAS. Natural courses of these five subtypes differ, although hematopoietic stem cell transplantation remains the only curative therapy option for most children with JMML. With whole-exome sequencing studies revealing few secondary lesions it will be crucial to better understand the RAS/MAPK signaling network with its crosstalks and feed-back loops to carefully design early clinical trials with novel pharmacological agents in this still puzzling leukemia. PMID:25420281
Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne
2012-01-01
Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.
Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L
2011-06-01
Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.
Streuli, Isabelle; Santulli, Pietro; Chouzenoux, Sandrine; Chapron, Charles; Batteux, Frédéric
2015-12-01
We investigated whether the myometrium might be intrinsically different in women with adenomyosis. We studied whether the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) and phosphoinositide 3-kinase/mammalian target of rapamycin/AKT (PI3K/mTOR/AKT) cell-signaling pathways, implicated in the pathogenesis of endometriosis, might also be activated in uterine smooth muscle cells (uSMCs) of women with adenomyosis and measured the production of reactive oxygen species (ROS), proinflammatory mediators that modulate cell proliferation and have been shown to activate the MAPK/ERK pathway in endometriosis. The uSMC cultures were derived from myometrium biopsies obtained during hysterectomy or myomectomy in women with adenomyosis and controls with leiomyoma. Proliferation of uSMCs and in vitro activation of the MAPK/ERK cell-signaling pathway were increased in women with adenomyosis compared to controls. The activation of the PI3K/mTOR/AKT pathway was not significant. The ROS production and ROS detoxification pathways were not different between uSMCs of women with adenomyosis and controls suggesting an ROS-independent activation of the MAPK/ERK pathway. Our results also provide evidence that protein kinase inhibitors and the rapanalogue temsirolimus can control proliferation of uSMCs in vitro suggesting an implication of the MAPK/ERK and the PI3K/mTOR/AKT pathways in proliferation of uSMCs in women with adenomyosis and leiomyomas. © The Author(s) 2015.
[Arnold-Chiari malformation in Noonan syndrome and other syndromes of the RAS/MAPK pathway].
Ejarque, Ismael; Millán-Salvador, José M; Oltra, Silvestre; Pesudo-Martínez, José V; Beneyto, Magdalena; Pérez-Aytés, Antonio
2015-05-01
Noonan syndrome (NS) and other syndromes with a similar phenotype, such as LEOPARD, cardiofaciocutaneous, Costello and Legius, are associated to mutations in genes included in the RAS/MAPK pathway (RASopathies), which is an important signalling pathway related to cell proliferation. Tonsillar descent into the upper cervical spinal canal, known as Arnold-Chiari malformation (ACM), has been reported in patients with NS and this has led some researchers to suggest that ACM could be part of the phenotypic spectrum of NS. We report two cases of NS and ACM. Case 1: 29-year-old female with Noonan phenotype who underwent surgery at the age of nine years due to pulmonary valve stenosis. At the age of 27, she presented symptomatic ACM that required surgical decompression. She presented the c.922A>G (N308D) mutation in the gene PTPN that belongs to the RAS/MAPK pathway. Case 2: a 10-year-old female with Noonan phenotype and asymptomatic ACM detected in magnetic resonance imaging of the brain. She was a carrier of the c.923A>G (N308S) mutation in gene PTPN11. Six patients with this association have been found in the literature, four with the Noonan phenotype and two with LEOPARD. Our two patients provide supplementary evidence that backs up the hypothesis by which ACM would be part of the phenotypic spectrum of NS. The small number of reported cases of patients with this association does not allow us to draw up recommendations about when and how often neuroimaging studies should be performed; a careful neurological examination, however, should be included in the anticipatory health guidelines in syndromes involving the RAS/MAPK pathway.
Tartaglia, Marco; Gelb, Bruce D
2010-12-01
RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.
Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling
2016-01-01
The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways. PMID:27570977
Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling
2016-01-01
The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways.
Kulawik, Andreas; Engesser, Raphael; Ehlting, Christian; Raue, Andreas; Albrecht, Ute; Hahn, Bettina; Lehmann, Wolf-Dieter; Gaestel, Matthias; Klingmüller, Ursula; Häussinger, Dieter; Timmer, Jens; Bode, Johannes G.
2017-01-01
The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1–1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation. PMID:28223354
Upregulation of MAPK/Erk and PI3K/Akt pathways in ulcerative colitis-associated colon cancer.
Setia, Shruti; Nehru, Bimla; Sanyal, Sankar Nath
2014-10-01
An extracellular signal like a cytokine or chemokine, secreted in the inflammatory microenvironment can activate the mitogen activated protein kinase (MAPK) pathway by binding to a cytokine receptor tyrosine kinase, which further activates tyrosine kinases such as Janus Kinase-3 (Jak-3). This signal is transferred from Jak-3 to the DNA in the nucleus of the cell by a chain of kinases, ultimately activating extracellular receptor kinase (Erk/MAPK). The latter phosphorylates c-myc, an oncogene, which alters the levels and activities of many transcription factors leading to cell survival, proliferation and invasion. The oncogenic PI3K pathway plays a similar role by activating c-myc, leading to cell survival and proliferation. The present study explores the role of ulcerative colitis in colon cancer by investigating the activities of tyrosine kinase activated MAPK pathway and various components of the PI3K pathway including PI3K, PTEN, PDK1, GSK3β, Akt, mTOR, Wnt and β-catenin. This was done by western blot and fluorescent immunohistochemical analysis of the above-mentioned proteins. Also, the morphological and histological investigation of the colonic samples from various animal groups revealed significant alterations as compared to the control in both inflammatory as well as carcinogenic conditions. These effects were reduced to a large extent by the co-administration of celecoxib, a second-generation non-steroidal anti-inflammatory drug (NSAID). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Jiang, Fan; Guan, Haining; Liu, Danyi; Wu, Xi; Fan, Mingcheng; Han, Jianchun
2017-03-22
Sea buckthorn has long been used as a functional food to regulate cholesterol, relieve angina, and diminish inflammation. Flavonoids are one of the main active components in sea buckthorn. We investigated the effects of sea buckthorn flavonoid (SF) treatment on two pathways that mediate inflammation, the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways, to explore the anti-inflammatory activity of SFs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-induced over-production of nitric oxide (NO) and prostaglandin E2 (PGE 2 ) was inhibited by SFs through a mechanism related to the modulatory effects of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes. Additionally, SFs downregulated the production and mRNA expression of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β. Moreover, SFs inhibited the phosphorylation of the p38 and stress-activated protein kinase/jun amino-terminal kinase (SAPK/JNK) MAPK pathways, and they reduced the nuclear translocation of NF-κB to prevent its activation by blocking the phosphorylation and degradation of inhibitor protein of NF-κB α (IκB-α). Based on these findings, SFs may exert their inhibitory effects on inflammation by regulating the release of inflammatory mediators through the MAPK and NF-κB pathways. SFs highlight the potential benefits of using functional foods with anti-inflammatory actions to combat inflammatory diseases.
Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.
2006-01-01
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377
Signaling Pathways Involved in the Regulation of mRNA Translation
2018-01-01
ABSTRACT Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus. PMID:29610153
Sacristán-Reviriego, Almudena; Madrid, Marisa; Cansado, José; Martín, Humberto; Molina, María
2014-01-01
Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi. PMID:24465549
Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Deng, Hui-Xiong; Chen, Xiao-Xuan; Li, Wei-Zhong; Li, Kang-Sheng
2018-03-23
Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.
Ling, Lan; Wen, Qian-Kuan; Zhang, Shan-Hong; Zhi, Li-Da; Li, Hong; Li, Gang; Zhang, Wen-Jia
2018-06-07
Multiple organ failure (MOF) is a primary threat to the survival of patients with systemic inflammation. Blood purification is employed in the treatment of MOF, as an artificial kidney or artificial liver. This study focuses on the effects of continuous blood purification (CBP) on ameliorating MOF through regulating the p38 mitogen-activated protein kinase (MAPK) signaling pathway in a rat model. A rat model of MOF was successfully established by endotoxin injection after hemorrhagic shock resuscitation. The mRNA expressions of inducible nitric oxide synthase (iNOS) and p38 MAPK of liver, kidney, and lung tissues in each group were measured by RT-qPCR at each measuring time point. To evaluate the activation of p38 MAPK signaling pathway, protein levels of phosphorylated p38 (p-p38) MAPK and p38 MAPK was measured by western blot analysis. The serum levels of nitric oxide and TNF-α were determined. After CBP treatment, the levels of SGPT, SGOT, Cr, and BUN were significantly declined, while the PaO2 value was increased. Expressions of p38 MAPK mRNA, iNOS mRNA, p-p38 MAPK protein and p38 MAPK protein, and nitric oxide and TNF-α levels were markedly elevated in MOF, an effect blunted by CPB. Meanwhile, pathological sections of liver, kidney, and lung tissues after CPB treatment ameliorated swelling and inflammation. Our study proved that CBP could downregulate the p38 MAPK signaling pathway, suppress iNOS expression, reduced the serum levels of nitric oxide and TNF-α, thus ameliorate symptom of MOF. © 2018 The Author(s). Published by S. Karger AG, Basel.
Clerk, Angela; Michael, Ashour; Sugden, Peter H.
1998-01-01
We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein–coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by ∼12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 μM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response. PMID:9679149
Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense.
Zhang, Mengmeng; Su, Jianbin; Zhang, Yan; Xu, Juan; Zhang, Shuqun
2018-05-09
Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive endogenous and exogenous stimuli such as hormones, peptide ligands, and pathogen-derived patterns/effectors. In this review, we summarize recent advances in the establishment of MAPK cascades as unified signaling modules downstream of receptor-like kinases (RLKs) and receptor-like proteins (RLPs) in plant growth and defense, the identification of components connecting the RLK/RLP receptor complexes to the MAPK cascades, and the interactions between MAPK and hormone signaling pathways. We also propose a set of criteria for defining the physiological substrates of plant MAPKs. With only a limited number of MAPK components, multiple functional pathways often share the same MAPK cascade. As a result, understanding the signaling specificity, which requires detailed information about the spatiotemporal expression of the components involved, their complex formation, and the consequence of substrate phosphorylation, is central to our study of MAPK functions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Han, Aijie; Zou, Lingyue; Gan, Xiaoqin; Li, Yu; Liu, Fangfang; Chang, Xuhong; Zhang, Xiaotian; Tian, Minmin; Li, Sheng; Su, Li; Sun, Yingbiao
2018-06-15
Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways. Copyright © 2018 Elsevier B.V. All rights reserved.
LncMAPK6 drives MAPK6 expression and liver TIC self-renewal.
Huang, Guanqun; Jiang, Hui; He, Yueming; Lin, Ye; Xia, Wuzheng; Luo, Yuanwei; Liang, Min; Shi, Boyun; Zhou, Xinke; Jian, Zhixiang
2018-05-15
Liver tumor initiating cells (TICs) have self-renewal and differentiate capacities, and largely contribute to tumor initiation, metastasis and drug resistance. MAPK signaling is a critical pathway in many biological processes, while its role in liver TICs hasn't been explored. Online-available dataset was used for unbiased screening. Liver TICs were examined CD133 FACS or oncosphere formation. TIC self-renewal was detected by oncosphere formation and tumor initiation assay. LncRNA function was detected by loss of function or gain of function assays. The molecular mechanism of lncRNA was explored by RNA pulldown, RNA immunoprecipitation, ChIP, western blot and double FISH. Here, we examined the expression profiles of MAPK components (MAPKs, MAP2Ks, MAP3Ks, MAP4Ks), and found MAPK6 is most highly expressed in liver cancer samples. Moreover, a divergent lncRNA (long noncoding RNA) of MAPK6, termed lncMAPK6 here, is also overexpressed along with liver tumorigenesis. LncMAPK6 promotes liver tumor propagation and TIC self-renewal through MAPK6. LncMAPK6 interacts with and recruits RNA polymerase II to MAPK6 promoter, and finally activates the transcription of MAPK6. Through MAPK6 transcriptional regulation, lncMAPK6 drives MARK signaling activation. LncMAPK6-MAPK6 pathway can be used for liver TIC targeting. Altogether, lncMAPK6 promotes MARK signaling and the self-renewal of liver TICs through MAPK6 expression. MAPK6 was the most highly expressed MAPK component in liver cancer and liver TICs and lncMAPK6 participated in the transcriptional regulation of MAPK6in cis. This work revealed the importance role of MAPK signaling in liver TIC self-renewal and added a new layer for liver TIC and MAPK6 expression regulation.
Chen, Ting; Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun
2018-01-01
Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.
Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun
2018-01-01
Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans. PMID:29590153
Kırça, M; Oğuz, N; Çetin, A; Uzuner, F; Yeşilkaya, A
2017-04-01
Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.
Ork, Britini; Hart, Brit J.; Holbrook, Michael R.; Frieman, Matthew B.; Traynor, Dawn; Johnson, Reed F.; Dyall, Julie; Olinger, Gene G.; Hensley, Lisa E.
2014-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies. PMID:25487801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Nie, Xiaoke; Zhang, Yan
2015-10-15
Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NOmore » and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.« less
Chacon-Cabrera, Alba; Fermoselle, Clara; Urtreger, Alejandro J; Mateu-Jimenez, Mercè; Diament, Miriam J; de Kier Joffé, Elisa D Bal; Sandri, Marco; Barreiro, Esther
2014-11-01
Cachexia is a relevant comorbid condition of chronic diseases including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-κB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-κB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-κB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-κB and MAPK, but not the proteasome system, induced in cancer cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. Attenuation of MAPK and NF-κB signaling pathway effects on muscles is beneficial in cancer-induced cachexia. © 2014 Wiley Periodicals, Inc.
Yu, Sung Hoon; Yu, Jae Myung; Lee, Seong Jin; Kang, Dong Hyun; Cho, Young Jung; Kim, Doo Man
2016-01-01
Purpose Proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in atherosclerosis. Rutin is a major representative of the flavonol subclass of flavonoids and has various pharmacological activities. Currently, data are lacking regarding its effects on VSMC proliferation induced by intermittent hyperglycemia. Here, we demonstrate the effects of rutin on VSMC proliferation and migration according to fluctuating glucose levels. Materials and Methods Primary cultures of male Otsuka Long-Evans Tokushima Fatty (OLETF) rat VSMCs were obtained from enzymatically dissociated rat thoracic aortas. VSMCs were incubated for 72 h with alternating normal (5.5 mmol/L) and high (25.0 mmol/L) glucose media every 12 h. Proliferation and migration of VSMCs, the proliferative molecular pathway [including p44/42 mitogen-activated protein kinases (MAPK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), p38 MAPK, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal protein kinase (JNK), nuclear factor kappa B (NF-κB), and Akt], the migratory pathway (big MAPK 1, BMK1), reactive oxygen species (ROS), and apoptotic pathway were analyzed. Results We found enhanced proliferation and migration of VSMCs when cells were incubated in intermittent high glucose conditions, compared to normal glucose. These effects were lowered upon rutin treatment. Intermittent treatment with high glucose for 72 h increased the expression of phospho-p44/42 MAPK (extracellular signal regulated kinase 1/2, ERK1/2), phospho-MEK1/2, phospho-PI3K, phospho-NF-κB, phospho-BMK1, and ROS, compared to treatment with normal glucose. These effects were suppressed by rutin. Phospho-p38 MAPK, phospho-Akt, JNK, and apoptotic pathways [B-cell lymphoma (Bcl)-xL, Bcl-2, phospho-Bad, and caspase-3] were not affected by fluctuations in glucose levels. Conclusion Fluctuating glucose levels increased proliferation and migration of OLETF rat VSMCs via MAPK (ERK1/2), BMK1, PI3K, and NF-κB pathways. These effects were inhibited by the antioxidant rutin. PMID:26847289
Stueven, Noah A; Schlaeger, Nicholas M; Monte, Aaron P; Hwang, Sheng-Ping L; Huang, Cheng-Chen
2017-12-15
Melanoma is the most aggressive form of skin cancer. Current challenges to melanoma therapy include the adverse effects from immunobiologics, resistance to drugs targeting the MAPK pathway, intricate interaction of many signal pathways, and cancer heterogeneity. Thus combinational therapy with drugs targeting multiple signaling pathways becomes a new promising therapy. Here, we report a family of stilbene-like compounds called A11 that can inhibit melanoma growth in both melanoma-forming zebrafish embryos and mouse melanoma cells. The growth inhibition by A11 is a result of mitosis reduction but not apoptosis enhancement. Meanwhile, A11 activates both MAPK and Akt signaling pathways. Many A11-treated mouse melanoma cells exhibit morphological changes and resemble normal melanocytes. Furthermore, we found that A11 causes down-regulation of melanocyte differentiation genes, including Pax3 and MITF. Together, our results suggest that A11 could be a new melanoma therapeutic agent by inhibiting melanocyte differentiation and proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.
Kakkar, Aanchal; Majumdar, Atreye; Kumar, Anupam; Tripathi, Manjari; Pathak, Pankaj; Sharma, Mehar C; Suri, Vaishali; Tandon, Vivek; Chandra, Sarat P; Sarkar, Chitra
2016-11-01
Recently, BRAF V600E mutation, and activation of mTOR and MAPK pathways have been identified in various glial/glioneuronal tumors. Dysembryoplastic neuroepithelial tumors (DNTs) are epilepsy-associated glioneuronal neoplasms which have not been analyzed extensively in this respect. Sequencing for BRAF V600E mutation, analysis of BRAF copy number by qRT-PCR, and immunohistochemistry for mTOR (p-S6, p-4EBP1) and MAPK (p-MAPK) pathways were performed. Sixty-four DNTs were identified, accounting for 15.1% of patients with drug-refractory epilepsy (mean age: 15.5 years). Duration of seizures ranged from 1 to 22 years. BRAF V600E mutation was identified in 3.7% of DNTs, while BRAF copy number gain was observed in 33.3%. mTOR-pathway activation indicated by p-S6 or p-4EBP1 immunopositivity was seen in 89.7% cases. Interestingly, p-S6 positivity was also seen in adjacent dysplastic cortex. p-MAPK immunopositivity was seen in 50% cases. MAPK and mTOR pathway activation was independent of BRAF alterations. All patients that underwent incomplete resection had Engel grade II-III outcomes (p<0.001). BRAF alterations are frequent in DNTs, particularly BRAF copy number gain which is being reported for the first time in these tumors. Evidence of activation of mTOR and MAPK pathways suggests a role for altered signalling in DNT pathogenesis, and will pave the way for development of targeted therapies, particularly relevant for patients having persistent seizures after incomplete resection. Copyright © 2016 Elsevier B.V. All rights reserved.
Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate
Ueda, Norishi
2015-01-01
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724
Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S
2017-09-01
Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption. © 2017 British Society for Neuroendocrinology.
Wang, Shunde; Wang, Shuhong; Li, Hang; Li, Xiaoxia; Xie, Menglin; Wen, Jiayu; Li, Meicai; Long, Tengbo
2018-06-01
The molecular mechanism of the aromatase inhibitor letrozole was investigated. It promotes the proliferation of spermatogonia by regulating the mitogen-activated protein kinase (MAPK) pathway. Six different concentrations were selected for letrozole in order to incubate mouse spermatogonia [GC-1 spermatogonia (spg)] for 24, 48 and 72 h, respectively. Cell Counting Kit-8 (CCK-8) was used to observe the effect of letrozole on the proliferation of GC-1 spg cells, and the effect was further verified by cell plate clone formation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to detect the effects of letrozole on MAPK signaling pathways [Ras/extracellular signal-regulated kinase 1 (ERK1)/c-Myc], proliferation indexes [Ki-67 and proliferating cell nuclear antigen (PCNA)]. Bromodeoxyuridine (BrdU) staining was used to study the effects of letrozole and MAPK signaling pathways on cell proliferation. The results of CCK-8 showed that the proliferation rate of GC-1 spg cells was improved. Study results also revealed a significant increase in letrozole concentration along with the time of action. The results of plate clone formation assay further indicated that letrozole could significantly promote the proliferation capacity of GC-1 spg cells (p<0.05). The results of RT-PCR and western blot analysis confirmed letrozole significantly activated the expression of Ras/ERK1/c-Myc in the classical MAPK pathway. A significant increase was noted in the protein levels of Ki-67 and PCNA (p<0.05). By contrast, inhibition of the MAPK pathway resulted in a significant decrease in the levels of the above indexes (p<0.05). The number of BrdU cells in the letrozole group was also higher than that of the control group, while the number of BrdU-stained cells in the letrozole + MAPK inhibition group showed a significant decrease in comparison to the letrozole group. In conclusion, letrozole activated the MAPK signaling pathway and promoted the proliferation of mouse spermatogonia GC-1 spg cells. The present study provides a theoretical basis for the clinical application of letrozole.
Uimari, Outi; Rahmioglu, Nilufer; Nyholt, Dale R; Vincent, Katy; Missmer, Stacey A; Becker, Christian; Morris, Andrew P; Montgomery, Grant W; Zondervan, Krina T
2017-04-01
Do genome-wide association study (GWAS) data for endometriosis provide insight into novel biological pathways associated with its pathogenesis? GWAS analysis uncovered multiple pathways that are statistically enriched for genetic association signals, analysis of Stage A disease highlighted a novel variant in MAP3K4, while top pathways significantly associated with all endometriosis and Stage A disease included several mitogen-activated protein kinase (MAPK)-related pathways. Endometriosis is a complex disease with an estimated heritability of 50%. To date, GWAS revealed 10 genomic regions associated with endometriosis, explaining <4% of heritability, while half of the heritability is estimated to be due to common risk variants. Pathway analyses combine the evidence of single variants into gene-based measures, leveraging the aggregate effect of variants in genes and uncovering biological pathways involved in disease pathogenesis. Pathway analysis was conducted utilizing the International Endogene Consortium GWAS data, comprising 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry with genotype data imputed up to 1000 Genomes Phase three reference panel. GWAS was performed for all endometriosis cases and for Stage A (revised American Fertility Society (rAFS) I/II, n = 1686) and B (rAFS III/IV, n = 1364) cases separately. The identified significant pathways were compared with pathways previously investigated in the literature through candidate association studies. The most comprehensive biological pathway databases, MSigDB (including BioCarta, KEGG, PID, SA, SIG, ST and GO) and PANTHER were utilized to test for enrichment of genetic variants associated with endometriosis. Statistical enrichment analysis was performed using the MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT Associations) software. The first genome-wide association analysis for Stage A endometriosis revealed a novel locus, rs144240142 (P = 6.45 × 10-8, OR = 1.71, 95% CI = 1.23-2.37), an intronic single-nucleotide polymorphism (SNP) within MAP3K4. This SNP was not associated with Stage B disease (P = 0.086). MAP3K4 was also shown to be differentially expressed in eutopic endometrium between Stage A endometriosis cases and controls (P = 3.8 × 10-4), but not with Stage B disease (P = 0.26). A total of 14 pathways enriched with genetic endometriosis associations were identified (false discovery rate (FDR)-P < 0.05). The pathways associated with any endometriosis were Grb2-Sos provides linkage to MAPK signaling for integrins pathway (P = 2.8 × 10-5, FDR-P = 3.0 × 10-3), Wnt signaling (P = 0.026, FDR-P = 0.026) and p130Cas linkage to MAPK signaling for integrins pathway (P = 6.0 × 10-4, FDR-P = 0.029); with Stage A endometriosis: extracellular signal-regulated kinase (ERK)1 ERK2 MAPK (P = 5.0 × 10-4, FDR-P = 5.0 × 10-4) and with Stage B endometriosis: two overlapping pathways that related to extracellular matrix biology-Core matrisome (P = 1.4 × 10-3, FDR-P = 0.013) and ECM glycoproteins (P = 1.8 × 10-3, FDR-P = 7.1 × 10-3). Genes arising from endometriosis candidate gene studies performed to date were enriched for Interleukin signaling pathway (P = 2.3 × 10-12), Apoptosis signaling pathway (P = 9.7 × 10-9) and Gonadotropin releasing hormone receptor pathway (P = 1.2 × 10-6); however, these pathways did not feature in the results based on GWAS data. Not applicable. The analysis is restricted to (i) variants in/near genes that can be assigned to pathways, excluding intergenic variants; (ii) the gene-based pathway definition as registered in the databases; (iii) women of European ancestry. The top ranked pathways associated with overall and Stage A endometriosis in particular involve integrin-mediated MAPK activation and intracellular ERK/MAPK acting downstream in the MAPK cascade, both acting in the control of cell division, gene expression, cell movement and survival. Other top enriched pathways in Stage B disease include ECM glycoprotein pathways important for extracellular structure and biochemical support. The results highlight the need for increased efforts to understand the functional role of these pathways in endometriosis pathogenesis, including the investigation of the biological effects of the genetic variants on downstream molecular processes in tissue relevant to endometriosis. Additionally, our results offer further support for the hypothesis of at least partially distinct causal pathophysiology for minimal/mild (rAFS I/II) vs. moderate/severe (rAFS III/IV) endometriosis. The genome-wide association data and Wellcome Trust Case Control Consortium (WTCCC) were generated through funding from the Wellcome Trust (WT084766/Z/08/Z, 076113 and 085475) and the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485 and 552498). N.R. was funded by a grant from the Medical Research Council UK (MR/K011480/1). A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant WT098017). All authors declare there are no conflicts of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Uimari, Outi; Rahmioglu, Nilufer; Nyholt, Dale R.; Vincent, Katy; Missmer, Stacey A.; Becker, Christian; Morris, Andrew P.; Montgomery, Grant W.
2017-01-01
Abstract STUDY QUESTION Do genome-wide association study (GWAS) data for endometriosis provide insight into novel biological pathways associated with its pathogenesis? SUMMARY ANSWER GWAS analysis uncovered multiple pathways that are statistically enriched for genetic association signals, analysis of Stage A disease highlighted a novel variant in MAP3K4, while top pathways significantly associated with all endometriosis and Stage A disease included several mitogen-activated protein kinase (MAPK)-related pathways. WHAT IS KNOWN ALREADY Endometriosis is a complex disease with an estimated heritability of 50%. To date, GWAS revealed 10 genomic regions associated with endometriosis, explaining <4% of heritability, while half of the heritability is estimated to be due to common risk variants. Pathway analyses combine the evidence of single variants into gene-based measures, leveraging the aggregate effect of variants in genes and uncovering biological pathways involved in disease pathogenesis. STUDY DESIGN, SIZE, DURATION Pathway analysis was conducted utilizing the International Endogene Consortium GWAS data, comprising 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry with genotype data imputed up to 1000 Genomes Phase three reference panel. GWAS was performed for all endometriosis cases and for Stage A (revised American Fertility Society (rAFS) I/II, n = 1686) and B (rAFS III/IV, n = 1364) cases separately. The identified significant pathways were compared with pathways previously investigated in the literature through candidate association studies. PARTICIPANTS/MATERIALS, SETTING, METHODS The most comprehensive biological pathway databases, MSigDB (including BioCarta, KEGG, PID, SA, SIG, ST and GO) and PANTHER were utilized to test for enrichment of genetic variants associated with endometriosis. Statistical enrichment analysis was performed using the MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT Associations) software. MAIN RESULTS AND THE ROLE OF CHANCE The first genome-wide association analysis for Stage A endometriosis revealed a novel locus, rs144240142 (P = 6.45 × 10−8, OR = 1.71, 95% CI = 1.23–2.37), an intronic single-nucleotide polymorphism (SNP) within MAP3K4. This SNP was not associated with Stage B disease (P = 0.086). MAP3K4 was also shown to be differentially expressed in eutopic endometrium between Stage A endometriosis cases and controls (P = 3.8 × 10−4), but not with Stage B disease (P = 0.26). A total of 14 pathways enriched with genetic endometriosis associations were identified (false discovery rate (FDR)-P < 0.05). The pathways associated with any endometriosis were Grb2-Sos provides linkage to MAPK signaling for integrins pathway (P = 2.8 × 10−5, FDR-P = 3.0 × 10−3), Wnt signaling (P = 0.026, FDR-P = 0.026) and p130Cas linkage to MAPK signaling for integrins pathway (P = 6.0 × 10−4, FDR-P = 0.029); with Stage A endometriosis: extracellular signal-regulated kinase (ERK)1 ERK2 MAPK (P = 5.0 × 10−4, FDR-P = 5.0 × 10−4) and with Stage B endometriosis: two overlapping pathways that related to extracellular matrix biology—Core matrisome (P = 1.4 × 10−3, FDR-P = 0.013) and ECM glycoproteins (P = 1.8 × 10−3, FDR-P = 7.1 × 10−3). Genes arising from endometriosis candidate gene studies performed to date were enriched for Interleukin signaling pathway (P = 2.3 × 10−12), Apoptosis signaling pathway (P = 9.7 × 10−9) and Gonadotropin releasing hormone receptor pathway (P = 1.2 × 10−6); however, these pathways did not feature in the results based on GWAS data. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The analysis is restricted to (i) variants in/near genes that can be assigned to pathways, excluding intergenic variants; (ii) the gene-based pathway definition as registered in the databases; (iii) women of European ancestry. WIDER IMPLICATIONS OF THE FINDINGS The top ranked pathways associated with overall and Stage A endometriosis in particular involve integrin-mediated MAPK activation and intracellular ERK/MAPK acting downstream in the MAPK cascade, both acting in the control of cell division, gene expression, cell movement and survival. Other top enriched pathways in Stage B disease include ECM glycoprotein pathways important for extracellular structure and biochemical support. The results highlight the need for increased efforts to understand the functional role of these pathways in endometriosis pathogenesis, including the investigation of the biological effects of the genetic variants on downstream molecular processes in tissue relevant to endometriosis. Additionally, our results offer further support for the hypothesis of at least partially distinct causal pathophysiology for minimal/mild (rAFS I/II) vs. moderate/severe (rAFS III/IV) endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The genome-wide association data and Wellcome Trust Case Control Consortium (WTCCC) were generated through funding from the Wellcome Trust (WT084766/Z/08/Z, 076113 and 085475) and the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485 and 552498). N.R. was funded by a grant from the Medical Research Council UK (MR/K011480/1). A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant WT098017). All authors declare there are no conflicts of interest. PMID:28333195
Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway.
He, Y; Jian, C X; Zhang, H Y; Zhou, Y; Wu, X; Zhang, G; Tan, Y H
2016-11-21
There is high incidence of periodontal disease in high-altitude environments; hypoxia may influence the proliferation and clone-forming ability of periodontal ligament stem cells (PDLSCs). The MAPK signaling pathway is closely correlated with cell proliferation, differentiation, and apoptosis. Thus, we isolated and cultured PDLSCs under hypoxic conditions to clarify the impact of hypoxia on PDLSC proliferation and the underlying mechanism. PDLSCs were separated and purified by the limiting dilution method and identified by flow cytometry. PDLSCs were cultured under hypoxic or normoxic conditions to observe their cloning efficiency. PDLSC proliferation at different oxygen concentrations was evaluated by MTT assay. Expression of p38/MAPK and MAPK/ERK signaling pathway members was detected by western blotting. Inhibitors for p38/MAPK or ERK were applied to PDLSCs to observe their impacts on clone formation and proliferation. Isolated PDLSCs exhibited typical stem cell morphological characteristics, strong abilities of globular clone formation and proliferation, and upregulated expression of mesenchymal stem cell markers. Stem cell marker expression was not statistically different between PDLSCs cultured under hypoxia and normoxia (P > 0.05). The clone number in the hypoxia group was significantly higher than that in the control (P < 0.05). PDLSC proliferation under hypoxia was higher than that of the control (P < 0.001). p38 and ERK1/2 phosphorylation in hypoxic PDLSCs was markedly enhanced compared to that in the control (P < 0.05). Either P38/MAPK inhibitor or ERK inhibitor treatment reduced clone formation and proliferation. Therefore, hypoxia enhanced PDLSC clone formation and proliferation by activating the p38/MAPK and ERK/MAPK signaling pathways.
Tang, Yin-Quan; Jaganath, Indubala; Manikam, Rishya; Sekaran, Shamala Devi
2013-01-01
Phyllanthus is a traditional medicinal plant that has been found to have antihepatitis, antibacterial, and anticancer properties. The present studies were to investigate the in vitro molecular mechanisms of anticancer effects of Phyllanthus (P. amarus, P. niruri, P. urinaria, and P. watsonii) plant extracts in human prostate adenocarcinoma. The cancer ten-pathway reporter array was performed and revealed that the expression of six pathway reporters were significantly decreased (Wnt, NFκB, Myc/Max, hypoxia, MAPK/ERK, and MAPK/JNK) in PC-3 cells after treatment with Phyllanthus extracts. Western blot was conducted and identified several signalling molecules that were affected in the signalling pathways including pan-Ras, c-Raf, RSK, Elk1, c-Jun, JNK1/2, p38 MAPK, c-myc, DSH, β-catenin, Akt, HIF-1α, GSK3β, NFκB p50 and p52, Bcl-2, Bax, and VEGF, in treated PC-3 cells. A proteomics-based approach, 2D gel electrophoresis, was performed, and mass spectrometry (MS/MS) results revealed that there were 72 differentially expressed proteins identified in treated PC-3 cells and were involved in tumour cell adhesion, apoptosis, glycogenesis and glycolysis, metastasis, angiogenesis, and protein synthesis and energy metabolism. Overall, these findings suggest that Phyllanthus can interfere with multiple signalling cascades involved in tumorigenesis and be used as a potential therapeutic candidate for treatment of cancer.
Li, Pei; Gan, Yibo; Xu, Yuan; Li, Songtao; Song, Lei; Li, Sukai; Li, Huijuan; Zhou, Qiang
2016-06-01
Matrix homeostasis within the nucleus pulposus (NP) is important for disc function. Unfortunately, the effects of osmolarity on NP matrix synthesis in a disc organ culture system and the underlying mechanisms are largely unknown. The present study was to investigate the effects of different osmolarity modes (constant and cyclic) and osmolarity levels (hypo-, iso-, and hyper-) on NP matrix synthesis using a disc organ culture system and determine whether ERK1/2 or p38MAPK pathway has a role in this process. Porcine discs were cultured for 7 days in various osmotic media, including constant hypo-, iso-, hyper-osmolarity (330, 430, and 550 mOsm/kg, respectively) and cyclic-osmolarity (430 mOsm/kg for 8 h, followed by 550 mOsm/kg for 16 h). The role of ERK1/2 and p38MAPK pathways were determined by their inhibitors U0126 and SB202190 respectively. The expression of SOX9 and downstream aggrecan and collagen II, biochemical content, and histology were used to assess NP matrix synthesis. The findings revealed that NP matrix synthesis was promoted in iso- and cyclic-osmolarity cultures compared to hypo- or hyper-osmolarity culture although the level of matrix synthesis in cyclic-osmolarity culture did not reach that in iso-osmolarity culture. Further analysis suggested that inhibition of the ERK1/2 or p38MAPK pathway in iso- and cyclic-osmolarity cultures reduced NP matrix production. Therefore, we concluded that the effects of osmolarity on NP matrix synthesis depend on osmolarity level (hypo-, iso-, or hyper-) and osmolarity mode (constant or cyclic), and the ERK1/2 and p38MAPK pathways may participate in this process. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1092-1100, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Huang, Lei; Kondo, Fumio; Gosho, Masahiko; Feng, Guo-Gang; Harato, Misako; Xia, Zhong-yuan; Ishikawa, Naohisa; Fujiwara, Yoshihiro; Okada, Shoshiro
2014-01-01
We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression. PMID:24859235
Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination.
Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg
2016-08-15
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Eun; Hanyang Biomedical Research Institute, Seoul; Park, Jae Hyeon
2012-09-01
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity asmore » well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.« less
Proceedings from the 2009 Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back
Rauen, Katherine A.; Schoyer, Lisa; McCormick, Frank; Lin, Angela E.; Allanson, Judith E.; Stevenson, David A.; Gripp, Karen W.; Neri, Giovanni; Carey, John C.; Legius, Eric; Tartaglia, Marco; Schubbert, Suzanne; Roberts, Amy E.; Gelb, Bruce D.; Shannon, Kevin; Gutmann, David H.; McMahon, Martin; Guerra, Carmen; Fagin, James A.; Yu, Benjamin; Aoki, Yoko; Neel, Ben G.; Balmain, Allan; Drake, Richard R.; Nolan, Garry P.; Zenker, Martin; Bollag, Gideon; Sebolt-Leopold, Judith; Gibbs, Jackson B.; Silva, Alcino J.; Patton, E. Elizabeth; Viskochil, David H.; Kieran, Mark W.; Korf, Bruce R.; Hagerman, Randi J.; Packer, Roger J.; Melese, Teri
2012-01-01
The RASopathies are a group of genetic syndromes caused by germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway. Some of these syndromes are neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, LEOPARD syndrome and Legius syndrome. Their common underlying pathogenetic mechanism brings about significant overlap in phenotypic features and includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, GI and ocular abnormalities, and a predisposition to cancer. The proceedings from the symposium “Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back” chronicle the timely and typical research symposium which brought together clinicians, basic scientists, physician-scientists, advocate leaders, trainees, students and individuals with Ras syndromes and their families. The goals, to discuss basic science and clinical issues, to set forth a solid framework for future research, to direct translational applications towards therapy and to set forth best practices for individuals with RASopathies was successfully meet with a commitment to begin to move towards clinical trials. PMID:20014119
BMP15 regulates AMH expression via the p38 MAPK pathway in granulosa cells from goat.
Zhao, Zhongquan; Guo, Fangyue; Sun, Xiaowei; He, Qijie; Dai, Zinuo; Chen, Xiaochuan; Zhao, Yongju; Wang, Jian
2018-05-31
Anti-Mullerian hormone (AMH), a member of the TGF-β superfamily, is produced by granulosa cells (GCs) of preantral and small antral follicles and plays a role in regulating the recruitment of primordial follicles and the FSH-dependent development of follicles. However, the regulation of AMH expression in follicles remains poorly understood. The objectives of this study were to determine the following: 1. the association between bone morphogenetic protein 15 (BMP15) and AMH; 2. whether BMP15 can regulate the expression of AMH by inhibiting the p38 MAPK pathway; and 3. whether SRY-related HMG box 9 (SOX9), a transcription factor for AMH, is involved in the regulation of AMH expression by BMP15. In this study, an inhibitor of p38 MAPK and an siRNA specific for p38 MAPK were used to prevent the function of the p38 MAPK signaling pathway. Then, AMH mRNA expression and AMH secretion were detected in goat GCs using an RT-PCR assay and ELISA, respectively, after treatment with BMP15. The results indicated that BMP15 up-regulates the transcription of AMH and that the inhibition of p38 MAPK decreases the BMP15-induced expression of AMH and SOX9, suggesting that BMP15 up-regulates the expression of AMH via the p38 MAPK signaling pathway, and this process involves the SOX9 transcription factor. Copyright © 2018 Elsevier Inc. All rights reserved.
Ashton-Beaucage, Dariel; Lemieux, Caroline; Udell, Christian M; Sahmi, Malha; Rochette, Samuel; Therrien, Marc
2016-08-01
RAS-induced MAPK signaling is a central driver of the cell proliferation apparatus. Disruption of this pathway is widely observed in cancer and other pathologies. Consequently, considerable effort has been devoted to understanding the mechanistic aspects of RAS-MAPK signal transmission and regulation. While much information has been garnered on the steps leading up to the activation and inactivation of core pathway components, comparatively little is known on the mechanisms controlling their expression and turnover. We recently identified several factors that dictate Drosophila MAPK levels. Here, we describe the function of one of these, the deubiquitinase (DUB) USP47. We found that USP47 acts post-translationally to counteract a proteasome-mediated event that reduces MAPK half-life and thereby dampens signaling output. Using an RNAi-based genetic interaction screening strategy, we identified UBC6, POE/UBR4, and UFD4, respectively, as E2 and E3 enzymes that oppose USP47 activity. Further characterization of POE-associated factors uncovered KCMF1 as another key component modulating MAPK levels. Together, these results identify a novel protein degradation module that governs MAPK levels. Given the role of UBR4 as an N-recognin ubiquitin ligase, our findings suggest that RAS-MAPK signaling in Drosophila is controlled by the N-end rule pathway and that USP47 counteracts its activity.
