Sample records for pathways persistent metabolites

  1. Bioconversion of dieldrin by wood-rotting fungi and metabolite detection.

    PubMed

    Kamei, Ichiro; Takagi, Kazuhiro; Kondo, Ryuichiro

    2010-08-01

    Dieldrin is one of the most persistent organochlorine pesticides, listed as one of the 12 persistent organic pollutants in the Stockholm Convention. Although microbial degradation is an effective way to remediate environmental pollutants, reports on aerobic microbial degradation of dieldrin are limited. Wood-rotting fungi can degrade a wide spectrum of recalcitrant organopollutants, and an attempt has been made to select wood-rotting fungi that can degrade dieldrin, and to identify the metabolite. Thirty-four isolates of wood-rotting fungi were investigated for their ability to degrade dieldrin. Strain YK543 degraded 39.1 +/- 8.8% of dieldrin during 30 days of incubation. Phylogenetic analysis demonstrated that strain YK543 was closely related to the fungus Phlebia brevispora Nakasone TMIC33929, which has been reported as a fungus that can degrade chlorinated dioxins and polychlorinated biphenyls. 9-Hydroxydieldrin was detected as a metabolite in the cultures of strain YK543. It is important to select the microorganisms that degrade organic pollutants, and to identify the metabolic pathway for the development of bioremediation methods. Strain YK543 was selected as a fungus capable of degrading dieldrin. The metabolic pathway includes 9-hydroxylation reported in rat's metabolism catalysed by liver microsomal monooxygenase. This is the first report of transformation of dieldrin to 9-hydroxydieldrin by a microorganism. Copyright (c) 2010 Society of Chemical Industry.

  2. Serial Metabolome Changes in a Prospective Cohort of Subjects with Influenza Viral Infection and Comparison with Dengue Fever.

    PubMed

    Cui, Liang; Fang, Jinling; Ooi, Eng Eong; Lee, Yie Hou

    2017-07-07

    Influenza virus infection (IVI) and dengue virus infection (DVI) are major public health threats. Between IVI and DVI, clinical symptoms can be overlapping yet infection-specific, but host metabolome changes are not well-described. Untargeted metabolomics and targeted oxylipinomic analyses were performed on sera serially collected at three phases of infection from a prospective cohort study of adult subjects with either H3N2 influenza infection or dengue fever. Untargeted metabolomics identified 26 differential metabolites, and major perturbed pathways included purine metabolism, fatty acid biosynthesis and β-oxidation, tryptophan metabolism, phospholipid catabolism, and steroid hormone pathway. Alterations in eight oxylipins were associated with the early symptomatic phase of H3N2 flu infection, were mostly arachidonic acid-derived, and were enriched in the lipoxygenase pathway. There was significant overlap in metabolome profiles in both infections. However, differences specific to IVI and DVI were observed. DVI specifically attenuated metabolites including serotonin, bile acids and biliverdin. Additionally, metabolome changes were more persistent in IVI in which metabolites such as hypoxanthine, inosine, and xanthine of the purine metabolism pathway remained significantly elevated at 21-27 days after fever onset. This study revealed the dynamic metabolome changes in IVI subjects and provided biochemical insights on host physiological similarities and differences between IVI and DVI.

  3. Metabolomic signatures of low birthweight: Pathways to insulin resistance and oxidative stress

    PubMed Central

    Karhunen, Ville; Edwards, Mark H.; Menni, Cristina; Geisendorfer, Thomas; Huber, Anja; Reichel, Christian; Dennison, Elaine M.; Cooper, Cyrus; Spector, Tim; Jarvelin, Marjo-Riitta; Valdes, Ana M.

    2018-01-01

    Several studies suggest that low birthweight resulting from restricted intrauterine growth can leave a metabolic footprint which may persist into adulthood. To investigate this, we performed metabolomic profiling on 5036 female twins, aged 18–80, with weight at birth information available from the TwinsUK cohort and performed independent replication in two additional cohorts. Out of 422 compounds tested, 25 metabolites associated with birthweight in these twins, replicated in 1951 men and women from the Hertfordshire Cohort Study (HCS, aged 66) and in 2391 men and women from the North Finland Birth 1986 cohort (NFBC, aged 16). We found distinct heterogeneity between sexes and, after adjusting for multiple tests and heterogeneity, two metabolites were reproducible overall (propionylcarnitine and 3-4-hydroxyphenyllactate). Testing women only, we found other metabolites associated with lower birthweight from the meta-analysis of the three cohorts (2-hydroxy-butyric acid and γ-glutamylleucine). Higher levels of all these metabolites can be linked to insulin resistance, oxidative stress or a dysfunction of energy metabolism, suggesting that low birthweight in both twins and singletons are having an impact on these pathways in adulthood. PMID:29566009

  4. Identification of new metabolic pathways in the enantioselective fungicide tebuconazole biodegradation by Bacillus sp. 3B6.

    PubMed

    Youness, Mohamed; Sancelme, Martine; Combourieu, Bruno; Besse-Hoggan, Pascale

    2018-06-05

    The use of triazole fungicides in various fields ranging from agriculture to therapy, can cause long-term undesirable effects on different organisms from various environmental compartments and lead to resistance phenomena (even in humans) due to their extensive use and persistence. Their occurrence in various water bodies has increased and tebuconazole, in particular, is often detected, sometimes in high concentration. Only a few bacterial and fungal strains have been isolated and found to biotransform this fungicide, described as not easily biodegradable. Nevertheless, the knowledge of efficient degrading-strains and metabolites potentially formed could improve bioremediation process and global overview of risk assessment. Therefore, a broad screening of microorganisms, isolated from various environmental compartments or from commercially-available strain collections, allowed us to find six bacterial strains able to biotransform tebuconazole. The most efficient one was studied further: this environmental strain Bacillus sp. 3B6 biotransforms the fungicide enantioselectively (ee = 18%) into two hydroxylated metabolites, one of them being transformed in its turn to alkene by a biotic dehydration reaction. This original enantioselective pathway shows that racemic pesticides should be treated by the environmental risk assessment authorities as a mixture of two compounds because persistence, biodegradation, bioaccumulation and toxicity often show chiral dependence. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Metabolic features of chronic fatigue syndrome

    PubMed Central

    Naviaux, Robert K.; Naviaux, Jane C.; Li, Kefeng; Bright, A. Taylor; Alaynick, William A.; Wang, Lin; Baxter, Asha; Nathan, Neil; Anderson, Wayne; Gordon, Eric

    2016-01-01

    More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS. We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-matched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21–67 y). Females were 52 (±2.5) y old (range, 20–67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females. We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84–100%] in males using eight metabolites and 96% (95% CI, 86–100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer. PMID:27573827

  6. Biodegradation of clofibric acid and identification of its metabolites.

    PubMed

    Salgado, R; Oehmen, A; Carvalho, G; Noronha, J P; Reis, M A M

    2012-11-30

    Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration=2 mg L(-1)), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. PCB 28 metabolites elimination kinetics in human plasma on a real case scenario: Study of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites of PCB 28 in a highly exposed German Cohort.

    PubMed

    Quinete, Natalia; Esser, André; Kraus, Thomas; Schettgen, Thomas

    2017-07-05

    Polychlorinated biphenyls (PCBs) are suspected of carcinogenic, neurotoxic and immunotoxic effects in animals and humans. Although background levels of PCBs have been slowly decreased after their ban, they are still among the most persistent and ubiquitous pollutants in the environment, remaining the subject of great concern. PCB 28 is a trichlorinated PCB found in high concentrations not only in human plasma but also in indoor air in Europe, yet little is known about its metabolic pathway and potential metabolites in humans. The present study aims to elucidate the kinetics of metabolite formation and elimination by analyzing four hydroxylated PCBs (OH-PCBs) in human plasma as potential metabolites of the PCB 28 congener. For this purpose, the study was conducted in plasma samples of highly PCB-exposed individuals (N=268), collected from 2010 to 2014 as a representation of a real case scenario with longitudinal data. OH-PCBs have been predicted, synthesized in the course of this study and further identified and quantitated in human plasma. This is the first time that previously unknown PCB 28 metabolites have been measured in human plasma and half-lives have been estimated for PCB metabolites, which could then provide further understanding in the toxicological consequences of exposure to PCBs in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Determination of residues of fipronil and its metabolites in cauliflower by using gas chromatography-tandem mass spectrometry.

    PubMed

    Duhan, Anil; Kumari, Beena; Duhan, Saroj

    2015-02-01

    Fipronil is a widely used insecticide with a well-described toxicological pathway. Recently it has been widely used in India to control vegetable pests. The present study has been carried out to observe the persistence pattern of fipronil and its metabolites-fipronil sulfone, fipronil sulfide, fipronil desulfinyl in cauliflower and soil so as to know the potential risk if any to consumers and environment. Fipronil was applied @ 56 g a.i. ha(-1). Samples of cauliflower and soil were collected periodically; processed using QuEChERS method and analyzed by GCMS/MS. In cauliflower, residues of fipronil and its metabolites reached below detectable level before 30 days of application whereas in soil about 95% of total fipronil residues got degraded within same time period. Washing and washing followed by cooking or boiling was found effective in reducing residues. A safe waiting period of 15 days is therefore suggested before consuming cauliflower.

  9. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways.

    PubMed

    Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia

    2013-05-01

    Various 'omics' technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.

  10. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways

    PubMed Central

    Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia

    2013-01-01

    Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways. PMID:23482392

  11. Cytochrome P450 and Lipoxygenase Metabolites on Renal Function

    PubMed Central

    Imig, John D.; Hye Khan, Md. Abdul

    2018-01-01

    Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638

  12. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water.

    PubMed

    Lin, Angela Yu-Chen; Lee, Wan-Ning; Wang, Xiao-Huan

    2014-04-15

    Ketamine has been increasingly used both recreationally and medicinally around the world. Although the metabolic pathways to form its metabolite norketamine have been carefully investigated in humans and animals, knowledge of their environmental occurrence and fate is limited. In this study, we investigated the occurrence of ketamine and norketamine in 20 natural bodies of water, effluents from 13 hospitals, two wastewater treatment plants and one water supply plant. Ketamine was found at concentrations as high as 10 μg/L. Ketamine and norketamine were consistently found in similar concentrations (ketamine/norketamine ratio: 0.3-4.6) in the collected water samples, and this ratio similar to that found in urine samples. Dark incubation experiments have shown that ketamine is not susceptible to microbial degradation or hydrolysis. Phototransformation was demonstrated to significantly reduce the concentration of ketamine and norketamine in river waters (t(1/2) = 12.6 ± 0.4 and 10.1 ± 0.4 h, respectively) and resulted in byproducts that are similar to human metabolites. Both direct and indirect photolysis led to the N-demethylation of ketamine to form norketamine and other byproducts, including hydroxy-norketamine (HNK), dehydronorketamine (DNK), hydroxy-ketamine (HK) and isomer forms of ketamine and norketamine. Irradiated solutions exhibited higher toxicity (via the Microtox test). Although a final risk assessment could not be made due to a lack of studies on the chronic effects on aquatic organisms, the high and persistent environmental occurrences of ketamine and norketamine as well as the increasingly acute toxicity of the photo byproducts demonstrate the importance of including metabolites in evaluation of the overall risk of ketamine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  14. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments.

    PubMed

    Tiwari, Manoj K; Guha, Saumyen

    2014-03-15

    The attenuation of chlorpyrifos (CPF) by the enriched indigenous soil microorganism was studied in 15 d aerobic and 60 d anaerobic batch experiments in aqueous and soil slurry (1:3 w/w) media. At the end of the batch experiments, 2.78 ± 0.11 μM of CPF was degraded by 82% in aerobic and 66% in anaerobic aqueous environments, while 12.4 ± 0.5 μM of CPF was degraded by 48% in aerobic and 31% in anaerobic soil slurries. The reduced degradation in the soil slurries was due to the significantly (2-10 times) slower rate of degradation of soil phase CPF compared with its degradation rate in water. The pathways of degradation of CPF were identified, including a partial anaerobic degradation pathway that is constructed for the first time. The simulation of the various conversions in the degradation pathways using first order kinetics was used to analyze relative persistence of metabolites. The common metabolite 3,5,6-trichloro-2-pyridinol (TCP) accumulated (increased monotonically during the period of experiments) in aerobic soil slurry and in anaerobic aqueous as well as soil slurry systems but did not accumulate in aerobic aqueous system. The most toxic compound in the pathway, chlorpyrifos oxon (CPFO) was not detected in anaerobic environment. In aerobic environment, CPFO was short lived in aqueous medium, but accumulated slowly in the soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Issues for storing plant-based alternative fuels in marine environments.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Aktas, Deniz F; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M

    2014-06-01

    Two coastal seawaters (Key West, FL, USA and the Persian Gulf, Bahrain, representing oligotrophic and eutrophic environments, respectively) were used to evaluate potential biodegradation and corrosion problems during exposure to alternative and conventional fuels. Uncoated carbon steel was exposed at the fuel/seawater interface and polarization resistance was monitored. Under typical marine storage conditions, dioxygen in natural seawater exposed to fuel and carbon steel was reduced to <0.1parts-per-million within 2d due to consumption by corrosion reactions and aerobic microbial respiration. Sulfides, produced by anaerobic sulfate-reducing bacteria, and chlorides were co-located in corrosion products. Transient dioxygen influenced both metabolic degradation pathways and resulting metabolites. Catechols, indicative of aerobic biodegradation, persisted after 90d exposures. Detection of catechols suggested that initial exposure to dioxygen resulted in the formation of aerobic metabolites that exacerbated subsequent corrosion processes. Published by Elsevier B.V.

  16. Pharmacokinetics, distribution, metabolism, and excretion of the dual reuptake inhibitor [(14)C]-nefopam in rats.

    PubMed

    Yu, Jian; Solon, Eric; Shen, Helen; Modi, Nishit B; Mittur, Aravind

    2016-11-01

    1. This study examined the pharmacokinetics, distribution, metabolism, and excretion of [(14)C] nefopam in rats after a single oral administration. Blood, plasma, and excreta were analyzed for total radioactivity, nefopam, and metabolites. Metabolites were profiled and identified. Radioactivity distribution was determined by quantitative whole-body autoradiography. 2. The pharmacokinetic profiles of total radioactivity and nefopam were similar in male and female rats. Radioactivity partitioned approximately equally between plasma and red blood cells. A majority of the radioactivity was excreted in urine within 24 hours and mass balance was achieved within 7 days. 3. Intact nefopam was a minor component in plasma and excreta. Numerous metabolites were identified in plasma and urine generated by multiple pathways including: hydroxylation/oxidation metabolites (M11, M22a and M22b, M16, M20), some of which were further glucuronidated (M6a to M6c, M7a to M7c, M8a and M8b, M3a to M3d); N-demethylation of nefopam to metabolite M21, which additionally undergoes single or multiple hydroxylations or sulfation (M9, M14, M23), with some of the hydroxylated metabolites further glucuronidated (M2a to M2d). 4. Total radioactivity rapidly distributed with highest concentrations found in the urinary bladder, stomach, liver, kidney medulla, small intestine, uveal tract, and kidney cortex without significant accumulation or persistence. Radioactivity reversibly associated with melanin-containing tissues.

  17. Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study

    PubMed Central

    Joët, Thierry; Laffargue, Andréina; Salmona, Jordi; Doulbeau, Sylvie; Descroix, Frédéric; Bertrand, Benoît; de Kochko, Alexandre; Dussert, Stéphane

    2009-01-01

    The genomic era facilitates the understanding of how transcriptional networks are interconnected to program seed development and filling. However, to date, little information is available regarding dicot seeds with a transient perisperm and a persistent, copious endosperm. Coffea arabica is the subject of increasing genomic research and is a model for nonorthodox albuminous dicot seeds of tropical origin. The aim of this study was to reconstruct the metabolic pathways involved in the biosynthesis of the main coffee seed storage compounds, namely cell wall polysaccharides, triacylglycerols, sucrose, and chlorogenic acids. For this purpose, we integrated transcriptomic and metabolite analyses, combining real-time RT-PCR performed on 137 selected genes (of which 79 were uncharacterized in Coffea) and metabolite profiling. Our map-drawing approach derived from model plants enabled us to propose a rationale for the peculiar traits of the coffee endosperm, such as its unusual fatty acid composition, remarkable accumulation of chlorogenic acid and cell wall polysaccharides. Comparison with the developmental features of exalbuminous seeds described in the literature revealed that the two seed types share important regulatory mechanisms for reserve biosynthesis, independent of the origin and ploidy level of the storage tissue. PMID:19207685

  18. Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp.

    PubMed

    Schroer, Hunter W; Langenfeld, Kathryn L; Li, Xueshu; Lehmler, Hans-Joachim; Just, Craig L

    2017-02-01

    Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitrotoluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover 13 novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus.

  19. Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp

    PubMed Central

    Schroer, Hunter W.; Langenfeld, Kathryn; Li, Xueshu; Lehmler, Hans-Joachim; Just, Craig L.

    2018-01-01

    Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitroluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover thirteen novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus. PMID:27913891

  20. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  1. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  2. Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils.

    PubMed

    Zhang, Lilan; Lee, Linda S; Niu, Junfeng; Liu, Jinxia

    2017-10-01

    With the phaseout of perfluorooctane sulfonate (PFOS) production in most countries and its well known recalcitrance, there is a need to quantify the potential release of PFOS from precursors previously or currently being emitted into the environment. Aerobic biodegradation of N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was monitored in two soils from Indiana, USA: an acidic forest silt loam (FRST-48, pH = 5.5) and a high pH agricultural loam (PSF-49, pH = 7.8) with similar organic carbon contents (2.4 and 2.6%) for 210 d and 180 d, respectively. At designated times, triplicate samples were sacrificed for which headspace samples were taken followed by three sequential extractions. Extracts were analyzed using HPLC-tandem mass spectrometry. Measured profiles of EtFOSE degradation and generation/degradation of subsequent metabolites were fitted to the Indiana soils data as well as to a previously published data set for a Canadian soil using an R-based model (KinGUII) to explore pathways and estimate half-lives (t 1/2 ) for EtFOSE and metabolites. EtFOSE degradation ranged from a few days to up to a month. PFOS yields ranged form 1.06-5.49 mol% with the alkaline soils being four to five times higher than the acidic soil. In addition, a direct pathway to PFOS had to be invoked to describe the early generation of PFOS in the Canadian soil. Of all metabolites, the sulfonamidoacetic acids were the most persistent (t 1/2  ≥ 3 months) in all soils. We hypothesized that while pH-pK a dependent speciation may have impacted rates, differences in microbial communities between the 3 soils arising from varied soil properties including pH, nutrient levels, soil management, and climatic regions are likely the major factors affecting pathways, rates, and PFOS yields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway.

    PubMed

    Malinovsky, Frederikke Gro; Thomsen, Marie-Louise F; Nintemann, Sebastian J; Jagd, Lea Møller; Bourgine, Baptiste; Burow, Meike; Kliebenstein, Daniel J

    2017-12-12

    To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways.

  4. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway

    PubMed Central

    Malinovsky, Frederikke Gro; Thomsen, Marie-Louise F; Nintemann, Sebastian J; Jagd, Lea Møller; Bourgine, Baptiste; Burow, Meike

    2017-01-01

    To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways. PMID:29231169

  5. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function.

    PubMed

    Kim, Jungwook; Xiao, Hui; Bonanno, Jeffrey B; Kalyanaraman, Chakrapani; Brown, Shoshana; Tang, Xiangying; Al-Obaidi, Nawar F; Patskovsky, Yury; Babbitt, Patricia C; Jacobson, Matthew P; Lee, Young-Sam; Almo, Steven C

    2013-06-06

    The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.