Nguyen, Tuan; Ruan, Zheng; Oruganty, Krishnadev; Kannan, Natarajan
2015-01-01
Mitogen activated protein kinases (MAPKs) form a closely related family of kinases that control critical pathways associated with cell growth and survival. Although MAPKs have been extensively characterized at the biochemical, cellular, and structural level, an integrated evolutionary understanding of how MAPKs differ from other closely related protein kinases is currently lacking. Here, we perform statistical sequence comparisons of MAPKs and related protein kinases to identify sequence and structural features associated with MAPK functional divergence. We show, for the first time, that virtually all MAPK-distinguishing sequence features, including an unappreciated short insert segment in the β4-β5 loop, physically couple distal functional sites in the kinase domain to the D-domain peptide docking groove via the C-terminal flanking tail (C-tail). The coupling mediated by MAPK-specific residues confers an allosteric regulatory mechanism unique to MAPKs. In particular, the regulatory αC-helix conformation is controlled by a MAPK-conserved salt bridge interaction between an arginine in the αC-helix and an acidic residue in the C-tail. The salt-bridge interaction is modulated in unique ways in individual sub-families to achieve regulatory specificity. Our study is consistent with a model in which the C-tail co-evolved with the D-domain docking site to allosterically control MAPK activity. Our study provides testable mechanistic hypotheses for biochemical characterization of MAPK-conserved residues and new avenues for the design of allosteric MAPK inhibitors. PMID:25799139
Phosphofructokinase-P Modulates P44/42 MAPK Levels in HeLa Cells.
Cardim Pires, Thyago Rubens; Albanese, Jamille Mansur; Schwab, Michael; Marette, André; Carvalho, Renato Sampaio; Sola-Penna, Mauro; Zancan, Patricia
2017-05-01
It is known that interfering with glycolysis leads to profound modification of cancer cell proliferation. However, energy production is not the major reason for this correlation. Here, using HeLa cells as a model for cancer, we demonstrate that phosphofructokinase-P (PFK-P), which is overexpressed in diverse types of cancer including HeLa cells, modulates expression of P44/42 mitogen-activated protein kinase (MAPK). Silencing of PFK-P did not alter HeLa cell viability or energy production, including the glycolytic rate. On the other hand, silencing of PFK-P induced the downregulation of p44/42 MAPK, augmenting the sensitivity of HeLa cells to different drugs. Conversely, overexpression of PFK-P promotes the upregulation of p44/42 MAPK, making the cells more resistant to the drugs. These results indicate that overexpression of PFK-P by cancer cells is related to activation of survival pathways via upregulation of MAPK and suggest PFK-P as a promising target for cancer therapy. J. Cell. Biochem. 118: 1216-1226, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Distinct effects of thrombopoietin depending on a threshold level of activated Mpl in BaF-3 cells.
Millot, Gaël A; Vainchenker, William; Duménil, Dominique; Svinarchuk, Fédor
2002-06-01
Thrombopoietin (TPO) plays a critical role in megakaryopoiesis through binding to its receptor Mpl. This involves activation of various intracellular signaling pathways, including phosphoinositide 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) pathways. Their precise role in TPO-mediated proliferation, survival and differentiation is not fully understood. In the present study, we show that TPO induces different biological responses in Mpl-transduced BaF-3 cells, depending on the cell surface density of Mpl and the resulting activation level of signaling pathways. TPO mediates cell proliferation in cells expressing high levels of Mpl but only mediates survival without proliferation in cells expressing low levels of the receptor. By using the kinase inhibitors PD98059 and LY294002, we further showed that the activation level of the PI3K and MAPK p42/44 pathways is a determining factor for the proliferative effect. In cells expressing low levels of Mpl, the survival effect was strongly dependent on the activation level of the PI3K/AKT, but not the MAPK p42/44 pathway. Moreover, this effect was correlated with the phosphorylation level of BAD but not with the expression level of Bcl-X(L). However, PI3K pathway inhibition did not increase apoptosis when BaF-3 cells proliferated in response to TPO, indicating a compensating mechanism from other Mpl signaling pathways in this case.
Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling
2009-01-01
Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688
Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways.
Malemud, Charles J
2007-06-01
The importance of stress-activated protein/mitogen-activated protein kinase (SAP/MAPK) pathway signalling (involving c-Jun-N-terminal kinase [JNK], extracellular signal-regulated kinase [ERK] and p38 kinase) in normal cellular proliferation, differentiation and programmed cell death has led to significant recent advances in our understanding of the role of SAP/MAPK signaling in inflammatory disorders such as arthritis and cardiovascular disease, cancer, and pulmonary and neurogenerative diseases. The discovery that several natural products such as resveratrol, tangeretin and ligustilide non-specifically inhibit SAP/MAPK signalling in vitro should now be logically extended to studies designed to determine how agents in these natural products regulate SAP/MAPK pathways in animal models of disease. A new generation of small-molecule SAP/MAPK inhibitors that demonstrate increasing specificity for each of the JNK, ERK and p38 kinase isoforms has shown promise in animal studies and could eventually prove effective for treating human diseases. Several of these compounds are already being tested in human subjects to assess their oral bioavailability, pharmacokinetics and toxicity.
MEK5-ERK5 Signaling in Cancer: Implications for Targeted Therapy
Hoang, Van T.; Yan, Thomas J.; Cavanaugh, Jane E.; Flaherty, Patrick T.; Beckman, Barbara S.; Burow, Matthew E.
2017-01-01
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MAPK kinase 5-extracellular signal-regulated kinase 5 (MEK5-ERK5) pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents. PMID:28153789
Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won
2016-07-01
Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.
Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.
Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido
2008-07-01
We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.
Li, Chang-Yi; Yang, Ling-Chao; Guo, Kai; Wang, Yue-Peng; Li, Yi-Gang
2015-04-01
Mitogen-activated protein kinase (MAPK) cascades are important players in the overall representation of cellular signal transduction pathways, and the deregulation of MAPKs is involved in a variety of diseases. The activation of MAPK signals occurs through phosphorylation by MAPK kinases at conserved threonine and tyrosine (Thr-Xaa-Tyr) residues. The mitogen-activated protein kinase phosphatases (MKPs) are a major part of the dual-specificity family of phosphatases and specifically inactivate MAPKs by dephosphorylating both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. MAPKs binding to MKPs can enhance MKP stability and activity, providing an important negative-feedback control mechanism that limits the MAPK cascades. In recent years, accumulating and compelling evidence from studies mainly employing cultured cells and mouse models has suggested that the archetypal MKP family member, MKP-1, plays a pivotal role in cardiovascular disease as a major negative modulator of MAPK signaling pathways. In the present review, we summarize the current knowledge on the pathological properties and the regulation of MKP-1 in cardiovascular disease, which may provide valuable therapeutic options.
Iacovelli, L; Capobianco, L; Iula, M; Di Giorgi Gerevini, V; Picascia, A; Blahos, J; Melchiorri, D; Nicoletti, F; De Blasi, A
2004-05-01
We examined the role of G-protein coupled receptor kinase-2 (GRK2) in the homologous desensitization of mGlu4 metabotropic glutamate receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Receptor activation with the agonist l-2-amino-4-phosphonobutanoate (l-AP4) stimulated at least two distinct signaling pathways: inhibition of cAMP formation and activation of the mitogen-activated protein kinase (MAPK) pathway [assessed by Western blot analysis of phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2]. Activation of both pathways was attenuated by pertussis toxin. Overexpression of GRK2 (but not GRK4) largely attenuated the stimulation of the MAPK pathway by l-AP4, whereas it slightly potentiated the inhibition of FSK-stimulated cAMP formation. Transfection with a kinase-dead mutant of GRK2 (GRK2-K220R) or with the C-terminal fragment of GRK2 also reduced the mGlu4-mediated stimulation of MAPK, suggesting that GRK2 binds to the Gbetagamma subunits to inhibit signal propagation toward the MAPK pathway. This was confirmed by the evidence that GRK2 coimmunoprecipitated with Gbetagamma subunits in an agonist-dependent manner. Finally, neither GRK2 nor its kinase-dead mutant had any effect on agonist-induced mGlu4 receptor internalization in HEK293 cells transiently transfected with GFP-tagged receptors. Agonist-dependent internalization was instead abolished by a negative-dominant mutant of dynamin, which also reduced the stimulation of MAPK pathway by l-AP4. We speculate that GRK2 acts as a "switch molecule" by inhibiting the mGlu4 receptor-mediated stimulation of MAPK and therefore directing the signal propagation toward the inhibition of adenylyl cyclase.
Li, Hai-Juan; Guo, Liang-Mei; Yang, Long-Long; Zhou, Yong-Chun; Zhang, Yan-Jun; Guo, Juan; Xie, Xue-Jun; Guo, Guo-Zhen
2013-06-20
The blood-retinal barrier (BRB) is critical for maintaining retina homeostasis and low permeability. In this study, we evaluated the effects of electromagnetic pulse (EMP) exposure on the permeability of BRB, alterations of tight junction (TJ) proteins of BRB and if any, involvement of mitogen-activated protein kinase (MAPK) pathway. Male Sprague-Dawley (SD) rats and RF/6A cells which were pretreated with or without MAPKs inhibitors were sham exposed or exposed to EMP at 200kV/m for 200 pulses. The alteration of BRB permeability was examined through fluorescence microscope and quantitatively assessed using Evans blue (EB) and endogenous albumin as tracers. The expressions of TJ proteins and some signaling molecules of MAPK pathway were measured by Western blots. The observations were that EMP exposure resulted in increased BRB permeability concurrent with the decreased expressions of occludin and claudin-5, which were correlated with the increased expressions of phospho-p38, phospho-JNK and phospho-ERK and could be blocked when pretreated with p38 MAPK inhibitor. Thus, the results suggested that the alterations of occludin and claudin-5 may play an important role in the disruption of TJs, which may lead to the transient breakdown of BRB after EMP exposure with the involvement of p38 MAPK pathway through phosphorylation of signaling molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A
2005-06-06
In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma.
Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A
2005-01-01
In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma. PMID:15928660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roffe, Suzy; Hagai, Yosey; Institute of Animal Sciences, Volcani Center, Bet Dagan 50250
2010-04-01
Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of themore » phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.« less
Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J.; Molina, María
2013-01-01
The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1–cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module. PMID:23221999
Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells.
Moyes, David L; Murciano, Celia; Runglall, Manohursingh; Islam, Ayesha; Thavaraj, Selvam; Naglik, Julian R
2011-01-01
We previously reported that a bi-phasic innate immune MAPK response, constituting activation of the mitogen-activated protein kinase (MAPK) phosphatase MKP1 and c-Fos transcription factor, discriminates between the yeast and hyphal forms of Candida albicans in oral epithelial cells (ECs). Since the vast majority of mucosal Candida infections are vaginal, we sought to determine whether a similar bi-phasic MAPK-based immune response was activated by C. albicans in vaginal ECs. Here, we demonstrate that vaginal ECs orchestrate an innate response to C. albicans via NF-κB and MAPK signaling pathways. However, unlike in oral ECs, the first MAPK response, defined by c-Jun transcription factor activation, is delayed until 2 h in vaginal ECs but is still independent of hypha formation. The 'second' or 'late' MAPK response, constituting MKP1 and c-Fos transcription factor activation, is identical to oral ECs and is dependent upon both hypha formation and fungal burdens. NF-κB activation is immediate but independent of morphology. Furthermore, the proinflammatory response in vaginal ECs is different to oral ECs, with an absence of G-CSF and CCL20 and low level IL-6 production. Therefore, differences exist in how C. albicans activates signaling mechanisms in oral and vaginal ECs; however, the activation of MAPK-based pathways that discriminate between yeast and hyphal forms is retained between these mucosal sites. We conclude that this MAPK-based signaling pathway is a common mechanism enabling different human epithelial tissues to orchestrate innate immune responses specifically against C. albicans hyphae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia
2007-08-17
Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-{kappa}B) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-{kappa}B-mediated sICAM-1, TNF-{alpha} production and the possible involvement of ERK{sub 1/2}/p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-{alpha} in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-{kappa}B inhibitor; PD98059,more » MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B activity in HUVECs. The results show that Hcy activated both ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK{sub 1/2}/p38MAPK phosphorylation, suggesting that Hcy-induced ERK{sub 1/2}/p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-{kappa}B activation was mediated by activation of ERK{sub 1/2}/p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-{kappa}B-mediated sICAM-1 and TNF-{alpha} production induced by Hcy via inhibition of ERK{sub 1/2}/p38MAPK pa0011thw.« less
Comparative Aspects of BRAF Mutations in Canine Cancers
Mochizuki, Hiroyuki; Breen, Matthew
2015-01-01
Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. The characterization and discovery of BRAF mutations in a variety of human cancers has led to the development of specific inhibitors targeting the BRAF/MAPK pathway and dramatically changed clinical outcomes in BRAF-mutant melanoma patients. Recent discovery of BRAF mutation in canine cancers underscores the importance of MAPK pathway activation as an oncogenic molecular alteration evolutionarily conserved between species. A comparative approach using the domestic dog as a spontaneous cancer model will provide new insights into the dysregulation of BRAF/MAPK pathway in carcinogenesis and facilitate in vivo studies to evaluate therapeutic strategies targeting this pathway’s molecules for cancer therapy. The BRAF mutation in canine cancers may also represent a molecular marker and therapeutic target in veterinary oncology. This review article summarizes the current knowledge on BRAF mutations in human and canine cancers and discusses the potential applications of this abnormality in veterinary oncology. PMID:29061943
Pérez, Lidia; Bray, Sarah J.
2017-01-01
ABSTRACT Myeloproliferative neoplasms (MPNs) of the Philadelphia-negative class comprise polycythaemia vera, essential thrombocythaemia and primary myelofibrosis (PMF). They are associated with aberrant numbers of myeloid lineage cells in the blood, and in the case of overt PMF, with development of myelofibrosis in the bone marrow and failure to produce normal blood cells. These diseases are usually caused by gain-of-function mutations in the kinase JAK2. Here, we use Drosophila to investigate the consequences of activation of the JAK2 orthologue in haematopoiesis. We have identified maturing haemocytes in the lymph gland, the major haematopoietic organ in the fly, as the cell population susceptible to induce hypertrophy upon targeted overexpression of JAK. We show that JAK activates a feed-forward loop, including the cytokine-like ligand Upd3 and its receptor, Domeless, which are required to induce lymph gland hypertrophy. Moreover, we present evidence that p38 MAPK signalling plays a key role in this process by inducing expression of the ligand Upd3. Interestingly, we also show that forced activation of the p38 MAPK pathway in maturing haemocytes suffices to generate hypertrophic organs and the appearance of melanotic tumours. Our results illustrate a novel pro-tumourigenic crosstalk between the p38 MAPK pathway and JAK signalling in a Drosophila model of MPNs. Based on the shared molecular mechanisms underlying MPNs in flies and humans, the interplay between Drosophila JAK and p38 signalling pathways unravelled in this work might have translational relevance for human MPNs. PMID:28237966
Integrated analysis of breast cancer cell lines reveals unique signaling pathways.
Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T
2009-01-01
Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.
Li, Dan; Liu, Nan; Zhao, Hai-Hua; Zhang, Xu; Kawano, Hitoshi; Liu, Lu; Zhao, Liang; Li, Hong-Peng
2017-03-29
Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. The present study employs an interleukin-1β (IL-1β) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. GFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.
Chadha, Sonia; Tati, Swetha; Conti, Heather R.; Hube, Bernhard; Cullen, Paul J.; Edgerton, Mira
2012-01-01
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence. PMID:23139737
Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen
2015-01-01
Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.
Hochmann, Jimena; Sobrinho, João S; Villa, Luisa L; Sichero, Laura
2016-05-01
Asian-American (AA) HPV-16 variants are associated with higher risk of cancer. Abnormal activation of intracellular signaling play a critical role in cancer development and progression. Our aim was to elucidate mechanisms underlying the higher oncogenic potential attributed to AA variant. We evaluated activation of MAPK and PI3K/AKT pathways in primary human keratinocytes (PHKs) transduced with E6/E7 of three HPV-16 variants: E-P, AA, E-350G. Phenotypes examined included migration, anchorage independent growth and invasion. AA PHKs presented the highest levels of active proteins involved in all cascades analyzed: MAPK-ERK, MAPK-p38 and PI3K-AKT. AA PHKs were more efficient in promoting anchorage independent growth, and in stimulating cell migration and invasion. MEK1 inhibition decreased migration. The mesenchymal phenotype marker vimentin was increased in AA PHKs. Our results suggest that MEK1, ERK2, AKT2 hyperactivation influence cellular behavior by means of GSK-3b inactivation and EMT induction prompting AA immortalized PHKs to more efficiently surpass carcinogenesis steps. Copyright © 2016 Elsevier Inc. All rights reserved.
Kupzig, Sabine; Walker, Simon A; Cullen, Peter J
2005-05-24
Ras proteins are binary switches that, by cycling through inactive GDP- and active GTP-bound conformations, regulate multiple cellular signaling pathways, including those that control growth and differentiation. For some time, it has been known that receptor-mediated increases in the concentration of intracellular free calcium ([Ca(2+)](i)) can modulate Ras activation. Increases in [Ca(2+)](i) often occur as repetitive Ca(2+) spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca(2+) oscillations increase in frequency with the amplitude of receptor stimuli, a phenomenon critical for the induction of selective cellular functions. Here, we show that Ca(2+) oscillations are optimized for Ca(2+)-mediated activation of Ras and signaling through the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. We present additional evidence that Ca(2+) oscillations reduce the effective Ca(2+) threshold for the activation of Ras and that the oscillatory frequency is optimized for activation of Ras and the ERK/MAPK pathway. Our results describe a hitherto unrecognized link between complex Ca(2+) signals and the modulation of the Ras/ERK/MAPK signaling cascade.
Yamamoto, Daisuke S; Tachibana, Kazunori; Sumitani, Megumi; Lee, Jae Min; Hatakeyama, Masatsugu
2008-01-01
Extensive survey of meiotic metaphase II arrest during oocyte maturation in vertebrates revealed that the mitogen-activated protein kinase (MAPK) pathway regulated by the c-mos proto-oncogene product, Mos, has an essential role in cytostatic activity, termed cytostatic factor (CSF). In contrast, little is known in invertebrates in which meiotic arrest occurs in most cases at metaphase I (MI arrest). A parthenogenetic insect, the sawfly Athalia rosae, in which artificial egg activation is practicable, has advantages to investigate the mechanisms of MI arrest. Both the MAPK/extracellular signal-regulated protein kinase kinase (MEK) and MAPK were phosphorylated and maintained active in MI-arrested sawfly eggs, whereas they were dephosphorylated soon after egg activation. Treatment of MI-arrested eggs with U0126, an inhibitor of MEK, resulted in dephosphorylation of MAPK and MI arrest was resumed. The sawfly c-mos gene orthologue encoding a serine/threonine kinase was cloned and analyzed. It was expressed in nurse cells in the ovaries. To examine CSF activity of the sawfly Mos, synthesized glutathione S-transferase (GST)-fusion sawfly Mos protein was injected into MI-resumed eggs in which MEK and MAPK were dephosphorylated. Both MEK and MAPK were phosphorylated again upon injection. In these GST-fusion sawfly Mos-injected eggs subsequent mitotic (syncytial) divisions were blocked and embryonic development was ceased. These results demonstrated that the MEK-MAPK pathway was involved in maintaining CSF arrest in sawfly eggs and Mos functioned as its upstream regulatory molecule.
Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan
2017-01-01
Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways. PMID:28222174
Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan
2017-01-01
Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.
Yu, Hao; Qu, Cunmin; Tang, Zhanglin; Li, Jiana; Chai, Yourong; Liang, Ying
2015-01-01
Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY) of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D). Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa. PMID:26173020
Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway
Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...
2015-06-16
Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less
Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway
Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven
2015-01-01
Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442
Jain, Payal; Silva, Amanda; Han, Harry J.; Lang, Shih-Shan; Zhu, Yuankun; Boucher, Katie; Smith, Tiffany E.; Vakil, Aesha; Diviney, Patrick; Choudhari, Namrata; Raman, Pichai; Busch, Christine M.; Delaney, Tim; Yang, Xiaodong; Olow, Aleksandra K.; Mueller, Sabine; Haas-Kogan, Daphne; Fox, Elizabeth; Storm, Phillip B.; Resnick, Adam C.; Waanders, Angela J.
2017-01-01
Pediatric low-grade gliomas (PLGGs) are frequently associated with activating BRAF gene fusions, such as KIAA1549-BRAF, that aberrantly drive the mitogen activated protein kinase (MAPK) pathway. Although RAF inhibitors (RAFi) have been proven effective in BRAF-V600E mutant tumors, we have previously shown how the KIAA1549-BRAF fusion can be paradoxically activated by RAFi. While newer classes of RAFi, such as PLX8394, have now been shown to inhibit MAPK activation by KIAA1549-BRAF, we sought to identify alternative MAPK pathway targeting strategies using clinically relevant MEK inhibitors (MEKi), along with potential escape mechanisms of acquired resistance to single-agent MAPK pathway therapies. We demonstrate effectiveness of multiple MEKi against diverse BRAF-fusions with novel N-terminal partners, with trametinib being the most potent. However, resistance to MEKi or PLX8394 develops via increased RTK expression causing activation of PI3K/mTOR pathway in BRAF-fusion expressing resistant clones. To circumvent acquired resistance, we show potency of combinatorial targeting with trametinib and everolimus, an mTOR inhibitor (mTORi) against multiple BRAF-fusions. While single-agent mTORi and MEKi PLGG clinical trials are underway, our study provides preclinical rationales for using MEKi and mTORi combinatorial therapy to stave off or prevent emergent drug-resistance in BRAF-fusion driven PLGGs. PMID:29156677
p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs).
Niu, Zhiwei; Mu, Hailong; Zhu, Haijing; Wu, Jiang; Hua, Jinlian
2017-02-01
Male germline stem cells (mGSCs), also called spermatogonial stem cells (SSCs), constantly generate spermatozoa in male animals. A number of preliminary studies on mechanisms of mGSC self-renewal have previously been conducted, revealing that several factors are involved in this regulated process. The p38 MAPK pathway is widely conserved in multiple cell types in vivo, and plays an important role in cell proliferation, differentiation, inflammation and apoptosis. However, its role in self-renewal of mGSCs has not hitherto been determined. Here, the mouse mGSCs were cultured and their identity was verified by semi-RT-PCR, alkaline phosphatase (AP) staining and immunofluorescence staining. Then, the p38 MAPK pathway was blocked by p38 MAPK-specific inhibitor SB202190. mGSC self-renewal ability was then analysed by observation of morphology, cell number, cell growth analysis, TUNEL incorporation assay and cell cycle analysis. Results showed that mouse mGSC self-renewal ability was significantly inhibited by SB202190. This study showed for the first time that the p38 MAPK pathway plays a key role in maintaining self-renewal capacity of mouse mGSCs, which offers a new self-renewal pathway for these cells and contributes to overall knowledge of the mechanisms of mGSC self-renewal. © 2016 John Wiley & Sons Ltd.
Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro
2013-01-01
Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707
Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.
Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle
2016-10-01
Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.
Yang, QinHe; Xu, YongJian; Feng, GaoFei; Hu, ChaoFeng; Zhang, YuPei; Cheng, ShaoBing; Wang, YanPing; Gong, XiangWen
2014-01-01
Traditional Chinese Medicine (TCM), has over thousands-of-years history of use. Chaihu-Shugan-San (CSS), and Shen-ling-bai-zhu-San (SLBZS), are famous traditional Chinese herbal medicine formulas, which have been used in China, for the treatment of many chronic diseases. This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK), pathway on hepatocytes of non-alcoholic steatohepatitis (NASH), rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high (9.6g/kg/day)/low (3.2g/kg/day)-dose CSS group, high (30g/kg/day)/low (10g/kg/day)-dose SLBZS group, high (39.6g/kg/day)/low (13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16, wks, Hepatocytes were isolated from 6, rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4, phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed. The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway. To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression.
Gaitanaki, Catherine; Kefaloyianni, Erene; Marmari, Athina; Beis, Isidoros
2004-05-01
The stimulation of p38-MAPK signal transduction pathway by various stressful stimuli was investigated in the marine bivalve M. galloprovincialis. Oxidative stress (5 microM H2O2) induced a biphasic pattern of p38-MAPK phosphorylation with maximal values attained at 15 min (8.1-fold) and 1 h (8.0-fold) of treatment respectively. Furthermore, 1 microM SB203580 abolished the p38-MAPK phosphorylation induced by oxidative stress. Aerial exposure also induced a biphasic pattern of p38-MAPK phosphorylation, with maximal values attained at 1 h (6.8-fold) and 8 h (4.9-fold) respectively. Re-oxygenation following a 15 min of aerial exposure resulted in the progressive dephosphorylation of the kinase. Treatment with 0.5 M sorbitol (in normal seawater) induced the rapid kinase phosphorylation (9.2-fold) and this effect was reversible. Seawater salinities varying between 100-60% had no effect, whereas a salinity of 50% induced a significant p38-MAPK phosphorylation. Furthermore, hypertonicity (120% seawater) resulted in a moderate kinase phosphorylation. All the above results demonstrate for the first time in a marine invertebrate imposed to environmental and other forms of stress as an intact, living organism, that the p38-MAPK pathway is specifically activated by various stressful stimuli which this animal can often face and sustain in vivo.
O'Hara, Samantha D; Garcea, Robert L
2016-11-01
Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients. Copyright © 2016 O’Hara and Garcea.
de Oliveira Lopes, Raquel; Romeiro, Nelilma Correia; de Lima, Cleverton Kleiton F; Louback da Silva, Leandro; de Miranda, Ana Luisa Palhares; Nascimento, Paulo Gustavo B D; Cunha, Fernando Q; Barreiro, Eliezer J; Lima, Lídia Moreira
2012-08-01
p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-α production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Li, Juan; Yao, Wu; Zhang, Lin; Bao, Lei; Chen, Huiting; Wang, Di; Yue, Zhongzheng; Li, Yiping; Zhang, Miao; Hao, Changfu
2017-05-12
Exposure to crystalline silica is considered to increase the risk of lung fibrosis. The primary effector cell, the myofibroblast, plays an important role in the deposition of extracellular matrix (ECM). DNA methylation change is considered to have a potential effect on myofibroblast differentiation. Therefore, the present study was designed to investigate the genome-wide DNA methylation profiles of lung fibroblasts co-cultured with alveolar macrophages exposed to crystalline silica in vitro. AM/fibroblast co-culture system was established. CCK8 was used to assess the toxicity of AMs. mRNA and protein expression of collagen I, α-SMA, MAPK9 and TGF-β1 of fibroblasts after AMs exposed to 100 μg /ml SiO 2 for 0-, 24-, or 48 h were determined by means of quantitative real-time PCR, immunoblotting and immunohistochemistry. Genomic DNA of fibroblasts was isolated using MeDIP-Seq to sequence. R software, GO, KEGG and Cytoscape were used to analyze the data. SiO 2 exposure increased the expression of collagen I and α-SMA in fibroblasts in co-culture system. Analysis of fibroblast methylome identified extensive methylation changes involved in several signaling pathways, such as the MAPK signaling pathway and metabolic pathways. Several candidates, including Tgfb1 and Mapk9, are hubs who can connect the gene clusters. MAPK9 mRNA expression was significantly higher in fibroblast exposed to SiO 2 in co-culture system for 48 h. MAPK9 protein expression was increased at both 24-h and 48-h treatment groups. TGF-β1 mRNA expression of fibroblast has a time-dependent manner, but we didn't observe the TGF-β1 protein expression. Tgfb1 and Mapk9 are helpful to explore the mechanism of myofibroblast differentiation. The genome-wide DNA methylation profiles of fibroblasts in this experimental silicosis model will be useful for future studies on epigenetic gene regulation during myofibroblast differentiation.
CrMAPK3 regulates the expression of iron-deficiency-responsive genes in Chlamydomonas reinhardtii.
Fei, Xiaowen; Yu, Junmei; Li, Yajun; Deng, Xiaodong
2017-05-16
Under iron-deficient conditions, Chlamydomonas exhibits high affinity for iron absorption. Nevertheless, the response, transmission, and regulation of downstream gene expression in algae cells have not to be investigated. Considering that the MAPK pathway is essential for abiotic stress responses, we determined whether this pathway is involved in iron deficiency signal transduction in Chlamydomonas. Arabidopsis MAPK gene sequences were used as entry data to search for homologous genes in Chlamydomonas reinhardtii genome database to investigate the functions of mitogen-activated protein kinase (MAPK) gene family in C. reinhardtii under iron-free conditions. Results revealed 16 C. reinhardtii MAPK genes labeled CrMAPK2-CrMAPK17 with TXY conserved domains and low homology to MAPK in yeast, Arabidopsis, and humans. The expression levels of these genes were then analyzed through qRT-PCR and exposure to high salt (150 mM NaCl), low nitrogen, or iron-free conditions. The expression levels of these genes were also subjected to adverse stress conditions. The mRNA levels of CrMAPK2, CrMAPK3, CrMAPK4, CrMAPK5, CrMAPK6, CrMAPK8, CrMAPK9, and CrMAPK11 were remarkably upregulated under iron-deficient stress. The increase in CrMAPK3 expression was 43-fold greater than that in the control. An RNA interference vector was constructed and transformed into C. reinhardtii 2A38, an algal strain with an exogenous FOX1:ARS chimeric gene, to silence CrMAPK3. After this gene was silenced, the mRNA levels and ARS activities of FOX1:ARS chimeric gene and endogenous CrFOX1 were decreased. The mRNA levels of iron-responsive genes, such as CrNRAMP2, CrATX1, CrFTR1, and CrFEA1, were also remarkably reduced. CrMAPK3 regulates the expression of iron-deficiency-responsive genes in C. reinhardtii.
Luo, Yan; Chen, Zi; Liu, Lei; Zhou, Hongyu; Chen, Wenxing; Shen, Tao; Han, Xiuzhen; Chen, Long; Huang, Shile
2011-01-01
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+]i) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+]i elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+]i elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+]i elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+]i, which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+]i homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases. PMID:21544200
Revest, J-M; Le Roux, A; Roullot-Lacarrière, V; Kaouane, N; Vallée, M; Kasanetz, F; Rougé-Pont, F; Tronche, F; Desmedt, A; Piazza, P V
2014-01-01
Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2MAPK signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GRNesCre). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2MAPK responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2MAPK signaling pathways as one of the core effectors of stress-related effects of GC. PMID:24126929
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxia; Gao, Ying; Cheng, Hairong
Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2more » expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.« less
CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125
The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less
Moslehi, Maryam; Yazdanparast, Razieh
2013-07-01
Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.
Scieuzo, Carmen; Nardiello, Marisa; Salvia, Rosanna; Pezzi, Marco; Chicca, Milvia; Leis, Marilena; Bufo, Sabino A; Vinson, S Bradleigh; Rao, Asha; Vogel, Heiko; Falabella, Patrizia
2018-02-15
Post-embryonic development and molting in insects are regulated by endocrine changes, including prothoracicotropic hormone (PTTH)-stimulated ecdysone secretion by the prothoracic glands (PGs). In Lepidoptera, two pathways are potentially involved in PTTH-stimulated ecdysteroidogenesis, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B/target of rapamycin (PI3K/Akt/TOR). We investigated the potential roles of both these pathways in Heliothis virescens ecdysteroidogenesis. We identified putative proteins belonging to MAPK and PI3K/Akt/TOR signaling cascades, using transcriptomic analyses of PGs from last (fifth) instar larvae. Using western blots, we measured the phosphorylation of 4E-BP and S6K proteins, the main targets of TOR, following the in vitro exposure of PGs to brain extract containing PTTH (hereafter referred to as PTTH) and/or the inhibitors of MAPK (U0126), PI3K (LY294002) or TOR (rapamycin). Next, we measured ecdysone production, under the same experimental conditions, by enzyme immunoassay (EIA). We found that in Heliothis virescens last instar larvae, both pathways modulated PTTH-stimulated ecdysteroidogenesis. Finally, we analyzed the post-embryonic development of third and fourth instar larvae fed on diet supplemented with rapamycin, in order to better understand the role of the TOR pathway in larval growth. When rapamycin was added to the diet of larvae, the onset of molting was delayed, the growth rate was reduced and abnormally small larvae/pupae with high mortality rates resulted. In larvae fed on diet supplemented with rapamycin, the growth of PGs was suppressed, and ecdysone production and secretion were inhibited. Overall, the in vivo and in vitro results demonstrated that, similarly to Bombyx mori, MAPK and PI3K/Akt/TOR pathways are involved in PTTH signaling-stimulated ecdysteroidogenesis, and indicated the important role of TOR protein in H. virescens systemic growth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei
2016-01-01
Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.
Effect of the Transient Pharmacological Inhibition of Mapk3/1 Pathway on Ovulation in Mice
Siddappa, Dayananda; Beaulieu, Élaine; Gévry, Nicolas; Roux, Philippe P.; Bordignon, Vilceu; Duggavathi, Raj
2015-01-01
Mitogen-activated protein kinase 3/1 (Mapk3/1) pathway is critical for LH signal transduction during ovulation. However, the mechanisms remain incompletely understood. We hypothesized that Mapk pathway regulates ovulation through transcriptional regulation of ovulatory genes. To test this hypothesis we used immature mice superovulated with equine and human chorionic gonadotropins (eCG and hCG) and PD0325901, to inhibit hCG-induced Mapk3/1 activity. Mice received either the inhibitor PD0325901 (25 μg/g, i.p.) or vehicle at 2h before hCG stimulation. Administration of the inhibitor abolished Mapk3/1 phosphorylation in granulosa cells. While vehicle-treated mice ovulated normally, there were no ovulations in inhibitor-treated mice. First, we analyzed gene expression in granulosa cells at 0h, 1h and 4h post-hCG. There was expected hCG-driven increase in mRNA abundance of many ovulation-related genes including Ptgs2 in vehicle-treated granulosa cells, but not (P<0.05) in inhibitor-treated group. There was also reduced mRNA and protein abundance of the transcription factor, early growth response 1 (Egr1) in inhibitor-treated granulosa cells. We then used GRMO2 cell-line to test if Egr1 is recruited to promoter of Ptgs2 followed by chromatin immunoprecipitation with either Egr1 or control antibody. Enrichment of the promoter regions in immunoprecipitants of Egr1 antibody indicated that Egr1 binds to the Ptgs2 promoter. We then knocked down Egr1 expression in mouse primary granulosa cells using siRNA technology. Treatment with Egr1-siRNA inhibited Egr1 transcript accumulation, which was associated with reduced expression of Ptgs2 when compared to control-siRNA treated granulosa cells. These data demonstrate that transient inhibition of LH-stimulated MAPK3/1 activity abrogates ovulation in mice. We conclude that Mapk3/1 regulates ovulation, at least in part, through Egr1 and its target gene, Ptgs2 in granulosa cells of ovulating follicles in mice. PMID:25803847
Activating MAPK1 (ERK2) mutation in an aggressive case of disseminated juvenile xanthogranuloma
Chakraborty, Rikhia; Hampton, Oliver A.; Abhyankar, Harshal; Zinn, Daniel J.; Grimes, Amanda; Skull, Brooks; Eckstein, Olive; Mahmood, Nadia; Wheeler, David A.; Lopez-Terrada, Dolores; Peters, Tricia L.; Hicks, John M.; Elghetany, Tarek; Krance, Robert; Poulikakos, Poulikos I.; Merad, Miriam; McClain, Kenneth L.; Allen, Carl E.; Parsons, Donald W.
2017-01-01
Juvenile xanthogranuloma (JXG) is a rare histiocytic disorder that is usually benign and self-limiting. We present a case of atypical, aggressive JXG harboring a novel mitogen-activated protein kinase (MAPK) pathway mutation in the MAPK1 gene, which encodes mitogen-activated protein kinase 1 or extracellular signal-regulated 2 (ERK2). Our analysis revealed that the mutation results in constitutive ERK activation that is resistant to BRAF or MEK inhibitors but susceptible to an ERK inhibitor. These data highlight the importance of identifying specific MAPK pathway alterations as part of the diagnostic workup for patients with histiocytic disorders rather than initiating empiric treatment with MEK inhibitors. PMID:28512266
Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron
2017-01-01
Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: http://dx.doi.org/10.7554/eLife.22540.001 PMID:28095293
Xie, Yufen; Wang, Yingchun; Sun, Tong; Wang, Fangfei; Trostinskaia, Anna; Puscheck, Elizabeth; Rappolee, Daniel A
2005-05-01
Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations. Copyright (c) 2005 Wiley-Liss, Inc.
Wang, Jia; Dai, Jiewen; Liu, Bin; Gu, Shensheng; Cheng, Lan; Liang, Jingping
2013-12-01
As dental precursor cells, stem cells from the apical papilla (SCAP) are capable of forming roots and undergoing apexogenesis, which are impaired upon exposure to bacterial infection. Porphyromonas gingivalis is a common Gram-negative bacterium that is involved in pulpal and periapical infection. The purpose of this study was to investigate the effects of P. gingivalis lipopolysaccharide (LPS) on the Wnt/β-catenin and p38 mitogen-activated protein kinase (MAPK) signalling pathways in SCAP. As indicated by the IL-1β and TNF-α mRNA levels, P. gingivalis LPS induced the expression of pro-inflammatory cytokines in a dose-dependent manner. In addition, activation of the p38 MAPK and Wnt/β-catenin pathways was confirmed by the augmentation of phospho-p38 and β-catenin protein expression and increased expression of c-myc and cyclin D1 mRNA. Despite no significant increase in β-catenin mRNA expression, increased phosphorylation of glycogen synthase kinase (GSK)-3β suggested that GSK-3β was responsible for the accumulation of β-catenin in the cytoplasm and translocation to the nucleus. Previous studies have shown that GSK-3β plays a critical role in crosstalk between the Wnt/β-catenin and p38 MAPK pathways. In the present study, we showed that the level of p38 phosphorylation decreased upon pretreatment with a p38 MAPK inhibitor for 1 h before stimulating SCAP with 10 μg/ml P. gingivalis LPS. However, the levels of GSK-3β and β-catenin phosphorylation in the cytoplasm and nucleus were not significantly altered. Our results suggest that the p38 MAPK and canonical Wnt/β-catenin signalling pathways are activated by P. gingivalis LPS in SCAP, but we have no evidence that p38 MAPK is upstream of GSK-3β in the Wnt/β-catenin signalling pathway.
Alisi, A; Spaziani, A; Anticoli, S; Ghidinelli, M; Balsano, C
2008-03-01
Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuli; Wu, Hongxia; Shen, Ming
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assayingmore » reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.« less
Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz
2015-06-01
In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiamin
Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 andmore » P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.« less
Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott
2002-10-25
Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.
Menon, Ramkumar; Papaconstantinou, John
2016-01-01
Introduction Spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) remain as a major clinical and therapeutic problem for intervention and management. Current strategies, based on our knowledge of pathways of preterm labor, have only been effective, in part, due to major gaps in our existing knowledge of risks and risk specific pathways. Areas covered Recent literature has identified physiologic aging of fetal tissues as a potential mechanistic feature of normal parturition. This process is affected by telomere dependent and p38 mitogen activated protein kinase (MAPK) induced senescence activation. Pregnancy associated risk factors can cause pathologic activation of this pathway that can cause oxidative stress induced p38 MAPK activation leading to senescence and premature aging of fetal tissues. Premature aging is associated with sterile inflammation capable of triggering preterm labor or preterm premature rupture of membranes. Preterm activation of p38MAPK can be considered as a key contributor to adverse pregnancies. Expert Opinion This review considers p38MAPK activation as a potential target for therapeutic interventions to prevent adverse pregnancy outcomes mediated by stress factors. In this review, we propose multiple strategies to prevent p38MAPK activation and its functional effects. PMID:27459026
Valbonesi, P; Ricci, L; Franzellitti, S; Biondi, C; Fabbri, E
2008-08-01
The aim of this work was to provide a greater insight into the possible effects of Cd on signal transduction and stress-related pathways in reproductive tissues. Cd is a known placental toxin in both animals and humans. Our experiments were designed to study the influence of Cd on MAPK (ERK1/2, JNK1/2 and p38MAPK) activation in the extravillous trophoblast cell line, HTR-8/SVneo, used as an experimental model. We also studied the HSP70 response in cells exposed to Cd, since these proteins may have an important role in conferring protection and tolerance against teratogenic concentrations of the metal. The effects of Cd were compared with those of a well-known toxic agent, H2O2. The metal triggered MAPK activation in a dose- and time-dependent manner. At 30 microM Cd, stimulations of about 300%, 550% and 250% were observed for ERK1/2, JNK1/2, and p38MAPK, respectively. Phosphorylation of ERK1/2 and JNK1/2 was significantly induced after a 1-h exposure to 30 microM Cd, while that of p38MAPK occurred only after 8h. Similarly, H2O2 caused dose- and time-dependent activation of MAPK pathways. Cd potently stimulated HSP70 expression and that of related genes HSP70 A, B and C. H2O2 did not increase HSP70 and HSP70 A and B expression, while temporarily increasing HSP70C transcript levels. In conclusion, Cd triggers different stress responses in trophoblast cells involving HSP70 and SAPK, and also enhances ERK1/2 phosphorylation. Since MAPK dependent pathways play a crucial role during pregnancy, non-physiological activation by Cd exposure may disrupt normal functions in trophoblast cells.