  6. Human hydroxylated metabolites of BDE-47 and BDE-99 are glucuronidated and sulfated in vitro.

    PubMed

    Erratico, Claudio; Zheng, Xiaobo; Ryden, Andreas; Marsh, Goran; Maho, Walid; Covaci, Adrian

    2015-07-16

    Polybrominated diphenyl ethers (PBDEs) were used worldwide as additive flame retardants and are classified as persistent, bioaccumulable and toxic environmental pollutants. In humans, the hydroxylated metabolites of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) formed in vitro have also been detected in vivo. To further characterize the metabolism of BDE-47 and BDE-99 and to identify candidate markers for monitoring the human exposure to PBDEs using non-invasive approaches, glucuronidation and sulfation of hydroxylated metabolites of BDE-47 and BDE-99 were investigated using human liver microsomes and cytoplasm, respectively. The formed Phase II metabolites were analyzed by liquid chromatography-tandem mass spectrometry using a novel approach to develop analytical methods in absence of authentic standards. All available standards for hydroxylated metabolites of BDE-47 and BDE-99 were glucuronidated and sulfated, showing that glucuronidation and sulfation are part of the metabolism pathway of BDE-47 and BDE-99 in vitro. The major glucuronidated and sulfated analogs of hydroxylated metabolites of BDE-47 were (a) 2,4-DBP-Gluc and 5-Gluc-BDE-47, and (b) 2'-Sulf-BDE-28, 4-Sulf-BDE-42 and 3-Sulf-BDE-47, respectively. The major glucuronidated and sulfated analogs of hydroxylated metabolites of BDE-99 were (a) 2,4,5-TBP-Gluc and 6'-Gluc-BDE-99, and (b) 3'-Sulf-BDE-99 and 5'-Sulf-BDE-99, respectively. Apparent Km values associated with the formation of sulfated metabolites of BDE-47 and BDE-99 were ten times lower than those of the corresponding glucuronidated metabolites, suggesting that sulfated rather than glucuronidated metabolites of OH-PBDEs might be used as markers of human exposure to PBDEs using a non-invasive approach based on urine sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  8. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood.

    PubMed

    Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Su, Kuan-Wen; Hua, Man-Chin; Liao, Sui-Ling; Lai, Shen-Hao; Yao, Tsung-Chieh; Yeh, Kuo-Wei; Huang, Jing-Long

    2018-04-21

    Several metabolites and altered metabolic pathways have been reported to be associated with asthma. However, longitudinal analysis of the dynamics of metabolites contributing to the development of asthma has not yet been fully clarified. We sought to identify the metabolic mechanisms underlying asthma development in early childhood. Thirty children with asthma and paired healthy controls from a prospective birth cohort were enrolled. Time-series analysis of urinary metabolites collected at ages 1, 2, 3, and 4 years were assessed using 1 H-nuclear magnetic resonance (NMR) spectroscopy coupled with partial least-squares discriminant analysis (PLS-DA). Metabolites identified were studied in relation to changes over time in a linear mixed model for repeated measures. A total of 172 urine samples collected from the enrolled children were analyzed. Urinary metabolomics identified four metabolites significantly associated with childhood asthma development, with longitudinal analysis. Among them, dimethylamine, a metabolite produced by intestinal bacteria, appeared to shift from higher to lower level during asthma development. A persistent lower level of 1-methylnicotinamide and allantoin was found in children with asthma, with a peak difference at age 3 years (P = 0.032 and P = 0.021 respectively). Furthermore, a significant inverse correlation was found between allantoin and house dust mite sensitization (Spearman's r = -0.297 P = 0.035). Longitudinal urinary metabolomic profiling provides a link of microbe-environment interactions in the development of childhood asthma. 1-Methylnicotinamide and allantoin may participate in allergic reactions in response to allergen exposure, potentially serving as specific biomarkers for asthma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites

    PubMed Central

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.

    2018-01-01

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly. PMID:29470400

  10. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    PubMed

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly.

  11. Degradation of fluorobenzene and its central metabolites 3-fluorocatechol and 2-fluoromuconate by Burkholderia fungorum FLU100.

    PubMed

    Strunk, Niko; Engesser, Karl-Heinrich

    2013-06-01

    A halobenzene-degrading bacterium, Burkholderia fungorum FLU100 (DSM 23736), was isolated due to its outstanding trait to degrade fluorobenzene. Besides fluorobenzene, it utilizes, even in random mixtures, chlorobenzene, bromobenzene, iodobenzene, benzene, and toluene as sole sources of carbon and energy. FLU100 mineralizes mono-halogenated benzenes almost stoichiometrically (according to halide balance); after a lag phase, it also degrades 3-fluorophenol and 3-chlorophenol completely. The FLU100-derived transposon Tn5-mutant FLU100-P14R22 revealed 3-halocatechol to be a central metabolite of this new halobenzene degradation pathway. In FLU100, halocatechols are-as expected-strictly subject to ortho-cleavage of the catechol ring, with meta-cleavage never been observed. The strain is able to completely mineralize 3-fluorocatechol, the principal catecholic metabolite being nearly exclusively formed from fluorobenzene. The temporarily excreted 2-fluoromuconate formed thereof in turn is subsequently metabolized completely. This important finding falsifies the customary opinion of the persistence of 2-fluoromuconate valid up to now. The degradation of 4-fluorocatechol, however, being a very minor intermediate in FLU100, is substantially slower and incomplete and leads to the accumulation of uncharacterized derivatives of muconic acid and muconolactone in the medium. This branch therefore does not seem to be productive. To our knowledge, this represents the first example of the complete metabolism of 3-fluorocatechol via 2-fluoromuconate, a metabolite hitherto described as a dead-end metabolite in fluoroaromatic degradation.

  12. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera

    NASA Astrophysics Data System (ADS)

    Hillyer, Katie E.; Dias, Daniel A.; Lutz, Adrian; Wilkinson, Shaun P.; Roessner, Ute; Davy, Simon K.

    2017-03-01

    Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography-mass spectrometry (GC-MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian-dinoflagellate symbiosis.

  13. FMM: a web server for metabolic pathway reconstruction and comparative analysis.

    PubMed

    Chou, Chih-Hung; Chang, Wen-Chi; Chiu, Chih-Min; Huang, Chih-Chang; Huang, Hsien-Da

    2009-07-01

    Synthetic Biology, a multidisciplinary field, is growing rapidly. Improving the understanding of biological systems through mimicry and producing bio-orthogonal systems with new functions are two complementary pursuits in this field. A web server called FMM (From Metabolite to Metabolite) was developed for this purpose. FMM can reconstruct metabolic pathways form one metabolite to another metabolite among different species, based mainly on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and other integrated biological databases. Novel presentation for connecting different KEGG maps is newly provided. Both local and global graphical views of the metabolic pathways are designed. FMM has many applications in Synthetic Biology and Metabolic Engineering. For example, the reconstruction of metabolic pathways to produce valuable metabolites or secondary metabolites in bacteria or yeast is a promising strategy for drug production. FMM provides a highly effective way to elucidate the genes from which species should be cloned into those microorganisms based on FMM pathway comparative analysis. Consequently, FMM is an effective tool for applications in synthetic biology to produce both drugs and biofuels. This novel and innovative resource is now freely available at http://FMM.mbc.nctu.edu.tw/.

  14. Metabolism of bepridil in laboratory animals and humans.

    PubMed

    Wu, W N; Hills, J F; Chang, S Y; Ng, K T

    1988-01-01

    The metabolism of bepridil was studied in the Swiss mouse, Sprague-Dawley rat, New Zealand rabbit, rhesus monkey, and healthy human. After oral administration of bepridil-14C-hydrochloride, recoveries of total radioactivity in urine and feces (7 days) were greater than or equal to 80% of the administered dose in all five species. Bepridil and 25 metabolites have been isolated by HPLC and TLC from representative plasma, urine, and fecal extract pools from all species and identified on the basis of TLC, HPLC, and mass spectrometry. The identified metabolites explained 60-99% of the total radioactivity in each sample for rabbit plasma, in which only 17% of the total radioactivity was characterized. Metabolic pathways involving oxidative reactions at seven sites on the bepridil molecule are proposed for each species. Metabolite formation in the five species is described by four interrelated pathways. The metabolic pathway involving aromatic hydroxylation followed by N-dealkylation, N-debenzylation, and N-acetylation was important in all species. Major metabolites produced by this pathway included 4-hydroxy(at N-phenyl)-bepridil (Ia), N-benzyl-4-amino-phenol (IV), and N-acetyl-4-aminophenol (Vy). Metabolite Ia was isolated in significant amounts (greater than or equal to 5% of sample) in all fecal and urine samples except rat urine. Metabolite IV was a major circulating metabolite in all species and a major urinary metabolite in humans. Metabolite Vy was present in significant quantities in urine in all species except rabbit. Other important pathways involved primary reactions such as iso-butyl hydroxylation, pyrrolidine ring oxidation, and N-debenzylation.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    PubMed

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia , arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail. Copyright © 2017 Driscoll et al.

  16. High-Fat Diet and Voluntary Chronic Aerobic Exercise Recover Altered Levels of Aging-Related Tryptophan Metabolites along the Kynurenine Pathway

    PubMed Central

    Lee, Keon-Joo; Cho, Joo-Youn; Lee, Soon-Tae; Kim, Hwa Suk; Shim, Jun Hwa; Lee, Sang Kun; Kim, Manho

    2017-01-01

    Tryptophan metabolites regulate a variety of physiological processes, and their downstream metabolites enter the kynurenine pathway. Age-related changes of metabolites and activities of associated enzymes in this pathway are suggestable and would be potential intervention targets. Blood levels of serum tryptophan metabolites in C57BL/6 mice of different ages, ranging from 6 weeks to 10 months, were assessed using high-performance liquid chromatography, and the enzyme activities for each metabolic step were estimated using the ratio of appropriate metabolite levels. Mice were subjected to voluntary chronic aerobic exercise or high-fat diet to assess their ability to rescue age-related alterations in the kynurenine pathway. The ratio of serum kynurenic acid (KYNA) to 3-hydroxylkynurenine (3-HK) decreased with advancing age. Voluntary chronic aerobic exercise and high-fat diet rescued the decreased KYNA/3-HK ratio in the 6-month-old and 8-month-old mice groups. Tryptophan metabolites and their associated enzyme activities were significantly altered during aging, and the KYNA/3-HK ratio was a meaningful indicator of aging. Exercise and high-fat diet could potentially recover the reduction of the KYNA/3-HK ratio in the elderly. PMID:28680298

  17. Untargeted Plasma Metabolomics Identifies Endogenous Metabolite with Drug-like Properties in Chronic Animal Model of Multiple Sclerosis*

    PubMed Central

    Poisson, Laila M.; Suhail, Hamid; Singh, Jaspreet; Datta, Indrani; Denic, Aleksandar; Labuzek, Krzysztof; Hoda, Md Nasrul; Shankar, Ashray; Kumar, Ashok; Cerghet, Mirela; Elias, Stanton; Mohney, Robert P.; Rodriguez, Moses; Rattan, Ramandeep; Mangalam, Ashutosh K.; Giri, Shailendra

    2015-01-01

    We performed untargeted metabolomics in plasma of B6 mice with experimental autoimmune encephalitis (EAE) at the chronic phase of the disease in search of an altered metabolic pathway(s). Of 324 metabolites measured, 100 metabolites that mapped to various pathways (mainly lipids) linked to mitochondrial function, inflammation, and membrane stability were observed to be significantly altered between EAE and control (p < 0.05, false discovery rate <0.10). Bioinformatics analysis revealed six metabolic pathways being impacted and altered in EAE, including α-linolenic acid and linoleic acid metabolism (PUFA). The metabolites of PUFAs, including ω-3 and ω-6 fatty acids, are commonly decreased in mouse models of multiple sclerosis (MS) and in patients with MS. Daily oral administration of resolvin D1, a downstream metabolite of ω-3, decreased disease progression by suppressing autoreactive T cells and inducing an M2 phenotype of monocytes/macrophages and resident brain microglial cells. This study provides a proof of principle for the application of metabolomics to identify an endogenous metabolite(s) possessing drug-like properties, which is assessed for therapy in preclinical mouse models of MS. PMID:26546682

  18. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression.

    PubMed

    Liu, Lanxiang; Zhou, Xinyu; Zhang, Yuqing; Liu, Yiyun; Yang, Lining; Pu, Juncai; Zhu, Dan; Zhou, Chanjuan; Xie, Peng

    2016-05-15

    Major depressive disorder, with serious impairment in cognitive and social functioning, is a complex psychiatric disorder characterized by pervasive and persistent low mood and a loss of interest or pleasure. However, the underlying molecular mechanisms of depression remain largely unknown. In this study, we used a non-targeted metabolomics approach based on gas chromatography-mass spectrometry of the prefrontal cortex in chronic restraint stress (CRS)-treated rats. CRS was induced in the stress group by restraining rats in a plastic restrainer for 6h every day. This stress paradigm continued for 21 days. Body weight measurement and behavior tests were applied, including the sucrose preference test for anhedonia, the forced swimming test for despair-like behavior, and open field test and the elevated plus-maze to test for anxiety-like behaviors in rats after CRS. Differentially expressed metabolites associated with CRS-treated rats were identified by combining multivariate and univariate statistical analysis and corrected for multiple testing using the Benjamini-Hochberg procedure. A heat map of differential metabolites was constructed using Matlab. Ingenuity Pathways Analysis was applied to identify the predicted pathways and biological functions relevant to the bio-molecules of interest. Our findings showed that CRS induces depression-like behaviors and not anxiety-like behaviors. Thirty-six metabolites were identified as potential depression biomarkers involved in amino acid metabolism, energy metabolism and lipid metabolism, as well as a disturbance in neurotransmitters. Consequently, this study provides useful insights into the molecular mechanisms of depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.

    PubMed

    He, Yi; Wang, Bin; Chen, Wanping; Cox, Russell J; He, Jingren; Chen, Fusheng

    High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research.

    PubMed

    Slenter, Denise N; Kutmon, Martina; Hanspers, Kristina; Riutta, Anders; Windsor, Jacob; Nunes, Nuno; Mélius, Jonathan; Cirillo, Elisa; Coort, Susan L; Digles, Daniela; Ehrhart, Friederike; Giesbertz, Pieter; Kalafati, Marianthi; Martens, Marvin; Miller, Ryan; Nishida, Kozo; Rieswijk, Linda; Waagmeester, Andra; Eijssen, Lars M T; Evelo, Chris T; Pico, Alexander R; Willighagen, Egon L

    2018-01-04

    WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS.

    PubMed

    Yang, Jinfeng; Wang, Nan; Chen, Deying; Yu, Jiong; Pan, Qiaoling; Wang, Dan; Liu, Jingqi; Shi, Xiaowei; Dong, Xiaotian; Cao, Hongcui; Li, Liang; Li, Lanjuan

    2017-01-01

    Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP + hPMSCs. A sensitive 13 C/ 12 C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.

  2. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula)

    PubMed Central

    Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha

    2017-01-01

    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process. PMID:28694813

  3. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula).

    PubMed

    Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha

    2017-01-01

    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula . Broad-sense heritability ( H 2 ) and coefficient of genotypic variation ( CV G ) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H 2 and CV G for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.

  4. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension

    PubMed Central

    Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal

    2015-01-01

    Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway under a constitutive promoter. The presence of AroG* protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG* transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG*. This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG* cells, and the relative frequencies of the different anthocyanins changed as well. PMID:26236327

  5. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension.

    PubMed

    Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal

    2015-01-01

    Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG (*)) of the shikimate pathway under a constitutive promoter. The presence of AroG(*) protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG (*) transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG (*). This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG(*) cells, and the relative frequencies of the different anthocyanins changed as well.

  6. Metabolomic analysis of pancreatic β-cell insulin release in response to glucose.

    PubMed

    Huang, Mei; Joseph, Jamie W

    2012-01-01

    Defining the key metabolic pathways that are important for fuel-regulated insulin secretion is critical to providing a complete picture of how nutrients regulate insulin secretion. We have performed a detailed metabolomics study of the clonal β-cell line 832/13 using a gas chromatography-mass spectrometer (GC-MS) to investigate potential coupling factors that link metabolic pathways to insulin secretion. Mid-polar and polar metabolites, extracted from the 832/13 β-cells, were derivatized and then run on a GC/MS to identify and quantify metabolite concentrations. Three hundred fifty-five out of 527 chromatographic peaks could be identified as metabolites by our metabolomic platform. These identified metabolites allowed us to perform a systematic analysis of key pathways involved in glucose-stimulated insulin secretion (GSIS). Of these metabolites, 41 were consistently identified as biomarker for GSIS by orthogonal partial least-squares (OPLS). Most of the identified metabolites are from common metabolic pathways including glycolytic, sorbitol-aldose reductase pathway, pentose phosphate pathway, and the TCA cycle suggesting these pathways play an important role in GSIS. Lipids and related products were also shown to contribute to the clustering of high glucose sample groups. Amino acids lysine, tyrosine, alanine and serine were upregulated by glucose whereas aspartic acid was downregulated by glucose suggesting these amino acids might play a key role in GSIS. In summary, a coordinated signaling cascade elicited by glucose metabolism in pancreatic β-cells is revealed by our metabolomics platform providing a new conceptual framework for future research and/or drug discovery.

  7. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.

    PubMed

    Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato

    2010-12-01

    Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared.com/file/hTWyndYU/extra.html and http://www.4shared.com/file/VbQIIDeu/intra.html. PAPi package is available in: http://www.4shared.com/file/s0uIYWIg/PAPi_10.html s.villas-boas@auckland.ac.nz Supplementary data are available at Bioinformatics online.

  8. Integrated omics analysis of specialized metabolism in medicinal plants.

    PubMed

    Rai, Amit; Saito, Kazuki; Yamazaki, Mami

    2017-05-01

    Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick.

    PubMed

    Schor, Raissa; Cox, Russell

    2018-03-01

    Covering: 1893 to 2017Harold Raistrick was involved in the discovery of many of the most important classes of fungal metabolites during the 20th century. This review focusses on how these discoveries led to developments in isotopic labelling, biomimetic chemistry and the discovery, analysis and exploitation of biosynthetic gene clusters for major classes of fungal metabolites including: alternariol; geodin and metabolites of the emodin pathway; maleidrides; citrinin and the azaphilones; dehydrocurvularin; mycophenolic acid; and the tropolones. Key recent advances in the molecular understanding of these important pathways, including the discovery of biosynthetic gene clusters, the investigation of the molecular and chemical aspects of key biosynthetic steps, and the reengineering of key components of the pathways are reviewed and compared. Finally, discussion of key relationships between metabolites and pathways and the most important recent advances and opportunities for future research directions are given.

  10. Effects of Fruit Ellagitannin Extracts, Ellagic Acid, and Their Colonic Metabolite, Urolithin A, on Wnt Signaling

    PubMed Central

    Sharma, Meenakshi; Li, Liya; Celver, Jeremy; Killian, Caroline; Kovoor, Abraham; Seeram, Navindra P.

    2010-01-01

    Recent data suggest that ellagitannins (ETs), a class of hydrolyzable tannins found in some fruits and nuts, may have beneficial effects against colon cancer. In the stomach and gut, ETs hydrolyze to release ellagic acid (EA) and are converted by gut microbiota to urolithin-A (UA; 3,8-dihydroxy-6H-dibenzopyran-6-one) type metabolites which may persist in the colon through enterohepatic circulation. However, little is known about the mechanisms of action of either the native compounds or their metabolites on colon carcinogenesis. Components of Wnt signaling pathways are known to play a pivotal role in human colon carcinogenesis and inappropriate activation of the signaling cascade is observed in 90% of colorectal cancers. Here we investigated the effects of UA, EA, and ET rich fruit extracts on Wnt signaling in a human 293T cell line using a luciferase reporter of canonical Wnt pathway-mediated transcriptional activation. The ET extracts were obtained from strawberry (Fragaria annassa), Jamun berry (Eugenia jambolana), and pomegranate (Punica granatum) fruit and were all standardized to phenolic content (as gallic acid equivalents, GAEs, by the Folin Ciocalteau method) and to EA content (by high performance liquid chromatography methods): strawberry=20.5% GAE, 5.0% EA; Jamun berry= 20.5% GAE, 4.2% EA; pomegranate= 55% GAE, 3.5% EA. The ET-extracts (IC50=28.0-30.0 μg/mL), EA (IC50=19.0 μg/mL; 63 μM) and UA (IC50=9.0 μg/mL; 39 μM) inhibited Wnt signaling suggesting that ET-rich foods have potential against colon carcinogenesis and that urolithins are relevant bioactive constituents in the colon. PMID:20014760

  11. Cellular stress created by intermediary metabolite imbalances.

    PubMed

    Lee, Sang Jun; Trostel, Andrei; Le, Phuoc; Harinarayanan, Rajendran; Fitzgerald, Peter C; Adhya, Sankar

    2009-11-17

    Small molecules generally activate or inhibit gene transcription as externally added substrates or as internally accumulated end-products, respectively. Rarely has a connection been made that links an intracellular intermediary metabolite as a signal of gene expression. We report that a perturbation in the critical step of a metabolic pathway--the D-galactose amphibolic pathway--changes the dynamics of the pathways leading to accumulation of the intermediary metabolite UDP-galactose. This accumulation causes cell stress and transduces signals that alter gene expression so as to cope with the stress by restoring balance in the metabolite pool. This underscores the importance of studying the global effects of alterations in the level of intermediary metabolites in causing stress and coping with it by transducing signals to genes to reach a stable state of equilibrium (homeostasis). Such studies are an essential component in the integration of metabolomics, proteomics, and transcriptomics.

  12. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future

    PubMed Central

    Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.

    2017-01-01

    Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites, and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. PMID:28239968

  13. Metabolic Biomarkers and Neurodegeneration: A Pathway Enrichment Analysis of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis.

    PubMed

    Kori, Medi; Aydın, Busra; Unal, Semra; Arga, Kazim Yalcin; Kazan, Dilek

    2016-11-01

    Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) lack robust diagnostics and prognostic biomarkers. Metabolomics is a postgenomics field that offers fresh insights for biomarkers of common complex as well as rare diseases. Using data on metabolite-disease associations published in the previous decade (2006-2016) in PubMed, ScienceDirect, Scopus, and Web of Science, we identified 101 metabolites as putative biomarkers for these three neurodegenerative diseases. Notably, uric acid, choline, creatine, L-glutamine, alanine, creatinine, and N-acetyl-L-aspartate were the shared metabolite signatures among the three diseases. The disease-metabolite-pathway associations pointed out the importance of membrane transport (through ATP binding cassette transporters), particularly of arginine and proline amino acids in all three neurodegenerative diseases. When disease-specific and common metabolic pathways were queried by using the pathway enrichment analyses, we found that alanine, aspartate, glutamate, and purine metabolism might act as alternative pathways to overcome inadequate glucose supply and energy crisis in neurodegeneration. These observations underscore the importance of metabolite-based biomarker research in deciphering the elusive pathophysiology of neurodegenerative diseases. Future research investments in metabolomics of complex diseases might provide new insights on AD, PD, and ALS that continue to place a significant burden on global health.

  14. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    PubMed

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  15. Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations.

    PubMed

    Masukagami, Y; De Souza, D P; Dayalan, S; Bowen, C; O'Callaghan, S; Kouremenos, K; Nijagal, B; Tull, D; Tivendale, K A; Markham, P F; McConville, M J; Browning, G F; Sansom, F M

    2017-01-01

    Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum , which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13 C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum , which may reflect differing host nutrient availabilities. The 13 C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis . This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.

  16. Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism.

    PubMed

    Krishnaiah, Saikumari Y; Wu, Gang; Altman, Brian J; Growe, Jacqueline; Rhoades, Seth D; Coldren, Faith; Venkataraman, Anand; Olarerin-George, Anthony O; Francey, Lauren J; Mukherjee, Sarmistha; Girish, Saiveda; Selby, Christopher P; Cal, Sibel; Er, Ubeydullah; Sianati, Bahareh; Sengupta, Arjun; Anafi, Ron C; Kavakli, I Halil; Sancar, Aziz; Baur, Joseph A; Dang, Chi V; Hogenesch, John B; Weljie, Aalim M

    2017-04-04

    The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    PubMed

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Concordance of Changes in Metabolic Pathways Based on Plasma Metabolomics and Skeletal Muscle Transcriptomics in Type 1 Diabetes

    PubMed Central

    Dutta, Tumpa; Chai, High Seng; Ward, Lawrence E.; Ghosh, Aditya; Persson, Xuan-Mai T.; Ford, G. Charles; Kudva, Yogish C.; Sun, Zhifu; Asmann, Yan W.; Kocher, Jean-Pierre A.; Nair, K. Sreekumaran

    2012-01-01

    Insulin regulates many cellular processes, but the full impact of insulin deficiency on cellular functions remains to be defined. Applying a mass spectrometry–based nontargeted metabolomics approach, we report here alterations of 330 plasma metabolites representing 33 metabolic pathways during an 8-h insulin deprivation in type 1 diabetic individuals. These pathways included those known to be affected by insulin such as glucose, amino acid and lipid metabolism, Krebs cycle, and immune responses and those hitherto unknown to be altered including prostaglandin, arachidonic acid, leukotrienes, neurotransmitters, nucleotides, and anti-inflammatory responses. A significant concordance of metabolome and skeletal muscle transcriptome–based pathways supports an assumption that plasma metabolites are chemical fingerprints of cellular events. Although insulin treatment normalized plasma glucose and many other metabolites, there were 71 metabolites and 24 pathways that differed between nondiabetes and insulin-treated type 1 diabetes. Confirmation of many known pathways altered by insulin using a single blood test offers confidence in the current approach. Future research needs to be focused on newly discovered pathways affected by insulin deficiency and systemic insulin treatment to determine whether they contribute to the high morbidity and mortality in T1D despite insulin treatment. PMID:22415876

  19. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells

    PubMed Central

    Driscoll, Timothy P.; Verhoeve, Victoria I.; Guillotte, Mark L.; Lehman, Stephanie S.; Rennoll, Sherri A.; Beier-Sexton, Magda; Rahman, M. Sayeedur; Azad, Abdu F.

    2017-01-01

    ABSTRACT Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. PMID:28951473

  20. ipso-Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate Sulfonamide Antibiotics

    PubMed Central

    Ricken, Benjamin; Cichocka, Danuta; Parisi, Martina; Lenz, Markus; Wyss, Dominik; Martínez-Lavanchy, Paula M.; Müller, Jochen A.; Shahgaldian, Patrick; Tulli, Ludovico G.; Kohler, Hans-Peter E.; Kolvenbach, Boris A.

    2013-01-01

    Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us. PMID:23835177

  1. Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families.

    PubMed

    Son, Su Young; Kim, Na Kyung; Lee, Sunmin; Singh, Digar; Kim, Ga Ryun; Lee, Jong Seok; Yang, Hee-Sun; Yeo, Joohong; Lee, Sarah; Lee, Choong Hwan

    2016-09-01

    A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.

  2. GC–MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons

    PubMed Central

    Liu, Siwen; Bode, Liv; Zhang, Lujun; He, Peng; Huang, Rongzhong; Sun, Lin; Chen, Shigang; Zhang, Hong; Guo, Yujie; Zhou, Jingjing; Fu, Yuying; Zhu, Dan; Xie, Peng

    2015-01-01

    Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies. PMID:26287181

  3. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  4. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future.

    PubMed

    Barnes, Stephen; Benton, H Paul; Casazza, Krista; Cooper, Sara J; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K; Renfrow, Matthew B; Tiwari, Hemant K

    2016-08-01

    Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.

    PubMed

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2016-01-01

    Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.

    PubMed

    Badawi, Nora; Rønhede, Stig; Olsson, Stefan; Kragelund, Birthe B; Johnsen, Anders H; Jacobsen, Ole Stig; Aamand, Jens

    2009-10-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 microg l(-1)). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern.

  7. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    PubMed

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  8. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition,more » the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.« less

  9. A single-run liquid chromatography mass spectrometry method to quantify neuroactive kynurenine pathway metabolites in rat plasma.

    PubMed

    Orsatti, Laura; Speziale, Roberto; Orsale, Maria Vittoria; Caretti, Fulvia; Veneziano, Maria; Zini, Matteo; Monteagudo, Edith; Lyons, Kathryn; Beconi, Maria; Chan, Kelvin; Herbst, Todd; Toledo-Sherman, Leticia; Munoz-Sanjuan, Ignacio; Bonelli, Fabio; Dominguez, Celia

    2015-03-25

    Neuroactive metabolites in the kynurenine pathway of tryptophan catabolism are associated with neurodegenerative disorders. Tryptophan is transported across the blood-brain barrier and converted via the kynurenine pathway to N-formyl-L-kynurenine, which is further degraded to L-kynurenine. This metabolite can then generate a group of metabolites called kynurenines, most of which have neuroactive properties. The association of tryptophan catabolic pathway alterations with various central nervous system (CNS) pathologies has raised interest in analytical methods to accurately quantify kynurenines in body fluids. We here describe a rapid and sensitive reverse-phase HPLC-MS/MS method to quantify L-kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxy-L-kynurenine (3HK) and anthranilic acid (AA) in rat plasma. Our goal was to quantify these metabolites in a single run; given their different physico-chemical properties, major efforts were devoted to develop a chromatography suitable for all metabolites that involves plasma protein precipitation with acetonitrile followed by chromatographic separation by C18 RP chromatography, detected by electrospray mass spectrometry. Quantitation range was 0.098-100 ng/ml for 3HK, 9.8-20,000 ng/ml for KYN, 0.49-1000 ng/ml for KYNA and AA. The method was linear (r>0.9963) and validation parameters were within acceptance range (calibration standards and QC accuracy within ±30%). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Metabolomic strategies to map functions of metabolic pathways

    PubMed Central

    Mulvihill, Melinda M.

    2014-01-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200

  11. Yeast synthetic biology for high-value metabolites.

    PubMed

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Comprehensive Plasma Metabolomic Analyses of Atherosclerotic Progression Reveal Alterations in Glycerophospholipid and Sphingolipid Metabolism in Apolipoprotein E-deficient Mice

    PubMed Central

    Dang, Vi T.; Huang, Aric; Zhong, Lexy H.; Shi, Yuanyuan; Werstuck, Geoff H.

    2016-01-01

    Atherosclerosis is the major underlying cause of most cardiovascular diseases. Despite recent advances, the molecular mechanisms underlying the pathophysiology of atherogenesis are not clear. In this study, comprehensive plasma metabolomics were used to investigate early-stage atherosclerotic development and progression in chow-fed apolipoprotein E-deficient mice at 5, 10 and 15 weeks of age. Comprehensive plasma metabolomic profiles, based on 4365 detected metabolite features, differentiate atherosclerosis-prone from atherosclerosis-resistant models. Metabolites in the sphingomyelin pathway were significantly altered prior to detectable lesion formation and at all subsequent time-points. The cytidine diphosphate-diacylglycerol pathway was up-regulated during stage I of atherosclerosis, while metabolites in the phosphatidylethanolamine and glycosphingolipid pathways were augmented in mice with stage II lesions. These pathways, involving glycerophospholipid and sphingolipid metabolism, were also significantly affected during the course of atherosclerotic progression. Our findings suggest that distinct plasma metabolomic profiles can differentiate the different stages of atherosclerotic progression. This study reveals that alteration of specific, previously unreported pathways of glycerophospholipid and sphingolipid metabolism are associated with atherosclerosis. The clear difference in the level of several metabolites supports the use of plasma lipid profiling as a diagnostic tool of atherogenesis. PMID:27721472

  13. Metabolomic analysis of 92 pulmonary embolism patients from a nested case-control study identifies metabolites associated with adverse clinical outcomes.

    PubMed

    Zeleznik, O A; Poole, E M; Lindstrom, S; Kraft, P; Van Hylckama Vlieg, A; Lasky-Su, J A; Harrington, L B; Hagan, K; Kim, J; Parry, B A; Giordano, N; Kabrhel, C

    2018-03-01

    Essentials Risk-stratification often fails to predict clinical deterioration in pulmonary embolism (PE). First-ever high-throughput metabolomics analysis of risk-stratified PE patients. Changes in circulating metabolites reflect a compromised energy metabolism in PE. Metabolites play a key role in the pathophysiology and risk stratification of PE. Background Patients with acute pulmonary embolism (PE) exhibit wide variation in clinical presentation and outcomes. Our understanding of the pathophysiologic mechanisms differentiating low-risk and high-risk PE is limited, so current risk-stratification efforts often fail to predict clinical deterioration and are insufficient to guide management. Objectives To improve our understanding of the physiology differentiating low-risk from high-risk PE, we conducted the first-ever high-throughput metabolomics analysis (843 named metabolites) comparing PE patients across risk strata within a nested case-control study. Patients/methods We enrolled 92 patients diagnosed with acute PE and collected plasma within 24 h of PE diagnosis. We used linear regression and pathway analysis to identify metabolites and pathways associated with PE risk-strata. Results When we compared 46 low-risk with 46 intermediate/high-risk PEs, 50 metabolites were significantly different after multiple testing correction. These metabolites were enriched in the following pathways: tricarboxylic acid (TCA) cycle, fatty acid metabolism (acyl carnitine) and purine metabolism, (hypo)xanthine/inosine containing. Additionally, energy, nucleotide and amino acid pathways were downregulated in intermediate/high-risk PE patients. When we compared 28 intermediate-risk with 18 high-risk PE patients, 41 metabolites differed at a nominal P-value level. These metabolites were enriched in fatty acid metabolism (acyl cholines), and hemoglobin and porphyrin metabolism. Conclusion Our results suggest that high-throughput metabolomics can provide insight into the pathophysiology of PE. Specifically, changes in circulating metabolites reflect compromised energy metabolism in intermediate/high-risk PE patients. These findings demonstrate the important role metabolites play in the pathophysiology of PE and highlight metabolomics as a potential tool for risk stratification of PE. © 2017 International Society on Thrombosis and Haemostasis.

  14. Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport

    PubMed Central

    Amano, Ikuko; Kitajima, Sakihito; Suzuki, Hideyuki; Koeduka, Takao

    2018-01-01

    The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants. PMID:29902274

  15. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine.

    PubMed

    Pybus, Brandon S; Sousa, Jason C; Jin, Xiannu; Ferguson, James A; Christian, Robert E; Barnhart, Rebecca; Vuong, Chau; Sciotti, Richard J; Reichard, Gregory A; Kozar, Michael P; Walker, Larry A; Ohrt, Colin; Melendez, Victor

    2012-08-02

    The 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ's haemotoxic and anti-malarial properties are not fully understood. In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. Relative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.

  16. Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. elegans

    PubMed Central

    Meisel, Joshua D.; Panda, Oishika; Mahanti, Parag; Schroeder, Frank C.; Kim, Dennis H.

    2014-01-01

    Summary Discrimination among pathogenic and beneficial microbes is essential for host organism immunity and homeostasis. Here, we show that chemosensory detection of two secondary metabolites produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary metabolites phenazine-1-carboxamide and pyochelin activate a G protein-signaling pathway in the ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β. DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple animal host can be modified by the microbial environment, and suggest that secondary metabolites produced by microbes may provide environmental cues that contribute to pathogen recognition and host survival. PMID:25303524

  17. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals.

    PubMed

    Parthasarathy, Anutthaman; Cross, Penelope J; Dobson, Renwick C J; Adams, Lily E; Savka, Michael A; Hudson, André O

    2018-01-01

    Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.

  18. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals

    PubMed Central

    Parthasarathy, Anutthaman; Cross, Penelope J.; Dobson, Renwick C. J.; Adams, Lily E.; Savka, Michael A.; Hudson, André O.

    2018-01-01

    Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed. PMID:29682508

  19. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    EPA Science Inventory

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  20. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults.

    PubMed

    Sandhu, Amandeep K; Miller, Marshall G; Thangthaeng, Nopporn; Scott, Tammy M; Shukitt-Hale, Barbara; Edirisinghe, Indika; Burton-Freeman, Britt

    2018-01-24

    Strawberries contain a wide array of nutrients and phytochemicals including polyphenols such as anthocyanins, proanthocyanidins and ellagitannins. These polyphenols are absorbed and metabolized to various phenolic metabolites/conjugates in the body, which may play a role in disease risk reduction. In the present study, we investigated the metabolic fate of strawberry polyphenols after chronic (90 days) supplementation of freeze-dried strawberry (24 g d -1 , equivalent to 2 cups of fresh strawberries) vs. control powder in 19 healthy older adults. Blood samples were collected at two time-points i.e., fasting (t = 0 h) and 2 h after the breakfast meal. On days 45 and 90 breakfast also included a control or strawberry drink consistent with their treatment randomization. A total of 21 polyphenolic metabolites were quantified in plasma consisting of 3 anthocyanins/metabolites, 3 urolithin metabolites and 15 phenolic acid metabolites. Among anthocyanins/metabolite, pelargonidin glucuronide (85.7 ± 9.0 nmol L -1 , t = 2 h, day 90) was present in the highest concentration. Persistent concentrations of anthocyanins/metabolites, urolithins and some phenolic acids were observed in fasting (t = 0 h) plasma samples on day 45 and 90 after strawberry drink consumption suggesting a role of enteric, enterohepatic recycling or upregulation of gut microbial and/or human metabolism of these compounds. Our results suggest that strawberry polyphenols are absorbed and extensively metabolized, and can persist in the circulation.

  1. Metabolomic strategies to map functions of metabolic pathways.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2014-08-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. Copyright © 2014 the American Physiological Society.

  2. Chiral PCB 91 and 149 Toxicity Testing in Embryo and Larvae (Danio rerio): Application of Targeted Metabolomics via UPLC-MS/MS

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Yin, Zhiqiang; Yang, Yang; Qiu, Jing; Wang, Chengju

    2016-09-01

    In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.

  3. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.

  5. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses.

    PubMed

    Rennenberg, Heinz; Herschbach, Cornelia

    2014-11-01

    Understanding the dynamics of physiological process in the systems biology era requires approaches at the genome, transcriptome, proteome, and metabolome levels. In this context, metabolite flux experiments have been used in mapping metabolite pathways and analysing metabolic control. In the present review, sulphur metabolism was taken to illustrate current challenges of metabolic flux analyses. At the cellular level, restrictions in metabolite flux analyses originate from incomplete knowledge of the compartmentation network of metabolic pathways. Transport of metabolites through membranes is usually not considered in flux experiments but may be involved in controlling the whole pathway. Hence, steady-state and snapshot readings need to be expanded to time-course studies in combination with compartment-specific metabolite analyses. Because of species-specific differences, differences between tissues, and stress-related responses, the quantitative significance of different sulphur sinks has to be elucidated; this requires the development of methods for whole-sulphur metabolome approaches. Different cell types can contribute to metabolite fluxes to different extents at the tissue and organ level. Cell type-specific analyses are needed to characterize these contributions. Based on such approaches, metabolite flux analyses can be expanded to the whole-plant level by considering long-distance transport and, thus, the interaction of roots and the shoot in metabolite fluxes. However, whole-plant studies need detailed empirical and mathematical modelling that have to be validated by experimental analyses. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle

    PubMed Central

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response. PMID:25927228

  7. Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle.

    PubMed

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response.

  8. Prominent Steatosis with Hypermetabolism of the Cell Line Permissive for Years of Infection with Hepatitis C Virus

    PubMed Central

    Sugiyama, Kazuo; Ebinuma, Hirotoshi; Nakamoto, Nobuhiro; Sakasegawa, Noriko; Murakami, Yuko; Chu, Po-sung; Usui, Shingo; Ishibashi, Yuka; Wakayama, Yuko; Taniki, Nobuhito; Murata, Hiroko; Saito, Yoshimasa; Fukasawa, Masayoshi; Saito, Kyoko; Yamagishi, Yoshiyuki; Wakita, Takaji; Takaku, Hiroshi; Hibi, Toshifumi; Saito, Hidetsugu; Kanai, Takanori

    2014-01-01

    Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems. PMID:24718268

  9. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

    PubMed

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark

    2013-06-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

  10. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway[S

    PubMed Central

    Fischer, Robert; Konkel, Anne; Mehling, Heidrun; Blossey, Katrin; Gapelyuk, Andrej; Wessel, Niels; von Schacky, Clemens; Dechend, Ralf; Muller, Dominik N.; Rothe, Michael; Luft, Friedrich C.; Weylandt, Karsten; Schunck, Wolf-Hagen

    2014-01-01

    Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation. PMID:24634501

  11. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  12. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines.