Feng, Min; Wang, Lirui; Chang, Siyuan; Yuan, Pu
2018-05-31
The potential mechanism of penehyclidine hydrochloride (PHC) against myocardial ischemia-reperfusion (I/R) injury has not been fully elucidated. The aim of the present study was to reveal whether mitochondrial dynamics, apoptosis, and MAPKs were involved in the cardioprotective effect of this drug on myocardial I/R injury. Ninety healthy adult male Wistar rats were separately pretreated with normal saline (0.9%); PHC; and signal pathway blockers of MAPKs, Drp1, and Bcl-2. Coronary artery ligation and subsequent reperfusion were performed to induce myocardial I/R injury. Echocardiography was performed. Myocardial enzymes and oxidative stress markers were detected. Myocardial cell apoptotic rates and infarct sizes were measured. Mitochondrial function was evaluated. Expression levels of MAPKs, mitochondria regulatory proteins (Drp1, Mfn1/2), and apoptosis-related proteins (Bcl-2, Bax) were determined. PHC pretreatment improved myocardial abnormalities (dysfunction, injury, infarct size, and apoptotic rate), mitochondrial abnormalities (dysfunction and fission), and excessive oxidative stress and inhibited the activities of p38MAPK and JNK signal pathways in rats with myocardial I/R injury (P < 0.05). Additionally, p38MAPK and JNK blockers (SB239063 and SP600125, respectively) had an effect on rats same as that of PHC. Although Drp1 blocker (Mdivi-1) showed a similar cardioprotective effect (P < 0.05), it did not affect the expression of MAPKs and apoptosis-related proteins (P > 0.05). In addition, Bcl-2 blocker (ABT-737) caused a high expression of Drp1 and a low expression of Mfn1/2 (P < 0.05). PHC regulated mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provided cardioprotection in rats with myocardial I/R injury. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetic Variation in the MAPK/ERK Pathway Affects Contact Hypersensitivity Responses.
Legrand, Julien M D; Roy, Edwige; Baz, Batoul; Mukhopadhyay, Pamela; Wong, Ho Yi; Ram, Ramesh; Morahan, Grant; Walker, Graeme; Khosrotehrani, Kiarash
2018-05-10
Using a genetic resource that enables rapid mapping of genes for complex traits, we demonstrate dramatic diversity between murine strains in response to immune challenge. We identified several candidate genes that point to the MAPK/ERK pathway as a key modulator of this process. Copyright © 2018. Published by Elsevier Inc.
PKG-Mediated MAPK Signaling Is Necessary for Long-Term Operant Memory in "Aplysia"
ERIC Educational Resources Information Center
Michel, Maximilian; Green, Charity L.; Eskin, Arnold; Lyons, Lisa C.
2011-01-01
Signaling pathways necessary for memory formation, such as the mitogen-activated protein kinase (MAPK) pathway, appear highly conserved across species and paradigms. Learning that food is inedible (LFI) represents a robust form of associative, operant learning that induces short- (STM) and long-term memory (LTM) in "Aplysia." We investigated the…
Wu, Xin; Bian, Difei; Dou, Yannong; Gong, Zhunan; Tan, Qian; Xia, Yufeng; Dai, Yue
2017-08-01
Higher expression of growth differentiation factor-9 (GDF-9) in keloids compared with hypertrophic scars and normal skin tissues has been reported recently. The present study was performed to investigate the role of GDF-9 in keloid pathogenesis, and to elucidate its implication for asiaticoside in the keloid management. The data showed that GDF-9 could enhance the proliferation, migration, and invasion of keloid fibroblasts (KFs), while it only slightly elevated collagen expression, indicating that the effect of GDF-9 was opposite to that of TGF-β1. The bioactivity difference between GDF-9 and TGF-β1 could be explained by the different phosphorylated sites on the downstream Smad2/3. Moreover, asiaticoside could inhibit GDF-9-induced activation of MAPKs and Smad pathway in KFs. In conclusion, GDF-9 enhanced the invasive growth of KFs, which was achieved by phosphorylation of Smad 2/3 at the linker region through activation of MAPKs pathway. Asiaticoside hindered the invasive growth of KFs by inhibiting the GDF-9/MAPK/Smad pathway. © 2017 Wiley Periodicals, Inc.
Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel
2012-01-01
The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.
NASA Technical Reports Server (NTRS)
Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)
1999-01-01
Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.
Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C
1999-01-01
Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype. PMID:10545444
Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J.; Musi, Nicolas
2018-01-01
Objective The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Research design and methods Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. Results The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. Conclusions In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals. PMID:29649324
Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas
2018-01-01
The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.
Li, Yao; Yan, Ming; Wang, Zilu; Zheng, Yangyu; Li, Junjun; Ma, Shu; Liu, Genxia; Yu, Jinhua
2014-11-17
Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear. SCAP was isolated and treated with 10⁻⁷ M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods. MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers (ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors. The ondonto/osteogenic differentiation of SCAP is enhanced by 10⁻⁷ M 17beta-estradiol via the activation of MAPK signaling pathway.
Ding, Daofang; Wei, Songpu; Song, Yi; Li, Linghui; Du, Guoqing; Zhan, Hongsheng; Cao, Yuelong
2013-01-01
The purpose of this study was to investigate how Osthole affects glioma cell proliferation, apoptosis, invasion and migration. Rat glioma cells were treated with different concentrations of Osthole (0 µM, 25 µM, 50 µM, and 100 µM). Cell proliferation was assessed by measuring PCNA expression and CCK8 assay at different time points. Apoptosis was evaluated by measuring the expression of pro-apoptotic protein including Bax, Bcl2, PARP, and cleaved Caspase3, and of anti-apoptotic protein Survivin. Cell migration and invasion were assessed using different methods. Signaling pathways such as PI3K/Akt and MAPK, which are involved in the development of glioma cells, were also investigated in this study. Treatment with Osthole markedly inhibits glioma cell proliferation, as assessed by western blot with the PCNA antibody. Osthole also induces cell apoptosis by upregulating the expression of pro-apoptotic proteins, and by reducing the expression of anti-apoptotic factors. Moreover, C6 cell migration and invasion were efficiently inhibited in groups treated with Osthole, compared to the control group. Additionally, inhibition of PI3K/Akt and MAPK signaling pathway was also observed in C6 cells treated with Osthole. Our findings showed an anti-cancer effect of Osthole on glioma cells, including the proliferation inhibition, apoptosis induction, and migration/invasion inhibition. Further investigation in C6 glioma cells implicated the role of Osthole in essential pathways controlling glioma cell progression. Taken together, our data suggested that Osthole may have a potential application in glioma therapy. © 2014 S. Karger AG, Basel.
Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.
Yamamoto, Junya; Nishio, Saori; Hattanda, Fumihiko; Nakazawa, Daigo; Kimura, Toru; Sata, Michio; Makita, Minoru; Ishikawa, Yasunobu; Atsumi, Tatsuya
2017-08-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1 flox/flox :Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen
2017-05-01
Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression, which was abolished by coadministration of SB203580 or luzindole. Melatonin prevents trauma-hemorrhage-induced liver injury in rats via the melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. Copyright © 2017 the American Physiological Society.
Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.
2014-01-01
ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. PMID:24759787
Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L
2014-06-01
Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. © 2014 by the Society for the Study of Reproduction, Inc.
Sindreu, Carlos Balet; Scheiner, Zachary S; Storm, Daniel R
2007-01-04
The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation has not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are coactivated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca(2+)-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory.
Ca2+-Stimulated Adenylyl Cyclases Regulate ERK-Dependent Activation of MSK1 During Fear Conditioning
Sindreu, Carlos Balet; Scheiner, Zachary S.; Storm, Daniel R.
2007-01-01
The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation have not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are co-activated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca2+-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory. PMID:17196532
YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.
Sopeña-Torres, Sara; Jordá, Lucía; Sánchez-Rodríguez, Clara; Miedes, Eva; Escudero, Viviana; Swami, Sanjay; López, Gemma; Piślewska-Bednarek, Mariola; Lassowskat, Ines; Lee, Justin; Gu, Yangnan; Haigis, Sabine; Alexander, Danny; Pattathil, Sivakumar; Muñoz-Barrios, Antonio; Bednarek, Pawel; Somerville, Shauna; Schulze-Lefert, Paul; Hahn, Michael G; Scheel, Dierk; Molina, Antonio
2018-04-01
Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones. © 2018 Universidad Politécnica de Madrid (UPM) New Phytologist © 2018 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas
Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our inmore » vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.« less
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula.
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula . The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN . We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors. PMID:28152300
Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang
2018-06-15
Investigating the potential biological function of differential changed genes through integrating multiple omics data including miRNA and mRNA expression profiles, is always hot topic. However, how to evaluate the repression effect on target genes integrating miRNA and mRNA expression profiles are not fully solved. In this study, we provide an analyzing method by integrating both miRNAs and mRNAs expression data simultaneously. Difference analysis was adopted based on the repression score, then significantly repressed mRNAs were screened out by DEGseq. Pathway analysis for the significantly repressed mRNAs shows that multiple pathways such as MAPK signaling pathway, TGF-beta signaling pathway and so on, may correlated to the colorectal cancer(CRC). Focusing on the MAPK signaling pathway, a miRNA-mRNA network that centering the cell fate genes was constructed. Finally, the miRNA-mRNAs that potentially important in the CRC carcinogenesis were screened out and scored by impact index. Copyright © 2018 Elsevier B.V. All rights reserved.
Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu
2016-01-01
Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3′ -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032
Luo, Li-Jun; Liu, Feng; Lin, Zhi-Kai; Xie, Yu-Feng; Xu, Jia-Li; Tong, Qing-Chun; Shu, Rong
2012-06-01
Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhong, Wu; Zhu, Haichuan; Sheng, Fugeng; Tian, Yonglu; Zhou, Jun; Chen, Yingyu; Li, Song; Lin, Jian
2014-07-01
Transition metal copper (Cu) can exist in oxidized or reduced states in cells, leading to cytotoxicity in cancer cells through oxidative stress. Recently, copper complexes are emerging as a new class of anticancer compounds. Here, we report that a novel anticancer copper complex (HYF127c/Cu) induces oxidative stress-dependent cell death in cancer cells. Further, transcriptional analysis revealed that oxidative stress elicits broad transcriptional changes of genes, in which autophagy-related genes are significantly changed in HYF127c/Cu-treated cells. Consistently, autophagy was induced in HYF127c/Cu-treated cells and inhibitors of autophagy promoted cell death induced by HYF127c/Cu. Further analysis identified that the MAPK11/12/13/14 (formerly known as p38 MAPK) pathway was also activated in HYF127c/Cu-treated cells. Meanwhile, the MAPK11/12/13/14 inhibitor SB203580 downregulated autophagy by inhibiting the transcription of the autophagy genes MAP1LC3B, BAG3, and HSPA1A, and promoted HYF127c/Cu-induced cell death. These data suggest that copper-induced oxidative stress will induce protective autophagy through transcriptional regulation of autophagy genes by activation of the MAPK11/12/13/14 pathway in HeLa cells.
Phan, Trongha X; Phan, Trongha H; Chan, Guy C-K; Sindreu, Carlos B; Eckel-Mahan, Kristin L; Storm, Daniel R
2011-07-20
Consolidation of hippocampus-dependent memory is dependent on activation of the cAMP/Erk/MAPK (mitogen-activated protein kinase) signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN 2 d after training for contextual fear memory reduced contextual memory measured 2 weeks after training, indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus.
Phan, Trongha; Chan, Guy; Sindreu, Carlos; Eckel-Mahan, Kristin; Storm, Daniel R.
2011-01-01
Consolidation of hippocampus dependent memory is dependent on activation of the cAMP/ Erk/MAPK signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN two days after training for contextual fear memory reduced contextual memory measured two weeks after training indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus. PMID:21775607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, T.; Niepel, M.; McDermott, J. E.
It is not known whether cancer cells generally show quantitative differences in the expression of signaling pathway proteins that could dysregulate signal transduction. To explore this issue, we first defined the primary components of the EGF-MAPK pathway in normal human mammary epithelial cells, identifying 16 core proteins and 10 feedback regulators. We then quantified their absolute abundance across a panel of normal and cancer cell lines. We found that core pathway proteins were expressed at very similar levels across all cell types. In contrast, the EGFR and transcriptionally controlled feedback regulators were expressed at highly variable levels. The absolute abundancemore » of most core pathway proteins was between 50,000- 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower levels (2,000-5,000 per cell). MAPK signaling showed saturation in all cells between 3,000-10,000 occupied EGFR, consistent with the idea that low adaptor levels limit signaling. Our results suggest that the core MAPK pathway is essentially invariant across different cell types, with cell- specific differences in signaling likely due to variable levels of feedback regulators. The low abundance of adaptors relative to the EGFR could be responsible for previous observation of saturable signaling, endocytosis, and high affinity EGFR.« less
INTRACELLULAR SIGNALING BY BILE ACIDS
Anwer, Mohammed Sawkat
2014-01-01
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891
Gao, Xue-jiao; Guo, Meng-yao; Zhang, Ze-cai; Wang, Tian-cheng; Cao, Yong-guo; Zhang, Nai-sheng
2015-01-01
Mastitis is a major disease in humans and other animals and is characterized by mammary gland inflammation. It is a major disease of the dairy industry. Bergenin is an active constituent of the plants of genus Bergenia. Research indicates that bergenin has multiple biological activities, including anti-inflammatory and immunomodulatory properties. The objective of this study was to evaluate the protective effects and mechanism of bergenin on the mammary glands during lipopolysaccharide (LPS)-induced mastitis. In this study, mice were treated with LPS to induce mammary gland mastitis as a model for the disease. Bergenin treatment was initiated after LPS stimulation for 24 h. The results indicated that bergenin attenuated inflammatory cell infiltration and decreased the concentration of NO, TNF-α, IL-1β, and IL-6, which were increased in LPS-induced mouse mastitis. Furthermore, bergenin downregulated the phosphorylation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway proteins in mammary glands with mastitis. In conclusion, bergenin reduced the expression of NO, TNF-α, IL-1β, and IL-6 proinflammatory cytokines by inhibiting the activation of the NF-κB and MAPKs signaling pathways, and it may represent a novel treatment strategy for mastitis.
Wang, Bo; Li, Wenyang; Jin, Hongyu; Nie, Xinshi; Shen, Hui; Li, Erran; Wang, Wei
2018-09-01
Chronic intermittent hypoxia (CIH) is one of the main features of obstructive sleep apnea (OSA), which is also commonly associated with neurocognitive impairments. The present study aimed to elucidate the beneficial effect of curcumin on CIH-induced brain injuries. Male balb/c mice (6 ∼ 8 weeks) were exposed to normoxia or a pattern of CIH (8 h/day, cycles of 180 s each, hypoxia: 5% O 2 for 50 s, reoxygenation: 21% O 2 for 50 s) for 10 weeks, along with daily curcumin treatment (50, 100, or 200 mg/kg, intragastrically) or its vehicle. The results showed that CIH induced significant brain edema, as well as neuronal apoptosis and astrogliosis in the cerebral cortex, brainstem, and cerebellum regions of brain. In addition, increased astrocytic AQP4 expression and activation of p38 MAPK pathway were observed after CIH exposure. Curcumin dose-dependently mitigated the brain edema and relevant cell alterations, showing a neuroprotective effect in CIH-induced brain injury. Together, these results suggest curcumin ameliorates the CIH-induced brain injuries, including brain edema, neuronal death and astrogliosis. The beneficial role of curcumin is mediated partially by regulating AQP4 and p38 MAPK pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.-H.; Yu, F.-Y.; Wang, L.-T.
2009-06-15
Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reportermore » assays. Bioinformatic analyses indicated two genes Gadd45{beta} and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45{beta} mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.« less
Participation of MAPK, PKA and PP2A in the regulation of MPF activity in Bufo arenarum oocytes.
Toranzo, G Sánchez; Bonilla, F; Bühler, M C Gramajo; Bühler, M I
2011-05-01
The objectives of the present paper were to study the involvement and possible interactions of both cAMP-PKA and protein phosphatases in Bufo arenarum oocyte maturation and to determine if these pathways are independent or not of the MAP kinase (MAPK) cascade. Our results indicated that the inhibition of PKA by treatment with H-89, an inhibitor of the catalytic subunit of PKA, was capable of inducing GVBD in a dose-dependent manner by a pathway in which Cdc25 phosphatase but not the MAPK cascade is involved. The injection of 50 nl of H-89 10 μM produced GVBD percentages similar to those obtained with treatment with progesterone. In addition, the assays with okadaic acid (OA), a PP2A inhibitor, significantly enhanced the percentage of oocytes that resumed meiosis by a signal transducing pathway in which the activation of the MEK-MAPK pathway is necessary, but in which Cdc25 phosphatase was not involved. Treatment with H-89, was able to overcome the inhibitory effect of PKA on GVBD; however, the inhibition of Cdc25 activity with NaVO3 was able to overcome the induction of GVBD by H-89. Although the connections between PKA and other signalling molecules that regulate oocytes maturation are still unclear, our results suggest that phosphatase Cdc25 may be the direct substrate of PKA. In Xenopus oocytes it was proposed that PP2A, a major Ser/Thr phosphatase present, is a negative regulator of Cdc2 activation. However, in Bufo arenarum oocytes, inhibition of Cdc25 with NaVO₃ did not inhibit OA-induced maturation, suggesting that the target of PP2A was not the Cdc25 phosphatase. MAPK activation has been reported to be essential in Xenopus oocytes GVBD. In B. arenarum oocytes we demonstrated that the inhibition of MAPK by PD 98059 prevented the activation of MPF induced by OA, suggesting that the activation of the MAPK cascade produced an inhibition of Myt1 and, in consequence, the activation of MPF without participation of the Cdc25 phosphatase. Our results suggest that in incompetent oocytes of B. arenarum two signal transduction pathways may be involved in the control of MPF activation: (1) the inhibition of phosphatase 2A that through the MEK-MAPK pathway regulates the activity of the Myt1; and (2) the inhibition of AMPc-PKA, which affects the activity of the Cdc25 phosphatase.
Martin, Damien H.; Wadsworth, Roger; Bryson, Gareth; Fisher, Andrew J.; Welsh, David J.; Peacock, Andrew J.
2015-01-01
The p38 mitogen-activated protein kinase (MAPK) system is increasingly recognized as an important inflammatory pathway in systemic vascular disease but its role in pulmonary vascular disease is unclear. Previous in vitro studies suggest p38 MAPKα is critical in the proliferation of pulmonary artery fibroblasts, an important step in the pathogenesis of pulmonary vascular remodeling (PVremod). In this study the role of the p38 MAPK pathway was investigated in both in vitro and in vivo models of pulmonary hypertension and human disease. Pharmacological inhibition of p38 MAPKα in both chronic hypoxic and monocrotaline rodent models of pulmonary hypertension prevented and reversed the pulmonary hypertensive phenotype. Furthermore, with the use of a novel and clinically available p38 MAPKα antagonist, reversal of pulmonary hypertension was obtained in both experimental models. Increased expression of phosphorylated p38 MAPK and p38 MAPKα was observed in the pulmonary vasculature from patients with idiopathic pulmonary arterial hypertension, suggesting a role for activation of this pathway in the PVremod A reduction of IL-6 levels in serum and lung tissue was found in the drug-treated animals, suggesting a potential mechanism for this reversal in PVremod. This study suggests that the p38 MAPK and the α-isoform plays a pathogenic role in both human disease and rodent models of pulmonary hypertension potentially mediated through IL-6. Selective inhibition of this pathway may provide a novel therapeutic approach that targets both remodeling and inflammatory pathways in pulmonary vascular disease. PMID:26024891
Wang, Y; Li, J; Song, W; Yu, J
2014-06-01
The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.
COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.
Johannessen, Cory M; Boehm, Jesse S; Kim, So Young; Thomas, Sapana R; Wardwell, Leslie; Johnson, Laura A; Emery, Caroline M; Stransky, Nicolas; Cogdill, Alexandria P; Barretina, Jordi; Caponigro, Giordano; Hieronymus, Haley; Murray, Ryan R; Salehi-Ashtiani, Kourosh; Hill, David E; Vidal, Marc; Zhao, Jean J; Yang, Xiaoping; Alkan, Ozan; Kim, Sungjoon; Harris, Jennifer L; Wilson, Christopher J; Myer, Vic E; Finan, Peter M; Root, David E; Roberts, Thomas M; Golub, Todd; Flaherty, Keith T; Dummer, Reinhard; Weber, Barbara L; Sellers, William R; Schlegel, Robert; Wargo, Jennifer A; Hahn, William C; Garraway, Levi A
2010-12-16
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
McFadden, David G.; Vernon, Amanda; Santiago, Philip M.; Martinez-McFaline, Raul; Bhutkar, Arjun; Crowley, Denise M.; McMahon, Martin; Sadow, Peter M.; Jacks, Tyler
2014-01-01
Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated BrafV600E mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma. PMID:24711431
Goel, Atul; Nag, Pankaj; Rahuja, Neha; Srivastava, Rohit; Chaurasia, Sumit; Gautam, Sudeep; Chandra, Sharat; Siddiqi, Mohammad Imran; Srivastava, Arvind K
2014-08-25
A series of functionalized biaryl-4-carbonitriles was synthesized in three steps and evaluated for PTP-1B inhibitory activity. Among the synthesized compounds, four biaryls 6a-d showed inhibition (IC50 58-75 μM) against in vitro PTP-1B assay possibly due to interaction with amino acid residues Lys120, Tyr46 through hydrogen bonding and aromatic-aromatic interactions, respectively. Two biaryl-4-carbonitriles 6b and 6c showed improved glucose tolerance, fasting as well as postprandial blood glucose, serum total triglycerides, and increased high-density lipoprotein-cholesterol in SLM, STZ, STZ-S and C57BL/KsJ-db/db animal models. The bioanalysis of 4'-bromo-2,3-dimethyl-5-(piperidin-1-yl)biphenyl-4-carbonitrile (6b) revealed that like insulin, it increased 2-deoxyglucose uptake in skeletal muscle cells (L6 and C2C12 myotubes). The compound 6b significantly up-regulated the genes related to the insulin signaling pathways like AMPK, MAPK including glucose transporter-4 (GLUT-4) gene in muscle tissue of C57BL/KsJ-db/db mice. Furthermore, it was observed that the compound 6b up-regulated PPARα, UCP2 and HNF4α, which are key regulator of glucose, lipid, and fatty acid metabolism. Western blot analysis of the compound 6b showed that it significantly increased the phosphorylation of AMPK and p38 MAPK and ameliorated glucose uptake in C57BL/KsJ-db/db mice through the AMPK-p38 MAPK pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ziv, Etay; Bergen, Michael; Yarmohammadi, Hooman; Boas, F Ed; Petre, E Nadia; Sofocleous, Constantinos T; Yaeger, Rona; Solit, David B; Solomon, Stephen B; Erinjeri, Joseph P
2017-04-04
To establish the relationship between common mutations in the MAPK and PI3K signaling pathways and local progression after radioembolization. Retrospective review of a HIPAA-compliant institutional review-board approved database identified 40 patients with chemo-refractory colorectal liver metastases treated with radioembolization who underwent tumor genotyping for hotspot mutations in 6 key genes in the MAPK/PI3K pathways (KRAS, NRAS, BRAF, MEK1, PIK3CA, and AKT1). Mutation status as well as clinical, tumor, and treatment variables were recorded. These factors were evaluated in relation to time to local progression (TTLP), which was calculated from time of radioembolization to first radiographic evidence of local progression. Predictors of outcome were identified using a proportional hazards model for both univariate and multivariate analysis with death as a competing risk. Sixteen patients (40%) had no mutations in either pathway, eighteen patients (45%) had mutations in the MAPK pathway, ten patients (25%) had mutations in the PI3K pathway and four patients (10%) had mutations in both pathways. The cumulative incidence of progression at 6 and 12 months was 33% and 55% for the PI3K mutated group compared with 76% and 92% in the PI3K wild type group. Mutation in the PI3K pathway was a significant predictor of longer TTLP in both univariate (p=0.031, sHR 0.31, 95% CI: 0.11-0.90) and multivariate (p=0.015, sHR=0.27, 95% CI: 0.096-0.77) analysis. MAPK pathway alterations were not associated with TTLP. PI3K pathway mutation predicts longer time to local progression after radioembolization of colorectal liver metastases.
Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R.; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S.; Andoniadou, Cynthia L.
2017-01-01
Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ cells and suggest that persistent proliferative capacity of Sox2+ cells may underlie the pathogenesis of PCP. PMID:28506993
Ismail, Hassan Ahmed Hassan Ahmed; Kang, Byung-Hun; Kim, Jae-Su; Lee, Jae-Hyung; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha
2017-12-01
IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.
Rac3 Regulates Cell Invasion, Migration and EMT in Lung Adenocarcinoma through p38 MAPK Pathway
Zhang, Chenlei; Liu, Tieqin; Wang, Gebang; Wang, Huan; Che, Xiaofang; Gao, Xinghua; Liu, Hongxu
2017-01-01
Background: The role of Rac3 in cell proliferation in lung adenocarcinoma has been tackled in our previous study. However, the role of Rac3 in cell invasion and migration of lung adenocarcinoma is still not clear. Methods: The expression of Rac3 in lung adenocarcinoma specimens and paired noncancerous normal tissues were evaluated by immunohistochemistry. Lentivirus-mediated RNA interference (RNAi) was employed to silence Rac3 in lung adenocarcinoma cell lines A549 and H1299. A p38 MAPK inhibitor (LY2228820) was employed to inhibit activity of p38 MAPK pathway. Cell invasion and migration in vitro were examined by invasion and migration assays, respectively. PathScan® intracellular signaling array kit and western blot were employed in mechanism investigation. Results: Rac3 expression was frequently higher in lung adenocarcinoma than paired noncancerous normal tissues. Rac3 expression was an independent risk factor for lymphonode metastasis, and was associated with worse survival outcome. Silencing of Rac3 inhibited cell invasion and cell migration in lung adenocarcinoma cell lines. Knockdown of Rac3 decreased activity of p38 MAPK pathway. LY2228820, which was an important p38 MAPK inhibitor, inhibited Rac3-induced cell invasion and migration of lung adenocarcinoma. E-cadherin expression was increased and vimentin expression was decreased after silencing of Rac3 or following the treatment of LY2228820. Conclusions: Our findings suggest that Rac3 regulates cell invasion, migration and EMT via p38 MAPK pathway. Rac3 may be a potential biomarker of invasion and metastasis for lung adenocarcinoma, and knockdown of Rac3 may potentially serve as a promising therapeutic target for lung adenocarcinoma. PMID:28900489
Aldosterone Induces Apoptosis in Rat Podocytes: Role of PI3-K/Akt and p38MAPK Signaling Pathways
Chen, Cheng; Liang, Wei; Jia, Junya; van Goor, Harry; Singhal, Pravin C.; Ding, Guohua
2009-01-01
Background Podocytes play a critical role in the pathogenesis of glomerulosclerosis. Increasing evidence suggests that aldosterone (ALD) is involved in the initiation and progression of glomerular damage. It is, however, unknown whether there is a direct injurious effect of ALD on podocytes. Therefore, in the present study, we evaluated the effect of ALD on podocyte apoptosis and studied the role of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in this process. Methods Podocytes were incubated in media containing either buffer or increasing concentrations of ALD (10–9∼10–5M) for variable time periods. The cells were also treated with either wortmannin (inhibitor of PI3-K, 100 nM), SB202190 (SB20, inhibitor of p38MAPK, 10 μM) or buffer. All treatments were performed with or without ALD (10–7M) for 24 h. At the end of the incubation period, apoptosis was evaluated by cell nucleus staining and flow cytometric analyses. Activation of PI3-K/Akt and p38MAPK phosphorylation of cultured rat podocytes was evaluated by performing Akt kinase assay and Western blot, respectively. Results Apoptosis of cultured rat podocytes was induced by ALD in a dose- and time-dependent manner. ALD inhibited the activity of PI3-K/Akt and increased the activation of p38MAPK. PI3-K/Akt activity was further inhibited by the addition of wortmannin to the cells in the presence of ALD. This was accompanied by a significant increase in apoptosis. ALD-induced p38MAPK phosphorylation and apoptosis were inhibited when the cells were pretreated with SB20. Furthermore, treatment with spironolactone not only attenuated the proapoptotic effect of ALD, but also significantly reversed its effects on PI3-K/Akt and p38MAPK signaling pathways. Conclusion ALD induces apoptosis in rat podocytes through inhibition of PI3-K/Akt and stimulation of p38 MAPK signaling pathways. Spironolactone attenuates ALD-induced podocyte apoptosis, thereby positioning this compound as a potential promising target of intervention in human renal damage. PMID:19590239
Species Comparison of the Role of p38 MAP Kinase in the Female Reproductive System.
Radi, Zaher A; Marusak, Rosemary A; Morris, Dale L
2009-06-01
The p38 mitogen-activated protein kinases (MAPKs) are members of discrete signal transduction pathways that have significant regulatory roles in a variety of biological processes, depending on the cell, tissue and organ type. p38 MAPKs are involved in inflammation, cell growth and differentiation and cell cycle. In the female reproductive system, p38 MAPKs are known to regulate various aspects of the reproductive process such as mammalian estrous and menstrual cycles as well as early pregnancy and parturition. p38 MAPKs have also been implicated in alterations and pathologies observed in the female reproductive system. Therefore, pharmacologic modulation of p38 MAPKs, and inter-connected signaling pathways (e.g., estrogen receptor signaling, c-fos, c-jun), may influence reproductive physiology and function. This article provides a critical, comparative review of available data on the roles of p38 MAPKs in the mammalian female reproductive system and in reproductive pathophysiology in humans and preclinical species. We first introduce fundamental differences and similarities of the mammalian female reproductive system that should be considered by toxicologists and toxicologic pathologists when assessing the effects of new pharmacologic agents on the female reproductive system. We then explore in detail the known roles for p38 MAPKs and related molecules in female reproduction. This foundation is then extended to pathological conditions in which p38 MAPKs are thought to play an integral role.
In vivo phosphorylation of WRKY transcription factor by MAPK.
Ishihama, Nobuaki; Adachi, Hiroaki; Yoshioka, Miki; Yoshioka, Hirofumi
2014-01-01
Plants activate signaling networks in response to diverse pathogen-derived signals, facilitating transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. Identification of phosphorylation targets of MAPK and in vivo detection of the phosphorylated substrates are important processes to elucidate the signaling pathway in plant immune responses. We have identified a WRKY transcription factor, which is phosphorylated by defense-related MAPKs, SIPK and WIPK. Recent evidence demonstrated that some group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are activated by MAPK-dependent phosphorylation. In this chapter, we describe protocols for preparation of anti-phosphopeptide antibodies, detection of activated MAPKs using anti-phospho-MAPK antibody, and activated WRKY using anti-phospho-WRKY antibody, respectively.
Conservation of Chitin-Induced MAPK Signaling Pathways in Rice and Arabidopsis.
Yamada, Kenta; Yamaguchi, Koji; Yoshimura, Satomi; Terauchi, Akira; Kawasaki, Tsutomu
2017-06-01
Perception of microbe-associated molecular patterns (MAMPs) including chitin by pattern recognition receptors (PRRs) rapidly induces activation of mitogen-activated protein kinase (MAPK) cascades. However, how PRRs transmit immune signals to the MAPK cascade is largely unknown. Recently, Arabidopsis receptor-like cytoplasmic kinase PBL27 has been reported to activate MAPKs through phosphorylation of AtMAPKKK5 in the chitin signaling pathway. In this study, we found that OsRLCK185, a rice ortholog of PBL27, regulates chitin-induced MAPK activation in a similar fashion to PBL27 in rice. Upon chitin perception, OsRLCK185 is phosphorylated by OsCERK1, a component of the chitin receptor complex. OsRLCK185 interacted with OsMAPKKK11 and OsMAPKKK18, rice orthologs of AtMAPKKK5, in yeast two-hybrid assays. Silencing of both OsMAPKKK11 and OsMAPKKK18 significantly reduced chitin-induced activation of OsMPK3 and OsMPK6. Expression levels of OsMAPKKK18 were much higher than that of OsMAPKKK11 in rice cells, which was consistent with the fact that the Osmapkkk11 single mutation did not affect MAPK activation. This result suggested that OsMAPKKK18 plays a more important role than OsMAPKKK11 in the chitin-induced activation of OsMPK3 and OsMPK6. The bimolecular fluorescence complementation (BiFC) experiment indicated that OsRLCK185 interacted with OsMAPKKK18 at the plasma membrane in planta. In vitro phosphorylation experiments showed that OsRLCK185 directly phosphorylates OsMAPKKK18. Furthermore, OsMAPKKK18 interacted with the MAPKK OsMKK4, the upstream component of OsMPK3/6. These results suggested that OsRLCK185 connects the chitin receptor to the MAPK cascade consisting of OsMAPKKK18-OsMKK4-OsMPK3/6. Our data revealed that chitin-induced MAPK activation in rice and Arabidopsis is regulated by common homologous elements. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Li, Diandian; Hu, Jun; Wang, Tao; Zhang, Xue; Liu, Lian; Wang, Hao; Wu, Yanqiu; Xu, Dan; Wen, Fuqiang
2016-11-22
Cigarette smoke (CS) is a major risk of chronic obstructive pulmonary disease (COPD), contributing to airway inflammation. Our previous study revealed that silymarin had an anti-inflammatory effect in CS-exposed mice. In this study, we attempt to further elucidate the molecular mechanisms of silymarin in CS extract (CSE)-induced inflammation using human bronchial epithelial cells. Silymarin significantly suppressed autophagy activation and the activity of ERK/p38 mitogen-activated protein kinase (MAPK) pathway in Beas-2B cells. We also observed that inhibiting the activity of ERK with specific inhibitor U0126 led to reduced autophagic level, while knockdown of autophagic gene Beclin-1 and Atg5 decreased the levels of ERK and p38 phosphorylation. Moreover, silymarin attenuated CSE-induced upregulation of inflammatory cytokines TNF-α, IL-6 and IL-8 which could also be dampened by ERK/p38 MAPK inhibitors and siRNAs for Beclin-1 and Atg5. Finally, we validated decreased levels of both autophagy and inflammatory cytokines (TNF-α and KC) in CS-exposed mice after silymarin treatment. The present research has demonstrated that CSE-induced autophagy in bronchial epithelia, in synergism with ERK MAPK pathway, may initiate and exaggerate airway inflammation. Silymarin could attenuate inflammatory responses through intervening in the crosstalk between autophagy and ERK MAPK pathway, and might be an ideal agent treating inflammatory pulmonary diseases.
Ryter, Stefan W; Xi, Sichuan; Hartsfield, Cynthia L; Choi, Augustine M K
2002-08-01
Hypoxia induces the stress protein heme oxygenase-1 (HO-1), which participates in cellular adaptation. The molecular pathways that regulate ho-1 gene expression under hypoxia may involve mitogen activated protein kinase (MAPK) signaling and reactive oxygen. Hypoxia (8 h) increased HO-1 mRNA in rat pulmonary aortic endothelial cells (PAEC), and also activated both extracellular signal-regulated kinase 1 (ERK1)/ERK2 and p38 MAPK pathways. The role of these kinases in hypoxia-induced ho-1 gene expression was examined using chemical inhibitors of these pathways. Surprisingly, SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK1), strongly enhanced hypoxia-induced HO-1 mRNA expression in PAEC. UO126, a MEK1/2 inhibitor, enhanced HO-1 expression in PAEC under normoxia, but not hypoxia. Diphenylene iodonium, an inhibitor of NADPH oxidase, also induced the expression of HO-1 in PAEC under both normoxia and hypoxia. Similar results were observed in aortic vascular smooth muscle cells. Furthermore, hypoxia induced activator protein (AP-1) DNA-binding activity in PAEC. Pretreatment with SB203580 and PD98059 enhanced AP-1 binding activity under hypoxia in PAEC; UO126 stimulated AP-1 binding under normoxia, whereas diphenylene iodonium stimulated AP-1 binding under normoxia and hypoxia. These results suggest a relationship between MAPK and hypoxic regulation of ho-1 in vascular cells, involving AP-1.
Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome
Aoidi, Rifdat; Houde, Nicolas; Landry-Truchon, Kim; Holter, Michael; Jacquet, Kevin; Charron, Louis; Yu, Benjamin D.; Rauen, Katherine A.; Bisson, Nicolas; Newbern, Jason
2018-01-01
ABSTRACT The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper. PMID:29590634
Zeng, Hailong; Huang, Zhiqiu; Zhang, Yineng; Sun, Huilin
2016-01-01
To investigate the role of p38MAPK signaling pathway in the mechanism by which glucagon-like peptide-1 (GLP-1) inhibits endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells were divided into control group, AGEs group, GLP-1 group, AGEs+GLP-1 group, AGEs+inhibitor group, and AGEs+GLP-1+inhibitor group. The expressions of p-p38MAPK/p38MAPK and p-eNOS/eNOS protein were examined by Western blotting, and the cell apoptosis rates were tested by flow cytometry. Compared with the control group, AGEs significantly enhanced the expression of p-p38 MAPK protein (P=0.001) while GLP-1 significantly inhibited its expression (P<0.001). AGEs significantly inhibited the expression of p-eNOS protein (P=0.007), which was enhanced by GLP-1 and p38 MAPK inhibitor (SB203580) (P=0.004). Both SB203580 and GLP-1 treatment decreased the apoptosis rate of AGEs-treated cells (P<0.001). GLP-1 can protect human umbilical vein endothelial cells against AGEs-induced apoptosis partially by inhibiting the phosphorylation of p38MAPK protein and promoting the expression of p-eNOS protein.
Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung
2016-12-09
Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na⁺-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C ) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.
Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung
2016-01-01
Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na+-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway. PMID:27941667
Al-Alwan, Laila A; Chang, Ying; Rousseau, Simon; Martin, James G; Eidelman, David H; Hamid, Qutayba
2014-08-01
Airway smooth muscle cell (ASMC) migration is an important mechanism postulated to play a role in airway remodeling in asthma. CXCL1 chemokine has been linked to tissue growth and metastasis. In this study, we present a detailed examination of the inhibitory effect of CXCL1 on human primary ASMC migration and the role of the decoy receptor, Duffy AgR for chemokines (DARC), in this inhibition. Western blots and pathway inhibitors showed that this phenomenon was mediated by activation of the ERK-1/2 MAPK pathway, but not p38 MAPK or PI3K, suggesting a biased selection in the signaling mechanism. Despite being known as a nonsignaling receptor, small interference RNA knockdown of DARC showed that ERK-1/2 MAPK activation was significantly dependent on DARC functionality, which, in turn, was dependent on the presence of heat shock protein 90 subunit α. Interestingly, DARC- or heat shock protein 90 subunit α-deficient ASMCs responded to CXCL1 stimulation by enhancing p38 MAPK activation and ASMC migration through the CXCR2 receptor. In conclusion, we demonstrated DARC's ability to facilitate CXCL1 inhibition of ASMC migration through modulation of the ERK-1/2 MAPK-signaling pathway. Copyright © 2014 by The American Association of Immunologists, Inc.
An Interdisciplinary Approach for Designing Kinetic Models of the Ras/MAPK Signaling Pathway.