    PubMed

    Huang, Joanne H; Park, Hyoungjun; Iaconelli, Jonathan; Berkovitch, Shaunna S; Watmuff, Bradley; McPhie, Donna; Öngür, Dost; Cohen, Bruce M; Clish, Clary B; Karmacharya, Rakesh

    2017-02-03

    We undertook an unbiased metabolite profiling of fibroblasts from schizophrenia patients and healthy controls to identify metabolites and pathways that are dysregulated in disease, seeking to gain new insights into the disease biology of schizophrenia and to discover potential disease-related biomarkers. We measured polar and nonpolar metabolites in the fibroblasts under normal conditions and under two stressful physiological perturbations: growth in low-glucose media and exposure to the steroid hormone dexamethasone. We found that metabolites that were significantly different between schizophrenia and control subjects showed separation of the two groups by partial least-squares discriminant analysis methods. This separation between schizophrenia and healthy controls was more robust with metabolites identified under the perturbation conditions. The most significant individual metabolite differences were also found in the perturbation experiments. Metabolites that were significantly different between schizophrenia and healthy controls included a number of plasmalogens and phosphatidylcholines. We present these results in the context of previous reports of metabolic profiling of brain tissue and plasma in schizophrenia. These results show the applicability of metabolite profiling under stressful perturbations to reveal cellular pathways that may be involved in disease biology.

  13. Probabilistic pathway construction.

    PubMed

    Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha

    2011-07-01

    Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways.

    PubMed

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  15. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery

    PubMed Central

    Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena

    2016-01-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  16. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    PubMed

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between groups were observed in concentrations of free fatty acids or vitamin D metabolites. Evaluation of the relationship of metabolites with clinical characteristics showed 1) negative associations of essential and BCAA with insulin sensitivity and sex hormone-binding globulin and 2) positive associations with homeostasis model of insulin resistance and free testosterone; metabolites were not associated with BMI or percent body fat. PCOS was associated with significant metabolic alterations not attributed exclusively to androgen-related pathways, obesity, or MetS. Concentrations of essential amino acids and BCAA are increased in PCOS, which might result from or contribute to their insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Combining a Nontargeted and Targeted Metabolomics Approach to Identify Metabolic Pathways Significantly Altered in Polycystic Ovary Syndrome

    PubMed Central

    Chang, Alice Y.; Lalia, Antigoni Z.; Jenkins, Gregory D.; Dutta, Tumpa; Carter, Rickey E.; Singh, Ravinder J.; Sreekumaran Nair, K.

    2017-01-01

    Objective Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Methods Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. Results This multiethnic, obese sample was matched by age (PCOS, 37 ± 6; MetS, 40 ± 6 years) and body mass index (BMI) (PCOS, 34.6 ± 5.1; MetS, 33.7 ± 5.2 kg/m2). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P = .02), essential amino acids (P = .03), the essential amino acid lysine (P = .02), and the lysine metabolite α-aminoadipic acid (P = .02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between groups were observed in concentrations of free fatty acids or vitamin D metabolites. Evaluation of the relationship of metabolites with clinical characteristics showed 1) negative associations of essential and BCAA with insulin sensitivity and sex hormone–binding globulin and 2) positive associations with homeostasis model of insulin resistance and free testosterone; metabolites were not associated with BMI or percent body fat. Conclusions PCOS was associated with significant metabolic alterations not attributed exclusively to androgen-related pathways, obesity, or MetS. Concentrations of essential amino acids and BCAA are increased in PCOS, which might result from or contribute to their insulin resistance. PMID:28521878

  18. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study

    PubMed Central

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-01-01

    Objective: It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. Methods: The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. Results: In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r=−0.57 and waist circumference: r=−0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r=0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r=0.52 and r=0.50; respectively). Conclusions: Lifestyle factors and phenotypes seem to interrelate in various metabolic pathways. A possible protective effect of coffee could be mediated via counterbalance of pathways of obesity involving hepatic phospholipids. Experimental studies should validate the biological mechanisms. PMID:24608922

  20. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study.

    PubMed

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-11-01

    It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r = -0.57 and waist circumference: r = -0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r = 0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r = 0.52 and r = 0.50; respectively). Lifestyle factors and phenotypes seem to interrelate in various metabolic pathways. A possible protective effect of coffee could be mediated via counterbalance of pathways of obesity involving hepatic phospholipids. Experimental studies should validate the biological mechanisms.

  1. Residue analysis and persistence evaluation of fipronil and its metabolites in cotton using high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Xiaohu; Yu, Yang; Xu, Jun; Dong, Fengshou; Liu, Xingang; Du, Pengqiang; Wei, Dongmei; Zheng, Yongquan

    2017-01-01

    A simple residue analytical method based on the QuEChERS approach and high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection was developed for the analysis of fipronil and its three metabolites in cottonseed, cotton plant and soil. The average recoveries of four test compounds from all three matrices were 78.6-108.9% at the level of 0.005 to 0.5 mg/kg, with an RSD in the range of 0.6 to 13.7%. The limit of quantification (LOQ) of the four test compounds ranged from 0.005 to 0.01 mg/kg. The results of the residual dynamics experiments showed that fipronil dissipated rapidly in cotton plants and soil and that oxidation and photolysis were the main degradation pathways. Moreover, the bi-exponential models demonstrated a good fit of the measured data for fipronil in cotton plants and soil, with R2 in the range of 0.8989 to 0.9989. Furthermore, a total of 40 samples of cottonseed from Shandong Province were analyzed, and all of the samples were free from the four test compound residues.

  2. Residue analysis and persistence evaluation of fipronil and its metabolites in cotton using high-performance liquid chromatography-tandem mass spectrometry

    PubMed Central

    Wu, Xiaohu; Yu, Yang; Xu, Jun; Dong, Fengshou; Liu, Xingang; Du, Pengqiang; Wei, Dongmei; Zheng, Yongquan

    2017-01-01

    A simple residue analytical method based on the QuEChERS approach and high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection was developed for the analysis of fipronil and its three metabolites in cottonseed, cotton plant and soil. The average recoveries of four test compounds from all three matrices were 78.6–108.9% at the level of 0.005 to 0.5 mg/kg, with an RSD in the range of 0.6 to 13.7%. The limit of quantification (LOQ) of the four test compounds ranged from 0.005 to 0.01 mg/kg. The results of the residual dynamics experiments showed that fipronil dissipated rapidly in cotton plants and soil and that oxidation and photolysis were the main degradation pathways. Moreover, the bi-exponential models demonstrated a good fit of the measured data for fipronil in cotton plants and soil, with R2 in the range of 0.8989 to 0.9989. Furthermore, a total of 40 samples of cottonseed from Shandong Province were analyzed, and all of the samples were free from the four test compound residues. PMID:28291815

  3. New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts

    NASA Astrophysics Data System (ADS)

    Campos, Christiane Gonçalves; Veras, Henrique César Teixeira; de Aquino Ribeiro, José Antônio; Costa, Patrícia Pinto Kalil Gonçalves; Araújo, Katiúscia Pereira; Rodrigues, Clenilson Martins; de Almeida, João Ricardo Moreira; Abdelnur, Patrícia Verardi

    2017-12-01

    Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. [Figure not available: see fulltext.

  4. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes.

    PubMed

    De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2017-11-01

    Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Tandem mass spectrometric analysis of cyclophosphamide, ifosfamide and their metabolites.

    PubMed

    Liu, Zhongfa; Chan, Kenneth K; Wang, Jeffrey J

    2005-01-01

    A detailed multi-stage (MSn) fragmentation study of cyclophosphamide (CP), ifosfamide (IF) and their major metabolites, using an ion-trap mass spectrometer and a Q-TOF mass spectrometer, was performed with the aid of specifically deuterium-labeled analogs. The analytes showed good responses in positive-ion electrospray mass spectrometry as [MH]+ ions. Tandem mass spectra revealed a wealth of structurally specific ions, allowing characterization of the fragmentation pathways of these analytes. The major fragmentation pathways of the protonated CP and IF are elimination of ethylene from C5 and C6 of 1,3,2-oxazaphosphorine-2-oxide via a McLafferty rearrangement, and cleavage of the P-N bond. However, their activated 4-OOH and 4-OH metabolites primarily underwent hydrogen peroxide elimination and dehydration, respectively, followed by fragmentation pathways similar to those of CP and IF. These results should prove useful in structural elucidation of future analogs of CP and IF, and/or of their metabolites. Copyright (c) 2005 John Wiley & Sons, Ltd.

  6. Persistent organochlorinated pesticides and mechanisms of their toxicity.

    PubMed

    Mrema, Ezra J; Rubino, Federico M; Brambilla, Gabri; Moretto, Angelo; Tsatsakis, Aristidis M; Colosio, Claudio

    2013-05-10

    Persistent organic pollutants comprised of organic chemicals like polychlorinated biphenyls, dibenzo-p-dioxins, dibenzofurans and organochlorinated pesticides which have many characteristics in common. Once released in the environment they resist physical, biological, chemical and photochemical breakdown processes and thus persist in the environment. They are subject to long transboundary air pollution transport. They accumulate in the food chain due to their lipophilicity, bioaccumulation and biomagnification properties. Human exposure occurs through inhalation of air, ingestion of food and skin contact. Because most of them bioaccumulate and remain preferentially in fat, their long-term effects are still a matter of public health concern. They are condemned for health adverse effects such as cancer, reproductive defects, neurobehavioral abnormalities, endocrine and immunological toxicity. These effects can be elicited via a number of mechanisms among others include disruption of endocrine system, oxidation stress and epigenetic. However most of the mechanisms are not clear thus a number of studies are ongoing trying to elucidate them. In this review, the underlying possible mechanisms of action and their possible roles in adverse developmental and reproductive processes are discussed and where possible a linkage is made to some existing epidemiological data. Both genomic and nongenomic pathways are used to describe these effects. Understanding of these mechanisms will enable development of strategies to protect the public by reducing these adverse effects. This review is limited to persistent organochlorinated pesticides (OCPs) such as dichlorodiphenyltrichloroethane (DDT) and its metabolites, hexachlorobenzene (HCB), beta-hexachlorocyclohexane (β-HCH) and endosulfan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease.

    PubMed

    Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.

  8. Identification of allocryptopine and protopine metabolites in rat liver S9 by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    Huang, Ya-Jun; Xiao, Sa; Sun, Zhi-Liang; Zeng, Jian-Guo; Liu, Yi-Song; Liu, Zhao-Ying

    2016-07-15

    Allocryptopine (AL) and protopine (PR) have been extensively studied because of their anti-parasitic, anti-arrhythmic, anti-thrombotic, anti-inflammatory and anti-bacterial activity. However, limited information on the pharmacokinetics and metabolism of AL and PR has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of AL and PR in rat liver S9 using a rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOFMS) method. The incubation mixture was processed with 15% trichloroacetic acid (TCA). Multiple scans of AL and PR metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the precursor ion or metabolite. Eight and five metabolites of AL and PR were identified in rat liver S9, respectively. Among these metabolites, seven and two metabolites of AL and PR were identified in the first time, respectively. The demethylenation of the 2,3-methylenedioxy, the demethylation of the 9,10-vicinal methoxyl group and the 2,3-methylenedioxy group were the main metabolic pathways of AL and PR in liver S9, respectively. In addition, the cleavage of the methylenedioxy group of the drugs and subsequent methylation or O-demethylation were also the common metabolic pathways of drugs in liver S9. In addition, the hydroxylation reaction was also the metabolic pathway of AL. This was the first investigation of in vitro metabolism of AL and PR in rat liver S9. The detailed structural elucidations of AL and PR metabolites were performed using a rapid and accurate HPLC/QqTOFMS method. The metabolic pathways of AL and PR in rat were tentatively proposed based on these characterized metabolites and early reports. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Anaerobic biodegradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge: Metabolic products and pathways.

    PubMed

    Li, Fei; Su, Qiangfa; Zhou, Zhenming; Liao, Xiaobin; Zou, Jing; Yuan, Baoling; Sun, Wenjie

    2018-06-01

    The anaerobic biodegradability and metabolic pathways of 8:2 fluorotelomer alcohol (8:2 FTOH) were investigated in anaerobic activated sludge. The biodegradation was well described by a double exponential decay model. 8:2 FTOH was biodegraded to poly- and perfluorinated metabolites with the release of fluoride ion. All polyfluorinated metabolites were intermediate metabolic products and could be further transformed to other metabolites, while perfluorinated metabolites were terminal products. 2H-perfluoro-2-decenoic acid (8:2 FTUA) and perfluorooctanoic acid (PFOA) were verified as the most abundant poly- and perfluorinated metabolites, respectively. Two shorter-chain perfluorinated metabolites, perfluoropentanoic acid (PFPeA) and perfluorobutyric acid (PFBA), were first reported in the biodegradation of 8:2 FTOH. However, the total molar recovery of 8:2 FTOH decreased with increasing incubation time, indicating that there might be some unknown metabolites. Thus, the anaerobic biodegradation pathways were proposed as follows: 8:2 FTOH was oxidized to 8:2 FTUA and 2-perfluorooctyl ethanoic acid (8:2 FTCA) via 2-perfluorooctyl acetaldehyde (8:2 FTAL), and then 8:2 FTUA and 8:2 FTCA were further transformed to 1-perfluoroheptyl ethanol (7:2 sFTOH) via 3-perfluoroheptyl propionic acid (7:3 acid) or/and 3-perfluoroheptyl acrylic acid (7:3 Uacid), and eventually 7:2 sFTOH was further biodegraded to PFOA and other perfluorocarboxylates containing less than eight carbons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Simultaneous quantification of neuroactive dopamine serotonin and kynurenine pathway metabolites in gender-specific youth urine by ultra performance liquid chromatography tandem high resolution mass spectrometry.

    PubMed

    Lu, Haihua; Yu, Jing; Wang, Jun; Wu, Linlin; Xiao, Hang; Gao, Rong

    2016-04-15

    Neuroactive metabolites in dopamine, serotonin and kynurenine metabolic pathways play key roles in several physiological processes and their imbalances have been implicated in the pathophysiology of a wide range of disorders. The association of these metabolites' alterations with various pathologies has raised interest in analytical methods for accurate quantification in biological fluids. However, simultaneous measurement of various neuroactive metabolites represents great challenges due to their trace level, high polarity and instability. In this study, an analytical method was developed and validated for accurately quantifying 12 neuroactive metabolites covering three metabolic pathways in youth urine by ultra performance liquid chromatography coupled to electrospray tandem high resolution mass spectrometry (UPLC-ESI-HRMS/MS). The strategy of dansyl chloride derivatization followed by solid phase extraction on C18 cartridges were employed to reduce matrix interference and improve the extraction efficiency. The reverse phase chromatographic separation was achieved with a gradient elution program in 20 min. The high resolution mass spectrometer (Q Exactive) was employed, with confirmation and quantification by Target-MS/MS scan mode. Youth urine samples collected from 100 healthy volunteers (Female:Male=1:1) were analyzed to explore the differences in metabolite profile and their turnover between genders. The results demonstrated that the UPLC-ESI-HRMS/MS method is sensitive and robust, suitable for monitoring a large panel of metabolites and for discovering new biomarkers in the medical fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Feasibility of Biomonitoring of Exposure to Permethrin Through Analysis of Long-Lived (Metabolite) Adducts to Proteins

    DTIC Science & Technology

    2006-09-01

    lowering agents (gemfibrozil, clofibric acid ), diuretic agents (furosemide)and the antiepileptic drug valproic acid (Benet et al, 1993; see Bailey and...exposure to the insecticide permethrin is usually performed by analysis of its urinary metabolite 3-phenoxybenzoic acid (3- PBA). However, chronic low...permethrin metabolites 3-PBA and cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis/trans-Cl2CA) will form persistent

  12. The metabolism of berberine and its contribution to the pharmacological effects.

    PubMed

    Wang, Kun; Feng, Xinchi; Chai, Liwei; Cao, Shijie; Qiu, Feng

    2017-05-01

    Berberine, a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including antimicrobial, antidiabetic, anticancer activities. Meanwhile, berberine undergoes extensive metabolism after oral administration which results in its extremely low plasma exposure. Therefore, it is believed that the metabolites of berberine also contribute a lot to its pharmacological effects. Along these lines, this review covers the metabolism studies of berberine in terms of its metabolic pathways and metabolic organs based on the identified metabolites, and it also covers the pharmacological activities of its active metabolites. In brief, the predominant metabolic pathways of berberine are demethylation, demethylenation, reduction, hydroxylation and subsequent conjugation in vivo. Active metabolites such as columbamine, berberrubine and demethyleneberberine also exhibit similar pharmacological effects by comparison with berberine, such as antioxidant, anti-inflammatory, antitumor, antimicrobial, hepatoprotective, neuroprotective, hypolipidemic and hypoglycemic effects. Overall, berberine together with its metabolites formed the material basis of berberine in vivo.

  13. Dissipation, half-lives, and mass spectrometric identification of chlorpyrifos and its two metabolites on field-grown collard and kale.

    PubMed

    Antonious, George F; Turley, Eric T; Abubakari, Mutari; Snyder, John C

    2017-04-03

    The persistence and fate of chlorpyrifos and its two metabolites, chlorpyrifos-oxon and the 3, 5, 6-trichloro-2-pyridinol (TCP) break-down product were investigated on kale and collard leaves under field conditions. A simultaneous extraction and quantification procedure was developed for chrorpyrifos and its two main metabolites. Residues of chlorpyrifos, chlorpyrifos oxon, and TCP were determined using a gas chromatograph (GC) equipped with an electron capture detector (GC/ECD). Chlorpyrifos metabolites were detectable up to 23 days following application. Residues were confirmed using a GC equipped with a mass selective detector (GC/MSD) in total ion mode. Initial residues of chlorpyrifos were greater on collard (14.5 µg g -1 ) than kale (8.2 µg g -1 ) corresponding to half-lives (T 1/2 ) values of 7.4 and 2.2 days, respectively. TCP, the hydrolysis product, was more persistent on collards with an estimated T 1/2 of 6.5 days compared to kale (T 1/2 of 1.9 days).

  14. A targeted strategy to identify untargeted metabolites from in vitro to in vivo: Rapid and sensitive metabolites profiling of licorice in rats using ultra-high performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Huang, Meilin; Cheng, Zhongzhe; Wang, Lu; Feng, Yulin; Huang, Jiangeng; Du, Zhifeng; Jiang, Hongliang

    2018-05-29

    It is challenging to conduct in vivo metabolic study for traditional Chinese medicines (TCMs) because of complex components, unpredictable metabolic pathways and low metabolite concentrations. Herein, we proposed a sensitive strategy to characterize TCM metabolites in vivo at an orally clinical dose using ultra-high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS). Firstly, the metabolism of individual compounds in rat liver microsomes was studied to obtain the metabolic pathways and fragmentation patterns. The untargeted metabolites in vitro were detected by multiple ion monitoring-enhanced product ion (EPI) and neutral loss-EPI scans. Subsequently, a sensitive multiple reaction monitoring-EPI method was developed according to the in vitro results and predicted metabolites to profile the in vivo metabolites. Licorice as a model herb was used to evaluate and validate our strategy. A clinical dose of licorice water extract was orally administered to rats, then a total of 45 metabolites in urine, 21 metabolites in feces and 35 metabolites in plasma were detected. Among them, 18 minor metabolites have not been reported previously and 6 minor metabolites were first detected in vivo. Several isomeric metabolites were well separated and differentiated in our strategy. These results suggested that this new strategy could be widely used for the detection and characterization of in vivo metabolites of TCMs. Copyright © 2018. Published by Elsevier B.V.

  15. Metabolism and metabolites of polychlorinated biphenyls (PCBs)

    PubMed Central

    Grimm, FA; Hu, D; Kania-Korwel, I; Lehmler, HJ; Ludewig, G; Hornbuckle, KC; Duffel, MW; Bergman, A; Robertson, LW

    2015-01-01

    The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity and thereby assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general and in humans in particular. The aim of this document is to provide an overview of PCB metabolism and to identify metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed. PMID:25629923

  16. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    PubMed

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT). Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. II. A reevaluation of hepatic metabolic pathways.