Reis, Marcelo S; Noël, Vincent; Dias, Matheus H; Albuquerque, Layra L; Guimarães, Amanda S; Wu, Lulu; Barrera, Junior; Armelin, Hugo A
2017-01-01
We present in this article a methodology for designing kinetic models of molecular signaling networks, which was exemplarily applied for modeling one of the Ras/MAPK signaling pathways in the mouse Y1 adrenocortical cell line. The methodology is interdisciplinary, that is, it was developed in a way that both dry and wet lab teams worked together along the whole modeling process.
USDA-ARS?s Scientific Manuscript database
We examined activation of the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways in adult (Y; 6 mo old; n = 16) and aged (O; 30 mo old; n = 16) male rats (Fischer 344 x Brown Norway) subjected to chronic overload-induced muscle hypertrophy of the plan...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea
Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by MAPK in lead exposure • Relationship between vascular ROS and COX-2 products in lead exposure.« less
Roux, Philippe P.; Blenis, John
2004-01-01
Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187
Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise
2015-12-18
Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.
Mitogen-activated protein kinase cascades in signaling plant growth and development.
Xu, Juan; Zhang, Shuqun
2015-01-01
Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Houtz, Philip; Bonfini, Alessandro; Liu, Xi; Revah, Jonathan; Guillou, Aurélien; Poidevin, Mickael; Hens, Korneel; Huang, Hsin-Yi; Deplancke, Bart; Tsai, Yu-Chen; Buchon, Nicolas
2017-11-01
Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.
Hou, Yuanyuan; Nie, Yan; Cheng, Binfeng; Tao, Jin; Ma, Xiaoyao; Jiang, Min; Gao, Jie; Bai, Gang
2016-01-01
Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively. PMID:27175332
Maerz, Sabine; Ziv, Carmit; Vogt, Nico; Helmstaedt, Kerstin; Cohen, Nourit; Gorovits, Rena; Yarden, Oded; Seiler, Stephan
2008-01-01
Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development. PMID:18562669
Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury
Pengal, Ruma; Guess, Adam J.; Agrawal, Shipra; Manley, Joshua; Ransom, Richard F.; Mourey, Robert J.; Smoyer, William E.
2011-01-01
While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases. PMID:21613416
OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production.
Liu, Shuying; Hua, Lei; Dong, Sujun; Chen, Hongqi; Zhu, Xudong; Jiang, Jun'e; Zhang, Fang; Li, Yunhai; Fang, Xiaohua; Chen, Fan
2015-11-01
Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice (Oryza sativa L.) mutant, dwarf and small grain1 (dsg1), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map-based cloning revealed that DSG1 encoded a mitogen-activated protein kinase (MAPK), OsMAPK6. OsMAPK6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, OsMAPK6 interacts strongly with OsMKK4, indicating that OsMKK4 is likely to be the upstream MAPK kinase of OsMAPK6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids (BRs). The endogenous BR levels were reduced in dsg1, and the expression of several BR signaling pathway genes and feedback-inhibited genes was altered in the dsg1 mutant, with or without exogenous BRs, indicating that OsMAPK6 may contribute to influence BR homeostasis and signaling. Thus, OsMAPK6, a MAPK, plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Endothelial progenitor cells proliferated via MEK-dependent p42 MAPK signaling pathway.
Sandra, Ferry; Oktaviono, Yudi Her; Widodo, Mohammad Aris; Dirgantara, Yanni; Chouw, Angliana; Sargowo, Djanggan
2015-02-01
Endothelial progenitor cells (EPCs) clinical applications have been well reported. However, due to low number of EPCs that could be isolated, EPCs expansion study became one of the main focuses. Some optimized mediums to culture EPCs were currently available. However, the proliferation signaling pathway is not clearly disclosed yet. Peripheral blood was collected from eight healthy subjects, followed by mononuclear cells (MNCs) isolation. MNCs were then prepared and cultured for 2 days. After that, non-adherent cells were harvested and further cultured for 3 days. Resulted colony-forming unit (CFU)-Hill colonies were documented and enumerated under an inverted light microscope. To detect membrane markers, immunofluorescence was performed to detect CD34, VEGFR-2, and CD133. Cell documentation was conducted under a fluorescence microscope. To check cell proliferation, XTT Cell Proliferation Assay Kit was used according to kit insert. To detect possible activation of p44/42 MAPK, western blot was performed to detect p44/42 MAPK and phosphorylated p44/42 MAPK. All visualized bands were captured and quantified. Our results showed that EPCs markers (CD34, CD133 and VEGFR-2) were detected in 3 days culture. From XTT cell proliferation assay and CFU enumeration results, we found that EPCs proliferated significantly (p = 0.012) with addition of supplement. Phosphorylated-p42 MAPK expression of EPCs treated with supplement was significantly higher than the one of EPCs without treatment. Significant inhibition of p42 MAPK phosphorylation by U0126 was observed (p = 0.012). By pretreatment of U0126, number of viable cells and CFUs treated with supplement was significantly decreased (p = 0.012). Our results showed that MEK-dependent p42 MAPK pathway might play an important role in EPCs proliferation.
Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua
2017-11-01
Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.
Kelly, Aine; Laroche, Serge; Davis, Sabrina
2003-06-15
Consolidation and reconsolidation of long-term memory have been shown to be dependent on the synthesis of new proteins, but the specific molecular mechanisms underlying these events remain to be elucidated. The mitogen-activated protein kinase (MAPK) pathway can trigger genomic responses in neurons, leading to changes in protein synthesis, and several studies have identified its pivotal role in synaptic plasticity and long-term memory formation. In this study, we analyze the involvement of this pathway in the consolidation and reconsolidation of long-term recognition memory, using an object recognition task. We show that inhibition of the MAPK pathway by intracerebroventricular injection of the MEK [MAPK/extracellular signal-regulated kinase (ERK)] inhibitor UO126 blocks consolidation of object recognition memory but does not affect short-term memory. Brain regions of the entorhinal cortex-hippocampal circuitry were analyzed for ERK activation, and it was shown that consolidation of recognition memory was associated with increased phosphorylation of ERK in the dentate gyrus and entorhinal cortex, although total expression of ERK was unchanged. We also report that inhibition of the MAPK pathway blocks reconsolidation of recognition memory, and this was shown to be dependent on reactivation of the memory trace by brief reexposure to the objects. In addition, reconsolidation of memory was associated with an increase in the phosphorylation of ERK in entorhinal cortex and CA1. In summary, our data show that the MAPK kinase pathway is required for both consolidation and reconsolidation of long-term recognition memory, and that this is associated with hyperphosphorylation of ERK in different subregions of the entorhinal cortex-hippocampal circuitry.
Role of MAPK/MNK1 signaling in virus replication.
Kumar, Ram; Khandelwal, Nitin; Thachamvally, Riyesh; Tripathi, Bhupendra Nath; Barua, Sanjay; Kashyap, Sudhir Kumar; Maherchandani, Sunil; Kumar, Naveen
2018-06-01
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome. Copyright © 2018 Elsevier B.V. All rights reserved.
Ma, Chao; Wang, Jianqi; Fan, Longkun; Guo, Yanjun
2017-02-01
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world. CD147, a transmembrane glycoprotein, has been reported to be correlated with cancer progression, metastasis, and chemoresistance in various cancers. In this study, we aimed to investigate the mechanism of CD147 in regulating drug resistance in HNSCC cells. qRT-PCR were used to evaluated the expression of CD147 in 57 HNSCC tumorous tissues and 2 cell lines. Increased expression of CD147 was found in most HNSCC samples, and the expression level of CD147 was correlated with multidrug resistance. CD147 RNA silencing decreased the chemoresistance of HNSCC cells by deactivating MAPK/ERK signaling pathway. Further investigation revealed that either rescue expression of CD147 or treatment of MAPK/ERK activator phorbol 12-myristate 13-acetate (PMA) in CD147 knockdown CRC cell line attenuated the decreased chemoresistance in CD147 knockdown cells. Taken together, our results suggest that CD147 promotes chemoresistance by activating MAPK/ERK signaling pathway in HNSCC. Copyright © 2017. Published by Elsevier Inc.
Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi
2016-07-01
Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.
Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi
2016-01-01
Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334
Liu, D; Huang, Y; Bu, D; Liu, A D; Holmberg, L; Jia, Y; Tang, C; Du, J; Jin, H
2014-01-01
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling. PMID:24853429
RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth
Zindy, Pierre-Joachim; Saba-El-Leil, Marc; Lavoie, Geneviève; Dandachi, Farah; Baptissart, Marine; Borden, Katherine L. B.; Meloche, Sylvain; Roux, Philippe P.
2015-01-01
The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related mRNAs containing a 5’ terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma. PMID:22797077
Haston, Scott; Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro
2017-06-15
Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2 + stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2 + cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2 + cells and suggest that persistent proliferative capacity of Sox2 + cells may underlie the pathogenesis of PCP. © 2017. Published by The Company of Biologists Ltd.
Qin, Sisi; Yang, Canhong; Huang, Weihua; Du, Shuhua; Mai, Hantao; Xiao, Jijie; Lü, Tianming
2018-01-31
Sulforaphane (SFN), a natural dietary isothiocyanate in cruciferous vegetables such as broccoli and cabbage, has very strong anti-inflammatory activity. Activation of microglia leads to overexpression of a series of pro-inflammatory mediators, which play a vital role in neuronal damage. SFN may have neuroprotective effects in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying SFN's protection of neurons against microglia-mediated neuronal damage are not fully understood. Here, we investigated how SFN attenuated microglia-mediated neuronal damage. Our results showed that SFN could not directly protect the viability of neurons following pro-inflammatory mediators, but increased the viability of BV-2 microglia and down-regulated the mRNA and protein levels of pro-inflammatory mediators including TNF-α, IL-1β, IL-6 and iNOS in a concentration-dependent manner in BV-2 cells. SFN also significantly blocked the phosphorylation of MAPKs (p38, JNK, and ERK1/2) and NF-κB p65, both by itself and with MAPK inhibitors (SB203580, SP 600125, and U0126) or an NF-κB inhibitor (PDTC). The expression of pro-inflammatory proteins was also blocked by SFN with or without inhibitors. Further, SFN indirectly increased the viability and maintained the morphology of neurons, and the protein expression of RIPK3 and MLKL was significantly suppressed by SFN in neuronal necroptosis through p38, JNK, and NF-κB p65 but not ERK1/2 signaling pathways. Together, our results demonstrate that SFN attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathway in BV-2 microglia and thus indirectly suppresses microglia-mediated neuronal damage. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Serk In, E-mail: serkin@korea.edu; The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul; Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN
The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while theremore » was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.« less
Pinsino, Annalisa; Bergami, Elisa; Della Torre, Camilla; Vannuccini, Maria Luisa; Addis, Piero; Secci, Marco; Dawson, Kenneth A; Matranga, Valeria; Corsi, Ilaria
2017-03-01
Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH 2 , 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 μg/mL of PS-NH 2 were used to expose sea urchin embryos in natural sea water (PS-NH 2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH 2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.
Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu
2014-12-01
Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.
Basuroy, Shyamali; Tcheranova, Dilyara; Bhattacharya, Sujoy; Leffler, Charles W.
2011-01-01
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease. PMID:21123734
Amphiregulin and PTEN evoke a multimodal mechanism of acquired resistance to PI3K inhibition
Edgar, Kyle A.; Crocker, Lisa; Cheng, Eric; Wagle, Marie-Claire; Wongchenko, Matthew; Yan, Yibing; Wilson, Timothy R.; Dompe, Nicholas; Neve, Richard M.; Belvin, Marcia; Sampath, Deepak; Friedman, Lori S.; Wallin, Jeffrey J.
2014-01-01
Phosphoinositide-3 kinase (PI3K) signaling pathway alterations occur broadly in cancer and PI3K is a promising therapeutic target. Here, we investigated acquired resistance to GDC-0941, a PI3K inhibitor in clinical trials. Colorectal cancer (CRC) cells made to be resistant to GDC-0941 were discovered to secrete amphiregulin, which resulted in increased EGFR/MAPK signaling. Moreover, prolonged PI3K pathway inhibition in cultured cells over a period of months led to a secondary loss of PTEN in 40% of the CRC lines with acquired resistance to PI3K inhibition. In the absence of PI3K inhibitor, these PTEN-null PI3K inhibitor-resistant clones had elevated PI3K pathway signaling and decreased sensitivity to MAPK pathway inhibitors. Importantly, PTEN loss was not able to induce resistance to PI3K inhibitors in the absence of amphiregulin, indicating a multimodal mechanism of acquired resistance. The combination of PI3K and MAPK pathway inhibitors overcame acquired resistance in vitro and in vivo. PMID:25053989
Amphiregulin and PTEN evoke a multimodal mechanism of acquired resistance to PI3K inhibition.
Edgar, Kyle A; Crocker, Lisa; Cheng, Eric; Wagle, Marie-Claire; Wongchenko, Matthew; Yan, Yibing; Wilson, Timothy R; Dompe, Nicholas; Neve, Richard M; Belvin, Marcia; Sampath, Deepak; Friedman, Lori S; Wallin, Jeffrey J
2014-03-01
Phosphoinositide-3 kinase (PI3K) signaling pathway alterations occur broadly in cancer and PI3K is a promising therapeutic target. Here, we investigated acquired resistance to GDC-0941, a PI3K inhibitor in clinical trials. Colorectal cancer (CRC) cells made to be resistant to GDC-0941 were discovered to secrete amphiregulin, which resulted in increased EGFR/MAPK signaling. Moreover, prolonged PI3K pathway inhibition in cultured cells over a period of months led to a secondary loss of PTEN in 40% of the CRC lines with acquired resistance to PI3K inhibition. In the absence of PI3K inhibitor, these PTEN-null PI3K inhibitor-resistant clones had elevated PI3K pathway signaling and decreased sensitivity to MAPK pathway inhibitors. Importantly, PTEN loss was not able to induce resistance to PI3K inhibitors in the absence of amphiregulin, indicating a multimodal mechanism of acquired resistance. The combination of PI3K and MAPK pathway inhibitors overcame acquired resistance in vitro and in vivo.
Cigarette smoke induced urocystic epithelial mesenchymal transition via MAPK pathways.
Yu, Dexin; Geng, Hao; Liu, Zhiqi; Zhao, Li; Liang, Zhaofeng; Zhang, Zhiqiang; Xie, Dongdong; Wang, Yi; Zhang, Tao; Min, Jie; Zhong, Caiyun
2017-01-31
Cigarette smoke has been shown to be a major risk factor for bladder cancer. Epithelial-mesenchymal transition (EMT) is a crucial process in cancer development. The role of MAPK pathways in regulating cigarette smoke-triggered urocystic EMT remains to be elucidated. Human normal urothelial cells and BALB/c mice were used as in vitro and in vivo cigarette smoke exposure models. Exposure of human normal urothelial cells to cigarette smoke induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression, along with the activation of MAPK pathways. Moreover, we revealed that ERK1/2 and p38 inhibitors, but rather JNK inhibitor, effectively attenuated cigarette smoke-induced urocystic EMT. Importantly, the regulatory function of ERK1/2 and p38 pathways in cigarette smoke-triggered urocystic EMT was further confirmed in mice exposed to CS for 12 weeks. These findings could provide new insight into the molecular mechanisms of cigarette smoke-associated bladder cancer development as well as its potential intervention.
Centuori, Sara M; Martinez, Jesse D
2014-10-01
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Centuori, Sara M.; Martinez, Jesse D.
2014-01-01
A high fat diet coincides with elevated levels of bile acids. This elevation of bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR) mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway. PMID:25027205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju
2011-02-25
Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whethermore » DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.« less
Subbiah, Ishwaria M.; Tsimberidou, Apostolia; Subbiah, Vivek; Janku, Filip; Roy-Chowdhuri, Sinchita; Hong, David S.
2017-01-01
Background Advanced carcinoma of unknown primary (CUP) has limited effective therapeutic options given the phenotypic and genotypic diversity. To identify future novel therapeutic strategies we conducted an exploratory analysis of next-generation sequencing (NGS) of relapsed, refractory CUP. Methods We identified patients in our phase I clinic where archival tissue was available for a targeted NGS CLIA-certified assay. Results Of 17 patients tested, 15 (88%) demonstrated genomic alterations (median 2 aberrations; range 0–8, total 59 alterations). Nine (53%) patients had altered cell signaling including the PI3K/AKT/MTOR (n=5, 29%) and MAPK pathways (n=3,18%); 7 (41%) patients demonstrated ≥1 alterations in tumor suppressor genes (TP53 in 5 patients), 8 (47%) had impaired epigenetic regulation and DNA methylation, 8 (47%) had aberrant cell cycle regulation, commonly in the cyclin dependent kinases. Ten (59%) patients had alterations in transcriptional regulators. Concurrent mutations affecting cell cycle regulation were noted to occur with aberrant epigenetic regulation (n=6, 35%) and MAPK/PI3K pathway (n=5, 29%). Conclusion Every patient had a unique molecular profile with no two patients demonstrating an identical panel of mutations. We identify two emerging novel combinatorial strategies targeting impaired cell cycle arrest, first with epigenetic modifiers and, second, with MAPK/PI3K pathway inhibition. PMID:28781987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Soledad; Department of Medical Biochemistry, Molecular Biology and Immunology, The University of Seville Medical School, Seville; Gomez, Enrique
The mechanisms leading to drug allergy in predisposed patients, especially those related to T-cell-mediated drug hypersensitivity, are not well understood. A key event in allergic reactions to drugs is the maturation process undergone by dendritic cells (DCs). Although amoxicillin (AX) has been reported to interact and maturate DCs from patients with AX-induced delayed-type hypersensitivity, the cell signaling pathways related to AX-mediated DC maturation have not been elucidated. We sought to determine the role of the MAPK and NF-κΒ pathways on AX-induced DC maturation and functional status. For that purpose, in monocyte-derived-DCs from AX-delayed allergic patients and tolerant subjects, we analyzedmore » the activation pattern of p38MAPK, JNK, and ERK signaling and the NF-κB, maturation markers as well as endocytosis and allostimulatory capacities driven by AX-stimulated-DCs. Our data reveal that AX induces an increase in the phosphorylation levels of the three MAPKsand activated NF-κB in DCs from allergic patients. Moreover, the inhibition of these pathways prevents the up-regulation of surface molecules induced by AX. Additionally, we observed that the allostimulatory capacity and the endocytosis down-regulation in AX-stimulated-DCs from allergic patients depend on JNK and NF-κB activities. Taken together, our data shed light for the first time on the main signaling pathways involved in DC maturation from AX-delayed allergic patient. - Highlights: • The cell signaling pathways related to drug-mediated DC maturation were tested. • Amoxicillin induces activation of MAPK and NF-κB in DCs from allergic patients. • The inhibition of these pathways prevents the up-regulation of DC surface molecules. • Their allostimulatory and endocytosis capacities depend on JNK and NF-κB activities. • The low involvement of p38-MAPK could be the cause of an incomplete DC maturation.« less
Badache, A; Hynes, N E
2001-01-01
Interleukin (IL)-6, a multifunctional regulator of immune response, hematopoiesis, and acute phase reactions, has also been shown to regulate cancer cell proliferation. We have investigated IL-6 signaling pathways and cellular responses in the T47D breast carcinoma cell line. The IL-6-type cytokines, IL-6 and oncostatin M, simultaneously inhibited cell proliferation and increased cell migration. In T47D cells, IL-6 stimulated the activation of Janus-activated kinase 1 tyrosine kinase and signal transducers and activators of transcription (STAT) 1 and STAT3 transcription factors. Expression of dominant negative STAT3 in the cells strongly reduced IL-6-mediated growth inhibition but did not prevent IL-6-induced cell migration. IL-6 treatment led to activation of the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3'-kinase (PI3K) pathways. Inhibition of MAPK or PI3K activity reversed IL-6- and oncostatin M-stimulated migration. Because cross-talk between cytokine receptors and members of the ErbB family of receptor tyrosine kinases has been described previously, we have examined their interaction in T47D cells. Down-regulation of ErbB receptor activity, through the use of specific pharmacological inhibitors or dominant negative receptor constructs, revealed that IL-6-induced MAPK activation was largely dependent on epidermal growth factor (EGF) receptor activity, but not on ErbB-2 activity. Using a monoclonal antibody that interferes with EGF receptor-ligand interaction, we have shown that in T47D cells, IL-6 cooperates with an EGF receptor autocrine activity loop for signaling through the MAPK and PI3K pathways and for cell migration. Both the tyrosine phosphatase SHP-2 and the multisubstrate docking molecule Gab1, which are potential links between IL-6 and the MAPK/PI3K pathways, were constitutively associated with the active EGF receptor. On IL-6 stimulation, SHP-2 and Gab1 were recruited to the gp130 subunit of the IL-6 receptor and tyrosine phosphorylated, allowing downstream signaling to the MAPK and PI3K pathways. Thus, in T47D breast carcinoma cells, IL-6 acts in synergy with EGF receptor autocrine activity to signal through the MAPK/PI3K pathways. Cooperation between IL-6 and the EGF receptor in T47D breast carcinoma cells illustrates how a combination of multiple stimuli, either exogenous or endogenous, may result in synergistic cellular responses.
LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways.
Lee, Seung Jin; Seo, Kyo Won; Kim, Chi Dae
2015-05-01
5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.
Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults.
Nho, Kwangsik; Ramanan, Vijay K; Horgusluoglu, Emrin; Kim, Sungeun; Inlow, Mark H; Risacher, Shannon L; McDonald, Brenna C; Farlow, Martin R; Foroud, Tatiana M; Gao, Sujuan; Callahan, Christopher M; Hendrie, Hugh C; Niculescu, Alexander B; Saykin, Andrew J
2015-01-01
Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.
Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.
2013-01-01
The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844
The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum[W
Pérez-Nadales, Elena; Di Pietro, Antonio
2011-01-01
Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway. PMID:21441438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δmore » enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.« less
Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro
2012-01-01
Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.
ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS
We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...
Mechanisms involved in p53 downregulation by leptin in trophoblastic cells.
Toro, Ayelén Rayen; Pérez-Pérez, Antonio; Corrales Gutiérrez, Isabel; Sánchez-Margalet, Víctor; Varone, Cecilia Laura
2015-11-01
Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D; Gripp, Karen W; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo; MacRae, Calum A; Messiaen, Ludwine; Mulero-Navarro, Sonia; Neel, Benjamin; Plotkin, Scott; Rauen, Katherine A; Roberts, Amy; Silva, Alcino J; Sittampalam, Sitta G; Zhang, Chao; Schoyer, Lisa
2015-08-01
"The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion. © 2015 Wiley Periodicals, Inc.
Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway.
Yi, Lian; Shi, Tujin; Gritsenko, Marina A; X'avia Chan, Chi-Yuet; Fillmore, Thomas L; Hess, Becky M; Swensen, Adam C; Liu, Tao; Smith, Richard D; Wiley, H Steven; Qian, Wei-Jun
2018-04-17
Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway as our model. A total of 43 phosphopeptides from the EGFR-MAPK pathway were selected for the study. The recovery and sensitivity of two commonly used enrichment methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO 2 ), combined with selected reaction monitoring (SRM)-MS were evaluated. The recovery of phosphopeptides by IMAC and TiO 2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1 to 100 μg starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 μg peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25 μg range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 10 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.
Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Shi, Tujin; Gritsenko, Marina A.
2018-03-27
Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway as our model. 43 phosphopeptides from the EGFR–MAPK pathway were selected for the study. The recovery and sensitivity of a workflow consisted of two commonly used enrichmentmore » methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2), combined with selected reaction monitoring (SRM)-MS, were evaluated. The recovery of phosphopeptides by IMAC and TiO2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1-100 g starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 g peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25g range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 3 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.« less
Zhang, Pinghu; Zheng, Zuguo; Ling, Li; Yang, Xiaohui; Zhang, Ni; Wang, Xue; Hu, Maozhi; Xia, Yu; Ma, Yiwen; Yang, Haoran; Wang, Yunyi; Liu, Hongqi
2017-07-03
The EGFR (epidermal growth factor receptor) signaling pathway is frequently deregulated in many malignancies. Therefore, targeting the EGFR pathway is regarded as a promising strategy for anticancer drug discovery. Herein, we identified a 2-amino-nicotinonitrile compound (w09) as a novel autophagy enhancer, which potently induced macroautophagy/autophagy and consequent apoptosis in gastric cancer cells. Mechanistic studies revealed that EGFR-mediated activation of the RAS-RAF1-MAP2K-MAPK1/3 signaling pathway played a critical role in w09-induced autophagy and apoptosis of gastric cancer cells. Inhibition of the MAPK1/3 pathway with U0126 or blockade of autophagy by specific chemical inhibitors markedly attenuated the effect of w09-mediated growth inhibition and caspase-dependent apoptosis. Furthermore, these conclusions were supported by knockdown of ATG5 or knockout of ATG5 and/or ATG7. Notably, w09 increased the expression of SQSTM1 by transcription, and knockout of SQSTM1 or deleting the LC3-interaction region domain of SQSTM1, significantly inhibited w09-induced PARP1 cleavage, suggesting the central role played by SQSTM1 in w09-induced apoptosis. In addition, in vivo administration of w09 effectively inhibited tumor growth of SGC-7901 xenografts. Hence, our findings not only suggested that activation of the EGFR-RAS-RAF1-MAP2K-MAPK1/3 signaling pathway may play a critical role in w09-induced autophagy and apoptosis, but also imply that induction of autophagic cancer cell death through activation of the EGFR pathway may be a potential therapeutic strategy for EGFR-disregulated gastric tumors.
Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.
Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele
2014-01-01
The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.
Cellular reprogramming through mitogen-activated protein kinases.
Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk
2015-01-01
Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression-including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.
Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei
2016-08-01
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.
Liu, Zhi-feng; Zheng, Dong; Fan, Guo-chang; Peng, Tianqing; Su, Lei
2016-01-01
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 µg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. PMID:27325431
Kikuchi, Hidetomo; Yuan, Bo; Yuhara, Eisuke; Imai, Masahiko; Furutani, Ryota; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Takagi, Norio; Toyoda, Hiroo
2014-08-01
We have demonstrated that an extract from the ripe fruit of Vitex angus-castus (Vitex), might be a promising anticancer candidate. In order to further provide a molecular rationale for clinical development in anticancer therapy, a detailed mechanism underlying the efficacy of Vitex against HL-60 cells was investigated. Vitex induced a dose- and time-dependent decrease in cell viability associated with induction of apoptosis and G(2)/M cell cycle arrest, both of which were suppressed by the addition of SB203580, an inhibitor for p38 MAPK. Furthermore, SB203580 significantly suppressed Vitex-induced phosphorylation of histone H3, a downstream molecule of p38 MAPK known to be involved in apoptosis induction in tumor cells. Notably, Vitex induced upregulation of intracellular ATP, known to bind its binding pocket inside activated p38 MAPK and to be required for the activation of p38 MAPK pathway. These results, thus, suggest that upregulation of intracellular ATP and phosphorylation of histone H3 are closely associated with the activation of p38 MAPK pathway, consequently contributing to Vitex-mediated cytotoxicity. Intriguingly, a significant decrease of intracellular ROS levels and downregulation of expression level of gp91(phox), an important component of NADPH oxidase, were observed in Vitex-treated cells. A greater decline in ROS levels along with enhanced apoptosis was observed after treatment with Vitex in combination with SnPP, an inhibitor specific for HO-1. Since NADPH oxidase and HO-1 are closely correlated to redox status associated with intracellular ROS levels, the two enzymes are suggested to be implicated in Vitex-mediated cytotoxicity in HL-60 cells by regulating ROS generation. We also suggest that activation of the p38 MAPK pathway may be dependent on the alterations of intracellular ATP levels, rather than that of intracellular ROS levels. These results may have important implications for appropriate clinical uses of Vitex and provide novel insights into the interaction between Vitex and other conventional drugs capable of affecting intracellular redox status.
Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin
2017-01-01
Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183
Wu, Pei-Shan; Yen, Jui-Hung; Kou, Mei-Chun; Wu, Ming-Jiuan
2015-01-01
Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity. PMID:26087007
Jang, Minhee; Cho, Ik-Hyun
2016-05-01
The potential neuroprotective value of sulforaphane (SFN) in Huntington's disease (HD) has not been established yet. We investigated whether SFN prevents and improves the neurological impairment and striatal cell death in a 3-nitropropionic acid (3-NP)-induced mouse model of HD. SFN (2.5 and 5.0 mg/kg/day, i.p.) was given daily 30 min before 3-NP treatment (pretreatment) and from onset/progression/peak points of the neurological scores. Pretreatment with SFN (5.0 mg/kg/day) produced the best neuroprotective effect with respect to the neurological scores and lethality among other conditions. The protective effects due to pretreatment with SFN were associated with the following: suppression of the formation of a lesion area, neuronal death, succinate dehydrogenase activity, apoptosis, microglial activation, and mRNA or protein expression of inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP treatment. Also, pretreatment with SFN activated the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and inhibited the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways in the striatum after 3-NP treatment. As expected, the pretreatment with activators (dimethyl fumarate and antioxidant response element inducer-3) of the Keap1-Nrf2-ARE pathway decreased the neurological impairment and lethality after 3-NP treatment. Our findings suggest that SFN may effectively attenuate 3-NP-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways and that SFN has a wide therapeutic time-window for HD-like symptoms.
Fu, Shaoting; Yin, Lijun; Lin, Xiaojing; Lu, Jianqiang; Wang, Xiaohui
2018-06-02
Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.
Standard, Joseph; Jiang, Yu; Yu, Miao; Su, Xiaoyu; Zhao, Zhihui; Xu, Jianteng; Chen, Jie; King, Brenee; Lu, Lizhi; Tomich, John; Baybutt, Richard; Wang, Weiqun
2014-12-01
Weight control through either dietary calorie restriction (DCR) or exercise has been associated with cancer prevention in animal models. However, the underlying mechanisms are not fully defined. Bioinformatics using genomics, proteomics and lipidomics was employed to elucidate the molecular targets of weight control in a mouse skin cancer model. SENCAR mice were randomly assigned into four groups for 10 weeks: ad-libitum-fed sedentary control, ad-libitum-fed exercise (AE), exercise but pair-fed isocaloric amount of control (PE) and 20% DCR. Two hours after topical TPA treatment, skin epidermis was analyzed by Affymetrix for gene expression, DIGE for proteomics and lipidomics for phospholipids. Body weights were significantly reduced in both DCR and PE but not AE mice versus the control. Among 39,000 transcripts, 411, 67 and 110 genes were significantly changed in DCR, PE and AE, respectively. The expression of genes relevant to PI3K-Akt and Ras-MAPK signaling was effectively reduced by DCR and PE but not AE as measured through GenMAPP software. Proteomics analysis identified ~120 proteins, with 27 proteins significantly changed by DCR, including up-regulated apolipoprotein A-1, a key antioxidant protein that decreases Ras-MAPK activity. Of the total 338 phospholipids analyzed by lipidomics, 57 decreased by PE including 5 phophatidylinositol species that serve as PI3K substrates. Although a full impact has not been determined yet, it appears that the reduction of both Ras-MAPK and PI3K-Akt signaling pathways is a cancer preventive target that has been consistently demonstrated by three bioinformatics approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Standard, Joseph; Jiang, Yu; Yu, Miao; Su, Xiaoyu; Zhao, Zhihui; Xu, Jianteng; Chen, Jie; King, Brenee; Lu, Lizhi; Tomich, John; Baybutt, Richard; Wang, Weiqun
2014-01-01
Weight control through either dietary calorie restriction (DCR) or exercise has been associated with cancer prevention in animal models. However, the underlying mechanisms are not fully defined. Bioinformatics using genomics, proteomics, and lipidomics were employed to elucidate the molecular targets of weight control in a mouse skin cancer model. SENCAR mice were randomly assigned into 4 groups for 10 weeks: ad lib-fed sedentary control, ad lib-fed exercise (AE), exercise but pair-fed isocaloric amount of control (PE), and 20% DCR. Two hours after topical TPA treatment, skin epidermis was analyzed by Affymetrix for gene expression, DIGE for proteomics, and lipidomics for phospholipids. Body weights were significantly reduced in both DCR and PE but not AE mice versus the control. Among 39,000 transcripts, 411, 67, and 110 genes were significantly changed in DCR, PE, and AE, respectively. The expression of genes relevant to PI3K-Akt and Ras-MAPK signaling was effectively reduced by DCR and PE but not AE as measured through GenMAPP software. Proteomics analysis identified ~120 proteins, with 27 proteins significantly changed by DCR, including upregulated apolipoprotein A-1, a key antioxidant protein that decreases Ras-MAPK activity. Of the total 338 phospholipids analyzed by lipidomics, 57 decreased by PE including 5 phophatidylinositol species that serve as PI3K substrates. Although a full impact has not been determined yet, it appears the reduction of both Ras-MAPK and PI3K-Akt signaling pathways are cancer preventive targets that have been consistently demonstrated by three bioinformatics approaches. PMID:25283328
Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar
2014-04-01
The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.
Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine.
Musazzi, Laura; Seguini, Mara; Mallei, Alessandra; Treccani, Giulia; Pelizzari, Mariagrazia; Tornese, Paolo; Racagni, Giorgio; Tardito, Daniela
2014-10-21
The novel antidepressant agomelatine, a melatonergic MT1/MT2 agonist combined with 5-HT2c serotonin antagonist properties, showed antidepressant action in preclinical and clinical studies. There is a general agreement that the therapeutic action of antidepressants needs the activation of slow-onset adaptations in downstream signalling pathways finally regulating neuroplasticity. In the last several years, particular attention was given to cAMP-responsive element binding protein (CREB)-related pathways, since it was shown that chronic antidepressants increase CREB phosphorylation and transcriptional activity, through the activation of calcium/calmodulin-dependent (CaM) and mitogen activated protein kinase cascades (MAPK/Erk1/2). Aim of this work was to analyse possible effects of chronic agomelatine on time-dependent changes of different intracellular signalling pathways in hippocampus and prefrontal/frontal cortex of male rats. To this end, measurements were performed 1 h or 16 h after the last agomelatine or vehicle injection. We have found that in naïve rats chronic agomelatine, contrary to traditional antidepressants, did not increase CREB phosphorylation, but modulates the time-dependent regulation of MAPK/Erk1/2 and Akt/glycogen synthase kinase-3 (GSK-3) pathways. Our results suggest that the intracellular molecular mechanisms modulated by chronic agomelatine may be partly different from those of traditional antidepressants and involve the time-dependent regulation of MAPK/Erk1/2 and Akt/GSK-3 signalling pathways. This could exert a role in the antidepressant efficacy of the drug.
Corre, Isabelle; Paris, François; Huot, Jacques
2017-01-01
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process. PMID:28903453
Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang
2016-01-01
This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion.
Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang
2016-01-01
Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion. PMID:27187745
Role of PTEN in the Tumor Microenvironment
2008-06-01
van Diest PJ. (2008). Hexokinase III, cyclin A and galectin - 3 are overexpressed in malignant follicular thyroid nodules. Clin Endocrinol (Oxf) 2...Annual 3 . DATES COVERED (From - To) 15 May 2007 – 14 May 2008 4. TITLE AND SUBTITLE Role of PTEN in the Tumor Microenvironment 5a. CONTRACT NUMBER...1998) that impacts several signaling pathways, including phosphoinositide 3 -kinase (PI3K), and Ras-MAPK-Erk1/2 signaling pathways. Pten inactivation
Integrated analysis of breast cancer cell lines reveals unique signaling pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.
Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised ofmore » 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.« less
Fisetin administration improves LPS-induced acute otitis media in mouse in vivo.
Li, Peng; Chen, Dan; Huang, Yang
2018-07-01
Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.
Fisetin administration improves LPS-induced acute otitis media in mouse in vivo
Li, Peng; Chen, Dan; Huang, Yang
2018-01-01
Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways. PMID:29568876
Yuan, Peipei; Zheng, Xiaoke; Li, Meng; Ke, Yingying; Fu, Yang; Zhang, Qi; Wang, Xiaolan; Feng, Weisheng
2017-11-12
Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis -desulfoglucotropaeolin ( cis -DG) and trans -desulfoglucotropaeolin ( trans -DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e cells. In the hypertonic model, cis -DG and trans -DG significantly promoted the cell viability of NRK52e cells and inhibited the elevation of Na⁺ in the supernatant, inhibited the renin-angiotensin-aldosterone (RAAS) system, significantly reduced the levels of angiotensin II (Ang II) and aldosterone (ALD), and lowered aquaporin-2 (AQP2) and Na⁺-K⁺ ATP content in renal medulla. After treatment with cis -DG and trans -DG, expression of calcineurin (CAN) and Ca/calmodulin-dependent protein kinase II (CaMK II) was decreased in renal tissue and Ca 2+ influx was inhibited, thereby reducing the secretion of transforming growth factor-β (TGFβ), reversing the increase in adhesion and inflammatory factor E-selectin and monocyte chemotactic protein 1 (MCP-1) induced by high NaCl, while reducing oxidative stress status and decreasing the expression of cyclooxygenase-2 (COX2). Furthermore, inhibition of protein kinase C (PKC) expression also contributed to these improvements. The cis -DG and trans -DG reduced the expression of p-p44/42 MAPK, p-JNK and p-p38, inhibited the phosphorylation of the MAPK signaling pathway in NRN52e cells induced by high salt, decreased the overexpression of p-p38 and p-HSP27, and inhibited the overactivation of the p38-MAPK signaling pathway, suggesting that the p38-MAPK pathway may play a vital role in the hypertonic-induced adhesion and inflammatory response. From the results of this study, it can be concluded that the mechanism of cis -DG and trans -DG may mainly be through inhibiting the p38-MAPK signaling pathway, inhibiting the excessive activation of the RAAS system, and thereby reducing adhesion and inflammatory factors.
Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com
2012-10-01
The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less
RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK–positive lung cancer
Hrustanovic, Gorjan; Olivas, Victor; Pazarentzos, Evangelos; Tulpule, Asmin; Asthana, Saurabh; Blakely, Collin M; Okimoto, Ross A; Lin, Luping; Neel, Dana S; Sabnis, Amit; Flanagan, Jennifer; Chan, Elton; Varella-Garcia, Marileila; Aisner, Dara L; Vaishnavi, Aria; Ou, Sai-Hong I; Collisson, Eric A; Ichihara, Eiki; Mack, Philip C; Lovly, Christine M; Karachaliou, Niki; Rosell, Rafael; Riess, Jonathan W; Doebele, Robert C; Bivona, Trever G
2016-01-01
One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS–mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRASWT) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK–positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes. PMID:26301689
RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer.
Hrustanovic, Gorjan; Olivas, Victor; Pazarentzos, Evangelos; Tulpule, Asmin; Asthana, Saurabh; Blakely, Collin M; Okimoto, Ross A; Lin, Luping; Neel, Dana S; Sabnis, Amit; Flanagan, Jennifer; Chan, Elton; Varella-Garcia, Marileila; Aisner, Dara L; Vaishnavi, Aria; Ou, Sai-Hong I; Collisson, Eric A; Ichihara, Eiki; Mack, Philip C; Lovly, Christine M; Karachaliou, Niki; Rosell, Rafael; Riess, Jonathan W; Doebele, Robert C; Bivona, Trever G
2015-09-01
One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS-mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRAS(WT)) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK-positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes.
Wolf, Alexandra; Eulenfeld, René; Gäbler, Karoline; Rolvering, Catherine; Haan, Serge; Behrmann, Iris; Denecke, Bernd; Haan, Claude; Schaper, Fred
2013-01-01
The identification of a constitutively active JAK2 mutant, namely JAK2-V617F, was a milestone in the understanding of Philadelphia chromosome-negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine-independent growth. In this study we investigated the mechanism of JAK2-V617F-dependent signaling with a special focus on the activation of the MAPK pathway. We observed JAK2-V617F-dependent deregulated activation of the multi-site docking protein Gab1 as indicated by constitutive, PI3K-dependent membrane localization and tyrosine phosphorylation of Gab1. Furthermore, we demonstrate that PI3K signaling regulates MAPK activation in JAK2-V617F-positve cells. This cross-regulation of the MAPK pathway by PI3K affects JAK2-V617F-specific target gene induction, erythroid colony formation, and regulates proliferation of JAK2-V617F-positive patient cells in a synergistically manner. PMID:24069558
Miguel-Rojas, Cristina; Hera, Concepcion
2016-01-01
F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.
CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.
Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing
2016-08-26
The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buse, Patricia; Maiyar, Anita C.; Failor, Kim L.
2007-09-10
In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wildmore » type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.« less
Slattery, Martha L.; Lundgreen, Abbie; John, Esther M.; Torres-Mejia, Gabriela; Hines, Lisa; Giuliano, Anna R.; Baumgartner, Kathy B.; Stern, Mariana C.; Wolff, Roger K.
2015-01-01
Mitogen-activated protein kinases (MAPK) are integration points for multiple biochemical signals. We evaluated 13 MAPK genes with breast cancer risk and determined if diet and lifestyle factors mediated risk. Data from three population-based case-control studies conducted in Southwestern United States, California, and Mexico included 4183 controls and 3592 cases. Percent Indigenous American (IA) ancestry was determined from 104 Ancestry Informative Markers. The adaptive rank truncated product (ARTP) was used to determine the significance of each gene and the pathway with breast cancer risk, by menopausal status, genetic ancestry level, and ER/PR strata. MAP3K9 was associated with breast cancer overall (PARTP=0.02) with strongest association among women with the highest IA ancestry (PARTP=0.04). Several SNPs in MAP3K9 were associated with ER+/PR+ tumors and interacted with dietary oxidative balance score (DOBS), dietary folate, body mass index (BMI), alcohol consumption, cigarette smoking, and a history of diabetes. DUSP4 and MAPK8 interacted with calories to alter breast cancer risk; MAPK1 interacted with DOBS, dietary fiber, folate and BMI; MAP3K2 interacted with dietary fat; and MAPK14 interacted with dietary folate and BMI. The patterns of association across diet and lifestyle factors with similar biological properties for the same SNPs within genes provide support for associations. PMID:25629224
Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.
Xing, Mingzhao
2010-07-01
Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.
Reig, Irela; Boixeda, Pablo; Fleta, Beatriz; Morenoc, Carmen; Gámez, Lucía; Truchuelo, Mayte
2011-04-15
Neurofibromatosis-Noonan syndrome is an entity that combines both features of Noonan syndrome and Neurofibromatosis type 1. This phenotypic overlap can be explained by the involvement of the RAS-MAPK pathway (mitogen-activated protein kinase) in both disorders. We report the case of a 17-year-old boy with Neurofibromatosis 1 with Noonan-like features, who complained of the progressive appearance of blue-gray lesions on his back.
Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.
Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui
2016-01-01
In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.
Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A
2015-08-15
Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.
Iijima, Yoshihiro; Laser, Martin; Shiraishi, Hirokazu; Willey, Christopher D; Sundaravadivel, Balasubramanian; Xu, Lin; McDermott, Paul J; Kuppuswamy, Dhandapani
2002-06-21
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.
Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus
2012-10-01
Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. Copyright © 2012 Elsevier B.V. All rights reserved.
Xu, Jing; Zhao, Xiaoting; He, Dengfeng; Wang, Jinghui; Li, Weiying; Liu, Yinghui; Ma, Li; Jiang, Mei; Teng, Yu; Wang, Ziyu; Gu, Meng; Wu, Jianbin; Wang, Yue; Yue, Wentao; Zhang, Shucai
2018-05-24
AZD9291 is an irreversible, small-molecule inhibitor which has potency against mutant EGFR- and T790M-resistant mutation. Despite the encouraging efficacy in clinical, the acquired resistance will finally occur. Further study will need to be done to identify the acquired resistance mechanisms and determine the next treatment. We established an AZD9291-resistant cell line (HCC827/AZDR) from parental HCC827 cell line through stepwise pulsed selection of AZD9291. The expression of EGFR and its downstream pathways were determined by western blot analysis or immunofluorescence assay. The sensitivity to indicated agents were evaluated by MTS. Compared with parental HCC827 cells, the HCC827/AZDR cells showed high resistance to AZD9291 and other EGFR-TKIs, and exhibited a mesenchymal-like phenotype. Almost complete loss of EGFR expression was observed in HCC827/AZDR cells. But the activation of downstream pathway, MAPK signaling, was found in HCC827/AZDR cells even in the presence of AZD9291. Inhibition of MAPK signaling had no effect on cell viability of HCC827/AZDR and could not reverse AZD9291 resistance because of the subsequent activation of AKT signaling. When treated with the combination of AKT and MAPK inhibitor, HCC827/AZDR showed remarkable growth inhibition. Loss of EGFR could be proposed as a potential acquired resistance mechanism of AZD9291 in EGFR-mutant NSCLC cells with an EMT phenotype. Despite the loss of EGFR, the activation of MAPK pathway which had crosstalk with AKT pathway could maintain the proliferation and survival of resistant cells. Blocking MAPK and AKT signaling may be a potential therapeutic strategy following AZD9291 resistance.
[Update on the treatment of RASopathies].
Duat-Rodriguez, A; Hernandez-Martin, A
2017-05-17
The term 'RASopathies' covers a series of diseases that present mutations in the genes that code for the proteins of the RAS/MAPK pathway. These diseases include neurofibromatosis type 1, Noonan syndrome, Legius syndrome, LEOPARD syndrome, Costello syndrome and cardiofaciocutaneous syndrome. Involvement of the RAS/MAPK pathway not only increases predisposition to develop tumours, but also determines the presence of phenotypic anomalies and alterations in learning processes. To review the use of therapeutic strategies with mechanisms that have a selective action on RASopathies. The fact that the RAS pathway is involved in a third of all neoplasms has led to the development and study of different drugs at this level. Some of these pharmaceutical agents have been tested in RASopathies, mainly in neurofibromatosis type 1. Here we analyse the use of different antitarget treatments: drugs that act on the membrane receptors, such as tyrosine kinase inhibitors, in the mTOR pathway or MEK inhibitors. These latter have shown potential benefits in recent studies conducted on different RASopathies. Today, thanks to the results from the first studies conducted with MEK inhibitor based mainly on animal models, a number of promising clinical trials are being carried out.
Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping
2015-01-01
Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries. PMID:26501264
Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei
2015-05-09
A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.
NASA Astrophysics Data System (ADS)
Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent
2015-06-01
The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.
Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing
2016-01-01
Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191
Jessmon, Philip; Kilburn, Brian A; Romero, Roberto; Leach, Richard E; Armant, D Randall
2010-05-01
Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1-2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation.
Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall
2010-01-01
Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271
Martiañez, Tania; Segura, Mònica; Figueiro-Silva, Joana; Grijota-Martinez, Carmen; Trullas, Ramón; Casals, Núria
2014-01-01
In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation. PMID:24905332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan Chunyang; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Besas, Jonathan
2010-05-15
Polybrominated diphenyl ethers (PBDEs) are used as additive flame retardants and have been detected in human blood, adipose tissue, and breast milk. Both in vitro and in vivo studies have shown that the effects of PBDEs are similar to the known human developmental neurotoxicants such as polychlorinated biphenyls (PCBs) on a molar basis. Previously, we reported that PBDE mixtures and congeners, perturbed calcium homeostasis which is critical for the development and function of the nervous system. In the present study, we tested whether environmentally relevant PBDE/PCB mixtures and congeners affected mitogen-activated protein kinase (MAPK) pathways, which are down-stream events ofmore » calcium signaling in cerebellar granule neuronal cultures. In this study, phosphorylated extracellular signal-regulated kinase (pERK)1/2, a widely studied MAPK cascade and known to be involved in learning and memory, levels were quantitated using western blot technique with phospho-specific antibodies. Glutamate (a positive control) increased pERK1/2 in a time- and concentration-dependent manner reaching maximum activation at 5-30 min of exposure and at doses >= 10 muM. Both Aroclor 1254 (a commercial penta PCB mixture) and DE-71 (a commercial penta PBDE mixture) elevated phospho-ERK1/2, producing maximum stimulation at 30 min and at concentrations >= 3 mug/ml; Aroclor 1254 was more efficacious than DE-71. DE-79 (an octabrominated diphenyl ether mixture) also elevated phospho-ERK1/2, but to a lesser extent than that of DE-71. PBDE congeners 47, 77, 99, and 153 also increased phospo-ERK1/2 in a concentration-dependent manner. The data indicated that PBDE congeners are more potent than the commercial mixtures. PCB 47 also increased phospho-ERK1/2 like its structural analog PBDE 47, but to a lesser extent, suggesting that these chemicals affect similar pathways. Cytotoxicity, measured as %LDH release, data showed that higher concentrations (> 30 muM) and longer exposures (> 30 min) are required to see cell death. These results show that PBDE mixtures and congeners activate MAPK pathway at concentrations where no significant cytotoxicity was observed, suggesting that perturbed intracellular signaling including MAPK pathway might be involved in the initiation of adverse effects, including learning and memory, related to these persistent chemicals.« less
Wu, Yuan-Yuan; Ma, Tie-Liang; Ge, Zhi-Jun; Lin, Jie; Ding, Wei-Liang; Feng, Jia-Ke; Zhou, Su-Jun; Chen, Guo-Chang; Tan, Yong-Fei; Cui, Guo-Xing
2014-10-01
The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro , and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell ® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2 , was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.
Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui
2015-07-01
Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gedaly, Roberto; Angulo, Paul; Hundley, Jonathan; Daily, Michael F; Chen, Changguo; Evers, B Mark
2012-08-01
Deregulated Ras/Raf/MAPK and PI3K/AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study aimed to test the inhibitory effects of PKI-587 and sorafenib as single agents or in combination on HCC (Huh7 cell line) proliferation. (3)H-thymidine incorporation and MTT assay were used to assess Huh7 cell proliferation. Phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways was detected by Western blot. We found that PKI-587 is a more potent PI3K/mTOR inhibitor than PI-103. Combination of PKI-587 and sorafenib was a more effective inhibitor of Huh7 proliferation than the combination of PI-103 and sorafenib. Combination of PKI-587 and sorafenib synergistically inhibited epidermal growth factor (EGF)-stimulated Huh7 proliferation compared with monodrug therapy. EGF increased phosphorylation of Ras/Raf downstream signaling proteins MEK and ERK; EGF-stimulated activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased AKT (Ser473) phosphorylation. EGF-stimulated AKT (ser473) activation was inhibited by PKI-587. PKI-587 is a potent inhibitor of AKT (Ser473), mTOR (Ser2448), and S6K (Thr389) phosphorylation; in contrast, rapamycin stimulated mTOR complex 2 substrate AKT(Ser473) phosphorylation although it inhibited mTOR complex 1 substrate S6K phosphorylation. PKI-587, as a single agent, stimulated MEK and ERK phosphorylation. However, when PKI-587 and sorafenib were used in combination, they inhibited all the tested kinases in the Ras/Raf /MAPK and PI3K/AKT/mTOR pathways. The combination of PKI-587 and sorafenib has the advantage over monodrug therapy on inhibition of HCC cell proliferation by blocking both PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.
Huang, Cong; Zhao, Fengguang; Lin, Ying; Zheng, Suiping; Liang, Shuli; Han, Shuangyan
2018-06-07
FKS1 encodes a β-1,3-glucan synthase, which is a key player in cell wall assembly in Saccharomyces cerevisiae. Here we analyzed the global transcriptomic changes in the FKS1 mutant to establish a correlation between the changes in the cell wall of the FKS1 mutant and the molecular mechanism of cell wall maintenance. These transcriptomic profiles showed that there are 1151 differentially expressed genes (DEGs) in the FKS1 mutant. Through KEGG pathway analysis of the DEGs, the MAPK pathway and seven pathways involved in carbon metabolism were significantly enriched. We found that the MAPK pathway is activated for FKS1 mutant survival and the synthesis of cell wall components are reinforced in the FKS1 mutant. Our results confirm that the FKS1 mutant has a β-1,3-glucan defect that affects the cell wall and partly elucidate the molecular mechanism responsible for cell wall synthesis. Our greater understanding of these mechanisms helps to explain how the FKS1 mutant survives, has useful implications for the study of similar pathways in other fungi, and increases the theoretical foundation for the regulation of the cell wall in S. cerevisiae. Copyright © 2018 Elsevier Inc. All rights reserved.
Gao, Qianhua; Walmsley, A Damien; Cooper, Paul R; Scheven, Ben A
2016-03-01
Mesenchymal stem cells (MSCs) from dental tissues may respond to low-intensity pulsed ultrasound (LIPUS) treatment, potentially providing a therapeutic approach to promoting dental tissue regeneration. This work aimed to compare LIPUS effects on the proliferation and MAPK signaling in MSCs from rodent dental pulp stem cells (DPSCs) compared with MSCs from periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). Isolated MSCs were treated with 1-MHz LIPUS at an intensity of 250 or 750 mW/cm2 for 5 or 20 minutes. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) staining after 24 hours of culture following a single LIPUS treatment. Specific ELISAs were used to determine the total and activated p38, ERK1/2, and JNK MAPK signaling proteins up to 4 hours after treatment. Selective MAPK inhibitors PD98059 (ERK1/2), SB203580 (p38), and SP600125 (JNK) were used to determine the role of activation of the particular MAPK pathways. The proliferation of all MSC types was significantly increased after LIPUS treatment. LIPUS at a 750-mW/cm2 dose induced the greatest effects on DPSCs. BMSC proliferation was stimulated in equal measures by both intensities, whereas 250 mW/cm2 LIPUS exposure exerted maximum effects on PDLSCs. ERK1/2 was activated immediately in DPSCs after treatment. Concomitantly, DPSC proliferation was specifically modulated by ERK1/2 inhibition, whereas p38 and JNK inhibition exerted no effects. In BMSCs, JNK MAPK signaling was LIPUS activated, and the increase in proliferation was blocked by specific inhibition of the JNK pathway. In PDLSCs, JNK MAPK signaling was activated immediately after LIPUS, whereas p-p38 MAPK increased significantly in these cells 4 hours after exposure. Correspondingly, JNK and p38 inhibition modulated LIPUS-stimulated PDLSC proliferation. LIPUS promoted MSC proliferation in an intensity and cell-specific dependent manner via activation of distinct MAPK pathways. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme
2014-06-01
Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.
WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway.
Zhou, Bo; Wang, Dexuan; Feng, Xiuyan; Zhang, Yiqian; Wang, Yanhui; Zhuang, Jieqiu; Zhang, Xuemei; Chen, Guangping; Delpire, Eric; Gu, Dingying; Cai, Hui
2012-03-01
WNK [with no lysine (K)] kinase is a subfamily of serine/threonine kinases. Mutations in two members of this family (WNK1 and WNK4) cause pseudohypoaldosteronism type II featuring hypertension, hyperkalemia, and metabolic acidosis. WNK1 and WNK4 were shown to regulate sodium chloride cotransporter (NCC) activity through phosphorylating SPAK and OSR1. Previous studies including ours have also shown that WNK4 inhibits NCC function and its protein expression. A recent study reported that a phorbol ester inhibits NCC function via activation of extracellular signal-regulated kinase (ERK) 1/2 kinase. In the current study, we investigated whether WNK4 affects NCC via the MAPK ERK1/2 signaling pathway. We found that WNK4 increased ERK1/2 phosphorylation in a dose-dependent manner in mouse distal convoluted tubule (mDCT) cells, whereas WNK4 mutants with the PHA II mutations (E562K and R1185C) lost the ability to increase the ERK1/2 phosphorylation. Hypertonicity significantly increased ERK1/2 phosphorylation in mDCT cells. Knock-down of WNK4 expression by siRNA resulted in a decrease of ERK1/2 phosphorylation. We further showed that WNK4 knock-down significantly increases the cell surface and total NCC protein expressions and ERK1/2 knock-down also significantly increases cell surface and total NCC expression. These data suggest that WNK4 inhibits NCC through activating the MAPK ERK1/2 signaling pathway.
Mohagheghi, Fatemeh; Ahmadiani, Abolhassan; Rahmani, Behrouz; Moradi, Fatemeh; Romond, Nathalie; Khalaj, Leila
2013-07-01
Inducers of mitochondrial biogenesis are widely under investigation for use in a novel therapeutic approach in neurodegenerative disorders. The ability of Gemfibrozil, a fibrate, is investigated for the first time to modulate mitochondrial pro-survival factors involved in the mitochondrial biogenesis signaling pathway, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF-1), and mitochondrial transcription factor A (TFAM) in the brain. Gemfibozil is clinically administered to control hyperlipidemia. It secondarily prevents cardiovascular events such as cardiac arrest in susceptible patients. In this study, pretreatment of animals with gemfibrozil prior to ischemia-reperfusion (I/R) resulted in a sexually dimorphic outcome. While the expression of NRF-1 and TFAM were induced in gemfibrozil-pretreated met-estrous females, they were suppressed in males. Gemfibrozil also proved to be neuroprotective in met-estrous females, as it inhibited caspase-dependent apoptosis while in males it led to hippocampal neurodegeneration via activation of both the caspase-dependent and caspase-independent apoptosis. In the mitogen-activated protein kinase (MAPKs) pathway, gemfibrozil pretreatment induced the expression of extracellular signal-regulated kinases (ERK1/2) in met-estrous females and reduced it in males. These findings correlatively point to the sexual-dimorphic effects of gemfibrozil in global cerebral I/R context by affecting important factors involved in the mitochondrial biogenesis, MAPKs, and apoptotic cell death pathways.
Neuroprotective Role of a Brain-Enriched Tyrosine Phosphatase, STEP, in Focal Cerebral Ischemia
Deb, Ishani; Manhas, Namratta; Poddar, Ranjana; Rajagopal, Sathyanarayanan; Allan, Andrea M.; Lombroso, Paul J.; Rosenberg, Gary A.; Candelario-Jalil, Eduardo
2013-01-01
The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy. PMID:24198371
Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.
Chen, Lihong; Hu, Wei; Tan, Shenglong; Wang, Min; Ma, Zhanbing; Zhou, Shiyi; Deng, Xiaomin; Zhang, Yang; Huang, Chao; Yang, Guangxiao; He, Guangyuan
2012-01-01
MAPK cascades are universal signal transduction modules and play important roles in plant growth, development and in response to a variety of biotic and abiotic stresses. Although MAPKs and MAPKKs have been systematically investigated in several plant species including Arabidopsis, rice and poplar, no systematic analysis has been conducted in the emerging monocot model plant Brachypodium distachyon. In the present study, a total of 16 MAPK genes and 12 MAPKK genes were identified from B. distachyon. An analysis of the genomic evolution showed that both tandem and segment duplications contributed significantly to the expansion of MAPK and MAPKK families. Evolutionary relationships within subfamilies were supported by exon-intron organizations and the architectures of conserved protein motifs. Synteny analysis between B. distachyon and the other two plant species of rice and Arabidopsis showed that only one homolog of B. distachyon MAPKs was found in the corresponding syntenic blocks of Arabidopsis, while 13 homologs of B. distachyon MAPKs and MAPKKs were found in that of rice, which was consistent with the speciation process of the three species. In addition, several interactive protein pairs between the two families in B. distachyon were found through yeast two hybrid assay, whereas their orthologs of a pair in Arabidopsis and other plant species were not found to interact with each other. Finally, expression studies of closely related family members among B. distachyon, Arabidopsis and rice showed that even recently duplicated representatives may fulfill different functions and be involved in different signal pathways. Taken together, our data would provide a foundation for evolutionary and functional characterization of MAPK and MAPKK gene families in B. distachyon and other plant species to unravel their biological roles.
Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations | Office of Cancer Genomics
The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway.
Cipolla, Gabriel A; Park, Jong Kook; Lavker, Robert M; Petzl-Erler, Maria Luiza
2017-01-01
Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus' pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa . However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory.
Sindreu, Carlos; Palmiter, Richard D; Storm, Daniel R
2011-02-22
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory
Sindreu, Carlos; Palmiter, Richard D.; Storm, Daniel R.
2011-01-01
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory. PMID:21245308
Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.
2010-05-15
Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK amongmore » these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.« less
Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.
Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun
2012-12-27
L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.
Safia; Kamil, Mohd; Jadiya, Pooja; Sheikh, Saba; Haque, Ejazul; Nazir, Aamir; Lakshmi, Vijai; Mir, Snober S.
2015-01-01
The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic effects in lung cancer cells and stimulated the productions of ROS after exposure for 24 hrs. Results from western blotting suggest that Rohitukine triggered apoptosis in A549 cell line through upregulation of p53, caspase9 and down regulation of Bcl-2 protein. The scope of this study is to understand the mechanism of anticancer activity of Rohitukine to increase the repertoire of anticancer drugs, so that problem created by emergence of resistance towards standard anticancer compounds can be alleviated. PMID:26405812
Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh
2014-01-01
Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin inhibits melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PMID:24466036
Guo, Xiujuan; Yang, Yangfan; Liu, Liling; Liu, Xiaoan; Xu, Jiangang; Wu, Kaili; Yu, Minbin
2017-06-01
To investigate the underlying mechanism by which pirfenidone blocks the transition from the G1 to S phase in primary human Tenon's fibroblasts. Primary human Tenon's fibroblasts were characterized by immunocytofluorescence staining with vimentin, fibroblast surface protein, and cytokeratin. After treating Tenon's fibroblasts with pirfenidone under proliferation conditions (10% fetal bovine serum), cell proliferation was measured using a WST-1 assay. Progression through the cell cycle was analyzed by flow cytometry. The expression of CDK2, CDK6, cyclinD1, cyclinD3, and cyclinE and the phosphorylation of AKT, ERK1/2/MAPK, JNK/MAPK, and p38 MAPK were estimated using western blot analysis. Under proliferative conditions, pirfenidone inhibited Tenon's fibroblasts proliferation and arrested the cell cycle at the G1 phase; decreased the phosphorylation of AKT, GSK3β, ERK1/2/MAPK, and JNK/MAPK; increased the phosphorylation of p38 MAPK; and inhibited CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E in a dose-dependent manner. Inhibitors of AKT (LY294002), ERK1/2 (U0126), and JNK (SP600125) arrested the G1/S transition, similar to the effect of pirfenidone. The p38 inhibitor (SB202190) decreased the G1-blocking effect of pirfenidone. The expression of CDK2, CDK6, cyclin D1, and cyclin D3 were inhibited by LY294002, U0126, and SP600125. SB202190 attenuated the pirfenidone-induced reduction of CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E. Pirfenidone inhibited HTFs proliferation and induced G1 arrest by downregulating CDKs and cyclins involving the AKT/GSK3β and MAPK signaling pathways.
Numerous studies have reported association between exposure to ambient levels of particulate matter (PM) and adverse health effects, which include respiratory and cardiovascular effects. Diesel exhaust particles (DEP) compose a significant fraction of PM in some areas. Alveolar m...
2006-02-01
Morgan, K., Hasz, D. E., Mao, Z., and Largaespada, D. A. (2005). Nf1 gene inactivation in acute myeloid leukemia cells confers cytarabine resistance through MAPK and mTOR pathways. Leukemia. VII. Appendices: None
Bak, Min-Ji; Hong, Soon-Gi; Lee, Jong-Won; Jeong, Woo-Sik
2012-11-22
In this study, we investigated the anti-inflammatory effects of red ginseng marc oil (RMO) in the RAW 264.7 macrophage cell line. RMO was prepared by a supercritical CO(2) extraction of waste product generated after hot water extraction of red ginseng. RMO significantly inhibited the production of oxidative stress molecules such as nitric oxide and reactive oxygen species in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Levels of inflammatory targets including prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 were also reduced after the treatment with RMO. In addition, RMO diminished the expressions of inducible nitric oxide synthase and cyclooxygenase 2 at both mRNA and protein levels. Blockade of nuclear translocation of the p65 subunit of nuclear factor κB (NFκB) was also observed after the treatment of RMO. Furthermore, RMO decreased the phosphorylations of p38 mitogen-activated protein kinase (MAPK) and its upstream kinases including MAPK kinases 3/6 (MKK3/6) and TAK 1 (TGF-β activated kinase 1). Gas chromatographic analysis on RMO revealed that RMO contained about 10% phytosterols including sitosterol, stigmasterol and campesterol which may contribute to the anti-inflammatory properties of RMO. Taken together, these results suggest that the anti-inflammatory effect of RMO in LPS-induced RAW 264.7 macrophages could be associated with the inhibition of NFκB transcriptional activity, possibly via blocking the p38 MAPK pathway.
He, Yu; Ge, Yugang; Jiang, Mingkun; Zhou, Jundong; Luo, Dakui; Fan, Hao; Shi, Liang; Lin, Linling; Yang, Li
2018-06-21
Gastric cancer (GC) is one of the most prevalent digestive malignancies. MicroRNAs (miRNAs) are involved in multiple cellular processes, including oncogenesis, and miR-592 itself participates in many malignancies; however, its role in GC remains unknown. In this study, we investigated the expression and molecular mechanisms of miR-592 in GC. Quantitative real-time PCR and immunohistochemistry were performed to determine the expression of miR-592 and its putative targets in human tissues and cell lines. Proliferation, migration, and invasion were evaluated by Cell Counting Kit-8, population doubling time, colony formation, Transwell, and wound-healing assays in transfected GC cells in vitro. A dual-luciferase reporter assay was used to determine whether miR-592 could directly bind its target. A tumorigenesis assay was used to study whether miR-592 affected GC growth in vivo. Proteins involved in signaling pathways and the epithelial-mesenchymal transition (EMT) were detected with western blot. The ectopic expression of miR-592 promoted GC proliferation, migration, and invasion in vitro and facilitated tumorigenesis in vivo. Spry2 was a direct target of miR-592 and Spry2 overexpression partially counteracted the effects of miR-592. miR-592 induced the EMT and promoted its progression in GC via the PI3K/AKT and MAPK/ERK signaling pathways by inhibiting Spry2. Overexpression of miR-592 promotes GC proliferation, migration, and invasion and induces the EMT via the PI3K/AKT and MAPK/ERK signaling pathways by inhibiting Spry2, suggesting a potential therapeutic target for GC. © 2018 The Author(s). Published by S. Karger AG, Basel.
JC Virus Mediates Invasion and Migration in Colorectal Metastasis
Link, Alexander; Shin, Sung Kwan; Nagasaka, Takeshi; Balaguer, Francesc; Koi, Minoru; Jung, Barbara; Boland, C. Richard; Goel, Ajay
2009-01-01
Introduction JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. Material and Methods CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. Results T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). Conclusion These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC. PMID:19997600
Gao, Tingting; Zhao, Xin; Liu, Chenchen; Shao, Binbin; Zhang, Xi; Li, Kai; Cai, Jinyang; Wang, Su; Huang, Xiaoyan
2018-05-24
Spermatogonial stem cell (SSC) self-renewal is an indispensable part of spermatogenesis. Angiotensin I-converting enzyme (ACE) is a zinc dipeptidyl carboxypeptidase that plays a critical role in regulation of the renin-angiotensin system. Here, we used RT-PCR and Western blot analysis to confirm that somatic ACE (sACE) but not testicular ACE (tACE) is highly expressed in mouse testis before postpartum day 7 and in cultured SSCs. Our results revealed that sACE is located on the membrane of SSCs. Treating cultured SSCs with the ACE competitive inhibitor captopril was found to inhibit sACE activity, and significantly reduced the proliferation rate of SSCs. Microarray analysis identified 651 genes with significant differential expression. KEGG pathway analysis showed that these differentially expressed genes are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and cell cycle. sACE was found to play an important role in SSC self-renewal via the regulation of MAPK-dependent cell proliferation.
Gelidium elegans Extract Ameliorates Type 2 Diabetes via Regulation of MAPK and PI3K/Akt Signaling.
Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong
2018-01-06
Gelidium elegans , a red alga native to the Asia Pacific region, contains biologically active polyphenols. We conducted a molecular biological study of the anti-diabetic effect of Gelidium elegans extract (GEE) in C57BL/KsJ-db/db mice. Mice that had been administered GEE had significantly lower body mass, water consumption, and fasting blood glucose than db/db controls. Moreover, hemoglobin A1c (HbA1c), an indicator of the glycemic status of people with diabetes, was significantly lower in mice that had been administered GEE. We also found that 200 mg/kg/day GEE upregulates the insulin signaling pathway by activating insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K), and increasing the expression of glucose transporter type 4 (GLUT4). In parallel, mitogen-activated protein kinase (MAPK) activity was lower in GEE-treated groups. In summary, these findings indicate that GEE regulates glucose metabolism by activating the insulin signaling pathway and downregulating the MAPK signaling pathway.
Wong, Kah-Hui; Kanagasabapathy, Gowri; Naidu, Murali; David, Pamela; Sabaratnam, Vikineswary
2016-10-01
To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats. Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method. Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05). H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.
Nayak, Losiana; De, Rajat K
2007-12-01
Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.
Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo
2016-12-01
In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.
Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei
2016-01-01
Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666
The role of MAPK signaling pathway in the Her-2-positive meningiomas
Wang, Zhaoyin; Wang, Weijia; Xu, Shan; Wang, Shanshan; Tu, Yi; Xiong, Yifeng; Mei, Jinhong; Wang, Chunliang
2016-01-01
Meningiomas are common types of adult nerve system tumors. Although most cases are considered benign, due to its high rate of recurrence and easy malignant progression to anaplastic meningioma they present a puzzle for the current treatment. The HER-2 oncogene has important value for meningioma cells development and progression. So far, little is known about the effect on the exact underlying signal pathway and molecular mechanisms of HER-2-positive meningioma cells. The goal of the present study was to determine the effects of HER-2 gene and possible involvement of MAPK signal pathway in human malignant meningioma. We applied q-PCR analysis, immunofluorescence (IF) staining, western blot analysis, animal model, MAPK inhibition, MTT assay and cell invasion analysis for the investigation. The results demonstrated that the downregulation of the expression of HER-2 significantly inhibited cell motility and proliferation of human meningioma cells in vivo. Accordingly, in the HER-2-overexpression meningioma cells with the inhibition of ERK1/2, ERK5, JNK, in the cells with the ERK1/2, ERK5 inhibition, protein expression was markedly suppressed as well as the cell proliferation resistance. No difference was observed in the HER-2-overexpression meningioma cells with the inhibition of JNK. These findings suggest that HER-2 gene can affect the proliferation ability of human meningioma cells in vivo and MAPK signal pathway may contribute to the carcinogenesis and development of human meningiomas combinating with HER-2. PMID:27279438
Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang
2013-01-01
Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period. PMID:24381640
Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang; Hsieh, Ching-Liang
2013-01-01
Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1 β , IL-6, and tumor necrosis factor- α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.
Li, Chun-jun; Lv, Lin; Li, Hui; Yu, De-min
2012-06-19
Alpha-lipoic acid (ALA), a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM) has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS), extracellular matrix (ECM) remodeling and interrelated signaling pathways in a diabetic rat model. Diabetes was induced in rats by I.V. injection of streptozotocin (STZ) at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen) was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2) levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β). Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK), p38 MAPK and ERK were also assayed by Western blot. DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated signaling pathway components were evaluated. It was shown that redox homeostasis was disturbed and MAPK signaling pathway components activated in STZ-induced DCM animals. While ALA treatment favorably shifted redox homeostasis and suppressed JNK and p38 MAPK activation. These results, coupled with the excellent safety and tolerability profile of ALA in humans, demonstrate that ALA may have therapeutic potential in the treatment of DCM by attenuating MOS, ECM remodeling and JNK, p38 MAPK activation.
Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.
2016-01-01
ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase signaling. The relevance of these signaling cascades in the viral life cycle was emphasized by specific inhibitors of these kinase pathways, which decreased the production of progeny virions. Berberine significantly reduced CHIKV-induced inflammatory disease in a mouse model, demonstrating efficacy of the drug in vivo. Overall, this work makes a strong case for pursuing berberine as a potential anti-CHIKV therapeutic compound and for exploring the MAPK signaling pathways as antiviral targets against alphavirus infections. PMID:27535052
Tai, Ta-Wei; Su, Fong-Chin; Chen, Ching-Yu; Jou, I-Ming; Lin, Chiou-Feng
2014-10-01
The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis. These resistant cells survived the apoptotic effect of ZA following an increase in anti-apoptotic Bcl-xL. Pharmacologically inhibiting Bcl-xL facilitated ZA-induced apoptosis. Treatment with ZA activated p38 MAPK, increasing Bcl-xL expression and cell survival. Nuclear import of β-catenin regulated by p38 MAPK determined Bcl-xL mRNA expression and cell survival in response to ZA. ZA also inactivated glycogen synthase kinase (GSK)-3β, a negative upstream regulator of β-catenin, in a p38 MAPK-mediated manner. Synergistic pharmacological inhibition of p38 MAPK with ZA attenuated receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and facilitated ZA-induced apoptosis. These results demonstrate that elevated Bcl-xL expression mediated by p38 MAPK-regulated GSK-3β/β-catenin signaling is required for cell survival of ZA-induced apoptosis in both osteoclast precursors and osteoclasts. Finally, we demonstrated that inhibiting p38 MAPK-mediated pathway enhanced ZA effect on increasing the bone mineral density of ovariectomized mice. This result suggests that targeting these pathways may represent a potential therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.
Roles of mitogen-activated protein kinases and angiotensin II in renal development.
Balbi, A P C; Francescato, H D C; Marin, E C S; Costa, R S; Coimbra, T M
2009-01-01
Experimental and clinical evidence suggests that angiotensin II (AII) participates in renal development. Renal AII content is several-fold higher in newborn rats and mice than in adult animals. AII receptors are also expressed in higher amounts in the kidneys of newborn rats. The kidneys of fetuses whose mother received a type 1 AII receptor (AT1) antagonist during gestation present several morphological alterations. Mutations in genes that encode components of the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Morphological changes were detected in the kidneys of 3-week-old angiotensin-deficient mice. Mitogen-activated protein kinases (MAPKs) are important mediators that transduce extracellular stimuli to intracellular responses. The MAPK family comprises three major subgroups, namely extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinases (JNK), and p38 MAPK (p38). Important events in renal growth during nephrogenesis such as cellular proliferation and differentiation accompanied by apoptosis on a large scale can be mediated by MAPK pathways. A decrease in glomerulus number was observed in embryos cultured for 48 and 120 h with ERK or p38 inhibitors. Many effects of AII are mediated by MAPK pathways. Treatment with losartan during lactation provoked changes in renal function and structure associated with alterations in AT1 and type 2 AII (AT2) receptors and p-JNK and p-p38 expression in the kidney. Several studies have shown that AII and MAPKs play an important role in renal development. However, the relationship between the effects of AII and MAPK activation on renal development is still unclear.
Metformin targets multiple signaling pathways in cancer.
Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi
2017-01-26
Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.
[MAP kinases--molecular transistors in animals and plants].
Petersen, Morten; Brodersen, Peter; Mundy, John
2002-06-10
The survival of multicellular organisms depends on the ability of their cells to communicate with each other and to respond to environmental changes. A goal of modern biology is to uncover the processes by which these cellular signals are transduced. Recent studies have shown that MAP-kinases (MAPKs) are important constituents of such signal transduction pathways. MAPKs function as modules in phosphorelay cascades to activate or repress the activity of downstream target proteins. For example, recent research with knockout mice has shown that mammalian MAPKs are involved in the control of neuronal apoptosis and the activation of immune responses. These mammalian MAPKs exert their control by both promoting and inhibiting specific processes. Surprisingly, plants also use MAPKs to control their immune responses, and plant MAPKs also seem to play dual roles as positive and negative regulators. Such mechanistic similarities provide the basis for fruitful conceptual exchange between molecular research on animals and plants.
MiR-320 inhibits the growth of glioma cells through downregulating PBX3.
Pan, Cuicui; Gao, Hua; Zheng, Ni; Gao, Qi; Si, Yuanquan; Zhao, Yueran
2017-09-21
MiR-320 is downregulated in multiple cancers, including glioma and acts as tumor suppressor through inhibiting tumor cells proliferation and inducing apoptosis. PBX3 (Pre-B cell leukemia homeobox 3), a putative target gene of miR-320, has been reported to be upregulated in various tumors and promote tumor cell growth through regulating MAKP/ERK pathway. This study aimed to verify whether miR-320 influences glioma cells growth through regulating PBX3. Twenty-four human glioma and paired adjacent nontumorous tissues were collected for determination of miR-320 and PBX3 expression using RT-qPCR and western blot assays. Luciferase reporter assay was performed to verify the interaction between miR-320 and its targeting sequence in the 3' UTR of PBX3 in glioma cells U87 and U251. Increased miR-320 level in U87 and U251 cells was achieved through miR-320 mimic transfection and the effect of which on glioma cells growth, proliferation, cell cycle, apoptosis and activation of Raf-1/MAPK pathway was determined using MTT, colony formation, flow cytometry and western blot assays. PBX3 knockdown was performed using shPBX3 and the influence on MAPK pathway activation was evaluated. MiR-320 downregulation and PBX3 upregulation was found in glioma tissues. Luciferase reporter assays identified miR-320 directly blinds to the 3' UTR of PBX3 in glioma cells. MiR-320 mimic transfection suppressed glioma cells proliferation, and induced cell cycle arrest and apoptosis. Both miR-320 overexpression and PBX3 knockdown inhibited Raf-1/MAPK activation. MiR-320 may suppress glioma cells growth and induced apoptosis through the PBX3/Raf-1/MAPK axis, and miR-320 oligonucleotides may be a potential cancer therapeutic for glioma.
Wang, Tongtong; Zhang, Xiujuan; Chen, Yu; Cui, Beibei; Li, Delong; Zhao, Xiaomin; Zhang, Wenlong; Chang, Lingling; Tong, Dewen
2016-01-01
Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages. PMID:26883107
Pasini, Andrea; Manenti, Raoul; Rothbächer, Ute; Lemaire, Patrick
2012-01-01
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.
Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Moley, Kelle H
2015-02-01
Our earlier studies have demonstrated that the cigarette smoke in the form of cigarette smoke condensate (CSC) causes growth arrest of a mouse spermatocyte cell line [GC-2spd(ts)] through activation of the AHR-NRF2 pathway. The present study demonstrates the CSC-activated p38 and ERK MAPK signaling in GC-2spd(ts) via arylhydrocarbon receptor (AHR). Pharmacological inhibition by using AHR-antagonist, or p38 MAPK and ERK (MEK1) inhibitors significantly abrogates CSC-induced growth arrest by AHR and MAPK inactivation. QRT-PCR, western blot, and immunofluorescence of Ahr-target of Nrf2, and stress-inducible growth suppressive Atf3 and E2f4 following treatments indicate a crosstalk among these pathways. Regulation of Atf3 by Nrf2 and Ahr through RNA interference suggests the existence of a cross-regulatory loop between the targets. CSC induction of E2f4 via Atf3 and its regulation by pharmacological inhibitors reveal a possible regulatory mechanism of growth inhibitory CSC. SiRNA silencing of Ahr, Nrf2, Atf3, and E2f4 genes and downregulation of cyclins by CSC corroborate the growth inhibitory effect of cigarette smoke. Thus, the data obtained suggest that the CSC-mediated MAPKs and AHR-NRF2 crosstalks lay the molecular basis for the growth arrest and cell death of spermatocytes. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.
2015-01-01
Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310
Liu, Lei; Geng, Jianqiang; Zhao, Hongwei; Yun, Fengxiang; Wang, Xiaoyu; Yan, Sen; Ding, Xue; Li, Wenpeng; Wang, Dingyu; Li, Jianqiang; Pan, Zhenwei; Gong, Yongtai; Tan, Xiangyang; Li, Yue
2015-01-01
Angiotensin II receptor blockers (ARBs) have been proved to be effective in preventing atrial structural and electrical remodelinq in atrial fibrillation (AF). Previous studies have shown that parasympathetic remodeling plays an important role in AF. However, the effects of ARBs on atrial parasympathetic remodeling in AF and the underlying mechanisms are still unknown. Canines were divided into sham-operated, pacing and valsartan + pacing groups. Rats and HL-1 cardiomyocytes were divided into control, angiotensin II (Ang II) and Ang II + valsartan groups, respectively. Atrial parasympathetic remodeling was quantified by immunocytochemical staining with anti-choline acetyltransferase (ChAT) antibody. Western blot was used to analysis the protein expression of neurturin. Both inducibility and duration were increased in chronic atrial rapid-pacing canine model, which was significantly inhibited by the treatment with valsartan. The density of ChAT-positive nerves and the protein level of neurturin in the atria of pacing canines were both increased than those in sham-operated canines. Ang II treatment not only induced atrial parasympathetic remodeling in rats, but also up-regulated the protein expression of neurturin. Valsartan significantly prevented atrial parasympathetic remodeling, and suppressed the protein expression of neurturin. Meanwhile, valsartan inhibited Ang II -induced up-regulation of neurturin and MAPKs in cultured cardiac myocytes. Inhibition of MAPKs dramatically attenuated neurturin up-regulation induced by Ang II. Parasympathetic remodeling was present in animals subjected to rapid pacing or Ang II infusion, which was mediated by MAPKs/neurturin pathway. Valsartan is able to prevent atrial parasympathetic remodeling and the occurrence of AF via inhibiting MAPKs/neurturin pathway. © 2015 S. Karger AG, Basel.