    PubMed

    Selinsky, B S; Perlman, M E; London, R E

    1988-05-01

    Methoxyflurane (2,2-dichloro-1,1-difluoro-ethyl methyl ether) is believed to be metabolized via two convergent metabolic pathways. The relative flux through these two metabolic pathways has been investigated using a combination of in vivo surface coil NMR techniques and in vitro analyses of urinary metabolites. Analysis of the measured concentrations of inorganic fluoride, oxalate, and methoxydifluoroacetate in the urine of methoxyflurane-treated rats for 4 days after anesthesia indicates that the anesthetic is metabolized primarily via dechlorination to yield methoxydifluoroacetate. The methoxydifluoroacetate is largely excreted without further metabolism, although a small percentage of this metabolite is broken down to yield fluoride and oxalate, as determined by urine analysis of rats dosed with synthetic methoxydifluoroacetate. At early times after methoxyflurane exposure, the relative concentrations of methoxyflurane metabolites indicate that a significant fraction of the metabolic flux occurs via a different pathway, presumably demethylation, to yield dichloroacetate as an intermediate. Direct analysis of dichloroacetate in the urine using water-suppressed proton NMR indicates that the level of this metabolite is below the detection threshold of the method. Measurements made on the urine of rats dosed directly with dichloroacetate indicate that this compound is quickly metabolized, and dichloroacetate levels in urine are again found to be below the detection threshold. These results demonstrate the quantitative importance of the dechlorination pathway in the metabolism of methoxyflurane in rats.

  18. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers.

    PubMed

    Papadopoulou, Evangelia S; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-01-15

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers

    PubMed Central

    Papadopoulou, Evangelia S.; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania

    2015-01-01

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. PMID:26590271

  20. Dietary supplemental Kluyveromyces marxianus alters the serum metabolite profile in broiler chickens.

    PubMed

    Wang, Weiwei; Li, Zhui; Gan, Liping; Fan, Hao; Guo, Yuming

    2018-06-18

    Metabolomics is used to evaluate the bioavailability of food components, as well as to validate the metabolic changes associated with food consumption. This study was conducted to investigate the effects of the dietary supplement Kluyveromyces marxianus on the serum metabolite profile in broiler chickens. A total of 240 1-d-old broilers were divided into 2 groups with 8 replicates. Birds were fed basal diets without or with K. marxianus supplementation (5 × 1010 CFU kg-1 of diet). Serum samples were collected on d 21 and were analyzed by high-performance liquid chromatography with quadrupole time-of flight/mass spectrometry. The results showed that supplemental K. marxianus altered the concentrations of a variety of metabolites in the serum. Thereinto, a total of 39 metabolites were identified at higher (P < 0.05) concentrations while 21 metabolites were identified at lower (P < 0.05) concentrations in the treatment group as compared with the control. These metabolites were primarily involved with the regulation of amino acids and carbohydrate metabolism. Further metabolic pathway analysis revealed that glutamine and glutamate metabolism was the most relevant and critical pathway identified from these two groups. The activated pathway may partially interpret the beneficial effects of K. marxianus. Overall, the present research could promote our understanding of the probiotic action of K. marxianus and provide new insight into the design and application of K. marxianus-containing functional foods.

  1. Genetic Variants Associated With Glycine Metabolism and Their Role in Insulin Sensitivity and Type 2 Diabetes

    PubMed Central

    Xie, Weijia; Wood, Andrew R.; Lyssenko, Valeriya; Weedon, Michael N.; Knowles, Joshua W.; Alkayyali, Sami; Assimes, Themistocles L.; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M.; Nolan, John J.; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E.; Frayling, Timothy M.; Walker, Mark

    2013-01-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity–related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites—glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)—and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits. PMID:23378610

  2. Formation of Δ(1) and Δ(6) testosterone metabolites by human hepatocytes.

    PubMed

    Fabregat, Andreu; Marcos, Josep; Ventura, Rosa; Casals, Gregori; Jimenez, Wladimiro; Reichenbach, Vedrana; Segura, Jordi; Pozo, Oscar J

    2015-03-01

    The existence of urinary testosterone (T) metabolites conjugated with cysteine has been recently reported. The formation of a ring double bond by a phase I metabolic transformation and the subsequent nucleophilic conjugation with glutathione was proposed as a putative metabolic pathway for the occurrence of these metabolites in urine. The main goal of the present study was to confirm the first step of the postulated pathway. For that purpose, human hepatocyte cells systems were incubated with a pure T standard. The cell culture supernatants were analyzed by liquid chromatography coupled to mass spectrometry using a selected reaction monitoring method. Major T metabolites such as androsterone and 4-androstene-3,17-dione, together with the recently reported Δ(1) and Δ(6) metabolites were simultaneously quantified. The formation of 1,4-androstadien-3,17-dione, 4,6-androstadien-3,17-dione, 17β-hydroxy-4,6-androstadien-3-one and 17β-hydroxy-1,4-androstadien-3-one (boldenone) after incubation of T in hepatocyte cell cultures was demonstrated by comparing the retention times and the ion ratios of the metabolites with those obtained by analysis of commercial standards. Thus, the formation of double bonds Δ(1) and Δ(6) by hepatic phase I metabolism of T was confirmed. Analogously to T, this pathway might also be present in other steroids, opening the possibility of targeting additional biomarkers. Copyright © 2015. Published by Elsevier Inc.

  3. Groups: knowledge spreadsheets for symbolic biocomputing.

    PubMed

    Travers, Michael; Paley, Suzanne M; Shrager, Jeff; Holland, Timothy A; Karp, Peter D

    2013-01-01

    Knowledge spreadsheets (KSs) are a visual tool for interactive data analysis and exploration. They differ from traditional spreadsheets in that rather than being oriented toward numeric data, they work with symbolic knowledge representation structures and provide operations that take into account the semantics of the application domain. 'Groups' is an implementation of KSs within the Pathway Tools system. Groups allows Pathway Tools users to define a group of objects (e.g. groups of genes or metabolites) from a Pathway/Genome Database. Groups can be transformed (e.g. by transforming a metabolite group to the group of pathways in which those metabolites are substrates); combined through set operations; analysed (e.g. through enrichment analysis); and visualized (e.g. by painting onto a metabolic map diagram). Users of the Pathway Tools-based BioCyc.org website have made extensive use of Groups, and an informal survey of Groups users suggests that Groups has achieved the goal of allowing biologists themselves to perform some data manipulations that previously would have required the assistance of a programmer. Database URL: BioCyc.org.

  4. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production

    PubMed Central

    2012-01-01

    Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites. PMID:23148661

  5. Behind Every Good Metabolite there is a Great Enzyme (and perhaps a structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Phan, Isabelle; Cron, Lisabeth

    Today, due to great technological advancements, it is possible to study everything at the same time. This ability has given birth to “totality” studies in the fields of genomics, transcriptomics, proteomics, and metabolomics. In turn, the combined study of all these global analyses gave birth to the field of systems biology. Another “totality” field brought to life with new emerging technologies is structural genomics, an effort to determine the three-dimensional structure of every protein encoded in a genome. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a specialized structural genomics effort composed of academic (University of Washington), governmentmore » (Pacific Northwest National Laboratory), not-for-profit (Seattle BioMed), and commercial (Emerald BioStructures) institutions that is funded by the National Institute of Allergy and Infectious Diseases (Federal Contract: HHSN272200700057C and HHSN27220120025C) to apply genome-scale approaches in solving protein structures from biodefense organisms, as well as those causing emerging and re-emerging disease. In five years over 540 structures have been deposited into the Protein Data Bank (PDB) by SSGICD. About one third of all SSGCID structures contain bound ligands, many of which are metabolites or metabolite analogues present in the cell. These proteins structures are the blueprints for the structure-based design of the next generation of drugs against bacterial pathogens and other infectious diseases. Many of the selected SSGCID targets are annotated enzymes from known metabolomic pathways essential to cellular vitality since selectively “knocking-out” one of the enzymes in an important pathway with a drug may be fatal to the organism. One reason metabolomic pathways are important is because of the small molecules, or metabolites, produced at various steps in these pathways and identified by metabolomic studies. Unlike genomics, transcriptomics, and proteomics that may be influenced by epigenetic, post-transcriptional, and post-translational modifications, respectively, the metabolites present in the cell at any one time represent downstream biochemical endproducts, and therefore, metabolite profiles may be most closely associated with a phenotype and provide valuable information for infectious disease research. Metabolomic data would be even more useful if it could be linked to the vast amount of structural genomics data. Towards this goal SSGCID has created an automated website (http://apps.sbri.org/SSGCIDTargetStatus/Pathway) that assigns selected SSGCID target proteins to MetaCyc pathways (http://metacyc.org/). Details of this website will be provided here. The SSGCID-Pathway website represents a first big step towards linking metabolites and metabolic pathways to structural genomic data with the goal of accelerating the discovery of new agents to battle infectious diseases.« less

  6. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products.

    PubMed

    Koba, Olga; Golovko, Oksana; Kodešová, Radka; Fér, Miroslav; Grabic, Roman

    2017-01-01

    Twelve different soil types that represent the soil compartments of the Czech Republic were fortified with three antibiotics (clindamycin (CLI), sulfamethoxazole (SUL), and trimethoprim (TRI)) to investigate their fate. Five metabolites (clindamycin sulfoxide (CSO), hydroxy clindamycin sulfoxide (HCSO), S-(SDC) and N-demethyl clindamycin (NDC), N 4 -acetyl sulfamethoxazole (N 4 AS), and hydroxy trimethoprim (HTR)) were detected and identified using HPLC/HRMS and HRPS in the soil matrix in this study. The identities of CSO and N 4 AS were confirmed using commercially available reference standards. The parent compounds degraded in all soils. Almost all of the metabolites have been shown to be persistent in soils, with the exception of N 4 AS, which was formed and degraded completely within 23 days of exposure. The rate of degradation mainly depended on the soil properties. The PCA results showed a high dependence between the soil type and behaviour of the pharmaceutical metabolites. The mentioned metabolites can be formed in soils, and the most persistent ones may be transported to the ground water and environmental water bodies. Because no information on the effects of those metabolites on living organism are available, more studies should be performed in the future to predict the risk to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.

    PubMed

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E N; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map. © 2015 The International Union of Biochemistry and Molecular Biology.

  8. Metabolomic analysis of pathways related to rice grain chalkiness by a notched-belly mutant with high occurrence of white-belly grains.

    PubMed

    Lin, Zhaomiao; Zhang, Xincheng; Wang, Zunxin; Jiang, Yutong; Liu, Zhenghui; Alexander, Danny; Li, Ganghua; Wang, Shaohua; Ding, Yanfeng

    2017-02-07

    Grain chalkiness is a highly undesirable trait deleterious to rice appearance and milling quality. The physiological and molecular foundation of chalkiness formation is still partially understood, because of the complex interactions between multiple genes and growing environments. We report the untargeted metabolomic analysis of grains from a notched-belly mutant (DY1102) with high percentage of white-belly, which predominantly occurs in the bottom part proximal to the embryo. Metabolites in developing grains were profiled on the composite platforms of UPLC/MS/MS and GC/MS. Sampling times were 5, 10, 15, and 20 days after anthesis, the critical time points for chalkiness formation. A total of 214 metabolites were identified, covering most of the central metabolic pathways and partial secondary pathways including amino acids, carbohydrates, lipids, cofactors, peptides, nucleotides, phytohormones, and secondary metabolites. A comparison of the bottom chalky part and the upper translucent part of developing grains of DY1102 resulted in 180 metabolites related to chalkiness formation. Generally, in comparison to the translucent upper part, the chalky endosperm had lower levels of metabolites regarding carbon and nitrogen metabolism for synthesis of storage starch and protein, which was accompanied by perturbation of pathways participating in scavenging of reactive oxygen species, osmorugulation, cell wall synthesis, and mineral ion homeostasis. Based on these results, metabolic mechanism of chalkiness formation is discussed, with the role of embryo highlighted.

  9. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

    PubMed

    Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati H

    2015-11-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.

  10. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis

    PubMed Central

    Kraus, William E.; Muoio, Deborah M.; Stevens, Robert; Craig, Damian; Bain, James R.; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H.; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R.; Gregory, Simon G.; Newgard, Christopher B.; Shah, Svati H.

    2015-01-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk. PMID:26540294

  11. Pathways of metabolism of [1'-14C]-trans-anethole in the rat and mouse.

    PubMed

    Bounds, S V; Caldwell, J

    1996-07-01

    This study describes the metabolic fate of trans-4'-methoxyprop-[1-14C]enylbenzene, the natural flavor compound trans-anethole, in rats and mice given single doses of 250 mg/kg body weight. In both rats and mice, an essentially quantitative (> 95% of dose) recovery of 14C was obtained with the majority in the 0-24 hr urine. Separation and identification of 18 urinary anethole metabolites were achieved by radio-HPLC, chemical derivatization, and GC/ MS. Anethole undergoes three primary oxidation pathways-O-demethylation, omega-side chain oxidation, and side chain epoxidation-followed by a variety of secondary pathways of oxidation and hydration, the products of which are extensively conjugated with sulfate, glucuronic acid, glycine, and glutathione. A novel major metabolite has been characterized in the rat, apparently originating from conjugation of the epoxide with glutathione, namely S-[1-(4'-methoxyphenyl)-2-hydroxypropane]-N-acetylcysteine. These metabolites are discussed in terms of the pathways responsible for and the toxicological consequences of their formation.

  12. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease

    PubMed Central

    Jones, Simon P.; Franco, Nunzio F.; Varney, Bianca; Sundaram, Gayathri; Brown, David A.; de Bie, Josien; Lim, Chai K.; Guillemin, Gilles J.; Brew, Bruce J.

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. PMID:26114426

  13. Identifying new persistent and bioaccumulative organics among chemicals in commerce. III: byproducts, impurities, and transformation products.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2013-05-21

    The goal of this series of studies was to identify commercial chemicals that might be persistent and bioaccumulative (PB) and that were not being considered in current wastewater and aquatic environmental measurement programs. In this study, we focus on chemicals that are not on commercial chemical lists such as U.S. EPA's Inventory Update Rule but may be found as byproducts or impurities in commercial chemicals or are likely transformation products from commercial chemical use. We evaluated the 610 chemicals from our earlier publication as well as high production volume chemicals and identified 320 chemicals (39 byproducts and impurities, and 281 transformation products) that could be potential PB chemicals. Four examples are discussed in detail; these chemicals had a fair amount of information on the commercial synthesis and byproducts and impurities that might be found in the commercial product. Unfortunately for many of the 610 chemicals, as well as the transformation products, little or no information was available. Use of computer-aided software to predict the transformation pathways in combination with the biodegradation rules of thumb and some basic organic chemistry has allowed 281 potential PB transformation products to be suggested for some of the 610 commercial chemicals; more PB transformation products were not selected since microbial degradation often results in less persistent and less bioaccumulative metabolites.

  14. OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles

    PubMed Central

    Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.

    2015-01-01

    Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells. PMID:25688563

  15. Exploitation of Nontraditional Corp, Yacon, in Breast Cancer Prevention Using Preclinical Rat Model

    DTIC Science & Technology

    2011-07-01

    liver glucose disposal evident along sorbitol, PPP, and hexosamine pathways. • Gut microbiome : A significant impact of diet on levels of...biochemicals reflecting metabolism of the gut microbiome was evident in plasma and liver and observed for several classes of metabolites. Biochemicals...acid metabolites reflecting activity of the gut microbiome contribute to host metabolic pathways and/or must be metabolized further by the liver

  16. Extraction and Quantitation of Ketones and Aldehydes from Mammalian Cells Using Fluorous Tagging and Capillary LC-MS.

    PubMed

    Yuan, Wei; Li, Shuwei; Edwards, James L

    2015-08-04

    The extraction and quantitation of carbonyl metabolites from cell lysate was accomplished using a carbonyl-reactive fluorous tag and capillary liquid chromatography coupled to mass spectrometry (capLC-MS). Selective fluorous tagging for ketones and aldehydes provided a 30-fold increase in sensitivity using electrospray ionization MS. Separation of fluorous tagged carbonyl resulted in good separation of all components, and tandem MS was able to differentiate structural carbonyl isomers. The average limit of detection for carbonyl standards was 37 nM (range 1.5-250 nM), with linearity of R(2) > 0.99. Reproducibility for metabolites in cell lysate averaged 9% RSD. Human aortic endothelial cells (HAECs) were exposed to varying levels of glucose, and their carbonyl metabolite levels were quantified. Significant metabolite changes were seen in glycolysis and the propanoate pathway from a glucose challenge. Using an untargeted approach, 120 carbonyl metabolites were found to change in hyperglycemic HAECs. From this list of compounds, multiple metabolites from the pentose phosphate and tryptophan metabolic pathways were discovered. This system provides excellent sensitivity and quantitation of carbonyl metabolites without the need for isotope standards or labels.

  17. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    PubMed

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites.

    PubMed

    Martins, J M; Chevre, N; Spack, L; Tarradellas, J; Mermoud, A

    2001-11-01

    The degradation and ecotoxicity of sulfonylurea herbicide rimsulfuron and its major metabolites were examined in batch samples of an alluvial sandy loam and in freshwater. An HPLC-DAD method was adapted to simultaneously identify and quantify rimsulfuron and its metabolites, which was successfully validated by GC-MS analysis. In aqueous solutions, pure rimsulfuron was rapidly hydrolyzed into metabolite 1 (N-(4,6-dimethoxypyrimidin-2-yl)-N-(3-(ethylsulfonyl)-2-pyridinylurea)), which itself was transformed into the more stable metabolite 2 (N-((3-(ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine)), with half-life (t(1/2)) values of 2 and 2.5 days, respectively. Hydrolysis was instantaneous under alkaline conditions (pH = 10). In aqueous suspensions of the alluvial soil (pH = 8), formulated rimsulfuron had a half-life of 7 days, whereas that of metabolite 1 was similar to that in water (about 3.5 days). The degradation of the two major metabolites was also studied in soil suspensions with the pure compounds at concentrations ranging from 1 to 10 mg l(-1). The half-life of metabolite 1 ranged from 3.9 to 5 days, close to the previous values. Metabolite 2 was more persistent and its degradation is strongly dependent on the initial concentration (C0): half-life values ranged from 8.1 to 55 days at 2-10 mg l(-1), respectively. These values are higher than those determined from the kinetics of metabolite 1 transformation into metabolite 2 (t(1/2) = 8-19 days). The ecotoxicity of the three chemicals was evaluated through their effect on Daphnia magna and Vibrio fischeri (Microtox bioassay). No effect was observed on D. magna with 24 and 48 h acute toxicity tests. Similarly, no toxic effect was observed with the Microtox test for the three chemicals in the range of concentrations tested that included the field application dose. Thus, being of low persistence and lacking acute toxicity, these chemicals present a low environmental risk. However, chronic effects should be studied in order to confirm the safety of rimsulfuron and its major metabolites.

  19. Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice.

    PubMed

    Medina, S; Ferreres, F; García-Viguera, C; Horcajada, M N; Orduna, J; Savirón, M; Zurek, G; Martínez-Sanz, J M; Gil, J I; Gil-Izquierdo, A

    2013-01-15

    Citrus juice intake has been highlighted because of its health-promoting effects. LC-MS based metabolomics approaches are applied to obtain a better knowledge on changes in the concentration of metabolites due to its dietary intake and allow a better understanding of involved metabolic pathways. Eight volunteers daily consumed 400 mL of juice for four consecutive days and urine samples were collected before intake and 24h after each citrus juice intake. Urine samples were analysed by nanoHPLC-q-TOF, followed by principal component analysis (PCA) and Student's t-test (p<0.05). PCA showed a separation between two groups (before and after citrus juice consumption). This approach allowed the identification of four endocrine compounds (tetrahydroaldosterone-3-glucuronide, cortolone-3-glucuronide, testosterone-glucuronide and 17-hydroxyprogesterone), which belonged to the steroid biosynthesis pathway as significant metabolites upregulated by citrus juice intake. Additionally, these results confirmed the importance of using the non-targeted metabolomics technique to identify new endogenous metabolites, up- or down-regulated as a consequence of food intake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan.

    PubMed

    Lu, Ding; Sullivan, Mathilde M; Phillips, Martin B; Peterson, Lisa A

    2009-06-01

    Furan is a liver toxicant and carcinogen in rodents. On the basis of these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450-catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids, and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a monoglutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized as follows: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine, and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from the reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the epsilon-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the alpha- and the epsilon-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the epsilon-amino group of lysine. A GSH-BDA-lysine cross-link was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the epsilon-amino group of lysine; however, small amounts of the alpha-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates, which then react with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo.

  1. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan

    PubMed Central

    Lu, Ding; Sullivan, Mathilde M.; Phillips, Martin B.; Peterson, Lisa A.