Yang, Weihong; Li, Jing; Shang, Yun; Zhao, Li; Wang, Mingying; Shi, Jipeng; Li, Shujun
2017-04-01
The HMGB1-TLR4 axis is activated in adult mouse models of acute and chronic seizure. Nevertheless, whether HMGB1 was involved in the pathogenesis of mesial temporal lobe epilepsy (MTLE) remains unknown. In this study, we first measured the dynamic expression patterns of HMGB1 and TLR4 in the hippocampi of a rat model and in children with MTLE, as well as the levels of TNF-α and IL-1β. In addition, HMGB1 was added to mimic the process of inflammatory response in neurons. Neuronal somatic size and dendritic length were measured by immunohistochemistry and digital imaging. The results showed that the expression of HMGB1 and TLR4 as well as the levels of TNF-α and IL-1β were higher in the three stages of MTLE development in the rat model and in the children with MTLE. HMGB1 increased the levels of TNF-α and IL-1β, upregulated the protein level of p-p38MAPK and promoted the growth of cell somatic size and dendritic length in neurons. Pre-treatment with p38MAPK inhibitor SB203580 decreased the levels of TNF-α and IL-1β, while downregulation of TLR4 significantly reduced HMGB1-induced p38MAPK signaling pathway activation. These data demonstrated that the HMGB1-TLR4 axis may play an important role in the pathogenesis of MTLE via the p38MAPK signaling pathway.
Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles
2017-02-01
Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.
Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma.
Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R
2017-10-10
Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Qian; Liu, Z. Lewis; Ning, Kang; Wang, Anhui; Zeng, Xiaowei; Xu, Jian
2014-01-01
The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose mateials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways. PMID:25296911
Neupane, Achal; Nepal, Madhav P; Benson, Benjamin V; MacArthur, Kenton J; Piya, Sarbottam
2013-01-01
Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution. PMID:24317362
Maymó, Julieta Lorena; Pérez Pérez, Antonio; Maskin, Bernardo; Dueñas, José Luis; Calvo, Juan Carlos; Sánchez Margalet, Víctor; Varone, Cecilia Laura
2012-01-01
Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway. PMID:23056265
Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong
2018-05-15
Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Liping; Oshima, Tadayuki; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto
2016-11-01
Serotonin regulates gastrointestinal function, and mast cells are a potential nonneuronal source of serotonin in the esophagus. Tight junction (TJ) proteins in the esophageal epithelium contribute to the barrier function, and the serotonin signaling pathway may contribute to epithelial leakage in gastroesophageal reflux disease. Therefore, the aim of this study was to investigate the role of serotonin on barrier function, TJ proteins, and related signaling pathways. Normal primary human esophageal epithelial cells were cultured with use of an air-liquid interface system. Serotonin was added to the basolateral compartment, and transepithelial electrical resistance (TEER) was measured. The expression of TJ proteins and serotonin receptor 7 (5-HT 7 ) was assessed by Western blotting. The involvement of 5-HT 7 was assessed with use of an antagonist and an agonist. The underlying cellular signaling pathways were examined with use of specific blockers. Serotonin decreased TEER and reduced the expression of TJ proteins ZO-1, occludin, and claudin 1, but not claudin 4. A 5-HT 7 antagonist blocked the serotonin-induced decrease in TEER, and a 5-HT 7 agonist decreased TEER. Inhibition of p38 mitogen-activated protein kinase (MAPK) reduced the serotonin-induced decrease in TEER. Inhibition of p38 MAPK blocked the decrease of ZO-1 levels, whereas extracellular-signal-regulated kinase (ERK) inhibition blocked the decrease in occludin levels. Cell signaling pathway inhibitors had no effect on serotonin-induced alterations in claudin 1 and claudin 4 levels. Serotonin induced phosphorylation of p38 MAPK and ERK, and a 5-HT 7 antagonist partially blocked serotonin-induced phosphorylation of p38 MAPK but not that of ERK. Serotonin disrupted esophageal squamous epithelial barrier function by modulating the levels of TJ proteins. Serotonin signaling pathways may mediate the pathogenesis of gastroesophageal reflux disease.
Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min
2016-07-01
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Min-Chul; Puthumana, Jayesh; Lee, Seung-Hwi; Kang, Hye-Min; Park, Jun Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Seo, Jung Soo; Park, Heum Gi; Om, Ae-Son; Lee, Jae-Seong
2016-12-01
Brominated flame retardant, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), has received grave concerns as a persistent organic pollutant, which is toxic to marine organisms, and a suspected link to endocrine abnormalities. Despite the wide distribution in the marine ecosystem, very little is known about the toxic impairments on marine organisms, particularly on invertebrates. Thus, we examined the adverse effects of BDE-47 on life history trait (development), oxidative markers, fatty acid composition, and lipid accumulation in response to BDE-47-induced stress in the marine copepod Paracyclopina nana. Also, activation level of mitogen-activated protein kinase (MAPK) signaling pathways along with the gene expression profile of de novo lipogenesis (DNL) pathways were addressed. As a result, BDE-47 induced oxidative stress (e.g. reactive oxygen species, ROS) mediated activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) signaling cascades in MAPK pathways. Activated MAPK pathways, in turn, induced signal molecules that bind to the transcription factors (TFs) responsible for lipogenesis to EcR, SREBP, ChREBP promoters. Also, the stress stimulated the conversion of saturated fatty acids (SFAs) to polyunsaturated fatty acids (PUFAs), a preparedness of the organism to adapt the observed stress, which could be correlated with the elongase and desaturase gene (e.g. ELO3, Δ5-DES, Δ9-DES) expressions, and then extended to the delayed early post-embryonic development and increased accumulation of lipid droplets in P. nana. This study will provide a better understanding of how BDE-47 effects on marine invertebrates particularly on the copepods, an important link in the marine food chain. Copyright © 2016 Elsevier B.V. All rights reserved.
Cao, Xia; Li, Xin-Min; Mousseau, Darrell D
2009-07-31
Calcium (Ca(2+)) is known to augment monoamine oxidase-A (MAO-A) activity in cell cultures as well as in brain extracts from several species. This association between Ca(2+) and MAO-A could contribute to their respective roles in cytotoxicity. However, the effect of Ca(2+) on MAO-A function in human brain has as yet to be examined as does the contribution of specific signalling cascades. We examined the effects of Ca(2+) on MAO-A activity and on [(3)H]Ro 41-1049 binding to MAO-A in human cerebellar extracts, and compared this to its effects on MAO-A activity in glial C6 cells following the targeting of signalling pathways using specific chemical inhibitors. Ca(2+) enhances MAO-A activity as well as the association of [(3)H]Ro 41-1049 to MAO-A in human cerebellar extracts. The screening of neuronal and glial cell cultures reveals that MAO-A activity does not always correlate with the expression of either mao-A mRNA or MAO-A protein. Inhibition of the individual PI3K/Akt, ERK and p38(MAPK) signalling pathways in glial C6 cells all augment basal MAO-A activity. Inhibition of the p38(MAPK) pathway also augments Ca(2+)-sensitive MAO-A activity. We also observe the inverse relation between p38(MAPK) activation and MAO-A function in C6 cultures grown to full confluence. The Ca(2+)-sensitive component to MAO-A activity is present in human brain and in vitro studies link it to the p38(MAPK) pathway. This means of influencing MAO-A function could explain its role in pathologies as diverse as neurodegeneration and cancers.
Paliga, Andrew J M; Natale, David R; Watson, Andrew J
2005-08-01
The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27 (heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-inflammatory drugs (CSAIDtrade mark; SB203580 and SB220025) display a reversible blockade of development at the 8-16-cell stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine preimplantation development. Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDtrade mark) resulted in a blockade of preimplantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phosphorylated HSP25/27) and a redistribution of alpha-catenin immunofluorescence by 12 h of treatment. In contrast, treatment of 2- and 4-cell-stage embryos with CSAIDtrade mark drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor, and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin. Murine preimplantation development becomes dependent on p38 MAPK at the 8-16-cell stage, which corresponds to the stage when p38 MAPK first regulates filamentous actin during early development.
Kim, Jiyoung; Lee, Jae-Won; Kim, Song-In; Choi, Yong-Joon; Lee, Won-Ki; Jeong, Myung-Ja; Cha, Sang-Hoon; Lee, Hee Jae; Chun, Wanjoo
2011-01-01
Glioblastoma multiforme is one of the most common and aggressive tumors in central nervous system. It often possesses characteristic necrotic lesions with hemorrhages, which increase the chances of exposure to thrombin. Thrombin has been known as a regulator of MMP-9 expression and cancer cell migration. However, the effects of thrombin on glioma cells have not been clearly understood. In the present study, influences of thrombin on glioma cell migration were examined using Boyden chamber migration assay and thrombin-induced changes in MMP-9 expression were measured using zymography, semi-quantitative RT-PCR, and Western blotting. Furthermore, underlying signaling pathways by which thrombin induces MMP-9 expression were examined. Thrombin-induced migration and MMP-9 expression were significantly potentiated in the presence of wortmannin, a PI3K inhibitor, whereas MAPK inhibitors suppressed thrombin-induced migration and MMP-9 expression in C6 glioma cells. The present data strongly demonstrate that MAPK and PI3K pathways evidently regulate thrombin-induced migration and MMP-9 expression of C6 glioma cells. Therefore, the control of these pathways might be a beneficial therapeutic strategy for treatment of invasive glioblastoma multiforme. PMID:21994479
Zhang, Liang; Huang, Yi; Zhuo, Wenlei; Zhu, Yi; Zhu, Bo; Chen, Zhengtang
2016-01-01
Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor for treatment of non-small cell lung cancer (NSCLC). However, its efficacy is usually reduced by the occurrence of drug resistance. Our recent study showed that a flavonoid found in many plants, Fisetin, might have a potential to reverse the acquired Cisplatin-resistance of lung adenocarcinoma. In the present study, we aimed to test whether Fisetin could have the ability to reverse Erlotinib-resistance of lung cancer cells. Erlotinib-resistant lung adenocarcinoma cells, HCC827-ER, were cultured from the cell line HCC827, and the effects of Fisetin and Erlotinib on the cell viability and apoptosis were evaluated. The possible signaling pathways in this process were also detected. As expected, the results showed that Fisetin effectively increased sensitivity of Erlotinib-resistant lung cancer cells to Erlotinib, possibly by inhibiting aberrant activation of MAPK and AKT signaling pathways resulted from AXL suppression. In conclusion, Fisetin was a potential agent for reversing acquired Erlotinib-resistance of lung adenocarcinoma. Inactivation of AXL, MAPK and AKT pathways might play a partial role in this process.
Zhang, Liang; Huang, Yi; Zhuo, Wenlei; Zhu, Yi; Zhu, Bo; Chen, Zhengtang
2016-01-01
Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor for treatment of non-small cell lung cancer (NSCLC). However, its efficacy is usually reduced by the occurrence of drug resistance. Our recent study showed that a flavonoid found in many plants, Fisetin, might have a potential to reverse the acquired Cisplatin-resistance of lung adenocarcinoma. In the present study, we aimed to test whether Fisetin could have the ability to reverse Erlotinib-resistance of lung cancer cells. Erlotinib-resistant lung adenocarcinoma cells, HCC827-ER, were cultured from the cell line HCC827, and the effects of Fisetin and Erlotinib on the cell viability and apoptosis were evaluated. The possible signaling pathways in this process were also detected. As expected, the results showed that Fisetin effectively increased sensitivity of Erlotinib-resistant lung cancer cells to Erlotinib, possibly by inhibiting aberrant activation of MAPK and AKT signaling pathways resulted from AXL suppression. In conclusion, Fisetin was a potential agent for reversing acquired Erlotinib-resistance of lung adenocarcinoma. Inactivation of AXL, MAPK and AKT pathways might play a partial role in this process. PMID:27904686
Hyperglycemia regulates TXNIP/TRX/ROS axis via p38 MAPK and ERK pathways in pancreatic cancer.
Li, Wei; Wu, Zheng; Ma, Qingyong; Liu, Jiangbo; Xu, Qinhong; Han, Liang; Duan, Wanxing; Lv, Yunfu; Wang, Fengfei; Reindl, Katie M; Wu, Erxi
2014-01-01
Approximately 85% of pancreatic cancer patients suffer from glucose intolerance or even diabetes because high glucose levels can contribute to oxidative stress which promotes tumor development. As one of the reactive oxygen species (ROS)-regulating factors, thioredoxin-interacting protein (TXNIP), is involved in the maintenance of thioredoxin (TRX)-mediated redox regulation. In this study, we demonstrated that high glucose levels increased the expression of TXNIP in time- and concentration-dependent manners and modulated the activity of TRX and ROS production in pancreatic cancer cells, BxPC-3 and Panc-1. We also found that glucose activated both p38 MAPK and ERK pathways and inhibitors of these pathways impaired the TXNIP/TRX/ROS axis. Knockdown of TXNIP restored TRX activity and decreased ROS production under high glucose conditions. Moreover, we observed that the integrated optical density (IOD) of TXNIP staining as well as the protein and mRNA expression levels of TXNIP were higher in the tumor tissues of pancreatic cancer patients with diabetes. Taken together, these results indicate that hyperglycemia-induced TXNIP expression is involved in diabetes-mediated oxidative stress in pancreatic cancer via p38 MAPK and ERK pathways.
Miller, Michael A; Ruest, Paul J; Kosinski, Mary; Hanks, Steven K; Greenstein, David
2003-01-15
During sexual reproduction in most animals, oocytes arrest in meiotic prophase and resume meiosis (meiotic maturation) in response to sperm or somatic cell signals. Despite progress in delineating mitogen-activated protein kinase (MAPK) and CDK/cyclin activation pathways involved in meiotic maturation, it is less clear how these pathways are regulated at the cell surface. The Caenorhabditis elegans major sperm protein (MSP) signals oocytes, which are arrested in meiotic prophase, to resume meiosis and ovulate. We used DNA microarray data and an in situ binding assay to identify the VAB-1 Eph receptor protein-tyrosine kinase as an MSP receptor. We show that VAB-1 and a somatic gonadal sheath cell-dependent pathway, defined by the CEH-18 POU-class homeoprotein, negatively regulate meiotic maturation and MAPK activation. MSP antagonizes these inhibitory signaling circuits, in part by binding VAB-1 on oocytes and sheath cells. Our results define a sperm-sensing control mechanism that inhibits oocyte maturation, MAPK activation, and ovulation when sperm are unavailable for fertilization. MSP-domain proteins are found in diverse animal taxa, where they may regulate contact-dependent Eph receptor signaling pathways.
Ren, Xiaoli; Zhao, Bingbing; Chang, Hongjian; Xiao, Min; Wu, Yuhong; Liu, Yun
2018-06-01
Paclitaxel is a diterpenoid compound, derived from the pacific yew (Taxus brevifolia) berry, which exhibits antineoplastic effects against various types of cancer. However, the antitumor effects and the molecular mechanisms of paclitaxel on canine CHMm cells remain to be elucidated. The aim of the present study was to investigate the antitumor effects of paclitaxel on CHMm cells and identify relevant signal transduction pathways modulated by paclitaxel using multiple methods including MTT assay, flow cytometry, acridine orange/ethidium bromide staining, transmission electron microscopy, determination of cellular reactive oxygen species (ROS), superoxide dismutase (SOD) and malondiadehyde (MDA) and western blotting, the data indicated that paclitaxel decreased cell viability, induced G2/M‑phase cell cycle arrest, suppressed the expression of cyclin B1 and induced apoptosis in a dose‑dependent manner. In addition, paclitaxel upregulated the expression of Bax and cytochrome c, but reduced expression of apoptosis regulator Bcl‑2, resulting in activation of caspase‑3, chromatin condensation, karyopyknosis, intracellular vacuolization, increased production of ROS and MDA, and decreased activity of SOD. However, these effects were inhibited when CHMm cells were treated with N‑acetyl‑L‑cysteine. Furthermore, treatment with paclitaxel inhibited the level of of phospho (p)‑RAC‑α serine/threonine‑protein kinase (AKT) and p‑ribosomal protein S6 kinase proteins, and promoted phosphorylation of P38 mitogen‑activated protein kinase (MAPK) and p‑90 kDa ribosomal protein S6 kinase 1 proteins in CHMm cells. It was observed that paclitaxel in combination with pharmacological inhibitors of the P38 and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K) signaling pathways (SB203580 and LY294002, respectively) exerted synergistic inhibitory effects on the proliferation of the CHMm cells. The results of the present study demonstrated that paclitaxel inhibited tumor cell proliferation by increasing intrinsic apoptosis through inhibition of the PI3K/AKT signaling pathway and activation of MAPK signaling pathway in CHMm cells.
Channavajhala, Padma L; Wu, Leeying; Cuozzo, John W; Hall, J Perry; Liu, Wei; Lin, Lih-Ling; Zhang, Yuhua
2003-11-21
Kinase suppressor of Ras (KSR) is an integral and conserved component of the Ras signaling pathway. Although KSR is a positive regulator of the Ras/mitogen-activated protein (MAP) kinase pathway, the role of KSR in Cot-mediated MAPK activation has not been identified. The serine/threonine kinase Cot (also known as Tpl2) is a member of the MAP kinase kinase kinase (MAP3K) family that is known to regulate oncogenic and inflammatory pathways; however, the mechanism(s) of its regulation are not precisely known. In this report, we identify an 830-amino acid novel human KSR, designated hKSR-2, using predictions from genomic data base mining based on the structural profile of the KSR kinase domain. We show that, similar to the known human KSR, hKSR-2 co-immunoprecipitates with many signaling components of the Ras/MAPK pathway, including Ras, Raf, MEK-1, and ERK-1/2. In addition, we demonstrate that hKSR-2 co-immunoprecipitates with Cot and that co-expression of hKSR-2 with Cot significantly reduces Cot-mediated MAPK and NF-kappaB activation. This inhibition is specific to Cot, because Ras-induced ERK and IkappaB kinase-induced NF-kappaB activation are not significantly affected by hKSR-2 co-expression. Moreover, Cot-induced interleukin-8 production in HeLa cells is almost completely inhibited by the concurrent expression of hKSR-2, whereas transforming growth factor beta-activated kinase 1 (TAK1)/TAK1-binding protein 1 (TAB1)-induced interleukin-8 production is not affected by hKSR-2 co-expression. Taken together, these results indicate that hKSR-2, a new member of the KSR family, negatively regulates Cot-mediated MAP kinase and NF-kappaB pathway signaling.
Kohmoto, J; Nakao, A; Stolz, D B; Kaizu, T; Tsung, A; Ikeda, A; Shimizu, H; Takahashi, T; Tomiyama, K; Sugimoto, R; Choi, A M K; Billiar, T R; Murase, N; McCurry, K R
2007-10-01
Carbon monoxide (CO) provides protection against oxidative stress via anti-inflammatory and cytoprotective actions. In this study, we tested the hypothesis that a low concentration of exogenous (inhaled) CO would protect transplanted lung grafts from cold ischemia-reperfusion injury via a mechanism involving the mitogen-activated protein kinase (MAPK) signaling pathway. Lewis rats underwent orthotopic syngeneic or allogeneic left lung transplantation with 6 h of cold static preservation. Exposure of donors and recipients (1 h before and then continuously post-transplant) to 250 ppm CO resulted in significant improvement in gas exchange, reduced leukocyte sequestration, preservation of parenchymal and endothelial cell ultrastructure and reduced inflammation compared to animals exposed to air. The beneficial effects of CO were associated with p38 MAPK phosphorylation and were significantly prevented by treatment with a p38 MAPK inhibitor, suggesting that CO's efficacy is at least partially mediated by activation of p38 MAPK. Furthermore, CO markedly suppressed inflammatory events in the contralateral naïve lung. This study demonstrates that perioperative exposure of donors and recipients to CO at a low concentration can impart potent anti-inflammatory and cytoprotective effects in a clinically relevant model of lung transplantation and support further evaluation for potential clinical use.
Feng, Chencheng; He, Jinyue; Zhang, Yang; Lan, Minghong; Yang, Minghui; Liu, Huan; Huang, Bo; Pan, Yong; Zhou, Yue
2017-07-01
N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the expression of pro-inflammatory cytokines and matrix catabolic enzymes in NP cells via the NF-κB and MAPK signaling pathways. N-Ac-PGP is a novel therapeutic target for intervertebral disc degeneration.
Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen
2016-01-01
Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650
Grogan, Patrick T.; Sleder, Kristina D.; Samadi, Abbas K.; Timmermann, Barbara N.; Cohen, Mark S.
2012-01-01
Withaferin A (WA), a steroidal lactone derived from the plant Vassobia breviflora, has been reported to have anti-proliferative, pro-apoptotic, and anti-angiogenic properties against cancer growth. In this study, we identified several key underlying mechanisms of anticancer action of WA in glioblastoma cells. WA was found to inhibit proliferation by inducing a dose-dependent G2/M cell cycle arrest and promoting cell death through both intrinsic and extrinsic apoptotic pathways. This was accompanied by an inhibitory shift in the Akt/mTOR signaling pathway which included diminished expression and/or phosphorylation of Akt, mTOR, p70 S6K, and p85 S6K with increased activation of AMPKα and the tumor suppressor tuberin/TSC2. Alterations in proteins of the MAPK pathway and cell surface receptors like EGFR, Her2/ErbB2, and c-Met were also observed. WA induced an N-acetyl-L-cysteinerepressible enhancement in cellular oxidative potential/stress with subsequent induction of a heat shock stress response primarily through HSP70, HSP32, and HSP27 upregulation and HSF1 downregulation. Taken together, we suggest that WA may represent a promising chemotherapeutic candidate in glioblastoma therapy warranting further translational evaluation. PMID:23129310
Olavarría, Víctor H; Valdivia, Sharin; Salas, Boris; Villalba, Melina; Sandoval, Rodrigo; Oliva, Harold; Valdebenito, Samuel; Yañez, Alejandro
2015-02-01
Several viruses, including Orthomyxovirus, utilize cellular reactive oxygen species (ROS) for viral genomic replication and survival within host cells. However, the role of ROS in early events of viral entry and signal induction has not been elucidated. Here, we show that ISA virus (ISAV) induces ROS production very early during infection of CHSE-214 and SHK-1Ycells, and that production is sustained over the observed 24h post-infection. The mitogen-activated protein kinase (MAPK) family is responsible for important signaling pathways. In this study, we report that ISAV activates ERK and p38 in Salmo salar. In salmonid macrophages, while ERK was required for SOD, GLURED, p47phox expression, p38 regulated the ROS production by the NADPH oxidase complex activation. These results, together with the presence of several consensus target motifs for p38 MAPK in the promoter of the S. salar p47phox gene, suggest that p38 MAPK regulates p47phox gene expression in fish through the activation of this key transcription factor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Xiaoguang; Lv, Qiongxia; Ma, Jun; Liu, Yumei
2018-02-11
The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo. © 2018 John Wiley & Sons Ltd.
MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Min, E-mail: min_jin@zju.edu.cn; Wu, Yutao; Wang, Jing
Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study,more » we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. -- Highlights: •We firstly found miR-24 was upregulated in 3T3-L1 pre-adipocytes differentiation. •miR-24 promoted 3T3-L1 pre-adipocytes differentiation while silencing the expression of miR-24 had an opposite function. •miR-24 regulated 3T3-L1 differentiation by directly targeting MAPK7 signaling pathway. •miR-24did not affect 3T3-L1 pre-adipocytes cellular proliferation.« less
Han, Yuwei; Su, Jingyuan; Liu, Xiujuan; Zhao, Yuan; Wang, Chenchen; Li, Xiaoming
2017-07-01
This study aims to clarify the neuroprotective effect of naringin on early brain injury (EBI) following subarachnoid hemorrhage (SAH) and the possible mechanisms of naringin in the treatment of SAH. The endovascular puncture model was performed to induce SAH model in rats and the efficacy of 40mg/kg and 80mg/kg naringin were tested by intraperitoneally administration. SAH grade, neurological score, brain edema, blood-brain barrier permeability, the changes of oxidative stress related factors, apoptosis-related proteins, mitogen-activated protein kinase (MAPK) signaling pathway and neuronal morphology were detected to analyze the potential effect of naringin against SAH. The results demonstrated that naringin significantly ameliorated EBI, including SAH severity, neurologic deficits, brain edema and blood-brain barrier integrity by attenuating SAH-induced oxidative stress and apoptosis, and reduced the oxidant damage and apoptosis by inhibiting the activation of MAPK signaling pathway, which suggested a therapeutic potential of naringin in providing neuroprotection after SAH. Copyright © 2016 Elsevier Inc. All rights reserved.
Pathways Impacted by Genomic Alterations in Pulmonary Carcinoid Tumors.
Asiedu, Michael K; Thomas, Charles F; Dong, Jie; Schulte, Sandra C; Khadka, Prasidda; Sun, Zhifu; Kosari, Farhad; Jen, Jin; Molina, Julian; Vasmatzis, George; Kuang, Ray; Aubry, Marie Christine; Yang, Ping; Wigle, Dennis A
2018-04-01
Purpose: Pulmonary carcinoid tumors account for up to 5% of all lung malignancies in adults, comprise 30% of all carcinoid malignancies, and are defined histologically as typical carcinoid (TC) and atypical carcinoid (AC) tumors. The role of specific genomic alterations in the pathogenesis of pulmonary carcinoid tumors remains poorly understood. We sought to identify genomic alterations and pathways that are deregulated in these tumors to find novel therapeutic targets for pulmonary carcinoid tumors. Experimental Design: We performed integrated genomic analysis of carcinoid tumors comprising whole genome and exome sequencing, mRNA expression profiling and SNP genotyping of specimens from normal lung, TC and AC, and small cell lung carcinoma (SCLC) to fully represent the lung neuroendocrine tumor spectrum. Results: Analysis of sequencing data found recurrent mutations in cancer genes including ATP1A2, CNNM1, MACF1, RAB38, NF1, RAD51C, TAF1L, EPHB2, POLR3B , and AGFG1 The mutated genes are involved in biological processes including cellular metabolism, cell division cycle, cell death, apoptosis, and immune regulation. The top most significantly mutated genes were TMEM41B, DEFB127, WDYHV1, and TBPL1 Pathway analysis of significantly mutated and cancer driver genes implicated MAPK/ERK and amyloid beta precursor protein (APP) pathways whereas analysis of CNV and gene expression data suggested deregulation of the NF-κB and MAPK/ERK pathways. The mutation signature was predominantly C>T and T>C transitions with a minor contribution of T>G transversions. Conclusions: This study identified mutated genes affecting cancer relevant pathways and biological processes that could provide opportunities for developing targeted therapies for pulmonary carcinoid tumors. Clin Cancer Res; 24(7); 1691-704. ©2018 AACR . ©2018 American Association for Cancer Research.
Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.
Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning
2011-01-01
Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.
Wu, Shu-Ju
2015-09-01
This study explored the anti-inflammatory mechanisms by which osthole acted on HepG2 cells cultured in a differentiated medium from cultured 3T3-L1 preadipocyte cells. HepG2 cells, a human liver cell line, were treated with various concentrations of osthole in differentiated media from cultured 3T3-L1 cells to evaluate proinflammatory cytokines, inflammatory mediators, and signaling pathways. We used enzyme-linked immunosorbent assay kits to determine the levels of proinflammatory cytokines, real-time polymerase chain reaction to assay the mRNA expression, and western blot to determine the expression of cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) proteins. We also investigated inflammatory mechanism pathway members, including mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa-B (NF-κB). Osthole was able to suppress the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6, as well as chemokines monocyte chemoattractant protein-1 and IL-8. In addition, COX-2 was suppressed and HO-1 expression was increased in a concentration-dependent manner. Osthole was also able to decrease IκB-α phosphorylation and suppress the phosphorylation of MAPKs. These results suggest that osthole has anti-inflammatory effects as demonstrated by the decreased proinflammatory cytokine and mediator production through suppression of the NF-κB and MAPK signaling pathways in HepG2 cells when they are incubated on the differentiated medium from 3T3-L1 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Aiqin; Meng, Mingzhu; Zhao, Xiuhe
Gliomas are the most common and aggressive primary malignant tumor in the central nervous system, and requires new biomarkers and therapeutic methods. Long noncoding RNAs (lncRNAs) are important factors in numerous human diseases, including cancer. But studies on lncRNAs and gliomas are limited. In this study, we investigated the expression patterns of lncRNAs in 3 pairs of glioma samples and adjacent non-tumor tissues via microarray and selected the most down-regulated lnc00462717 to further verify its roles in glioma. We observed that decreased lnc00462717 expression was associated with the malignant status in glioma. In vitro experiment demonstrated that lnc00462717 overexpression suppressed gliomamore » cell proliferation, survival and migration while knockdown of lnc00462717 had an opposite result. Moreover, we identified MDM2 as a direct target of lnc00462717 and lnc00462717 played a role by partially regulating the MDM2/MAPK pathway. In conclusion, lnc00462717 may function in suppressing glioma cell proliferation, survival, migration and may potentially serve as a novel biomarker and therapeutic target for glioma. - Highlights: • Using microarray to investigate the expression patterns of lncRNAs in glioma. • Selecting the most down-regulated lnc00462717 via microarray to verify its roles. • Identifying MDM2 as a direct target of lnc00462717. • The mechanism of lnc00462717 regulating the MDM2/MAPK pathway. • lnc00462717 serve as a novel biomarker and therapeutic target for treating glioma.« less
Wang, Chao; Wang, Gang; Zhang, Chi; Zhu, Pinkuan; Dai, Huiling; Yu, Nan; He, Zuhua; Xu, Ling; Wang, Ertao
2017-04-03
Conserved pathogen-associated molecular patterns (PAMPs), such as chitin, are perceived by pattern recognition receptors (PRRs) located at the host cell surface and trigger rapid activation of mitogen-activated protein kinase (MAPK) cascades, which are required for plant resistance to pathogens. However, the direct links from PAMP perception to MAPK activation in plants remain largely unknown. In this study, we found that the PRR-associated receptor-like cytoplasmic kinase Oryza sativa RLCK185 transmits immune signaling from the PAMP receptor OsCERK1 to an MAPK signaling cascade through interaction with an MAPK kinase kinase, OsMAPKKKε, which is the initial kinase of the MAPK cascade. OsRLCK185 interacts with and phosphorylates the C-terminal regulatory domain of OsMAPKKKε. Coexpression of phosphomimetic OsRLCK185 and OsMAPKKKε activates MAPK3/6 phosphorylation in Nicotiana benthamiana leaves. Moreover, OsMAPKKKε interacts with and phosphorylates OsMKK4, a key MAPK kinase that transduces the chitin signal. Overexpression of OsMAPKKKε increases chitin-induced MAPK3/6 activation, whereas OsMAPKKKε knockdown compromises chitin-induced MAPK3/6 activation and resistance to rice blast fungus. Taken together, our results suggest the existence of a phospho-signaling pathway from cell surface chitin perception to intracellular activation of an MAPK cascade in rice. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Ju, Da-Tong; Kuo, Wei-Wen; Ho, Tsung-Jung; Paul, Catherine Reena; Kuo, Chia-Hua; Viswanadha, Vijaya Padma; Lin, Chien-Chung; Chen, Yueh-Sheng; Chang, Yung-Ming; Huang, Chih-Yang
2015-01-01
Alpinia oxyphylla MIQ (Alpinate Oxyphyllae Fructus, AOF) is an important traditional Chinese medicinal herb whose fruits is widely used to prepare tonics and is used as an aphrodisiac, anti salivary, anti diuretic and nerve-protective agent. Protocatechuic acid (PCA), a simple phenolic compound was isolated from the kernels of AOF. This study investigated the role of PCA in promoting neural regeneration and the underlying molecular mechanisms. Nerve regeneration is a complex physiological response that takes place after injury. Schwann cells play a crucial role in the endogenous repair of peripheral nerves due to their ability to proliferate and migrate. The role of PCA in Schwann cell migration was determined by assessing the induced migration potential of RSC96 Schwann cells. PCA induced changes in the expression of proteins of three MAPK pathways, as determined using Western blot analysis. In order to determine the roles of MAPK (ERK1/2, JNK, and p38) pathways in PCA-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production, the expression of several MAPK-associated proteins was analyzed after siRNA-mediated inhibition assays. Treatment with PCA-induced ERK1/2, JNK, and p38 phosphorylation that activated the downstream expression of PAs and MMPs. PCA-stimulated ERK1/2, JNK and p38 phosphorylation was attenuated by individual pretreatment with siRNAs or MAPK inhibitors (U0126, SP600125, and SB203580), resulting in the inhibition of migration and the uPA-related signal pathway. Taken together, our data suggest that PCA extract regulate the MAPK (ERK1/2, JNK, and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) mediated regeneration and migration signaling pathways in Schwann cells. Therefore, PCA plays a major role in Schwann cell migration and the regeneration of damaged peripheral nerve.
Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui; Ip, Margot M
2010-04-01
Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim. Copyright 2009 Elsevier Inc. All rights reserved.
Mauro, Annunziata; Ciccarelli, Carmela; De Cesaris, Paola; Scoglio, Arianna; Bouché, Marina; Molinaro, Mario; Aquino, Angelo; Zani, Bianca Maria
2002-09-15
We have previously suggested that PKCalpha has a role in 12-O-Tetradecanoylphorbol-13-acetate (TPA)-mediated growth arrest and myogenic differentiation in human embryonal rhabdomyosarcoma cells (RD). Here, by monitoring the signalling pathways triggered by TPA, we demonstrate that PKCalpha mediates these effects by inducing transient activation of c-Jun N-terminal protein kinases (JNKs) and sustained activation of both p38 kinase and extracellular signal-regulated kinases (ERKs) (all referred to as MAPKs). Activation of MAPKs following ectopic expression of constitutively active PKCalpha, but not its dominant-negative form, is also demonstrated. We investigated the selective contribution of MAPKs to growth arrest and myogenic differentiation by monitoring the activation of MAPK pathways, as well as by dissecting MAPK pathways using MEK1/2 inhibitor (UO126), p38 inhibitor (SB203580) and JNK and p38 agonist (anisomycin) treatments. Growth-arresting signals are triggered either by transient and sustained JNK activation (by TPA and anisomycin, respectively) or by preventing both ERK and JNK activation (UO126) and are maintained, rather than induced, by p38. We therefore suggest a key role for JNK in controlling ERK-mediated mitogenic activity. Notably, sarcomeric myosin expression is induced by both TPA and UO126 but is abrogated by the p38 inhibitor. This finding indicates a pivotal role for p38 in controlling the myogenic program. Anisomycin persistently activates p38 and JNKs but prevents myosin expression induced by TPA. In accordance with this negative role, reactivation of JNKs by anisomycin, in UO126-pre-treated cells, also prevents myosin expression. This indicates that, unlike the transient JNK activation that occurs in the TPA-mediated myogenic process, long-lasting JNK activation supports the growth-arrest state but antagonises p38-mediated myosin expression. Lastly, our results with the MEK inhibitor suggest a key role of the ERK pathway in regulating myogenic-related morphology in differentiated RD cells.
Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C
2000-01-01
Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway which can bypass EGFR. PMID:10749673
Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; Fardan, Ali S; El-Sherbeeny, Ahmed M; Ibrahim, Khalid E; Attia, Sabry M
2017-09-01
Psoriasis has been shown to be associated with an increased prevalence of comorbid major depression. IL-17A plays an important role in both depression and psoriasis. IL-17A has been shown to be elevated in systemic circulation of psoriatic patients. IL-17A released from different immune cells during psoriasis may be responsible for the development of neuropsychiatric symptoms associated with depression. Therefore, this study explored the association of systemic IL-17A with depression. The present study utilized imiquimod model of psoriatic inflammation as well as IL-17A administration in mice to investigate the effect of IL-17A on depression-like behavior. Psoriatic inflammation led to enhanced IL-17A expression in peripheral immune cells of both innate and adaptive origin. This was associated with increased NFκB/p38MAPK signaling and inflammatory mediators in different brain regions, and depression-like symptoms (as reflected by sucrose preference and tail suspension tests). The role of IL-17A was further confirmed by administering it alone for ten days, followed by assessment of the same parameters. IL-17A administration produced effects similar to psoriasis-like inflammation on neurobehavior and NFκB/p38MAPK pathways. Moreover, both NFκB and p38MAPK inhibitors led to attenuation in IL-17A associated with depression-like behavior via reduction in inflammatory mediators, such as MCP-1, iNOS, IL-6, and CXCL-2. Furthermore, anti-IL17A antibody also led to a reduction in imiquimod-induced depression-like symptoms, as well as NFκB/p38MAPK signaling. The present study shows that IL-17A plays an important role in comorbid depression associated with psoriatic inflammation, where both NFκB and p38MAPK pathways play significant roles via upregulation of inflammatory mediators in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Dong-Mei; Zhang, Yu-Tong; Lu, Jun; Zheng, Yuan-Lin
2018-09-01
This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway. © 2017 Wiley Periodicals, Inc.
Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent
2015-01-01
The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2−/−, Spry4−/−, and Rsk2−/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents. PMID:26123406
Subverting Toll-Like Receptor Signaling by Bacterial Pathogens
McGuire, Victoria A.; Arthur, J. Simon C.
2015-01-01
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Xiajing; Wang, Qin; Xie, Yuanyuan
Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production inmore » a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.« less
Bhardwaj, Jyoti; Chaudhary, Narendra; Seo, Hyo-Jin; Kim, Min-Yong; Shin, Tai-Sun; Kim, Jong-Deog
2014-06-01
The anti-cancer activity of saponins and phenolic compounds present in green tea was previously reported. However, the immunomodulatory and adjuvanticity activity of tea saponin has never been studied. In this study, we investigated the immunomodulatory effect of tea saponin in T-lymphocytes and EL4 cells via regulation of cytokine response and mitogen-activated protein kinases (MAPK) signaling pathway. Quantitative analysis of mRNA expression level of cytokines were performed by reverse transcription polymerase chain reaction following stimulation with tea saponin, ovalbumin (OVA) alone or tea saponin in combination with OVA. Tea saponin inhibited the proliferation of EL4 cells measured in a dose-dependent manner. No cytotoxicity effect of tea saponin was detected in T-lymphocytes; rather, tea saponin enhanced the proliferation of T-lymphocytes. Tea saponin with OVA increased the expression of interleukin (IL)-1, IL-2, IL-12, interferon-γ and tumor necrosis factor (TNF)-α and decreased the expression level of IL-10 and IL-8 in T-lymphocytes. Furthermore, tea saponin, in the presence of OVA, downregulated the MAPK signaling pathway via inhibition of IL-4, IL-8 and nuclear factor kappaB (NF-κB) in EL4 cells. Th1 cytokines enhancer and Th2 cytokines and NF-κB inhibitor, tea saponin can markedly inhibit the proliferation and invasiveness of T-lymphoma (EL4) cells, possibly due to TNF-α- and NF-κB-mediated regulation of MAPK signaling pathway.
KIT Suppresses BRAFV600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling.
Neiswender, James V; Kortum, Robert L; Bourque, Caitlin; Kasheta, Melissa; Zon, Leonard I; Morrison, Deborah K; Ceol, Craig J
2017-11-01
The receptor tyrosine kinase KIT promotes survival and migration of melanocytes during development, and excessive KIT activity hyperactivates the RAS/MAPK pathway and can drive formation of melanomas, most notably of rare melanomas that occur on volar and mucosal surfaces of the skin. The much larger fraction of melanomas that occur on sun-exposed skin is driven primarily by BRAF- or NRAS-activating mutations, but these melanomas exhibit a surprising loss of KIT expression, which raises the question of whether loss of KIT in these tumors facilitates tumorigenesis. To address this question, we introduced a kit(lf) mutation into a strain of Tg(mitfa:BRAF V600E ); p53(lf) melanoma-prone zebrafish. Melanoma onset was accelerated in kit(lf); Tg(mitfa:BRAF V600E ); p53(lf) fish. Tumors from kit(lf) animals were more invasive and had higher RAS/MAPK pathway activation. KIT knockdown also increased RAS/MAPK pathway activation in a BRAF V600E -mutant human melanoma cell line. We found that pathway stimulation upstream of BRAF V600E could paradoxically reduce signaling downstream of BRAF V600E , and wild-type BRAF was necessary for this effect, suggesting that its activation can dampen oncogenic BRAF V600E signaling. In vivo , expression of wild-type BRAF delayed melanoma onset, but only in a kit -dependent manner. Together, these results suggest that KIT can activate signaling through wild-type RAF proteins, thus interfering with oncogenic BRAF V600E -driven melanoma formation. Cancer Res; 77(21); 5820-30. ©2017 AACR . ©2017 American Association for Cancer Research.
Activated Raf-1 causes growth arrest in human small cell lung cancer cells.
Ravi, R K; Weber, E; McMahon, M; Williams, J R; Baylin, S; Mal, A; Harter, M L; Dillehay, L E; Claudio, P P; Giordano, A; Nelkin, B D; Mabry, M
1998-01-01
Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors. PMID:9421477
TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.
Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern
2015-05-19
The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chang, Yung-Ming; Ye, Chi-Xin; Ho, Tsung-Jung; Tsai, Te-Neng; Chiu, Ping-Ling; Tsai, Chin-Chuan; Lin, Yueh-Min; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang
2014-05-01
This study investigates the molecular mechanisms by which Alpiniae oxyphyllae fructus (AOF) promotes neuron regeneration. A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of AOF extract (0-200 mg/ml). We investigated the role of MAPK (ERK1/2, JNK and p38) pathways for AOF-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in RSC96 Schwann cells. The results showed that AOF increased the expressions of uPA, tPA, MMP-9, and MAPKs in vivo. In vitro, our results show that treatment with AOF extract induces ERK1/2, JNK, and p38 phosphorylation to activate the downstream PAs and MMPs signaling expression. AOF-stimulated ERK1/2, JNK, and p38 phosphorylation attenuated by individual pretreatment with siRNAs or inhibitors (U0126, SP600125 and SB203580), resulting in migration and uPA-related signal pathway inhibition. Taken together our data suggests the MAPKs (ERK1/2, JNK and p38), PAs (uPA, tPA), MMP (MMP2, MMP9) regenerative and migration signaling pathway of Schwann cells regulated by AOF extract might play a major role in Schwann cell migration and damaged peripheral nerve regeneration.
NASA Astrophysics Data System (ADS)
Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei
2016-01-01
Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.
Mitogen-activated protein kinase inhibition reduces mucin 2 production and mucinous tumor growth.
Dilly, Ashok K; Song, Xinxin; Zeh, Herbert J; Guo, Zong S; Lee, Yong J; Bartlett, David L; Choudry, Haroon A
2015-10-01
Excessive accumulation of mucin 2 (MUC2) protein (a gel-forming secreted mucin) within the peritoneal cavity is the major cause of morbidity and mortality in pseudomyxoma peritonei (PMP), a unique mucinous malignancy of the appendix. Mitogen-activated protein kinase (MAPK) signaling pathway is upregulated in PMP and has been shown to modulate MUC2 promoter activity. We hypothesized that targeted inhibition of the MAPK pathway would be a novel, effective, and safe therapeutic strategy to reduce MUC2 production and mucinous tumor growth. We tested RDEA119, a specific MEK1/2 (MAPK extracellular signal-regulated kinase [ERK] kinase) inhibitor, in MUC2-secreting LS174T cells, human PMP explant tissue, and in a unique intraperitoneal murine xenograft model of PMP. RDEA119 reduced ERK1/2 phosphorylation and inhibited MUC2 messenger RNA and protein expression in vitro. In the xenograft model, chronic oral therapy with RDEA119 inhibited mucinous tumor growth in an MAPK pathway-dependent manner and this translated into a significant improvement in survival. RDEA119 downregulated phosphorylated ERK1/2 and nuclear factor κB p65 protein signaling and reduced activating protein 1 (AP1) transcription factor binding to the MUC2 promoter in LS174T cells. This study provides a preclinical rationale for the use of MEK inhibitors to treat patients with PMP. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of Gelam Honey on the Oxidative Stress-Induced Signaling Pathways in Pancreatic Hamster Cells
Zaman Safi, Sher; Mohd Yusof, Kamaruddin; Shah Ismail, Ikram; Devi Sekaran, Shamala; Qvist, Rajes
2013-01-01
Background. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of β-cell function during the development of diabetes. Methods. HIT-T15 cells were cultured in 5% CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 µg/mL) as well as quercetin (20, 40, 60, and 80 µM), prior to stimulation by 20 and 50 mM of glucose. Cell lysate was collected to determine the effect of honey extracts and quercetin on the stress activated NF-κB, MAPK pathways, and the Akt (ser473) activated insulin signaling pathway. Results. HIT-T15 cells cultured under hyperglycemic conditions demonstrated insulin resistance with a significant increase in the levels of MAPK, NF-κB, and IRS-1 serine phosphorylation (ser307); however, Akt expression and insulin contents are significantly decreased. Pretreatment with quercetin and Gelam honey extract improved insulin resistance and insulin content by reducing the expression of MAPK, NF-κB, and IRS-1 serine phosphorylation (ser307) and increasing the expression of Akt significantly. Conclusion. Gelam honey-induced differential expression of MAPK, NF-κB, IRS-1 (ser307), and Akt in HIT-T15 cells shows that Gelam honey exerts protective effects against diabetes- and hyperglycemia-induced oxidative stress by improving insulin content and insulin resistance. PMID:24324490
Collins, Carol M.; Ellis, Joseph A.
2017-01-01
ABSTRACT Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC) expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3). Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo. PMID:28188262
Ni, Su; Li, Chenkai; Xu, Nanwei; Liu, Xi; Wang, Wei; Chen, Wenyang; Wang, Yuji; van Wijnen, Andre J
2018-06-22
Elevated levels of follistatin-like protein 1 (FSTL1) have been found both in mouse models for human rheumatoid arthritis (RA) and collagen-induced arthritis (CIA). In this study, we elucidated the potential mechanisms by which FSTL1 contributes to the pathogenesis of RA. Fibroblast-like synoviocytes (FLSs) were established from synovial tissues of RA patients and stimulated with human recombinant FSTL1. Protein and mRNA expression levels of select matrix metalloproteinases (i.e., MMP1, MMP3, MMP13) in FLS were measured by, respectively, real-time RT-qPCR and ELISA. Activation of MAPK and other pathways that affect MMPs were evaluated by Western blotting. We also compared concentrations of MMPs in plasma in RA patients versus healthy controls (HC). Expression levels of MMP1, MMP3, and MMP13 were clearly stimulated by FSTL1 in vitro. FSTL1 activated the inflammation-related NF-κB signaling pathway, as well as all three mitogen-activated protein kinase (MAPK) pathways and the JAK/STAT3 pathway. Moreover, select chemical inhibitors that target p38 (SB203580), Erk1/2 (SP600125), JNK (SCH772984), STAT3 (AG490), and NF-κB (BAY 11-7082) significantly attenuated MMP expression. Inhibition of Toll-like receptor 4 by compound TAK-242 significantly abolished those effects of FSTL1. Importantly, elevated plasma concentrations of MMP3 were found to correlate with plasma FSTL1 levels in RA patients. These findings suggest that FSTL1 accelerates RA progression by activating MAPK, JAK/STAT3, and NF-κB pathways to enhance secretion of different MMPs and this enhancement is via TLR4. Targeting FSTL1 may provide a promising pharmacological drug therapy to ameliorate RA symptoms and perhaps reverse disease progression. © 2018 Wiley Periodicals, Inc.
Gelidium elegans Extract Ameliorates Type 2 Diabetes via Regulation of MAPK and PI3K/Akt Signaling
Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong
2018-01-01
Gelidium elegans, a red alga native to the Asia Pacific region, contains biologically active polyphenols. We conducted a molecular biological study of the anti-diabetic effect of Gelidium elegans extract (GEE) in C57BL/KsJ-db/db mice. Mice that had been administered GEE had significantly lower body mass, water consumption, and fasting blood glucose than db/db controls. Moreover, hemoglobin A1c (HbA1c), an indicator of the glycemic status of people with diabetes, was significantly lower in mice that had been administered GEE. We also found that 200 mg/kg/day GEE upregulates the insulin signaling pathway by activating insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K), and increasing the expression of glucose transporter type 4 (GLUT4). In parallel, mitogen-activated protein kinase (MAPK) activity was lower in GEE-treated groups. In summary, these findings indicate that GEE regulates glucose metabolism by activating the insulin signaling pathway and downregulating the MAPK signaling pathway. PMID:29316644
Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model.
Wilkinson, B; Kaye, J
2001-08-01
Although there is general agreement that the RAS/MAPK signaling pathway is required for positive selection of CD4 T cells in the thymus, the role of this pathway in CD8 lineage commitment remains controversial. We show here that the differentiation of isolated cultured thymocytes to the CD8 as well as CD4 T cell lineage is sensitive to MEK inhibition and that both CD4 and CD8 thymocyte differentiation requires sustained MEK signaling. However, CD4 lineage commitment is promoted by a stronger stimulus for longer duration than required for CD8 lineage commitment. Interestingly, CD4 lineage commitment is not irreversibly set even after 10 h of signaling, well past early changes in gene expression. These findings are presented in the context of a model of lineage commitment in which a default pathway of CD8 lineage commitment is altered to CD4 commitment if the thymocyte achieves a threshold level of active MAPK within a certain time frame. Copyright 2001 Academic Press.
Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Soto-Cid, Abraham; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Ortega, Arturo
2008-07-01
Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.
Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex
Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M
2016-01-01
Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI: http://dx.doi.org/10.7554/eLife.11123.001 PMID:26848828
Ren, Zhen; Chen, Si; Qing, Tao; Xuan, Jiekun; Couch, Letha; Yu, Dianke; Ning, Baitang; Shi, Leming; Guo, Lei
2017-01-01
Leflunomide, used for the treatment of rheumatoid arthritis, has been reported to cause severe liver problems and liver failure; however, the underlying mechanisms are not clear. In this study, we used multiple approaches including genomic analysis to investigate and characterize the possible molecular mechanisms of the cytotoxicity of leflunomide in hepatic cells. We found that leflunomide caused endoplasmic reticulum (ER) stress and activated an unfolded protein response, as evidenced by increased expression of related genes including CHOP and GADD34; and elevated protein levels of typical ER stress markers including CHOP, ATF-4, p-eIF2α, and spliced XBP1. The secretion of Gaussia luciferase was suppressed in cells treated with leflunomide in an ER stress reporter assay. Inhibition of ER stress with an ER stress inhibitor 4-phenylbutyrate, and knockdown of ATF-4 and CHOP genes partially protected cells upon leflunomide exposure. In addition, both genomic and biochemical analyses revealed that JNK and ERK1/2 of MAPK signaling pathways were activated, and both contributed to the leflunomide-induced cytotoxicity. Inhibiting JNK activation using a JNK inhibitor attenuated the ER stress and cytotoxicity of leflunomide, whereas inhibiting ERK1/2 using an ERK1/2 inhibitor or ERK1/2 siRNA increased the adverse effect caused by leflunomide, suggesting opposite roles for the two pathways. In summary, our data indicate that both ER stress and the activation of JNK and ERK1/2 contribute to leflunomide-induced cytotoxicity. PMID:28988120
Hussey, Sophie E.; Liang, Hanyu; Costford, Sheila R.; Klip, Amira; DeFronzo, Ralph A.; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas
2012-01-01
Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action. PMID:23050932
Hussey, Sophie E; Liang, Hanyu; Costford, Sheila R; Klip, Amira; DeFronzo, Ralph A; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas
2012-11-30
Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action.
Chiu, Po Yee; Chen, Na; Leong, Po Kuan; Leung, Hoi Yan; Ko, Kam Ming
2011-04-01
This study investigated the signal transduction pathway involved in the cytoprotective action of (-)schisandrin B [(-)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (-)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (-)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (-)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (-)Sch B-pretreated cells. (-)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (-)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.
Deng, Song-Bai; Jing, Xiao-Dong; Wei, Xiao-Ming; Du, Jian-Lin; Liu, Ya-Jie; Qin, Qin; She, Qiang
2017-04-29
Thyroid hormone has important functions in the development and physiological function of the heart. The aim of this study was to determine whether 3,5,3'-Triiodothyronine (T3) can promote the proliferation of epicardial progenitor cells (EPCs) and to investigate the potential underlying mechanism. Our results showed that T3 significantly promoted the proliferation of EPCs in a concentration- and time-dependent manner. The thyroid hormone nuclear receptor inhibitor bisphenol A (100 μmol/L) did not affect T3's ability to induce proliferation. Further studies showed that the mRNA expression levels of mitogen-activated protein kinase 1 (MAPK1), MAPK3, and Ki67 in EPCs in the T3 group (10 nmol/L) increased 2.9-, 3-, and 4.1-fold, respectively, compared with those in the control group (P < 0.05). In addition, the mRNA expression of the cell cycle protein cyclin D1 in the T3 group increased approximately 2-fold compared with the control group (P < 0.05), and there were more EPCs in the S phase of the cell cycle (20.6% vs. 12.0%, P < 0.05). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway inhibitor U0126 (10 μmol/L) significantly inhibited the ability of T3 to promote the proliferation of EPCs and to alter cell cycle progression. This study suggested that T3 significantly promotes the proliferation of EPCs, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Dong, Chen; He, Mingyuan; Ren, Ruiping; Xie, Yuexia; Yuan, Dexiao; Dang, Bingrong; Li, Wenjian; Shao, Chunlin
2015-04-15
The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk. Copyright © 2015 Elsevier Inc. All rights reserved.
Sadek, Kadry M; Lebda, Mohamed A; Nasr, Sherif M; Shoukry, Moustafa
2017-08-01
Spirulina platensis (SP) is a microalga with antioxidant, antidiabetic and anti-inflammatory properties. The present study explored the ability and potential mechanism(s) by which SP induced glucose lowering impact in diabetic rat model. Forty rats were allocated into four groups: control; streptozotocin (STZ)-induced diabetes (STZ, 45mg/kg b.w., intraperitoneally); SP (500mg/kg b.w., orally twice weekly for 2 months) and STZ-induced diabetes+SP group. In the STZ-induced diabetic rats, SP significantly decreased (P>0.05) serum glucose, glycated hemoglobin (HbA1c), malondialdehyde (MDA) levels and significantly increased (P>0.05) serum insulin, the activity of antioxidant enzymes and normalized their mRNA gene expression. Furthermore, SP attenuates STZ-induced upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC), the pro-apoptotic Bax and caspase-3 (CASP-3), tumor necrosis factor alpha (TNF-α) gene expression. The Western blot results revealed that, SP induced downregulation of mitogen activated protein kinase pathway (MAPK) protein expression in hepatic tissues of diabetic rats. Additionally, SP reestablished the typical histological structure of the liver and pancreas of diabetic rats. Acute toxicity study further shows that SP is relatively safe. This study demonstrates that SP is rich in antioxidant compounds and has powerful glucose lowering effect through the normalization of increased hepatic PC gene expression. Interestingly, SP induced recovery of damaged hepatocytes and pancreatic β-cells via its anti-inflammatory, antioxidant and anti-apoptotic properties. The MAPK signaling cascade is a pivotal component of the proapoptotic signaling pathway induced by diabetes mellitus. MAPK activation may be dependent from ROS production, since SP which exhibited antioxidant activities did have a significant impact on MAPK activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Malik, Salma; Suchal, Kapil; Khan, Sana Irfan; Bhatia, Jagriti; Kishore, Kamal; Dinda, Amit Kumar; Arya, Dharamvir Singh
2017-08-01
Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway. Copyright © 2017 the American Physiological Society.
Choi, Yun-Sik; Horning, Paul; Aten, Sydney; Karelina, Kate; Alzate-Correa, Diego; Arthur, J. Simon C.; Hoyt, Kari R.; Obrietan, Karl
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling has been implicated in a wide range of neuronal processes, including development, plasticity, and viability. One of the principal downstream targets of both the extracellular signal-regulated kinase/MAPK pathway and the p38 MAPK pathway is Mitogen- and Stress-activated protein Kinase 1 (MSK1). Here, we sought to understand the role that MSK1 plays in neuroprotection against excitotoxic stimulation in the hippocampus. To this end, we utilized immunohistochemical labeling, a MSK1 null mouse line, cell viability assays, and array-based profiling approaches. Initially, we show that MSK1 is broadly expressed within the major neuronal cell layers of the hippocampus and that status epilepticus drives acute induction of MSK1 activation. In response to the status epilepticus paradigm, MSK1 KO mice exhibited a striking increase in vulnerability to pilocarpine-evoked cell death within the CA1 and CA3 cell layers. Further, cultured MSK1 null neurons exhibited a heighted level of N-methyl-D-aspartate-evoked excitotoxicity relative to wild-type neurons, as assessed using the lactate dehydrogenase assay. Given these findings, we examined the hippocampal transcriptional profile of MSK1 null mice. Affymetrix array profiling revealed that MSK1 deletion led to the significant (>1.25-fold) downregulation of 130 genes and an upregulation of 145 genes. Notably, functional analysis indicated that a subset of these genes contribute to neuroprotective signaling networks. Together, these data provide important new insights into the mechanism by which the MAPK/MSK1 signaling cassette confers neuroprotection against excitotoxic insults. Approaches designed to upregulate or mimic the functional effects of MSK1 may prove beneficial against an array of degenerative processes resulting from excitotoxic insults. PMID:28870089
Adenosine triphosphate as a molecular mediator of the vascular response to injury.
Guth, Christy M; Luo, Weifung; Jolayemi, Olukemi; Chadalavada, Kalyan S; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M
2017-08-01
Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Fuyan; Zhang, Xiaofeng; Li, Yuqiu; Chen, Qixin; Liu, Fei; Zhu, Xiqiang; Mei, Li; Song, Xinlei; Liu, Xia; Song, Zhigang; Zhang, Jinhua; Zhang, Wen; Ling, Peixue
2017-01-01
The hard-shelled mussel (Mytilus coruscus) has been used as Chinese traditional medicine for thousands of years; however, to date the ingredients responsible for the various beneficial health outcomes attributed to Mytilus coruscus are still unclear. An α-d-Glucan, called MP-A, was isolated from Mytilus coruscus, and observed to exert anti-inflammatory activity in THP-1 human macrophage cells. Specifically, we showed that MP-A treatment inhibited the production of inflammatory markers, including TNF-α, NO, and PGE2, inducible NOS (iNOS), and cyclooxygenase-2 (COX-2), in LPS-activated THP-1 cells. It was also shown to enhance phagocytosis in the analyzed cells, but to severely inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear translocation of NF-κB P65. Finally, MP-A was found to exhibit a high binding affinity for the cell surface receptor TLR4, but a low affinity for TLR2 and dectin-1, via surface plasmon resonance (SPR) analysis. The study indicates that MP-A suppresses LPS-induced TNF-α, NO and PEG2 production via TLR4/NF-κB/MAPK pathway inhibition, and suggests that MP-A may be a promising therapeutic candidate for diseases associated with TNF-α, NO, and/or PEG2 overproduction. PMID:28930149
Liu, Fuyan; Zhang, Xiaofeng; Li, Yuqiu; Chen, Qixin; Liu, Fei; Zhu, Xiqiang; Mei, Li; Song, Xinlei; Liu, Xia; Song, Zhigang; Zhang, Jinhua; Zhang, Wen; Ling, Peixue; Wang, Fengshan
2017-09-20
The hard-shelled mussel ( Mytilus coruscus ) has been used as Chinese traditional medicine for thousands of years; however, to date the ingredients responsible for the various beneficial health outcomes attributed to Mytilus coruscus are still unclear. An α-d-Glucan, called MP-A, was isolated from Mytilus coruscus , and observed to exert anti-inflammatory activity in THP-1 human macrophage cells. Specifically, we showed that MP-A treatment inhibited the production of inflammatory markers, including TNF-α, NO, and PGE2, inducible NOS (iNOS), and cyclooxygenase-2 (COX-2), in LPS-activated THP-1 cells. It was also shown to enhance phagocytosis in the analyzed cells, but to severely inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear translocation of NF-κB P65. Finally, MP-A was found to exhibit a high binding affinity for the cell surface receptor TLR4, but a low affinity for TLR2 and dectin-1, via surface plasmon resonance (SPR) analysis. The study indicates that MP-A suppresses LPS-induced TNF-α, NO and PEG2 production via TLR4/NF-κB/MAPK pathway inhibition, and suggests that MP-A may be a promising therapeutic candidate for diseases associated with TNF-α, NO, and/or PEG2 overproduction.
França, Maria Eduarda Rocha de; Rocha, Sura Wanessa Santos; Oliveira, Wilma Helena; Santos, Laise Aline; de Oliveira, Anne Gabrielle Vasconcelos; Barbosa, Karla Patrícia Sousa; Nunes, Ana Karolina Santana; Rodrigues, Gabriel Barros; Lós, Deniele Bezerra; Peixoto, Christina Alves
2018-04-01
While diethylcarbamazine citrate (DEC) displays important anti-inflammatory effects in experimental models of liver injury, the mechanisms of its action remain poorly understood. The aim of the present study was to investigate the fibrolytic potential of DEC. Mice receive two injections of carbon tetrachloride (CCl 4 ) per week for 8 weeks. DEC 50 mg/kg body weight was administered through drinking water during the last 12 days of liver injury. The expression of hepatic stellate cells (HSCs) activation markers, including smooth muscle α-actin (α-SMA), collagen I, transforming growth factor-β 1 (TGF-β1), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) was assessed. The influence of DEC on the intracellular MAPK pathways of the HSCs (JNK and p38 MAPK) was also estimated. DEC inhibited HSCs activation measured as the production of α-SMA and collagen I. In addition, it down regulated the production of TGF-β1 and TIMP-1, and concomitantly increased MMP-2 activity. Furthermore, DEC significantly inhibited the activation of the JNK and p38 MAPK signaling pathways. In conclusion, DEC significantly attenuated the severity of CCl 4 -induced liver injury and the progression of liver fibrosis, exerting a potential fibrolytic effect in the CCl 4 -induced fibrosis model.
Neurotropin® alleviates hippocampal neuron damage through a HIF-1α/MAPK pathway.
Fang, Wen-Li; Zhao, De-Qiang; Wang, Fei; Li, Mei; Fan, Sheng-Nuo; Liao, Wang; Zheng, Yu-Qiu; Liao, Shao-Wei; Xiao, Song-Hua; Luan, Ping; Liu, Jun
2017-05-01
The main purpose was to verify the potent capacity of Neurotropin® against neuronal damage in hippocampus and to explore its underlying mechanisms. HT22 cells were treated with 40 μmol/L Aβ 25-35 in the presence of various concentrations of Neurotropin® or in its absence. The cell viability was assessed with a CCK-8 assay, and flow cytometry was used to measure cell apoptosis, intracellular ROS levels, and mitochondrial membrane potential. Aβ plaques were examined by Bielschowsky silver staining, and the activities of antioxidants were detected in hippocampus of APP/PS1 mice after Neurotropin® treatment. The expression of proteins, including HIF-1α, Bcl-2, Bax, and MAPKs signaling molecules was evaluated by Western blot. Neurotropin® significantly reversed the cell injury induced by Aβ 25-35 through increasing cell viability and mitochondrial membrane potential, decreasing intracellular ROS and cell apoptosis of HT22 cells (P<.05). Furthermore, Neurotropin® markedly reduced the formation of Aβ plaques and upregulated the activities of antioxidants (P<.05). Additionally, the protein expression of HIF-1α, p-ERK1/2, p-JNK, and p-P38 was significantly inhibited in hippocampus of APP/PS1 mice. Neurotropin® exhibited a potent neuroprotective effect on inhibiting Aβ-induced oxidative damage and alleviating Aβ deposition in hippocampus via modulation of HIF-1α/MAPK signaling pathway. © 2017 John Wiley & Sons Ltd.
A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1
Stowe, Irma B.; Mercado, Ellen L.; Stowe, Timothy R.; Bell, Erika L.; Oses-Prieto, Juan A.; Hernández, Hilda; Burlingame, Alma L.; McCormick, Frank
2012-01-01
The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome. PMID:22751498
Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA.
Schmid, Tobias; Snoek, L Basten; Fröhli, Erika; van der Bent, M Leontien; Kammenga, Jan; Hajnal, Alex
2015-05-01
Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.
TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation
Chen, Guiqian; Deng, Chuxia; Li, Yi-Ping
2012-01-01
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation. PMID:22298955
Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers
Bon, Giulia; Loria, Rossella; Amoreo, Carla Azzurra; Verdina, Alessandra; Sperduti, Isabella; Mastrofrancesco, Arianna; Soddu, Silvia; Diodoro, Maria Grazia; Mottolese, Marcella; Todaro, Matilde; Stassi, Giorgio; Milella, Michele; De Maria, Ruggero; Falcioni, Rita
2017-01-01
Although the medical treatment of colorectal cancer has evolved greatly in the last years, a significant portion of early-stage patients develops recurrence after therapies. The current clinical trials are directed to evaluate new drug combinations and treatment schedules. By the use of patient-derived or established colon cancer cell lines, we found that the tyrosine kinase receptor HER3 is involved in the mechanisms of resistance to therapies. In agreement, the immunohistochemical analysis of total and phospho-HER3 expression in 185 colorectal cancer specimens revealed a significant correlation with lower disease-free survival. Targeting HER3 by the use of the monoclonal antibody patritumab we found induction of growth arrest in all cell lines. Despite the high efficiency of patritumab in abrogating the HER3-dependent activation of PI3K pathway, the HER2 and EGFR-dependent MAPK pathway is activated as a compensatory mechanism. Interestingly, we found that the MEK-inhibitor trametinib inhibits, as expected, the MAPK pathway but induces the HER3-dependent activation of PI3K pathway. The combined treatment results in the abrogation of both PI3K and MAPK pathways and in a significant reduction of cell proliferation and survival. These data suggest a new strategy of therapy for HER3-overexpressing colon cancers. PMID:29312543
Pierpont, Elizabeth I.; Pierpont, Mary Ella; Mendelsohn, Nancy J.; Roberts, Amy E.; Tworog-Dube, Erica; Rauen, Katherine A.; Seidenberg, Mark S.
2011-01-01
Cardiofaciocutaneous syndrome (CFC) and Noonan syndrome (NS) are two phenotypically overlapping genetic disorders whose underlying molecular etiologies affect a common signaling pathway. Mutations in the BRAF, MEK1 and MEK2 genes cause most cases of CFC and mutations in PTPN11, SOS1, KRAS and RAF1 typically cause NS. Although both syndromes are associated with developmental delays of varying severity, the extent to which the behavioral profiles differ may shed light on the different roles these respective genes play in development of skills necessary for everyday functioning. In this study, profiles of adaptive behavior of individuals with CFC and NS who had confirmed pathogenic mutations in Ras/MAPK pathway genes were investigated. Patterns of strengths and weaknesses, age-related differences, and risk factors for difficulties in adaptive skills were assessed. Although genes acting more downstream in the Ras/MAPK pathway were associated with more difficulties in adaptive functioning than genes more upstream in the pathway, several inconsistencies highlight the wide spectrum of possible developmental courses in CFC and NS. Along with clinical and genetic factors, variables such as chronological age, gestational age at birth and parental education levels accounted for significant variance in adaptive skills. Results indicate that there is wide heterogeneity in adaptive ability in CFC and NS, but that these abilities are correlated to some extent with the specific disease-causing genes. PMID:20186801
Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes
Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.
2016-01-01
The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954
In a recent publication in Cancer Cell, CTD2 investigators discovered that a known cancer-associated gain-of-function alteration in phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) results in novel protein activity that confers sensitivity to mitogen-activated protein kinase (MAPK) inhibitors. The PIK3R1 gene encodes the p85α regulatory subunit of PIK3. Under normal conditions, p85α suppresses PIK3 mediated activation of downstream pathways that promote cell growth and survival.
Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome-scale CRISPR-Cas9 loss-of-function screens in two KRAS mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, ETV4, and ETV5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages.
Propiconazole Enhances Cell Proliferation by Dysregulation of Ras Farnesylation and theMAPK pathway
Previous studies of mice exposed to the hepatotumorigenic fungicide, propiconazole, revealed an increase in hepatic cell proliferation and over-expression of hepatic genes within the cholesterol biosynthesis pathway. Mevalonate, an intermediate in this pathway, has long been a ta...
Early immune response and regulation of IL-2 receptor subunits
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto
2005-01-01
Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.
Early immune response and regulation of IL-2 receptor subunits.
Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto
2005-09-01
Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.
Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S
2008-03-01
KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.
Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.
Prochazka, Radek; Blaha, Milan
2015-01-01
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.
Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca
2011-09-01
The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Ciuffreda, Ludovica; Di Sanza, Cristina; Cesta Incani, Ursula; Eramo, Adriana; Desideri, Marianna; Biagioni, Francesca; Passeri, Daniela; Falcone, Italia; Sette, Giovanni; Bergamo, Paola; Anichini, Andrea; Sabapathy, Kanaga; McCubrey, James A; Ricciardi, Maria Rosaria; Tafuri, Agostino; Blandino, Giovanni; Orlandi, Augusto; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Milella, Michele
2012-06-01
The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade.
Yang, Zhengtao; Yin, Ronglan; Cong, Yunfeng; Yang, Zhanqing; Zhou, Ershun; Wei, Zhengkai; Liu, Zhicheng; Cao, Yongguo; Zhang, Naisheng
2014-12-01
Mastitis, an inflammatory reaction of the mammary gland, is recognized as one of the most costly diseases in dairy cattle. Oxymatrine, one of the alkaloids extracted from Chinese herb Sophora flavescens Ait, has been reported to have many biological activities, such as anti-inflammatory, anti-virus, and anti-hepatic fibrosis properties. The aim of this study was to investigate the protective effect and the anti-inflammatory mechanism of oxymatrine on lipopolysaccharide (LPS)-induced mastitis in mice. The mouse mastitis was induced by 10 μg of LPS for 24 h. Oxymatrine was intraperitoneally administered with the dose of 30, 60, and 120 mg/kg 1 h before and 12 h after LPS induction. The results showed that oxymatrine significantly attenuated the damage of the mammary gland induced by LPS. Oxymatrine inhibited the phosphorylation of NF-κB p65 and IκB in NF-κB signal pathway and reduced the phosphorylation of p38, ERK, and JNK in mitogen-activated protein kinase (MAPKs) signal pathway. The results showed that oxymatrine had a protective effect on LPS-induced mastitis, and the anti-inflammatory mechanism of oxymatrine was related to the inhibition of NF-κB and MAPKs signal pathways.
Cheng, Ming-Jun; Cao, Yun-Gui
2017-07-03
The aim of the present study was to investigate the potential effects of the 5,10,15,20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of human cervical cancer cells and the underlying mechanisms by which TMPyP4 exerted its actions. After human cervical cancer cells were treated with different doses of TMPyP4, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, the apoptosis was observed by flow cytometry (FCM), and the expression of p38 mitogen-activated protein kinase (MAPK), phosphated p38 MAPK (p-p38 MAPK), capase-3, MAPKAPK2 (MK-2) and poly ADP-ribose polymerase (PARP) was measured by Western blot analysis. The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of human cervical cancer cells in a dose-dependent manner. In addition, the up-regulation of p-p38 MAPK expression levels was detected in TMPyP4-treated human cervical cancer cells. However, followed by the block of p38 MAPK signaling pathway using the inhibitor SB203580, the effects of TMPyP4 on proliferation and apoptosis of human cervical cancer cells were significantly changed. It was indicated that TMPyP4-inhibited proliferation and -induced apoptosis in human cervical cancer cells was accompanied by activating the p38 MAPK signaling pathway. Taken together, our study demonstrates that TMPyP4 may represent a potential therapeutic method for the treatment of cervical carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lian, E-mail: tounao@126.com; Institute of Immunology, School of Medicine, Shandong University, Jinan 250012; Zhang, Xin
We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even whenmore » it fails to activate MAPK as expected.« less
Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin
2014-06-01
Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.
Chang, Ken C N; Galuska, Stefan; Weiner, Russell; Marton, Matthew J
2013-01-01
Somatic mutations identified on genes related to the cancer-developing signaling pathways have drawn attention in the field of personalized medicine in recent years. Treatments developed to target a specific signaling pathway may not be effective when tumor activating mutations occur downstream of the target and bypass the targeted mechanism. For instance, mutations detected in KRAS/BRAF/NRAS genes can lead to EGFR-independent intracellular signaling pathway activation. Most patients with these mutations do not respond well to anti-EGFR treatment. In an effort to detect various mutations in FFPE tissue samples among multiple solid tumor types for patient stratification many mutation assays were evaluated. Since there were more than 30 specific mutations among three targeted RAS/RAF oncogenes that could activate MAPK pathway genes, a custom designed Single Nucleotide Primer Extension (SNPE) multiplexing mutation assay was developed and analytically validated as a clinical trial assay. Throughout the process of developing and validating the assay we overcame many technical challenges which include: the designing of PCR primers for FFPE tumor tissue samples versus normal blood samples, designing of probes for detecting consecutive nucleotide double mutations, the kinetics and thermodynamics aspects of probes competition among themselves and against target PCR templates, as well as validating an assay when positive control tumor tissue or cell lines with specific mutations are not available. We used Next Generation sequencing to resolve discordant calls between the SNPE mutation assay and Sanger sequencing. We also applied a triplicate rule to reduce potential false positives and false negatives, and proposed special considerations including pre-define a cut-off percentage for detecting very low mutant copies in the wild-type DNA background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yi; Zhang, Qing; Shen, Yi
Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts hasmore » been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.« less
Li, Da; Ai, Yanqiu
2017-10-01
Cerebral ischemia‑reperfusion injury (CIRI) is a serious pathological disease that is associated with a high rate death and disability. Saturated hydrogen (H2) saline exhibits brain protective functions through anti‑inflammatory, antioxidant and antiapoptotic effects. The present study investigated the potential treatment effects of H2 on CIRI. In addition, the potential protective mechanisms of H2 in the prevention of CIRI were investigated. Adult, male Sprague‑Dawley rats (n=60) were randomly divided into the following three groups: Sham‑operated group; IR group; and IR + H2 group (0.6 mmol/l, 0.5 ml/kg/day). Hematoxylin and eosin, and TUNEL staining were performed for histopathological analysis and investigation of apoptosis, respectively. In addition, the protein expression of caspase‑3, p38 mitogen‑activated protein kinase (MAPK) and phosphorylated‑p38 MAPK in the cortex were measured by western blotting analysis. These results demonstrated that H2 significantly reduced the number of apoptotic cells, and the protein expression of p38 MAPK and caspase‑3, compared with the IR group. These effects may be associated with the p38MAPK signaling pathway.
Keuling, Angela M; Andrew, Susan E; Tron, Victor A
2010-06-01
The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.
Holzer, Timothy R; Fulford, Angie D; Arkins, Austin M; Grondin, Janet M; Mundy, Christopher W; Nasir, Aejaz; Schade, Andrew E
2011-06-01
Post-translational modifications of proteins, such as phosphorylation, are labile events dynamically regulated by opposing kinase and phosphatase activities. Preanalytical factors, such as ischemic time before fixation, affect these activities and can have a significant impact on the ability to elucidate signaling pathways in tissue. Immunohistochemical analysis of phosphorylated proteins involved in PI3K/Akt, Erk/MAPK, and p38 MAPK signaling networks was performed in human cell line xenografts from lung, brain, ovary, and prostate tumors. In order to replicate real-world practices, the tissues were subjected to ischemic times of 0 (baseline), 1, 4, and 24 hours before fixation in formalin. Two key concepts emerge from this analysis: (1) the stability of different phospho-epitopes within a given tumor type is variable (e.g. phospho-PRAS40 is more labile than phospho-S6 ribosomal protein) and (2) the stability of a given phospho-epitope (e.g. phospho-MAPKAPK2) varies significantly across different tumor types. These results highlight the importance of proper tissue acquisition and rapid fixation to preserve the biological integrity of signal transduction pathways that may guide therapeutic decision making.
Vázquez-Gómez, G; Rocha-Zavaleta, L; Rodríguez-Sosa, M; Petrosyan, P; Rubio-Lightbourn, J
2018-06-01
Benzo[a]pyrene (B[a]P), the most extensively studied carcinogen in cigarette smoke, has been regarded as a critical mediator of lung cancer. It is known that B[a]P-mediated Aryl hydrocarbon Receptor (AhR) activation stimulates the mitogen activated protein kinases (MAPK) signaling cascade in different cell models. MAPK pathway disturbances drive alterations in cellular processes, such as differentiation, proliferation, and apoptosis, and the disturbances may also modify the AhR pathway itself. However, MAPK involvement in B[a]P metabolic activation and toxicity in lung tissues is not well understood. Here, we used a non-transformed human bronchial epithelial lung cell line, BEAS-2B, to study the participation of ERK 1/2 kinases in the metabolic activation of B[a]P and in its related genotoxic effects. Our results indicate that B[a]P is not cytotoxic to BEAS-2B cells at relatively low concentrations, but it enhances CYP1A1 gene transcription and protein induction. Additionally, B[a]P promotes Src and ERK 1/2 phosphorylation. Accordingly, inhibition of both Src and ERK 1/2 phosphorylation decreases CYP1A1 protein induction, AhR nuclear translocation and production of B[a]P adducts. Together, these data suggest a crosstalk between AhR and the members of the MAPK pathway, ERK 1/2 mediated by Src kinase. This interaction is important for the adequate AhR pathway signaling that in turn induces transcription and protein induction of CYP1A1 and B[a]P-induced DNA damage in BEAS-2B cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Gen-Xia; Ma, Shu; Li, Yao; Yu, Yan; Zhou, Yi-Xiang; Lu, Ya-Die; Jin, Lin; Wang, Zi-Lu; Yu, Jin-Hua
2018-04-13
The putative tumor suppressor microRNA let-7c is extensively associated with the biological properties of cancer cells. However, the potential involvement of let-7c in the differentiation of mesenchymal stem cells has not been fully explored. In this study, we investigated the influence of hsa-let-7c (let-7c) on the proliferation and differentiation of human dental pulp-derived mesenchymal stem cells (DPMSCs) treated with insulin-like growth factor 1 (IGF-1) via flow cytometry, CCK-8 assays, alizarin red staining, real-time RT-PCR, and western blotting. In general, the proliferative capabilities and cell viability of DPMSCs were not significantly affected by the overexpression or deletion of let-7c. However, overexpression of let-7c significantly inhibited the expression of IGF-1 receptor (IGF-1R) and downregulated the osteo/odontogenic differentiation of DPMSCs, as indicated by decreased levels of several osteo/odontogenic markers (osteocalcin, osterix, runt-related transcription factor 2, dentin sialophosphoprotein, dentin sialoprotein, alkaline phosphatase, type 1 collagen, and dentin matrix protein 1) in IGF-1-treated DPMSCs. Inversely, deletion of let-7c resulted in increased IGF-1R levels and enhanced osteo/odontogenic differentiation. Furthermore, the ERK, JNK, and P38 MAPK pathways were significantly inhibited following the overexpression of let-7c in DPMSCs. Deletion of let-7c promoted the activation of the JNK and P38 MAPK pathways. Our cumulative findings indicate that Let-7c can inhibit the osteo/odontogenic differentiation of IGF-1-treated DPMSCs by targeting IGF-1R via the JNK/P38 MAPK signaling pathways.
Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong
2014-12-12
The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.