    2009-01-01

    Furan is a liver toxicant and carcinogen in rodents. Based on these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450 catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a mono-glutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-L-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the ε-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the α- and ε-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the ε-amino group of lysine. A GSH-BDA-lysine crosslink was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the ε-amino group of lysine, however, small amounts of the α-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates which then reacts with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo. PMID:19441776

  2. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture.

    PubMed

    Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-02

    Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.

  3. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai

    PubMed Central

    Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying

    2017-01-01

    Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552

  4. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai.

    PubMed

    Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying

    2017-09-08

    Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.

  5. Metabolism of the synthetic cannabinoids AMB-CHMICA and 5C-AKB48 in pooled human hepatocytes and rat hepatocytes analyzed by UHPLC-(IMS)-HR-MSE.

    PubMed

    Mardal, Marie; Dalsgaard, Petur Weihe; Qi, Bing; Mollerup, Christian Brinch; Annaert, Pieter; Linnet, Kristian

    2018-04-15

    The main analytical targets of synthetic cannabinoids are often metabolites. With the high number of new psychoactive substances entering the market, suitable workflows are needed for analytical target identification in biological samples. The aims of this study were to identify the main metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography-(ion mobility spectroscopy)-high resolution-mass spectrometry in data-independent acquisition mode (UHPLC-(IMS)-HR-MS E ). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MS E , followed by UHPLC-IMS-HR-MS E . Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent oxidation to the ω-COOH. The matrix components in the metabolite spectra were reduced with IMS, which improved the accuracy of the spectral interpretation; however, this left fewer fragment ions for assigning sites of metabolism. Meteor was able to predict the majority of the metabolites, with the most notable exception being the oxidative dechlorination and, consequently, all metabolites that underwent that transformation pathway. Oxidative dechlorination of ω-chloroalkanes in humans has not been previously reported in the literature. The postulated metabolites can be used for screening of biological samples, with four-dimensional identification based on retention time, collision cross section, precursor ion, and fragment ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-through in situ perfused rat liver preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, M.E.; Yuen, V.; Tang, B.K.

    1988-05-01

    Sulfation and glucuronidation are two parallel pathways for the metabolism of phenolic substrates. Gentisamide (GAM) was used as a model compound to examine the effects of parallel competing pathways on drug disappearance and metabolite formation in the once-through perfused rat liver preparation. GAM was found to form one glucuronide (GAM-5G) and two sulfate (GAM-2S and GAM-5S) conjugates. These GAM conjugates were biosynthesized in recirculating rat liver preparations, and were isolated by preparative high-performance liquid chromatography. Specific incorporation of 35S-sodium sulfate and (14C)glucose into GAM sulfate and glucuronide conjugates revealed corresponding elution patterns as labeled GAM metabolites. Their identities were characterizedmore » by enzymatic and acid hydrolyses and by NMR spectroscopy. Gentisamide-5-sulfate (GAM-5S) and gentisamide-5-glucuronide (GAM-5G) are major metabolites, and gentisamide-2-sulfate (GAM-2S) is a minor metabolite. Single-pass rat liver perfusions were used to examine the effect of stepwise increases/decreases of input GAM concentration (CIn) on the extraction ratio (E) of GAM and formation of metabolites. The E of GAM remained constant (about 0.89) at input concentrations from 0.9 to 120 microM and decreased at CIn greater than 120 microM. Metabolite patterns, however, changed with GAM CIn, even when E was constant at CIn up to 120 microM. GAM-5S was present as the major metabolite of GAM at all GAM CInS in most liver preparations but the proportions of GAM-5S and GAM-2S decreased at increasing CIn; the proportion of GAM-5G, a minor metabolite at low CIn, increased with increasing CIn. Biliary excretion rates at steady state accounted for 5.3 +/- 2.7% (mean +/- S.D.) of the input rate: GAM-5G was the predominant metabolite found.« less

  7. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  8. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background Glutathione has a wide range of functions; it is an endogenous anti-oxidant and plays a key role in the maintenance of intracellular redox balance and detoxification of xenobiotics. Several studies have indicated that children with autism spectrum disorders may have altered glutathione metabolism which could play a key role in the condition. Methods A systematic literature review and meta-analysis was conducted of studies examining metabolites, interventions and/or genes of the glutathione metabolism pathways i.e. the γ-glutamyl cycle and trans-sulphuration pathway in autism spectrum disorders. Results Thirty nine studies were included in the review comprising an in vitro study, thirty two metabolite and/or co-factor studies, six intervention studies and six studies with genetic data as well as eight studies examining enzyme activity. Conclusions The review found evidence for the involvement of the γ-glutamyl cycle and trans-sulphuration pathway in autistic disorder is sufficiently consistent, particularly with respect to the glutathione redox ratio, to warrant further investigation to determine the significance in relation to clinical outcomes. Large, well designed intervention studies that link metabolites, cofactors and genes of the γ-glutamyl cycle and trans-sulphuration pathway with objective behavioural outcomes in children with autism spectrum disorders are required. Future risk factor analysis should include consideration of multiple nutritional status and metabolite biomarkers of pathways linked with the γ-glutamyl cycle and the interaction of genotype in relation to these factors. PMID:22524510

  9. Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism

    PubMed Central

    Xie, Zhengzhi; Gang, David R.

    2009-01-01

    Turmeric is an excellent example of a plant that produces large numbers of metabolites from diverse metabolic pathways or networks. It is hypothesized that these metabolic pathways or networks contain biosynthetic modules, which lead to the formation of metabolite modules—groups of metabolites whose production is co-regulated and biosynthetically linked. To test whether such co-regulated metabolite modules do exist in this plant, metabolic profiling analysis was performed on turmeric rhizome samples that were collected from 16 different growth and development treatments, which had significant impacts on the levels of 249 volatile and non-volatile metabolites that were detected. Importantly, one of the many co-regulated metabolite modules that were indeed readily detected in this analysis contained the three major curcuminoids, whereas many other structurally related diarylheptanoids belonged to separate metabolite modules, as did groups of terpenoids. The existence of these co-regulated metabolite modules supported the hypothesis that the 3-methoxyl groups on the aromatic rings of the curcuminoids are formed before the formation of the heptanoid backbone during the biosynthesis of curcumin and also suggested the involvement of multiple polyketide synthases with different substrate selectivities in the formation of the array of diarylheptanoids detected in turmeric. Similar conclusions about terpenoid biosynthesis could also be made. Thus, discovery and analysis of metabolite modules can be a powerful predictive tool in efforts to understand metabolism in plants. PMID:19073964

  10. Identification of the absorbed components and metabolites of modified Huo Luo Xiao Ling Dan in rat plasma by UHPLC-Q-TOF/MS/MS.

    PubMed

    Wang, Nannan; Zhao, Xiaoning; Li, Yiran; Cheng, Congcong; Huai, Jiaxin; Bi, Kaishun; Dai, Ronghua

    2018-06-01

    To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid-liquid extraction and separated on a Shim-pack XR-ODS C 18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone-related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid-related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid-related metabolites. It is concluded the developed UHPLC-Q-TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Comparative metabolites profiles of osthole in normal and osteoporosis rats using liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, Nani; Wang, Xuping; Zhang, Yang; Zhang, Qiaoyan; Xu, Pingcui; Xin, Hailiang; Wu, Renjie; Shou, Dan; Qin, Luping

    2018-05-30

    Osthole is a derivative of coumnarin, which has been used to treat several diseases, including osteoporosis. To investigate the metabolite profile of osthole in osteoporosis rats was utilized to understand its underlying mechanisms of its anti-osteoporosis effect. In this study, plasma samples were collected from normal and osteoporosis rats after oral administration of osthole and analyzed to identify the metabolites of osthole by high performance liquid chromatography quadrupole time-of-flight mass spectrometry. By comparing the molecular weight and MS fragmentation of the metabolites with those of parent drug and reference standards, a total of 36 metabolites in plasma were identified. Demethylation, hydroxylation, hydroxymethylene loss and reduction, and subsequent glucuronidation, methylation and sulfation were the major metabolic pathways of osthole in both normal and osteoporosis rats. A specific hydration metabolic pathway was found in osteoporosis rats. These results provided a meaningful basis for studying the underlying mechanism of the anti-osteoporosis effect of osthole. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Central Nervous System Infection with Borna Disease Virus Causes Kynurenine Pathway Dysregulation and Neurotoxic Quinolinic Acid Production

    PubMed Central

    Formisano, Simone; Hornig, Mady; Yaddanapudi, Kavitha; Vasishtha, Mansi; Parsons, Loren H.; Briese, Thomas; Lipkin, W. Ian

    2017-01-01

    ABSTRACT Central nervous system infection of neonatal and adult rats with Borna disease virus (BDV) results in neuronal destruction and behavioral abnormalities with differential immune-mediated involvement. Neuroactive metabolites generated from the kynurenine pathway of tryptophan degradation have been implicated in several human neurodegenerative disorders. Here, we report that brain expression of key enzymes in the kynurenine pathway are significantly, but differentially, altered in neonatal and adult rats with BDV infection. Gene expression analysis of rat brains following neonatal infection showed increased expression of kynurenine amino transferase II (KATII) and kynurenine-3-monooxygenase (KMO) enzymes. Additionally, indoleamine 2,3-dioxygenase (IDO) expression was only modestly increased in a brain region- and time-dependent manner in neonatally infected rats; however, its expression was highly increased in adult infected rats. The most dramatic impact on gene expression was seen for KMO, whose activity promotes the production of neurotoxic quinolinic acid. KMO expression was persistently elevated in brain regions of both newborn and adult BDV-infected rats, with increases reaching up to 86-fold. KMO protein levels were increased in neonatally infected rats and colocalized with neurons, the primary target cells of BDV infection. Furthermore, quinolinic acid was elevated in neonatally infected rat brains. We further demonstrate increased expression of KATII and KMO, but not IDO, in vitro in BDV-infected C6 astroglioma cells. Our results suggest that BDV directly impacts the kynurenine pathway, an effect that may be exacerbated by inflammatory responses in immunocompetent hosts. Thus, experimental models of BDV infection may provide new tools for discriminating virus-mediated from immune-mediated impacts on the kynurenine pathway and their relative contribution to neurodegeneration. IMPORTANCE BDV causes persistent, noncytopathic infection in vitro yet still elicits widespread neurodegeneration of infected neurons in both immunoincompetent and immunocompetent hosts. Here, we show that BDV infection induces expression of key enzymes of the kynurenine pathway in brains of newborn and adult infected rats and cultured astroglioma cells, shunting tryptophan degradation toward the production of neurotoxic quinolinic acid. Thus, our findings newly implicate this metabolic pathway in BDV-induced neurodegeneration. Given the importance of the kynurenine pathway in a wide range of human infections and neurodegenerative and neuropsychiatric disorders, animal models of BDV infection may serve as important tools for contrasting direct viral and indirect antiviral immune-mediated impacts on kynurenine pathway dysregulation and the ensuing neurodevelopmental and neuropathological consequences. PMID:28446679

  13. Central Nervous System Infection with Borna Disease Virus Causes Kynurenine Pathway Dysregulation and Neurotoxic Quinolinic Acid Production.

    PubMed

    Formisano, Simone; Hornig, Mady; Yaddanapudi, Kavitha; Vasishtha, Mansi; Parsons, Loren H; Briese, Thomas; Lipkin, W Ian; Williams, Brent L

    2017-07-15

    Central nervous system infection of neonatal and adult rats with Borna disease virus (BDV) results in neuronal destruction and behavioral abnormalities with differential immune-mediated involvement. Neuroactive metabolites generated from the kynurenine pathway of tryptophan degradation have been implicated in several human neurodegenerative disorders. Here, we report that brain expression of key enzymes in the kynurenine pathway are significantly, but differentially, altered in neonatal and adult rats with BDV infection. Gene expression analysis of rat brains following neonatal infection showed increased expression of kynurenine amino transferase II (KATII) and kynurenine-3-monooxygenase (KMO) enzymes. Additionally, indoleamine 2,3-dioxygenase (IDO) expression was only modestly increased in a brain region- and time-dependent manner in neonatally infected rats; however, its expression was highly increased in adult infected rats. The most dramatic impact on gene expression was seen for KMO, whose activity promotes the production of neurotoxic quinolinic acid. KMO expression was persistently elevated in brain regions of both newborn and adult BDV-infected rats, with increases reaching up to 86-fold. KMO protein levels were increased in neonatally infected rats and colocalized with neurons, the primary target cells of BDV infection. Furthermore, quinolinic acid was elevated in neonatally infected rat brains. We further demonstrate increased expression of KATII and KMO, but not IDO, in vitro in BDV-infected C6 astroglioma cells. Our results suggest that BDV directly impacts the kynurenine pathway, an effect that may be exacerbated by inflammatory responses in immunocompetent hosts. Thus, experimental models of BDV infection may provide new tools for discriminating virus-mediated from immune-mediated impacts on the kynurenine pathway and their relative contribution to neurodegeneration. IMPORTANCE BDV causes persistent, noncytopathic infection in vitro yet still elicits widespread neurodegeneration of infected neurons in both immunoincompetent and immunocompetent hosts. Here, we show that BDV infection induces expression of key enzymes of the kynurenine pathway in brains of newborn and adult infected rats and cultured astroglioma cells, shunting tryptophan degradation toward the production of neurotoxic quinolinic acid. Thus, our findings newly implicate this metabolic pathway in BDV-induced neurodegeneration. Given the importance of the kynurenine pathway in a wide range of human infections and neurodegenerative and neuropsychiatric disorders, animal models of BDV infection may serve as important tools for contrasting direct viral and indirect antiviral immune-mediated impacts on kynurenine pathway dysregulation and the ensuing neurodevelopmental and neuropathological consequences. Copyright © 2017 Formisano et al.

  14. Identification of urinary metabolites of imperatorin with a single run on an LC/Triple TOF system based on multiple mass defect filter data acquisition and multiple data mining techniques.

    PubMed

    Qiao, Shi; Shi, Xiaowei; Shi, Rui; Liu, Man; Liu, Ting; Zhang, Kerong; Wang, Qiao; Yao, Meicun; Zhang, Lantong

    2013-08-01

    The detection of drug metabolites, especially for minor metabolites, continues to be a challenge because of the complexity of biological samples. Imperatorin (IMP) is an active natural furocoumarin component originating from many traditional Chinese herbal medicines and is expected to be pursued as a new vasorelaxant agent. In the present study, a generic and efficient approach was developed for the in vivo screening and identification of IMP metabolites using liquid chromatography-Triple TOF mass spectrometry. In this approach, a novel on-line data acquisition method mutiple mass defect filter (MMDF) combined with dynamic background subtraction was developed to trace all probable urinary metabolites of IMP. Comparing with the traditionally intensity-dependent data acquisition method, MMDF method could give the information of low-level metabolites masked by background noise and endogenous components. Thus, the minor metabolites in complex biological matrices could be detected. Then, the sensitive and specific multiple data-mining techniques extracted ion chromatography, mass defect filter, product ion filter, and neutral loss filter were used for the discovery of IMP metabolites. Based on the proposed strategy, 44 phase I and 7 phase II metabolites were identified in rat urine after oral administration of IMP. The results indicated that oxidization was the main metabolic pathway and that different oxidized substituent positions had a significant influence on the fragmentation of the metabolites. Two types of characteristic ions at m/z 203 and 219 can be observed in the MS/MS spectra. This is the first study of IMP metabolism in vivo. The interpretation of the MS/MS spectra of these metabolites and the proposed metabolite pathway provide essential data for further pharmacological studies of other linear-type furocoumarins.

  15. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    PubMed

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  16. Metabolism of alprazolam (a marker of CYP3A4) in hemodialysis patients with persistent inflammation.

    PubMed

    Molanaei, Hadi; Stenvinkel, Peter; Qureshi, Abdul Rashid; Carrero, Juan Jesús; Heimbürger, Olof; Lindholm, Bengt; Diczfalusy, Ulf; Odar-Cederlöf, Ingegerd; Bertilsson, Leif

    2012-05-01

    To investigate the impact of persistent inflammation in hemodialysis (HD) patients on the pharmacokinetics of alprazolam, a cytochrome P450 (CYP) 3A4 substrate, and its metabolites and the role of HD in the impact of persistent inflammation in this clinical context. The study population comprised 26 HD patients (mean age 64 years, range 27-79 years; 19 men, 7 women) who were given 1 mg of alprazolam orally in the evening before the day of HD. Unconjugated and conjugated alprazolam and its 4-hydroxy and α-hydroxy metabolites were measured by liquid chromatography-mass spectrometry at 10, 34 (start of HD) and 38 (end of HD) h after intake. C-reactive protein (CRP) was measured weekly beginning 2 months before study initiation, and alpha 1-acid glycoprotein and 4β-hydroxycholesterol were measured at baseline. CYP3A4 activity was estimated as the ratio of unconjugated alprazolam to 4-hydroxyalprazolam between 10 and 34 h following alprazolam intake. After a single dose of alprazolam, plasma concentrations of unconjugated alprazolam and its metabolites decreased gradually, and unconjugated 4-hydroxyalprazolam was eliminated more rapidly than unconjugated alprazolam by HD. In contrast, the plasma concentrations of conjugated alprazolam and its conjugated metabolites increased during the 34 h following drug intake and the subsequent HD decreased their levels by almost 80%. The ratio of unconjugated alprazolam to 4-hydroxyalprazolam was correlated with CRP levels (r(s) = 0.49, P = 0.01). There was no significant correlation between CYP3A4 activity measured by alprazolam (4-hydroxylation) and alpha 1-acid glycoprotein or 4β-hydroxycholesterol. Conjugated alprazolam was also found in the plasma. The correlation between CYP3A4 activity (assessed by alprazolam 4-hydroxylation) and CRP level suggests that inflammation may downregulate CYP3A4 activity. If confirmed, this could have major implications for drug dosing in persistently inflamed patients.

  17. Unbiased plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans.

    PubMed

    Shirolkar, Amey; Chakraborty, Sutapa; Mandal, Tusharkanti; Dabur, Rajesh

    2017-11-25

    Ayurveda, an ancient Indian medicinal system, has categorized human body constitutions in three broad constitutional types (prakritis) i.e. Vata, Pitta and Kapha. Analysis of plasma metabolites and related pathways to classify Prakriti specific dominant marker metabolites and metabolic pathways. 38 healthy male individuals were assessed for dominant Prakritis and their fasting blood samples were collected. The processed plasma samples were subjected to rapid resolution liquid chromatography-electrospray ionization-quadrupole time of flight mass spectrometry (RRLC-ESI-QTOFMS). Mass profiles were aligned and subjected to multivariate analysis. Partial least square discriminant analysis (PLS-DA) model showed 97.87% recognition capability. List of PLS-DA metabolites was subjected to permutative Benjamini-Hochberg false discovery rate (FDR) correction and final list of 76 metabolites with p < 0.05 and fold-change > 2.0 was identified. Pathway analysis using metascape and JEPETTO plugins in Cytoscape revealed that steroidal hormone biosynthesis, amino acid, and arachidonic acid metabolism are major pathways varying with different constitution. Biological Go processes analysis showed that aromatic amino acids, sphingolipids, and pyrimidine nucleotides metabolic processes were dominant in kapha type of body constitution. Fat soluble vitamins, cellular amino acid, and androgen biosynthesis process along with branched chain amino acid and glycerolipid catabolic processes were dominant in pitta type individuals. Vata Prakriti was found to have dominant catecholamine, arachidonic acid and hydrogen peroxide metabolomics processes. The neurotransmission and oxidative stress in vata, BCAA catabolic, androgen, xenobiotics metabolic processes in pitta, and aromatic amino acids, sphingolipid, and pyrimidine metabolic process in kaphaPrakriti were the dominant marker pathways. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  18. Identifying biomarkers of dietary patterns by using metabolomics123

    PubMed Central

    Derkach, Andriy; Reedy, Jill; Subar, Amy F; Sampson, Joshua N; Albanes, Demetrius; Gu, Fangyi; Kontto, Jukka; Lassale, Camille; Liao, Linda M; Männistö, Satu; Mondul, Alison M; Weinstein, Stephanie J; Irwin, Melinda L; Mayne, Susan T; Stolzenberg-Solomon, Rachael

    2017-01-01

    Background: Healthy dietary patterns that conform to national dietary guidelines are related to lower chronic disease incidence and longer life span. However, the precise mechanisms involved are unclear. Identifying biomarkers of dietary patterns may provide tools to validate diet quality measurement and determine underlying metabolic pathways influenced by diet quality. Objective: The objective of this study was to examine the correlation of 4 diet quality indexes [the Healthy Eating Index (HEI) 2010, the Alternate Mediterranean Diet Score (aMED), the WHO Healthy Diet Indicator (HDI), and the Baltic Sea Diet (BSD)] with serum metabolites. Design: We evaluated dietary patterns and metabolites in male Finnish smokers (n = 1336) from 5 nested case-control studies within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort. Participants completed a validated food-frequency questionnaire and provided a fasting serum sample before study randomization (1985–1988). Metabolites were measured with the use of mass spectrometry. We analyzed cross-sectional partial correlations of 1316 metabolites with 4 diet quality indexes, adjusting for age, body mass index, smoking, energy intake, education, and physical activity. We pooled estimates across studies with the use of fixed-effects meta-analysis with Bonferroni correction for multiple comparisons, and conducted metabolic pathway analyses. Results: The HEI-2010, aMED, HDI, and BSD were associated with 23, 46, 23, and 33 metabolites, respectively (17, 21, 11, and 10 metabolites, respectively, were chemically identified; r-range: −0.30 to 0.20; P = 6 × 10−15 to 8 × 10−6). Food-based diet indexes (HEI-2010, aMED, and BSD) were associated with metabolites correlated with most components used to score adherence (e.g., fruit, vegetables, whole grains, fish, and unsaturated fat). HDI correlated with metabolites related to polyunsaturated fat and fiber components, but not other macro- or micronutrients (e.g., percentages of protein and cholesterol). The lysolipid and food and plant xenobiotic pathways were most strongly associated with diet quality. Conclusions: Diet quality, measured by healthy diet indexes, is associated with serum metabolites, with the specific metabolite profile of each diet index related to the diet components used to score adherence. This trial was registered at clinicaltrials.gov as NCT00342992. PMID:28031192

  19. Profiling and Distribution of Metabolites of Procyanidin B2 in Mice by UPLC-DAD-ESI-IT-TOF-MSn Technique

    PubMed Central

    Xiao, Ying; Hu, Zhongzhi; Yin, Zhiting; Zhou, Yiming; Liu, Taiyi; Zhou, Xiaoli; Chang, Dawei

    2017-01-01

    The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites) were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (−)-epicatechin by scission of the flavanol interflavanic bond C4–C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action. PMID:28522973

  20. In vivo metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant.

    PubMed

    Sun, Jianteng; Liu, Jiyan; Yu, Miao; Wang, Chang; Sun, Yuzhen; Zhang, Aiqian; Wang, Thanh; Lei, Zhen; Jiang, Guibin

    2013-04-16

    Polybrominated diphenyl ethers (PBDEs) are widely distributed persistent organic pollutants. In vitro and in vivo research using various animal models have shown that PBDEs might be transformed to hydroxylated PBDEs, but there are few studies on in vivo metabolism of PBDEs by intact whole plants. In this research, pumpkin plants (Cucurbita maxima × C. moschata) were hydroponically exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). A debromination product (BDE-28) and four hydroxylated metabolites (5-OH-BDE-47, 6-OH-BDE-47, 4'-OH-BDE-49, and 4-OH-BDE-42) were detected in different parts of the whole plant. In addition, 4-methoxylated-2,2',3,4'-tetraBDE (4-MeO-BDE-42) was observed as a methoxylation product. Root exudates in solution were found to play an important role in metabolizing BDE-47 to a specific OH-PBDE: 4'-OH-BDE-49. BDE-28 was found to translocate more easily and accumulate in shoots than BDE-47 due to the lower hydrophobicity and molecular weight. The concentration ratio between metabolites and parent compound BDE-47 was lower for OH-PBDEs than that for both BDE-28 and 4-MeO-BDE-42. The metabolism pathway of BDE-47 in young whole plants was proposed in this study.

  1. Success of tardive electroconvulsive therapy sessions after loxapine-induced malignant syndrome in the context of very poor metabolisation.

    PubMed

    Descoeur, Juliette; Philibert, Laurent; Chalard, Kevin; Attal, Jérôme; Petit, Pierre; Klouche, Kada; Olivier, Mathieu

    2017-12-01

    We report the success of tardive electroconvulsive therapy in a case of loxapine malignant syndrome with catatonia. Loxapine and its metabolites were measured in biological samples by liquid chromatography coupled to tandem mass spectrometry. Genes were studied by sequencing and quantitative polymerase chain reaction (PCR). Plasmatic drug concentrations showed a supratherapeutic concentration of loxapine with a very low 8-hydroxyloxapine/loxapine ratio (range from 0.32 to 0.66, normal value>2 for 100mg) and a very long elimination half-life of loxapine (half-life>140h, normal value from 1 to 4hours). We tried to explain this kinetics by exploring the main pharmacogenes implicated in the metabolism of loxapine. No genetic abnormality for CYP1A2 was observed. The study of associated treatments showed the potential contribution of valproate. Pharmacokinetics and pharmacogenetics investigations revealed a blockade of the CYP1A2 metabolic pathway without genetic abnormalities, probably due to valproate co-medication. Toxicological monitoring of loxapine and its metabolites helped to explain the persistence of symptoms and to adapt the therapeutic management. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  2. The Cell Wall Integrity Signaling Pathway and Its Involvement in Secondary Metabolite Production.

    PubMed

    Valiante, Vito

    2017-12-06

    The fungal cell wall is the external and first layer that fungi use to interact with the environment. Every stress signal, before being translated into an appropriate stress response, needs to overtake this layer. Many signaling pathways are involved in translating stress signals, but the cell wall integrity (CWI) signaling pathway is the one responsible for the maintenance and biosynthesis of the fungal cell wall. In fungi, the CWI signal is composed of a mitogen-activated protein kinase (MAPK) module. After the start of the phosphorylation cascade, the CWI signal induces the expression of cell-wall-related genes. However, the function of the CWI signal is not merely the activation of cell wall biosynthesis, but also the regulation of expression and production of specific molecules that are used by fungi to better compete in the environment. These molecules are normally defined as secondary metabolites or natural products. This review is focused on secondary metabolites affected by the CWI signal pathway with a special focus on relevant natural products such as melanins, mycotoxins, and antibacterial compounds.

  3. Serum and Plasma Metabolomic Biomarkers for Lung Cancer.

    PubMed

    Kumar, Nishith; Shahjaman, Md; Mollah, Md Nurul Haque; Islam, S M Shahinul; Hoque, Md Aminul

    2017-01-01

    In drug invention and early disease prediction of lung cancer, metabolomic biomarker detection is very important. Mortality rate can be decreased, if cancer is predicted at the earlier stage. Recent diagnostic techniques for lung cancer are not prognosis diagnostic techniques. However, if we know the name of the metabolites, whose intensity levels are considerably changing between cancer subject and control subject, then it will be easy to early diagnosis the disease as well as to discover the drug. Therefore, in this paper we have identified the influential plasma and serum blood sample metabolites for lung cancer and also identified the biomarkers that will be helpful for early disease prediction as well as for drug invention. To identify the influential metabolites, we considered a parametric and a nonparametric test namely student׳s t-test as parametric and Kruskal-Wallis test as non-parametric test. We also categorized the up-regulated and down-regulated metabolites by the heatmap plot and identified the biomarkers by support vector machine (SVM) classifier and pathway analysis. From our analysis, we got 27 influential (p-value<0.05) metabolites from plasma sample and 13 influential (p-value<0.05) metabolites from serum sample. According to the importance plot through SVM classifier, pathway analysis and correlation network analysis, we declared 4 metabolites (taurine, aspertic acid, glutamine and pyruvic acid) as plasma biomarker and 3 metabolites (aspartic acid, taurine and inosine) as serum biomarker.

  4. Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.

    PubMed

    Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2018-01-01

    Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.

  5. Quasi-targeted analysis of hydroxylation-related metabolites of polycyclic aromatic hydrocarbons in human urine by liquid chromatography-mass spectrometry.

    PubMed

    Tang, Caiming; Tan, Jianhua; Fan, Ruifang; Zhao, Bo; Tang, Caixing; Ou, Weihui; Jin, Jiabin; Peng, Xianzhi

    2016-08-26

    Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway

    PubMed Central

    2013-01-01

    Background The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. Results Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. Conclusions Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude. PMID:24099172

  7. Differences in the metabolism and disposition of inhaled (3H)benzene by F344/N rats and B6C3F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.J.; Bechtold, W.E.; Birnbaum, L.S.

    1988-06-15

    Benzene is a potent hematotoxin and has been shown to cause leukemia in man. Chronic toxicity studies indicate that B6C3F1 mice are more susceptible than F334/N rats to benzene toxicity. The purpose of the studies presented in this paper was to determine if there were metabolic differences between F344/N rats and B6C3F1 mice which might be responsible for this increased susceptibility. Metabolites of benzene in blood, liver, lung, and bone marrow were measured during and following a 6-hr 50 ppm exposure to benzene vapor. Hydroquinone glucuronide, hydroquinone, and muconic acid, which reflect pathways leading to potential toxic metabolites of benzene,more » were present in much greater concentrations in the mouse than in rat tissues. Phenylsulfate, a detoxified metabolite, and an unknown water-soluble metabolite were present in approximately equal concentrations in these two species. These results indicate that the proportion of benzene metabolized via pathways leading to the formation of potentially toxic metabolites as opposed to detoxification pathways was much higher in B6C3F1 mice than in F344 rats, which may explain the higher susceptibility of mice to benzene-induced hematotoxicity and carcinogenicity.« less

  8. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile.

    PubMed

    Okuma, Nobuyuki; Saita, Makiko; Hoshi, Noriyuki; Soga, Tomoyoshi; Tomita, Masaru; Sugimoto, Masahiro; Kimoto, Katsuhiko

    2017-01-01

    This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation.

  9. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats.

    PubMed

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K

    2015-06-04

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  10. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    PubMed Central

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K.

    2015-01-01

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP. PMID:26053618

  11. Metabolism of 13-cis-retinoic acid by a rat liver 9000g supernatant preparation.

    PubMed

    Vane, F M; Buggé, C J; Williams, T H

    1982-01-01

    The in vitro metabolites formed on incubation of 13-cis-retinoic acid (13-cis-RA, isotretinoin) with a 9000g rat liver supernatant system were isolated by HPLC and identified by their mass and NMR spectra. The major metabolic pathway was hydroxylation at C4 to give 4-hydroxy-13-cis-RA, which was rapidly oxidized to 4-oxo-13-cis-RA, the major isolated metabolite. Further metabolism of this 4-oxo metabolite led to two novel compounds, 2-hydroxy-4-oxo-13-cis-RA and 3-hydroxy-4-oxo-13-cis-RA. In addition, small amounts of 13-cis-RA and 4-oxo-13-cis-RA were enzymatically converted to their all-trans isomers. Support for these pathways was obtained by the metabolism of reference samples of 4-hydroxy-13-cis-RA, 4-oxo-13-cis-RA, all-trans-RA, and 4-oxo-all-trans-RA. The predominant formation of 4-oxo metabolites of 13-cis-RA in this in vitro rat system and the results from previously reported in vivo metabolism studies suggest that oxidation at C4 is a major metabolic pathway of 13-cis-RA in both rats and humans.

  12. The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington’s Disease

    PubMed Central

    Campesan, Susanna; Green, Edward W.; Breda, Carlo; Sathyasaikumar, Korrapati V.; Muchowski, Paul J.; Schwarcz, Robert; Kyriacou, Charalambos P.; Giorgini, Flaviano

    2014-01-01

    Summary Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been implicated in the pathophysiology of neurodegenerative disorders, including Huntington’s disease (HD) [1]. A central hallmark of HD is neurodegeneration caused by a polyglutamine expansion in the huntingtin (htt) protein [2]. Here we exploit a transgenic Drosophila melanogaster model of HD to interrogate the therapeutic potential of KP manipulation. We observe that genetic and pharmacological inhibition of kynurenine 3-monooxygenase (KMO) increases levels of the neuroprotective metabolite kynurenic acid (KYNA) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-HK) and ameliorates neurodegeneration. We also find that genetic inhibition of tryptophan 2,3-dioxygenase (TDO), the first and rate-limiting step in the pathway, leads to a similar neuroprotective shift toward KYNA synthesis. Importantly, we demonstrate that the feeding of KYNA and 3-HK to HD model flies directly modulates neurodegeneration, underscoring the causative nature of these metabolites. This study provides the first genetic evidence that inhibition of KMO and TDO activity protects against neurodegenerative disease in an animal model, indicating that strategies targeted at two key points within the KP may have therapeutic relevance in HD, and possibly other neurodegenerative disorders. PMID:21636279

  13. Construction and completion of flux balance models from pathway databases.

    PubMed

    Latendresse, Mario; Krummenacker, Markus; Trupp, Miles; Karp, Peter D

    2012-02-01

    Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand. We present a multiple gap-filling method to accelerate the development of FBA models using a new tool, called MetaFlux, based on mixed integer linear programming (MILP). The method suggests corrections to the sets of reactions, biomass metabolites, nutrients and secretions. The method generates FBA models directly from Pathway/Genome Databases. Thus, FBA models developed in this framework are easily queried and visualized using the Pathway Tools software. Predicted fluxes are more easily comprehended by visualizing them on diagrams of individual metabolic pathways or of metabolic maps. MetaFlux can also remove redundant high-flux loops, solve FBA models once they are generated and model the effects of gene knockouts. MetaFlux has been validated through construction of FBA models for Escherichia coli and Homo sapiens. Pathway Tools with MetaFlux is freely available to academic users, and for a fee to commercial users. Download from: biocyc.org/download.shtml. mario.latendresse@sri.com Supplementary data are available at Bioinformatics online.

  14. Patterns of chemical diversity in the marine ascidian Phallusia spp.: anti-tumor activity and metabolic pathway inhibiting steroid biosynthesis.

    PubMed

    Palanisamy, Satheesh Kumar; Arumugam, Velusamy; Peter, Magesh D; Sundaresan, Umamaheswari

    2018-05-01

    The complex nature of marine biodiversity is partially responsible for the lack of studies in Indian ascidian species, which often target a small number of novel biomolecules. We performed untargeted metabolomics using gas chromatography-mass spectrometry (GC-MS) in two invasive ascidian species to investigate the inter-specific chemical diversity of Phallusia nigra and P. arabica in search of drug-like properties and metabolic pathways. The chemical profiling of individual ascidian species was obtained using GC-MS, and the metabolites were determined by searching in NIST library and literature data. The principal component analysis of GC-MS mass spectral variables showed a clear discrimination of these two ascidian species based on the chemical composition and taxonomy. The metabolites, lipids, macrolides, and steroids contributed strongly to the discrimination of these two species. Results of this study confirmed that GC-MS-based chemical profiling could be utilized as a tool for chemotaxonomic classification of ascidian species. The extract of P. nigra showed promising anti-tumor activity against HT29 colon cancer 35 µM and MCF7-breast cancer (34.76 µM) cells compared to P. arabica . Of the more than 70 metabolites measured, 18 metabolites that mapped various pathways linked to three metabolic pathways being impacted and altered in steroid biosynthesis, primary bile acid biosynthesis, and steroid hormone biosynthesis were observed to have changed significantly ( p  > 0.004, FDR < 0.01). Also, higher expression of this pathway was associated with more significant cytotoxicity in breast and colon carcinoma cells.

  15. Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics

    PubMed Central

    Mangalam, AK; Poisson, LM; Nemutlu, E; Datta, I; Denic, A; Dzeja, P; Rodriguez, M; Rattan, R; Giri, S

    2013-01-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS. PMID:24273690

  16. GPG-NH2 acts via the metabolite alphaHGA to target HIV-1 Env to the ER-associated protein degradation pathway.

    PubMed

    Jejcic, Alenka; Höglund, Stefan; Vahlne, Anders

    2010-03-15

    The synthetic peptide glycyl-prolyl-glycine amide (GPG-NH2) was previously shown to abolish the ability of HIV-1 particles to fuse with the target cells, by reducing the content of the viral envelope glycoprotein (Env) in progeny HIV-1 particles. The loss of Env was found to result from GPG-NH2 targeting the Env precursor protein gp160 to the ER-associated protein degradation (ERAD) pathway during its maturation. However, the anti-viral effect of GPG-NH2 has been shown to be mediated by its metabolite alpha-hydroxy-glycineamide (alphaHGA), which is produced in the presence of fetal bovine serum, but not human serum. In accordance, we wanted to investigate whether the targeting of gp160 to the ERAD pathway by GPG-NH2 was attributed to its metabolite alphaHGA. In the presence of fetal bovine serum, GPG-NH2, its intermediary metabolite glycine amide (G-NH2), and final metabolite alphaHGA all induced the degradation of gp160 through the ERAD pathway. However, when fetal bovine serum was replaced with human serum only alphaHGA showed an effect on gp160, and this activity was further shown to be completely independent of serum. This indicated that GPG-NH2 acts as a pro-drug, which was supported by the observation that it had to be added earlier to the cell cultures than alphaHGA to induce the degradation of gp160. Furthermore, the substantial reduction of Env incorporation into HIV-1 particles that occurs during GPG-NH2 treatment was also achieved by treating HIV-1 infected cells with alphaHGA. The previously observed specificity of GPG-NH2 towards gp160 in HIV-1 infected cells, resulting in the production of Env (gp120/gp41) deficient fusion incompetent HIV-1 particles, was most probably due to the action of the GPG-NH2 metabolite alphaHGA.

  17. A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions

    PubMed Central

    2013-01-01

    Background Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Results Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate fermentation is one of the key themes discussed in the field of hypoxia; however, malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate, which are connected by a single pathway, may provide a more significant marker of hypoxia in cancer. Conclusions Metabolic networks generated for each cell line were compared to identify conserved metabolite pathway responses to low oxygen environments. Furthermore, we believe this methodology will have general application within metabolomics. PMID:24153255

  18. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    PubMed Central

    2012-01-01

    Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration. Conclusions The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner. PMID:22713133

  19. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum.

    PubMed

    Beisser, Daniela; Grohme, Markus A; Kopka, Joachim; Frohme, Marcus; Schill, Ralph O; Hengherr, Steffen; Dandekar, Thomas; Klau, Gunnar W; Dittrich, Marcus; Müller, Tobias

    2012-06-19

    Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration. The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.

  20. Caffeine - rich infusion from Cola nitida (kola nut) inhibits major carbohydrate catabolic enzymes; abates redox imbalance; and modulates oxidative dysregulated metabolic pathways and metabolites in Fe2+-induced hepatic toxicity.

    PubMed

    Erukainure, Ochuko L; Oyebode, Olajumoke A; Sokhela, Mxolisi K; Koorbanally, Neil A; Islam, Md Shahidul

    2017-12-01

    The antioxidative and antidiabetic effects and toxicity of caffeine-rich infusion of Cola nitida were investigated using in vitro, ex vivo and in silico models. C. nitida was infused in boiling water and allowed to cool before concentrating at <50°C. HPLC analysis of the infusion revealed a caffeine content of 80.08%. The infusion showed potent in vitro antioxidant activity by significantly (p<0.05) scavenging 2,2'-diphenyl-1-picrylhydrazyl (DPPH). It significantly (p<0.05) inhibited α-glucosidase and α-amylase activities. Treatment of Fe 2+ induced oxidative hepatic tissues with the infusion led to increase Superoxide Dismutase (SOD) and catalase activities, and glutathione (GSH) level as well as decreased malondialdehyde (MDA) level. FTIR spectroscopy of hepatic metabolite revealed restoration of oxidative-induced depleted functional groups by the infusion. LC-MS analysis of the metabolite also revealed restoration of most depleted metabolites with concomitant generation of 4-O-Methylgallic, (-)-Epicatechin sulfate, L-Arginine, L-tyrosine, Citric acid and Decanoic acid in infusion-treated tissues. Pathway analysis of the identified metabolites revealed the presence of 21 metabolic pathways involved in normal hepatic tissues, 12 in oxidative injured tissues and 17 in the treated tissues. Treatment with the infusion restored 4 metabolic pathways common to the normal tissue and further activated 4 additional pathways. Prediction of oral toxicity of caffeine showed it to belong to class 3, with a LD 50 of 127mg/kg. Its toxicity target was predicted as Adenosine Receptor A2a. It was also predicted to be an inhibitor of CYP1A2. These results suggest the antioxidative and antidiabetic properties of C. nitida infusion, with caffeine as the major constituent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review.