Shu, Qijin; Shen, Minhe; Wang, Binbin; Cui, Qingli; Zhou, Xiaoying; Zhu, Luming
2014-06-01
To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). The serum pharmacological method was used to avoid interference from administration of the crude medicinal herbs. Eight purebred New Zealand rabbits were used for preparation of serum containing various concentrations of AETC. Forty-eight Balb/c-nu mice were used for in vivo experiments. The effects of serum containing AETC on the proliferation of A549 cells and expression levels of the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway-related proteins in vitro were investigated. Additionally, the effects on the growth of A549 xenografts in nude mice, and expression levels of the EGFR/MAPK pathway-related proteins in the xenografts, were investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the serum containing AETC significantly decreased the viability of A549 cells in a dose-dependent manner. Western blot showed that the serum containing various concentrations of AETC strongly reduced the levels of phospho-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinasel/2 (ERK1/2) while it increased the level of p-p38. However, no significant effects on the expression levels of JNK, ERK1/2, and p38 MAPK were found. In addition, an anticancer effect from AETC was observed in vivo in the Balb/c-nu mice bearing A549 xenografts. AETC has significant effects on the growth of A549 xenografts and on the activity of the EGFR/MAPK pathway. Therefore, AETC may be beneficial in lung carcinoma treatment.
Kim, Duck-Hyun; Puthumana, Jayesh; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Kim, Il-Chan; Lee, Jin Wuk; Lee, Jae-Seong
2016-10-01
Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan
2014-01-01
Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes. PMID:25411845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.
2008-02-01
Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation,more » just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.« less
Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng
2014-08-01
The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F
2016-08-01
Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Xiuxiu; Ye, Xiaolei; Ma, Junyan; Li, Wen; Wu, Ruijin; Jun, Lin
2015-01-01
G protein-coupled estrogen receptor 1 (GPER-1, formerly known as GPR30) has been proposed as the receptor for estrogen-induced, growth of leiomyomas though its precise mechanisms of action are not clear. We obtained leiomyoma cells (LC) and normal smooth muscle cells from 28 women (n = 28, median age 38 years, median parity 1.0). We incubated them with 17-β estradiol (E(2)), after blocking, or upregulating, expression of GPER-1 with ICI182,780 (a GPER-1 agonist) and siGPR30, respectively. We evaluated the role of GPER-1 in the mitogen-activated protein kinase (MAPK) signaling pathway using Western blot analysis. We studied cell proliferation with 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, and, mitotic activity with phosphohistone H3 (PPH3) expression in leiomyoma, and, matched, normal, smooth muscle tissues using standard immunohistochemistry. Downregulation of GPER-1 expression with siGPR30 partially attenuated the E(2)-activated MAPK signaling pathway (p < 0.01). Upregulation of GPER-1 with ICI182,780 enhanced the E(2)-activated MAPK signaling pathway (p < 0.01). ICI182,780 enhanced E(2)-induced proliferation of LC (p < 0.01), while knock down of the GPER-1 gene with GPER-1 small interfering RNA partially inhibited E(2)-induced cell proliferation (p < 0.01). There were no significant differences in PPH3 expression between LCs and normal smooth muscle tissues (p > 0.05). Neither ICI182,780 nor siGPR30 increased mitosis in LCs (p > 0.05). Our results indicate that GPER-1 mediates proliferation of estrogen-induced, LC by activating the MAPK pathway, and, not by promoting mitosis.
Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan
2014-11-01
Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell-cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell-cell communication in fungi and higher eukaryotes.
Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng
2015-01-01
Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways. PMID:25632222
Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.
Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan
2015-03-13
Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.
Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung
2016-07-01
The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.
Kim, H S; Jung, M; Kang, H N; Kim, H; Park, C-W; Kim, S-M; Shin, S J; Kim, S H; Kim, S G; Kim, E K; Yun, M R; Zheng, Z; Chung, K Y; Greenbowe, J; Ali, S M; Kim, T-M; Cho, B C
2017-06-08
Despite remarkable progress in cutaneous melanoma genomic profiling, the mutational landscape of primary mucosal melanomas (PMM) remains unclear. Forty-six PMMs underwent targeted exome sequencing of 111 cancer-associated genes. Seventy-six somatic nonsynonymous mutations in 42 genes were observed, and recurrent mutations were noted on eight genes, including TP53 (13%), NRAS (13%), SNX31 (9%), NF1 (9%), KIT (7%) and APC (7%). Mitogen-activated protein kinase (MAPK; 37%), cell cycle (20%) and phosphatidylinositol 3-kinase (PI3K)-mTOR (15%) pathways were frequently mutated. We biologically characterized a novel ZNF767-BRAF fusion found in a vemurafenib-refractory respiratory tract PMM, from which cell line harboring ZNF767-BRAF fusion were established for further molecular analyses. In an independent data set, NFIC-BRAF fusion was identified in an oral PMM case and TMEM178B-BRAF fusion and DGKI-BRAF fusion were identified in two malignant melanomas with a low mutational burden (number of mutation per megabase, 0.8 and 4, respectively). Subsequent analyses revealed that the ZNF767-BRAF fusion protein promotes RAF dimerization and activation of the MAPK pathway. We next tested the in vitro and in vivo efficacy of vemurafenib, trametinib, BKM120 or LEE011 alone and in combination. Trametinib effectively inhibited tumor cell growth in vitro, but the combination of trametinib and BKM120 or LEE011 yielded more than additive anti-tumor effects both in vitro and in vivo in a melanoma cells harboring the BRAF fusion. In conclusion, BRAF fusions define a new molecular subset of PMM that can be targeted therapeutically by the combination of a MEK inhibitor with PI3K or cyclin-dependent kinase 4/6 inhibitors.
In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment
van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven
2016-01-01
An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206
MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.
Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang
2017-06-01
Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.
Hu, Hongyang; Chen, Min; Dai, Guangzu; Du, Guoqing; Wang, Xuezong; He, Jie; Zhao, Yongfang; Han, Dapeng; Cao, Yuelong; Zheng, Yuxin; Ding, Daofang
2016-01-01
Bone marrow-derived mesenchymal stem cells (MSCs) are responsible for new bone formation during adulthood. Accumulating evidences showed that Osthole promotes the osteogenic differentiation in primary osteoblasts. The aim of this study was to investigate whether Osthole exhibits a potential to stimulate the osteogenic differentiation of MSCs and the underlying mechanism. MSCs were treated with a gradient concentration of Osthole (6.25 µM, 12.5 µM, and 25 µM). Cell proliferation was assessed by western blotting with the proliferating cell nuclear antigen (PCNA) and Cyclin D1 antibodies, fluorescence activated cell sorting (FACS), and cell counting kit 8 (CCK8). MSCs were cultured in osteogenesis-induced medium for one or two weeks. The osteogenic differentiation of MSCs was estimated by Alkaline Phosphatase (ALP) staining, Alizarin red staining, Calcium influx, and quantitative PCR (qPCR). The underlying mechanism of Osthole-induced osteogenesis was further evaluated by western blotting with antibodies in Wnt/β-catenin, PI3K/Akt, BMPs/smad1/5/8, and MAPK signaling pathways. Osthole inhibited proliferation of rat MSCs in a dose-dependent manner. Osthole suppressed osteogenic differentiation of rat MSCs by down-regulating the activities of Wnt/β-catenin and Erk1/2-MAPK signaling. Osthole inhibits the proliferation and osteogenic differentiation of rat MSCs, which might be mediated through blocking the Wnt/β-catenin and Erk1/2-MAPK signaling pathways. © 2016 The Author(s) Published by S. Karger AG, Basel.
Kang, Hyeon Hui; Kim, In Kyoung; Lee, Hye In; Joo, Hyonsoo; Lim, Jeong Uk; Lee, Jongmin; Lee, Sang Haak; Moon, Hwa Sik
2017-08-19
Obstructive sleep apnea (OSA) is associated with nonalcoholic fatty liver disease (NAFLD), and causes chronic intermittent hypoxia (CIH) during sleep. Inflammation is associated with the development of metabolic complications induced by CIH. Research suggests that innate immune mechanisms are involved in the pro-inflammatory pathways of liver fibrosis. The purpose of this study was to investigate whether innate immune responses induce liver fibrosis, and to evaluate mechanisms underlying hepatic inflammation related to CIH in a murine diet-induced obesity (DIO) model. Inflammatory and oxidative stress markers, TLR4, MyD88, Toll/interleukin-1-receptor-domain-containing adaptor-inducing interferon-β (TRIF), I-κB, NF-κB, p38 MAPK, c-JNK, and ERK activation, were measured in the serum and liver. As a result, α1(I)-collagen mRNA was significantly higher in DIO mice exposed to CIH than in the control groups. CIH mice exhibited liver fibrosis and significantly higher protein expression of TLR4, MyD88, phosphorylated (phospho-) I-κB, and phospho-ERK1/2 activation in the liver, and higher expression of NF-κB than that in the controls. TRIF, p38 MAPK, and JNK activation did not differ significantly between groups. We conclude that CIH in DIO mice leads to liver fibrosis via TLR4/MyD88/MAPK/NF-kB signaling pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Xian, Hui-Min; Che, Hui; Qin, Ying; Yang, Fan; Meng, Song-Yan; Li, Xiao-Guang; Bai, Yun-Long; Wang, Li-Hong
2018-03-01
Patients with type 2 diabetes mellitus (T2DM) are usually with poor immunity and easier to suffer from cancer and microbial infections. Herein, we report an efficient anti-diabetic medicinal mushroom, Coriolus versicolor (CV). This study aimed to investigate the anti-diabetic and anti-insulin-resistance effects of CV aqueous extract in myoblasts (L6 cells) and skeletal muscle of T2DM rat. Our results showed that CV extract treatment significantly reduced blood glucose levels of T2DM rats, whereas CV extract increased glucose consumption in insulin resistant L6 cells. Besides, the translocation and expression of glucose transporter 4 were enhanced by CV extract, which indicated that CV extract was effective in diabetic skeletal muscle. Moreover, CV extract treatments resulted in remarkable anti-insulin-resistance effects, which was reflected by the change of gene and protein expression levels in PI3K/Akt and p38 MAPK pathways. PI3K inhibitor, LY29004, and p38 MAPK inhibitor, SB203580 confirmed it further. In conclusion, our results demonstrated that the CV extract exhibited anti-diabetic and anti-insulin-resistance effects in diabetic skeletal muscle, and the effects were mediated by PI3K/Akt and p38 MAPK pathways. These findings are remarkable when considering the use of commercially available CV by diabetic patients who also suffer from cancer or microbial infections. Copyright © 2017 John Wiley & Sons, Ltd.
Celada, Lindsay J.; Whalen, Margaret M.
2013-01-01
Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145
Siddiqui, Nadeem; Sonenberg, Nahum
2015-01-01
Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the eIF4F complex, interacts first with the mRNA and facilitates the recruitment of the 40S ribosomal subunit. The activity of eIF4E is regulated at many levels, most profoundly by two major signalling pathways: PI3K (phosphoinositide 3-kinase)/Akt (also known and Protein Kinase B, PKB)/mTOR (mechanistic/mammalian target of rapamycin) and Ras (rat sarcoma)/MAPK (mitogen-activated protein kinase)/Mnk (MAPK-interacting kinases). mTOR directly phosphorylates the 4E-BPs (eIF4E-binding proteins), which are inhibitors of eIF4E, to relieve translational suppression, whereas Mnk phosphorylates eIF4E to stimulate translation. Hyperactivation of these pathways occurs in the majority of cancers, which results in increased eIF4E activity. Thus, translational control via eIF4E acts as a convergence point for hyperactive signalling pathways to promote tumorigenesis. Consequently, recent works have aimed to target these pathways and ultimately the translational machinery for cancer therapy. PMID:26517881
Yamagishi, Yoshie; Someya, Akimasa; Imai, Kensuke; Nagao, Junji; Nagaoka, Isao
2017-08-01
The anti-inflammatory actions of glucosamine (GlcN) on arthritic disorders involve the suppression of inflammatory mediator production from synovial cells. GlcN has also been reported to inhibit the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The present study aimed to determine the cooperative and anti‑inflammatory actions of functional food materials and evaluated the production of interleukin (IL)‑8 and phosphorylation of p38 MAPK in IL-1β-activated synovial cells, incubated with the combination of GlcN and various functional food materials containing L‑methionine (Met), undenatured type II collagen (UC‑II), chondroitin sulfate (CS), methylsulfonylmethane (MSM) and agaro-oligosaccharide (AO). The results indicated that Met, UC‑II, CS, MSM and AO slightly or moderately suppressed the IL-1β-stimulated IL‑8 production by human synovial MH7A cells. The same compounds further decreased the IL‑8 level lowered by GlcN. Similarly, they slightly suppressed the phosphorylation level of p38 MAPK and further reduced the phosphorylation level lowered by GlcN. These observations suggest a possibility that these functional food materials exert an anti‑inflammatory action (inhibition of IL‑8 production) in combination with GlcN by cooperatively suppressing the p38 MAPK signaling (phosphorylation).
Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.
1998-01-01
Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108
BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein.
Liu, Juan; Wang, Hailong; Gu, Jinyan; Deng, Tingjuan; Yuan, Zhuangchuan; Hu, Boli; Xu, Yunbin; Yan, Yan; Zan, Jie; Liao, Min; DiCaprio, Erin; Li, Jianrong; Su, Shuo; Zhou, Jiyong
2017-04-03
Autophagy is an essential component of host immunity and used by viruses for survival. However, the autophagy signaling pathways involved in virus replication are poorly documented. Here, we observed that rabies virus (RABV) infection triggered intracellular autophagosome accumulation and results in incomplete autophagy by inhibiting autophagy flux. Subsequently, we found that RABV infection induced the reduction of CASP2/caspase 2 and the activation of AMP-activated protein kinase (AMPK)-AKT-MTOR (mechanistic target of rapamycin) and AMPK-MAPK (mitogen-activated protein kinase) pathways. Further investigation revealed that BECN1/Beclin 1 binding to viral phosphoprotein (P) induced an incomplete autophagy via activating the pathways CASP2-AMPK-AKT-MTOR and CASP2-AMPK-MAPK by decreasing CASP2. Taken together, our data first reveals a crosstalk of BECN1 and CASP2-dependent autophagy pathways by RABV infection.
p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity
Mavropoulos, Athanasios; Orfanidou, Timoklia; Liaskos, Christos; Smyk, Daniel S.; Spyrou, Vassiliki; Sakkas, Lazaros I.; Rigopoulou, Eirini I.; Bogdanos, Dimitrios P.
2013-01-01
p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention. PMID:23936634
Dai, Jianping; Gu, Liming; Su, Yun; Wang, Qianwen; Zhao, Ying; Chen, Xiaoxua; Deng, Huixiong; Li, Weizhong; Wang, Gefei; Li, Kangsheng
2018-01-01
Oxidative stress, Nrf2-HO-1 and TLR-MAPK/NF-κB signaling pathways have been proved to be involved in influenza A virus (IAV) replication and influenzal pneumonia. In the previous studies, we have performed several high-throughput drug screenings based on the TLR pathways. In the present study, through plaque inhibition test, luciferase reporter assay, TCID 50 , qRT-PCR, western blotting, ELISA and siRNA assays, we investigated the effect and mechanism of action of curcumin against IAV infection in vitro and in vivo. The results showed that curcumin could directly inactivate IAV, blocked IAV adsorption and inhibited IAV proliferation. As for the underlying mechanisms, we found that curcumin could significantly inhibit IAV-induced oxidative stress, increased Nrf2, HO-1, NQO1, GSTA3 and IFN-β production, and suppressed IAV-induced activation of TLR2/4/7, Akt, p38/JNK MAPK and NF-κB pathways. Suppression of Nrf2 via siRNA significantly abolished the stimulatory effect of curcumin on HO-1, NQO1, GSTA3 and IFN-β production and meanwhile blocked the inhibitory effect of curcumin on IAV M2 production. Oxidant H 2 O 2 and TLR2/4, p38/JNK and NF-κB agonists could significantly antagonize the anti-IAV activity of curcumin in vitro. Additionally, curcumin significantly increased the survival rate of mice, reduced lung index, inflammatory cytokines and lung IAV titer, and finally improved pulmonary histopathological changes after IAV infection. In conclusion, curcumin can directly inactivate IAV, inhibits IAV adsorption and replication; and its inhibition on IAV replication may be via activating Nrf2 signal and inhibiting IAV-induced activation of TLR2/4, p38/JNK MAPK and NF-κB pathways. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Shan; Guo, Lijia; Su, Yingying; Wen, Jing; Du, Juan; Li, Xiaoyan; Liu, Yitong; Feng, Jie; Xie, Yongmei; Bai, Yuxing; Wang, Hao; Liu, Yi
2018-05-02
Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor L-N G -monomethyl arginine (L-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. NO is essential for maintaining the balance between osteoblasts and adipocytes in PDLSCs via the JNK/MAPK signaling pathway. NO balances osteoblast and adipocyte lineage differentiation via JNK/MAPK signaling pathway.
Constantino, Leandra C; Binder, Luisa B; Vandresen-Filho, Samuel; Viola, Giordano G; Ludka, Fabiana K; Lopes, Mark W; Leal, Rodrigo B; Tasca, Carla I
2018-04-20
N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38 MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38 MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3β (GSK-3β), ERK1/2, and p38 MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection against a behavioral and cellular manifestation of neural damage.
Global functional analyses of cellular responses to pore-forming toxins.
Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V
2011-03-01
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.
Deslauriers, Jessica; Desmarais, Christian; Sarret, Philippe; Grignon, Sylvain
2014-03-01
Chronic administration of antipsychotics (APs) has been associated with dopamine D2 receptor (D2R) upregulation and tardive dyskinesia. We previously showed that haloperidol, a first-generation AP, exerted a more robust increase in D2R expression than amisulpride, a second-generation AP and that (±)-α-lipoic acid pre-treatment reversed the AP-induced D2R upregulation. We also demonstrated that the Akt/GSK-3β/β-catenin pathway is involved in the control of D2R expression levels, but is unlikely implicated in the preventive effects of (±)-α-lipoic acid since co-treatment with haloperidol and (±)-α-lipoic acid exerts synergistic effects on Akt/GSK-3β activation. These findings led us to examine whether the ERK/MAPK signaling pathway may be involved in D2R upregulation elicited by APs, and in its reversal by (±)-α-lipoic acid, in SH-SY5Y human neuroblastoma cells. Our results revealed that haloperidol, in parallel with an elevation in D2R mRNA levels, induced a larger increase of ERK (p42/p44) phosphorylation than amisulpride. Pre-treatment with the selective ERK inhibitor U0126 attenuated haloperidol-induced increase in D2R upregulation. Furthermore, (±)-α-lipoic acid prevented AP-induced ERK activation. These results show that (1) the ERK/MAPK pathway is involved in haloperidol-induced D2R upregulation; (2) the preventive effect of (±)-α-lipoic acid on haloperidol-induced D2R upregulation is in part mediated by an ERK/MAPK-dependent signaling cascade. Taken together, our data suggest that (±)-α-lipoic acid exerts synergistic effects with haloperidol on the Akt/GSK-3β pathway, potentially involved in the therapeutic effects of APs, and antagonism of ERK activation and D2R upregulation, potentially involved in tardive dyskinesia and treatment resistance.
Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara
2016-02-15
Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha
2015-01-01
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells. PMID:26528819
2016-05-02
signal-regulated kinase (Erk), heat shock 27kDa protein 1 ( HSP27 ), c-Jun N-terminal kinase (JNK), jun proto-oncogene (c-Jun), dual specificity mitogen...the MAPK pathway-associated proteins were significantly increased (Fig 5D). These included ERK1, JNK, ATF2, HSP27 , c-JUN, and p53. At 12 h post
Deng, Maximilian Y; Sill, Martin; Chiang, Jason; Schittenhelm, Jens; Ebinger, Martin; Schuhmann, Martin U; Monoranu, Camelia-Maria; Milde, Till; Wittmann, Andrea; Hartmann, Christian; Sommer, Clemens; Paulus, Werner; Gärtner, Jutta; Brück, Wolfgang; Rüdiger, Thomas; Leipold, Alfred; Jaunmuktane, Zane; Brandner, Sebastian; Giangaspero, Felice; Nozza, Paolo; Mora, Jaume; Morales la Madrid, Andres; Cruz Martinez, Ofelia; Hansford, Jordan R; Pietsch, Torsten; Tietze, Anna; Hernáiz-Driever, Pablo; Stoler, Iris; Capper, David; Korshunov, Andrey; Ellison, David W; von Deimling, Andreas; Pfister, Stefan M; Sahm, Felix; Jones, David T W
2018-05-15
Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively-laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT.
Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A
2004-08-01
Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.
Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B
2015-04-01
Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase (MAPK) family members to primate torpor were compared in six organs of control (aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases (ERKs), c-jun NH2-terminal kinases (JNKs), MAPK kinase (MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27 (HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor. Copyright © 2015. Production and hosting by Elsevier Ltd.
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041
Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan
2015-12-01
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Lijuan; Liu, Jianwen; Cui, Daling; Li, Jiyu; Yu, Youjun; Ma, Lei; Hu, Lihong
2010-02-15
Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent. (c) 2009 Wiley-Liss, Inc.
Huang, Wen-Chung; Dai, Yi-Wen; Peng, Hui-Ling; Kang, Chiao-Wei; Kuo, Chun-Yu; Liou, Chian-Jiun
2015-07-01
Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xun; Shah, Ankit; Gangwani, Mohitkumar R.; Silverstein, Peter S.; Fu, Mingui; Kumar, Anil
2014-03-01
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.
Kim, Hong Seok; Asmis, Reto
2017-08-01
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Addissie, Yonit A; Kotecha, Udhaya; Hart, Rachel A; Martinez, Ariel F; Kruszka, Paul; Muenke, Maximilian
2015-11-01
Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis. © 2015 Wiley Periodicals, Inc.
Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji
Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less
Caromile, Leslie Ann; Dortche, Kristina; Rahman, M. Mamunur; Grant, Christina L.; Stoddard, Christopher; Ferrer, Fernando A.; Shapiro, Linda H.
2017-01-01
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors. PMID:28292957
Mulay, Vishwaroop; Wood, Peta; Manetsch, Melanie; Darabi, Masoud; Cairns, Rose; Hoque, Monira; Chan, Karen Cecilia; Reverter, Meritxell; Alvarez-Guaita, Anna; Rye, Kerry-Anne; Rentero, Carles; Heeren, Joerg; Enrich, Carlos; Grewal, Thomas
2013-01-01
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
2011-01-01
Background Pigmentation is one of the essential defense mechanisms against oxidative stress or UV irradiation; however, abnormal hyperpigmentation in human skin may pose a serious aesthetic problem. C-phycocyanin (Cpc) is a phycobiliprotein from spirulina and functions as an antioxidant and a light harvesting protein. Though it is known that spirulina has been used to reduce hyperpigmentation, little literature addresses the antimelanogenic mechanism of Cpc. Herein, we investigated the rationale for the Cpc-induced inhibitory mechanism on melanin synthesis in B16F10 melanoma cells. Methods Cpc-induced inhibitory effects on melanin synthesis and tyrosinase expression were evaluated. The activity of MAPK pathways-associated molecules such as MAPK/ERK and p38 MAPK, were also examined to explore Cpc-induced antimelanogenic mechanisms. Additionally, the intracellular localization of Cpc was investigated by confocal microscopic analysis to observe the migration of Cpc. Results Cpc significantly (P < 0.05) reduced both tyrosinase activity and melanin production in a dose-dependent manner. This phycobiliprotein elevated the abundance of intracellular cAMP leading to the promotion of downstream ERK1/2 phosphorylation and the subsequent MITF (the transcription factor of tyrosinase) degradation. Further, Cpc also suppressed the activation of p38 causing the consequent disturbed activation of CREB (the transcription factor of MITF). As a result, Cpc negatively regulated tyrosinase gene expression resulting in the suppression of melanin synthesis. Moreover, the entry of Cpc into B16F10 cells was revealed by confocal immunofluorescence localization and immunoblot analysis. Conclusions Cpc exerted dual antimelanogenic mechanisms by upregulation of MAPK/ERK-dependent degradation of MITF and downregulation of p38 MAPK-regulated CREB activation to modulate melanin formation. Cpc may have potential applications in biomedicine, food, and cosmetic industries. PMID:21988805
Liu, Hui; Jing, Xibo; Dong, Aiqiao; Bai, Baobao; Wang, Haiyan
2017-01-01
Myocardial ischemia/reperfusion (I/R) injury remains a great challenge in clinical therapy. Tissue inhibitor of metalloproteinases 3 (TIMP3) plays a crucial role in heart physiological and pathophysiological processes. However, the effects of TIMP3 on I/R injury remain unknown. C57BL/6 mice were infected with TIMP3 adenovirus by local delivery in myocardium followed by I/R operation or doxorubicin treatment. Neonatal rat cardiomyocytes were pretreated with TIMP3 adenovirus prior to anoxia/reoxygenation (A/R) treatment in vitro. Histology, echocardiography, in vivo phenotypical analysis, flow cytometry and western blotting were used to investigate the altered cardiac function and underlying mechanisms. The results showed that upregulation of TIMP3 in myocardium markedly inhibited myocardial infarct areas and the cardiac dysfunction induced by I/R or by doxorubicin treatment. TUNEL staining revealed that TIMP3 overexpression attenuated I/R-induced myocardial apoptosis, accompanied by decreased Bax/Bcl-2 ratio, Cleaved Caspase-3 and Cleaved Caspase-9 expression. In vitro, A/R-induced cardiomyocyte apoptosis was abrogated by pharmacological inhibition of reactive oxygen species (ROS) production or MAPKs signaling. Attenuation of ROS production reversed A/R-induced MAPKs activation, whereas MAPKs inhibitors showed on effect on ROS production. Furthermore, in vivo or in vitro overexpression of TIMP3 significantly inhibited I/R- or A/R-induced ROS production and MAPKs activation. Our findings demonstrate that TIMP3 upregulation protects against cardiac I/R injury through inhibiting myocardial apoptosis. The mechanism may be related to inhibition of ROS-initiated MAPKs pathway. This study suggests that TIMP3 may be a potential therapeutic target for the treatment of I/R injury. © 2017 The Author(s). Published by S. Karger AG, Basel.
Dorin, Dominique; Semblat, Jean-Philippe; Poullet, Patrick; Alano, Pietro; Goldring, J P Dean; Whittle, Christina; Patterson, Shelley; Chakrabarti, Debopam; Doerig, Christian
2005-01-01
Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.
Kinase cascades and ligand-directed signaling at the kappa opioid receptor.
Bruchas, Michael R; Chavkin, Charles
2010-06-01
The dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Galphai/o inhibition of adenylyl cyclase production of cAMP and releases Gbetagamma, which modulates the conductances of Ca(+2) and K(+) channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke beta-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.
MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization.
el Azzouzi, Hamid; Leptidis, Stefanos; Bourajjaj, Meriem; van Bilsen, Marc; da Costa Martins, Paula A; De Windt, Leon J
2012-01-01
The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.
Inamoto, Teruo; Azuma, Haruhito; Sakamoto, Takeshi; Kiyama, Satoshi; Ubai, Takanobu; Kotake, Yatsugu; Watanabe, Masahito; Katsuoka, Yoji
2007-10-01
Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.
Riecken, Lars Björn; Tawamie, Hasan; Dornblut, Carsten; Buchert, Rebecca; Ismayel, Amina; Schulz, Alexander; Schumacher, Johannes; Sticht, Heinrich; Pohl, Katja J; Cui, Yan; Reis, André; Morrison, Helen; Abou Jamra, Rami
2015-02-01
Gain-of-function alterations in several components and modulators of the Ras-MAPK pathway lead to dysregulation of the pathway and cause a broad spectrum of autosomal dominant developmental disorders, collectively known as RASopathies. These findings demonstrate the importance of tight multilevel Ras regulation to safeguard signaling output and prevent aberrant activity. We have recently identified ezrin as a novel regulatory element required for Ras activation. Homozygosity mapping and exome sequencing have now revealed the first presumably disease-causing variant in the coding gene EZR in two siblings with a profound intellectual disability. Localization and membrane targeting of the altered ezrin protein appeared normal but molecular modeling suggested protein interaction surfaces to be disturbed. Functional analysis revealed that the altered ezrin protein is no longer able to bind Ras and facilitate its activation. Furthermore, expression of the altered ezrin protein in different cell lines resulted in abnormal cellular processes, including reduced proliferation and neuritogenesis, thus revealing a possible mechanism for its phenotype in humans. To our knowledge, this is the first report of an autosomal recessively inherited loss-of-function mutation causing reduced Ras activity and thus extends and complements the pathogenicity spectrum of known Ras-MAPK pathway disturbances. © 2014 WILEY PERIODICALS, INC.
Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage.
Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long
2013-01-01
Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway.
Kanda, Yasunari; Mizuno, Katsushige; Kuroki, Yasutomi; Watanabe, Yasuhiro
2001-01-01
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated its pathogenic role in vascular remodelling. However, the signalling pathways by which thrombin mediates its mitogenic response are not fully understood.We have previously reported that thrombin activates p38 mitogen-activated protein kinase (p38 MAPK) by a tyrosine kinase-dependent mechanism, and that p38 MAPK has a role in thrombin-induced mitogenic response in rat VSMC.In the present study, we examine the involvement of epidermal growth factor (EGF) receptor in thrombin-induced p38 MAPK activation. We found that thrombin induced EGF receptor tyrosine phosphorylation (transactivation) in A10 cells, a clonal VSMC cell line. A selective inhibitor of EGF receptor kinase (AG1478) inhibited the p38 MAPK activation in a dose-dependent manner, whereas it had no effect on the response to platelet-derived growth factor (PDGF). EGF receptor phosphorylation induced by thrombin was inhibited by BAPTA-AM and GF109203X, which suggest a requirement for intracellular Ca2+ increase and protein kinase C.We next examined the effect of AG1478 on thrombin-induced DNA synthesis. AG1478 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. In contrast, PDGF-induced DNA synthesis was not affected by AG1478.In conclusion, these data suggest that the EGF receptor transactivation and subsequent p38 MAPK activation is required for thrombin-induced proliferation of VSMC. PMID:11309236
Berkowitz, Paula; Chua, Michael; Liu, Zhi; Diaz, Luis A.; Rubenstein, David S.
2008-01-01
Pemphigus foliaceus (PF) is a human autoimmune blistering disease in which a humoral immune response targeting the skin results in a loss of keratinocyte cell-cell adhesion in the superficial layers of the epidermal epithelium. In PF, desmoglein-1-specific autoantibodies induce blistering. Evidence is beginning to accumulate that activation of signaling may have an important role in the ability of pathogenic pemphigus IgGs to induce blistering and that both p38 mitogen-activated protein kinase (MAPK) and heat shock protein (HSP) 27 are part of this signaling pathway. This study was undertaken to investigate the ability of PF IgGs to activate signaling as well as the contribution of this signaling pathway to blister induction in an in vivo model of PF. Phosphorylation of both p38 MAPK and HSP25, the murine HSP27 homolog, was observed in the skin of PF IgG-treated mice. Furthermore, inhibition of p38 MAPK blocked the ability of PF IgGs to induce blistering in vivo. These results indicate that PF IgG-induced blistering is dependent on activation of p38 MAPK in the target keratinocyte. Rather than influencing the immune system, limiting the autoantibody-induced intracellular signaling response that leads to target end-organ damage may be a more viable therapeutic strategy for the treatment of autoimmune diseases. Inhibition of p38 MAPK may be an effective strategy for the treatment of PF. PMID:18988808
Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling
Dhawan, Neil S.; scopton, Alex P.; Dar, Arvin C.
2016-01-01
Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies1. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes2. Kinase suppressor of Ras (KSR) is a MAPK scaffold3–5 that is subject to allosteric regulation through dimerization with RAF6,7. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. PMID:27556948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp; Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui; Mikami, Daisuke
Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area bymore » producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.« less
Chao, Wei; Deng, Jeng-Shyan; Li, Pei-Ying; Liang, Yu-Chia; Huang, Guan-Jhong
2017-03-28
3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.
Wun, Zih-Yi; Lin, Chwan-Fwu; Huang, Wen-Chung; Huang, Yu-Ling; Xu, Pei-Yin; Chang, Wei-Tien; Wu, Shu-Ju; Liou, Chian-Jiun
2013-12-01
Sophoraflavanone G (SG; 5,7,D, 2',4'-tetrahydroxy-8-lavandulylflavanone) has been isolated from Sophora flavescens and found to be effective against bacteria and to decrease cyclooxygenase (COX)-2 expression in RAW 264.7 macrophage. However, the anti-inflammatory mechanisms of SG are not well understood. RAW 264.7 cells were pretreated with various concentrations of SG (2.5-20 μM) and inflammatory responses were induced with lipopolysaccharide. Using enzyme-linked immunosorbent assay, the levels of pro-inflammatory cytokines and prostaglandin E2 (PGE2) were determined. Western blot was used to examine the protein expression of inducible nitric oxide synthase (iNOS), COX-2, and heme oxygenase-1 (HO-1). To investigate the molecular mechanism, we analyzed inflammatory-associated signaling pathways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK). SG inhibited the levels of nitric oxide and PGE2 and decreased the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor α. The expression of iNOS and COX-2 was also suppressed. However, SG increased HO-1 production in a concentration-dependent manner and significantly decreased MAPK activation and inhibited NF-κB subunit p65 proteins to translocate into the nucleus. These results suggest that SG has an anti-inflammatory effect, inhibiting pro-inflammatory cytokines and mediators production via interruption of the NF-κB and MAPK signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shin, Sung-Young; Nguyen, Lan K
2017-01-01
The past three decades have witnessed an enormous progress in the elucidation of the ERK/MAPK signaling pathway and its involvement in various cellular processes. Because of its importance and complex wiring, the ERK pathway has been an intensive subject for mathematical modeling, which facilitates the unraveling of key dynamic properties and behaviors of the pathway. Recently, however, it became evident that the pathway does not act in isolation but closely interacts with many other pathways to coordinate various cellular outcomes under different pathophysiological contexts. This has led to an increasing number of integrated, large-scale models that link the ERK pathway to other functionally important pathways. In this chapter, we first discuss the essential steps in model development and notable models of the ERK pathway. We then use three examples of integrated, multipathway models to investigate how crosstalk of ERK signaling with other pathways regulates cell-fate decision-making in various physiological and disease contexts. Specifically, we focus on ERK interactions with the phosphoinositide-3 kinase (PI3K), c-Jun N-terminal kinase (JNK), and β-adrenergic receptor (β-AR) signaling pathways. We conclude that integrated modeling in combination with wet-lab experimentation have been and will be instrumental in gaining an in-depth understanding of ERK signaling in multiple biological contexts.
Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells.
Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhong, Caiyun
2018-01-01
To examine whether curcumin has protective effect on insulin resistance induced by bisphenol A (BPA) in LO2 cells and whether this effect was mediated by inhibiting the inflammatory mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways. LO2 cells were stimulated with BPA in the presence or absence of curcumin for 5 days. Glucose consumption, activation of insulin signaling, MAPKs and NF-κB pathways, levels of inflammatory cytokines and MDA production were analyzed. Curcumin prevented BPA-induced reduction of glucose consumption and suppression of insulin signaling pathway, indicating curcumin alleviated BPA-triggered insulin resistance in LO2 cells. mRNA and proteins levels of TNF-α and IL-6, as well as MDA level in LO2 cells treated with BPA were decreased by curcumin. Furthermore, curcumin downregulated the activation of p38, JNK, and NF-κB pathways upon stimulation with BPA. Inhibition of JNK pathway, but not p38 nor NF-κB pathway, improved glucose consumption and insulin signaling in BPA-treated LO2 cells. Curcumin inhibits BPA-induced insulin resistance by suppressing JNK pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Anastasaki, Corina; Estep, Anne L; Marais, Richard; Rauen, Katherine A; Patton, E Elizabeth
2009-07-15
The Ras/MAPK pathway is critical for human development and plays a central role in the formation and progression of most cancers. Children born with germ-line mutations in BRAF, MEK1 or MEK2 develop cardio-facio-cutaneous (CFC) syndrome, an autosomal dominant syndrome characterized by a distinctive facial appearance, heart defects, skin and hair abnormalities and mental retardation. CFC syndrome mutations in BRAF promote both kinase-activating and kinase-impaired variants. CFC syndrome has a progressive phenotype, and the availability of clinically active inhibitors of the MAPK pathway prompts the important question as to whether such inhibitors might be therapeutically effective in the treatment of CFC syndrome. To study the developmental effects of CFC mutant alleles in vivo, we have expressed a panel of 28 BRAF and MEK alleles in zebrafish embryos to assess the function of human disease alleles and available chemical inhibitors of this pathway. We find that both kinase-activating and kinase-impaired CFC mutant alleles promote the equivalent developmental outcome when expressed during early development and that treatment of CFC-zebrafish embryos with inhibitors of the FGF-MAPK pathway can restore normal early development. Importantly, we find a developmental window in which treatment with a MEK inhibitor can restore the normal early development of the embryo, without the additional, unwanted developmental effects of the drug.
Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung
2014-01-01
Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.
Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong
2014-01-01
Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. PMID:24868545
Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran
2018-03-29
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.
Chen, Zhengxu; Zhang, Dan; Li, Man; Wang, Baolong
2018-06-12
Lipoteichoic acid (LTA)-induced acute lung injury (ALI) is an experimental model for mimicking Gram-positive bacteria-induced pneumonia that is a refractory disease with lack of effective medicines. Here, we reported that costunolide, a sesquiterpene lactone, ameliorated LTA-induced ALI. Costunolide treatment reduced LTA-induced neutrophil lung infiltration, cytokine and chemokine production (TNF-α, IL-6 and KC), and pulmonary edema. In response to LTA challenge, treatment with costunolide resulted less iNOS expression and produced less inflammatory cytokines in bone marrow derived macrophages (BMDMs). Pretreatment with costunolide also attenuated the LTA-induced the phosphorylation of p38 MAPK and ERK in BMDMs. Furthermore, costunolide treatment reduced the phosphorylation of TAK1 and inhibited the interaction of TAK1 with Tab1. In conclusion, we have demonstrated that costunolide protects against LTA-induced ALI via inhibiting TAK1-mediated MAPK signaling pathway, and our studies suggest that costunolide is a promising agent for treatment of Gram-positive bacteria-mediated pneumonia. Copyright © 2018 Elsevier B.V. All rights reserved.
ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.
Goetz, Eva M; Ghandi, Mahmoud; Treacy, Daniel J; Wagle, Nikhil; Garraway, Levi A
2014-12-01
The use of targeted therapeutics directed against BRAF(V600)-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAF(V600)-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor-resistant alleles were sensitive to RAF/MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. ©2014 American Association for Cancer Research.
ERK Mutations Confer Resistance to Mitogen-Activated Protein Kinase Pathway Inhibitors
Goetz, Eva M.; Ghandi, Mahmoud; Treacy, Daniel J.; Wagle, Nikhil; Garraway, Levi A.
2015-01-01
The use of targeted therapeutics directed against BRAFV600-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAFV600-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor–resistant alleles were sensitive to RAF/ MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. PMID:25320010
Troy, Andrew; Cadwallader, Adam B.; Fedorov, Yuri; Tyner, Kristina; Tanaka, Kathleen Kelly; Olwin, Bradley B.
2014-01-01
SUMMARY In response to muscle injury, satellite cells activate the p38α/β MAPK pathway to exit quiescence, then proliferate, repair skeletal muscle, and self-renew, replenishing the quiescent satellite cell pool. Although satellite cells are capable of asymmetric division, the mechanisms regulating satellite cell self-renewal are not understood. We found that satellite cells, once activated, enter the cell cycle and a subset undergoes asymmetric division, renewing the satellite cell pool. Asymmetric localization of the Par complex activates p38α/β MAPK in only one daughter cell, inducing MyoD, which permits cell cycle entry and generates a proliferating myoblast. The absence of p38α/β MAPK signaling in the other daughter cell prevents MyoD induction, renewing the quiescent satellite cell. Thus, satellite cells employ a mechanism to generate distinct daughter cells, coupling the Par complex and p38α/β MAPK signaling to link the response to muscle injury with satellite cell self-renewal. PMID:23040480
Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William
2013-01-01
Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented impairment of ACh- and nitrergic nerve-induced relaxation and elevation of arginase activity. Conclusion ROCK 2, p38 MAPK and arginase play key roles in diabetes-induced impairment of CC relaxation. PMID:23566117
Sonic Hedgehog Signaling in Thyroid Cancer
Xu, Xiulong; Lu, Yurong; Li, Yi; Prinz, Richard A.
2017-01-01
Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy. PMID:29163356