    PubMed

    Camacho-Pérez, Beni; Ríos-Leal, Elvira; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    The scope of this paper encompasses the following subjects: (i) aerobic and anaerobic degradation pathways of γ-hexachlorocyclohexane (HCH); (ii) important genes and enzymes involved in the metabolic pathways of γ-HCH degradation; (iii) the instrumental methods for identifying and quantifying intermediate metabolites, such as gas chromatography coupled to mass spectrometry (GC-MS) and other techniques. It can be concluded that typical anaerobic and aerobic pathways of γ-HCH are well known for a few selected microbial strains, although less is known for anaerobic consortia where the possibility of synergism, antagonism, and mutualism can lead to more particular routes and more effective degradation of γ-HCH. Conversion and removals in the range 39%-100% and 47%-100% have been reported for aerobic and anaerobic cultures, respectively. Most common metabolites reported for aerobic degradation of lindane are γ-pentachlorocyclohexene (γ-PCCH), 2,5-dichlorobenzoquinone (DCBQ), Chlorohydroquinone (CHQ), chlorophenol, and phenol, whereas PCCH, isomers of trichlorobenzene (TCB), chlorobenzene, and benzene are the most typical metabolites found in anaerobic pathways. Enzyme and genetic characterization of the involved molecular mechanisms are in their early infancy; more work is needed to elucidate them in the future. Advances have been made on identification of enzymes of Sphingomonas paucimobilis where the gene LinB codifies for the enzyme haloalkane dehalogenase that acts on 1,3,4,6-tetrachloro 1,4-cyclohexadiene, thus debottlenecking the pathway. Other more common enzymes such as phenol hydroxylase, catechol 1,2-dioxygenase, catechol 2,3-dioxygenase are also involved since they attack intermediate metabolites of lindane such as catechol and less substituted chlorophenols. Chromatography coupled to mass spectrometric detector, especially GC-MS, is the most used technique for resolving for γ-HCH metabolites, although there is an increased participation of HPLC-MS methods. Scintillation methods are very useful to assess final degradation of γ-HCH. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Metabolomic Analysis in Heart Failure.

    PubMed

    Ikegami, Ryutaro; Shimizu, Ippei; Yoshida, Yohko; Minamino, Tohru

    2017-12-25

    It is thought that at least 6,500 low-molecular-weight metabolites exist in humans, and these metabolites have various important roles in biological systems in addition to proteins and genes. Comprehensive assessment of endogenous metabolites is called metabolomics, and recent advances in this field have enabled us to understand the critical role of previously unknown metabolites or metabolic pathways in the cardiovascular system. In this review, we will focus on heart failure and how metabolomic analysis has contributed to improving our understanding of the pathogenesis of this critical condition.

  3. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots.

    PubMed

    Zabalza, Ana; Orcaray, Luis; Fernández-Escalada, Manuel; Zulet-González, Ainhoa; Royuela, Mercedes

    2017-09-01

    The shikimate pathway is a metabolic route for the biosynthesis of aromatic amino acids (AAAs) (i.e. phenylalanine, tyrosine, and tryptophan). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate. Quinate is a compound synthesized in plants through a side branch of the shikimate pathway. Glyphosate provokes quinate accumulation and exogenous quinate application to plants shows a potential role of quinate in the toxicity of the herbicide glyphosate. Based on this, we hypothesized that the role of quinate accumulation in the toxicity of the glyphosate would be mediated by a deregulation of the shikimate pathway. In this study the effect of the glyphosate and of the exogenous quinate was evaluated in roots of pea plants by analyzing the time course of a full metabolic map of several metabolites of shikimate and phenylpropanoid pathways. Glyphosate application induced an increase of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS, first enzyme of the shikimate pathway) protein and accumulation of metabolites upstream of the enzyme EPSPS. No common effects on the metabolites and regulation of shikimate pathway were detected between quinate and glyphosate treatments, supporting that the importance of quinate in the mode of action of glyphosate is not mediated by a common alteration of the regulation of the shikimate pathway. Contrary to glyphosate, the exogenous quinate supplied was probably incorporated into the main trunk from the branch pathway and accumulated in the final products, such as lignin, concomitant with a decrease in the amount of DAHPS protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition

    PubMed Central

    2011-01-01

    Background The quantification of experimentally-induced alterations in biological pathways remains a major challenge in systems biology. One example of this is the quantitative characterization of alterations in defined, established metabolic pathways from complex metabolomic data. At present, the disruption of a given metabolic pathway is inferred from metabolomic data by observing an alteration in the level of one or more individual metabolites present within that pathway. Not only is this approach open to subjectivity, as metabolites participate in multiple pathways, but it also ignores useful information available through the pairwise correlations between metabolites. This extra information may be incorporated using a higher-level approach that looks for alterations between a pair of correlation networks. In this way experimentally-induced alterations in metabolic pathways can be quantitatively defined by characterizing group differences in metabolite clustering. Taking this approach increases the objectivity of interpreting alterations in metabolic pathways from metabolomic data. Results We present and justify a new technique for comparing pairs of networks--in our case these networks are based on the same set of nodes and there are two distinct types of weighted edges. The algorithm is based on the Generalized Singular Value Decomposition (GSVD), which may be regarded as an extension of Principle Components Analysis to the case of two data sets. We show how the GSVD can be interpreted as a technique for reordering the two networks in order to reveal clusters that are exclusive to only one. Here we apply this algorithm to a new set of metabolomic data from the prefrontal cortex (PFC) of a translational model relevant to schizophrenia, rats treated subchronically with the N-methyl-D-Aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). This provides us with a means to quantify which predefined metabolic pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolite pathway database) were altered in the PFC of PCP-treated rats. Several significant changes were discovered, notably: 1) neuroactive ligands active at glutamate and GABA receptors are disrupted in the PFC of PCP-treated animals, 2) glutamate dysfunction in these animals was not limited to compromised glutamatergic neurotransmission but also involves the disruption of metabolic pathways linked to glutamate; and 3) a specific series of purine reactions Xanthine ← Hypoxyanthine ↔ Inosine ← IMP → adenylosuccinate is also disrupted in the PFC of PCP-treated animals. Conclusions Network reordering via the GSVD provides a means to discover statistically validated differences in clustering between a pair of networks. In practice this analytical approach, when applied to metabolomic data, allows us to quantify the alterations in metabolic pathways between two experimental groups. With this new computational technique we identified metabolic pathway alterations that are consistent with known results. Furthermore, we discovered disruption in a novel series of purine reactions that may contribute to the PFC dysfunction and cognitive deficits seen in schizophrenia. PMID:21575198

  5. Arsenic (+3 Oxidation State) Methyltransferase and the Methylation of Arsenicals

    PubMed Central

    Thomas, David J.; Li, Jiaxin; Waters, Stephen B.; Xing, Weibing; Adair, Blakely M.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav

    2008-01-01

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme’s role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway. PMID:17202581

  6. Uropathogenic Escherichia coli Metabolite-Dependent Quiescence and Persistence May Explain Antibiotic Tolerance during Urinary Tract Infection

    PubMed Central

    Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Rowley, David C.; Deering, Robert; Camberg, Jodi L.; Sokurenko, Evgeni V.; Tchesnokova, Veronika L.; Frimodt-Møller, Jakob; Leth Nielsen, Karen; Sun, Gongqin

    2016-01-01

    ABSTRACT In the present study, it is shown that although Escherichia coli CFT073, a human uropathogenic (UPEC) strain, grows in liquid glucose M9 minimal medium, it fails to grow on glucose M9 minimal medium agar plates seeded with ≤106 CFU. The cells on glucose plates appear to be in a “quiescent” state that can be prevented by various combinations of lysine, methionine, and tyrosine. Moreover, the quiescent state is characteristic of ~80% of E. coli phylogenetic group B2 multilocus sequence type 73 strains, as well as 22.5% of randomly selected UPEC strains isolated from community-acquired urinary tract infections in Denmark. In addition, E. coli CFT073 quiescence is not limited to glucose but occurs on agar plates containing a number of other sugars and acetate as sole carbon sources. It is also shown that a number of E. coli CFT073 mini-Tn5 metabolic mutants (gnd, gdhA, pykF, sdhA, and zwf) are nonquiescent on glucose M9 minimal agar plates and that quiescence requires a complete oxidative tricarboxylic acid (TCA) cycle. In addition, evidence is presented that, although E. coli CFT073 quiescence and persistence in the presence of ampicillin are alike in that both require a complete oxidative TCA cycle and each can be prevented by amino acids, E. coli CFT073 quiescence occurs in the presence or absence of a functional rpoS gene, whereas maximal persistence requires a nonfunctional rpoS. Our results suggest that interventions targeting specific central metabolic pathways may mitigate UPEC infections by interfering with quiescence and persistence. IMPORTANCE Recurrent urinary tract infections (UTIs) affect 10 to 40% of women. In up to 77% of those cases, the recurrent infections are caused by the same uropathogenic E. coli (UPEC) strain that caused the initial infection. Upon infection of urothelial transitional cells in the bladder, UPEC appear to enter a nongrowing quiescent intracellular state that is thought to serve as a reservoir responsible for recurrent UTIs. Here, we report that many UPEC strains enter a quiescent state when ≤106 CFU are seeded on glucose M9 minimal medium agar plates and show that mutations in several genes involved in central carbon metabolism prevent quiescence, as well as persistence, possibly identifying metabolic pathways involved in UPEC quiescence and persistence in vivo. PMID:27303698

  7. Alterations in metabolic pathways and networks in Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-01-01

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809

  8. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  9. Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites

    PubMed Central

    Rombouts, Caroline; Hemeryck, Lieselot Y.; Van Hecke, Thomas; De Smet, Stefaan; De Vos, Winnok H.; Vanhaecke, Lynn

    2017-01-01

    Epidemiological research has demonstrated that the consumption of red meat is an important risk factor for the development of colorectal cancer (CRC), diabetes mellitus and cardiovascular diseases. However, there is no holistic insight in the (by-) products of meat digestion that may contribute to disease development. To address this hiatus, an untargeted mass spectrometry (MS)-based metabolomics approach was used to create red versus white meat associated metabolic fingerprints following in vitro colonic digestion using the fecal inocula of ten healthy volunteers. Twenty-two metabolites were unequivocally associated with simulated colonic digestion of red meat. Several of these metabolites could mechanistically be linked to red meat-associated pathways including N’-formylkynurenine, kynurenine and kynurenic acid (all involved in tryptophan metabolism), the oxidative stress marker dityrosine, and 3-dehydroxycarnitine. In conclusion, the used MS-based metabolomics platform proved to be a powerful platform for detection of specific metabolites that improve the understanding of the causal relationship between red meat consumption and associated diseases. PMID:28195169

  10. Effect of long-distance transportation on serum metabolic profiles of steer calves.

    PubMed

    Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2017-12-01

    Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.

  11. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.

    PubMed

    Schweiger, R; Heise, A-M; Persicke, M; Müller, C

    2014-07-01

    The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species. © 2013 John Wiley & Sons Ltd.

  12. Global metabolomic profiling targeting childhood obesity in the Hispanic population

    USDA-ARS?s Scientific Manuscript database

    Metabolomics may unravel important biological pathways involved in the pathophysiology of childhood obesity. We aimed to 1) identify metabolites that differ significantly between nonobese and obese Hispanic children; 2) collapse metabolites into principal components (PCs) associated with obesity and...

  13. PATHWAY OF INORGANIC ARSENIC METABOLISM

    EPA Science Inventory

    A remarkable aspect of the metabolism of inorganic arsenic in humans is its conversion to methylated metabolites. These metabolites account for most of the arsenic found in urine after exposure to inorganic arsenic. At least some of the adverse health effects attributed to inor...

  14. Arsenolysis and Thiol-Dependent Arsenate Reduction

    EPA Science Inventory

    Conversion of arsenate to arsenite is a critical event in the pathway that leads from inorganic arsenic to a variety of methylated metabolites. The formation of methylated metabolites influences distribution and retention of arsenic and affects the reactivity and toxicity of thes...

  15. The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease.

    PubMed

    Amaral, Marta; Outeiro, Tiago F; Scrutton, Nigel S; Giorgini, Flaviano

    2013-06-01

    Metabolites of the kynurenine pathway (KP), which arise from the degradation of tryptophan, have been studied in detail for over a century and garnered the interest of the neuroscience community in the late 1970s and early 1980s with work uncovering the neuromodulatory potential of this pathway. Much research in the following decades has found that perturbations in the levels of KP metabolites likely contribute to the pathogenesis of several neurodegenerative diseases. More recently, it has become apparent that targeting KP enzymes, in particular kynurenine 3-monooxygenase (KMO), may hold substantial therapeutic potential for these disorders. Here we provide an overview of the KP, the neuroactive properties of KP metabolites and their role in neurodegeneration. We also discuss KMO as a therapeutic target for these disorders, and our recent resolution of the crystallographic structure of KMO, which will permit the development of new and improved KMO inhibitors which may ultimately expedite clinical application of these compounds.

  16. A laboratory study of the persistence of carbofuran and its 3-hydroxy- and 3 keto-metabolites in sterile and natural mineral and organic soils.

    PubMed

    Miles, J R; Tu, C M; Harris, C R

    1981-01-01

    In a laboratory study, the persistence of carbofuran and its 3-hydroxy- and 3-keto-metabolites was examined separately over 16 wk in sterile and natural organic (muck) and mineral (loam) soils. Carbofuran was relatively persistent in sterile soils; at 8 wk 77% remained in the sterile muck and about 50% remained in the sterile loam. In the natural muck 25% of initial carbofuran remained at wk whereas in the natural loam carbofuran had completely disappeared by that time. The 3-ketocarbofuran was very short-lived even in the sterile muck where only 50% remained at 1 wk. The 3-hydroxycarbofuran degraded appreciably on zero day in the natural soils (with conversion to 3-keto-carbofuran) and about 90% had disappeared in 1 wk. A more detailed study of the persistence of 3-hydroxycarbofuran in the natural soils showed complete disappearance in 2 days in loam and in 3 days in muck. The 3-ketocarbofuran produced from the 3-hydroxy-carbofuran reached a maximum concentration in 1 day and then disappeared within 4 days in loam and about 1 wk in muck.

  17. Pesticide nonextractable residue formation in soil: insights from inverse modeling of degradation time series.

    PubMed

    Loos, Martin; Krauss, Martin; Fenner, Kathrin

    2012-09-18

    Formation of soil nonextractable residues (NER) is central to the fate and persistence of pesticides. To investigate pools and extent of NER formation, an established inverse modeling approach for pesticide soil degradation time series was evaluated with a Monte Carlo Markov Chain (MCMC) sampling procedure. It was found that only half of 73 pesticide degradation time series from a homogeneous soil source allowed for well-behaved identification of kinetic parameters with a four-pool model containing a parent compound, a metabolite, a volatile, and a NER pool. A subsequent simulation indeed confirmed distinct parameter combinations of low identifiability. Taking the resulting uncertainties into account, several conclusions regarding NER formation and its impact on persistence assessment could nonetheless be drawn. First, rate constants for transformation of parent compounds to metabolites were correlated to those for transformation of parent compounds to NER, leading to degradation half-lives (DegT50) typically not being larger than disappearance half-lives (DT50) by more than a factor of 2. Second, estimated rate constants were used to evaluate NER formation over time. This showed that NER formation, particularly through the metabolite pool, may be grossly underestimated when using standard incubation periods. It further showed that amounts and uncertainties in (i) total NER, (ii) NER formed from the parent pool, and (iii) NER formed from the metabolite pool vary considerably among data sets at t→∞, with no clear dominance between (ii) and (iii). However, compounds containing aromatic amine moieties were found to form significantly more total NER when extrapolating to t→∞ than the other compounds studied. Overall, our study stresses the general need for assessing uncertainties, identifiability issues, and resulting biases when using inverse modeling of degradation time series for evaluating persistence and NER formation.

  18. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites

    PubMed Central

    Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis. PMID:26317351

  19. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites.

    PubMed

    Kim, Yang-Ji; Lee, Da-Hye; Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis.

  20. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase.

    PubMed

    Würtz, Peter; Wang, Qin; Soininen, Pasi; Kangas, Antti J; Fatemifar, Ghazaleh; Tynkkynen, Tuulia; Tiainen, Mika; Perola, Markus; Tillin, Therese; Hughes, Alun D; Mäntyselkä, Pekka; Kähönen, Mika; Lehtimäki, Terho; Sattar, Naveed; Hingorani, Aroon D; Casas, Juan-Pablo; Salomaa, Veikko; Kivimäki, Mika; Järvelin, Marjo-Riitta; Davey Smith, George; Vanhala, Mauno; Lawlor, Debbie A; Raitakari, Olli T; Chaturvedi, Nish; Kettunen, Johannes; Ala-Korpela, Mika

    2016-03-15

    Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized. This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways. Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time points in 4 population-based cohorts from the United Kingdom and Finland (N = 5,590; 2.5 to 23.0 years of follow-up). Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase (the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts. Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C); other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the association pattern with rs12916 in the HMGCR gene (R(2) = 0.94, slope 1.00 ± 0.03). Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant cholesterol. Metabolomic profiling, however, suggested minimal effects on amino acids. The results exemplify how detailed metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects, and pharmacological mechanisms. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    PubMed Central

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  3. Development of a Searchable Metabolite Database and Simulator of Xenobiotic Metabolism

    EPA Science Inventory

    A computational tool (MetaPath) has been developed for storage and analysis of metabolic pathways and associated metadata. The system is capable of sophisticated text and chemical structure/substructure searching as well as rapid comparison of metabolites formed across chemicals,...

  4. Speciation and identification of tellurium-containing metabolites in garlic, Allium sativum.

    PubMed

    Anan, Yasumi; Yoshida, Miyuki; Hasegawa, Saki; Katai, Ryota; Tokumoto, Maki; Ouerdane, Laurent; Łobiński, Ryszard; Ogra, Yasumitsu

    2013-09-01

    Tellurium (Te) is a widely used metalloid in industry because of its unique chemical and physical properties. However, information about the biological and toxicological activities of Te in plants and animals is limited. Although Te is expected to be metabolized in organisms via the same pathway as sulfur and selenium (Se), no precise metabolic pathways are known in organisms, particularly in plants. To reveal the metabolic pathway of Te in plants, garlic, a well-known Se accumulator, was chosen as the model plant. Garlic was hydroponically cultivated and exposed to sodium tellurate, and Te-containing metabolites in the water extract of garlic leaves were identified using HPLC coupled with inductively coupled plasma mass spectrometry (ICP-MS) or electrospray tandem mass spectrometry (ESI-MS-MS). At least three Te-containing metabolites were detected using HPLC-ICP-MS, and two of them were subjected to HPLC-ESI-MS-MS for identification. The MS spectra obtained by ESI-MS-MS indicated that the metabolite was Te-methyltellurocysteine oxide (MeTeCysO). Then, MeTeCysO was chemically synthesized and its chromatographic behavior matched with that of the Te-containing metabolite in garlic. The other was assigned as cysteine S-methyltellurosulfide. These results suggest that garlic can assimilate tellurate, an inorganic Te compound, and tellurate is transformed into a Te-containing amino acid, the so-called telluroamino acid. This is the first report addressing that telluroamino acid is de novo synthesized in a higher plant.

  5. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway

    PubMed Central

    Williams, David S.; Cash, Alan; Hamadani, Lara; Diemer, Tanja

    2010-01-01

    Summary Reduced dietary intake increases lifespan in a wide variety of organisms. It also retards disease progression. We tested whether dietary supplementation of citric acid cycle metabolites could mimic this lifespan effect. We report that oxaloacetate supplementation increased lifespan in Caenorhabditis elegans. The increase was dependent on the transcription factor, FOXO/DAF-16, and the energy sensor, AMP-activated protein kinase, indicating involvement of a pathway that is also required for lifespan extension through dietary restriction. These results demonstrate that supplementation of the citric acid cycle metabolite, oxaloacetate, influences a longevity pathway, and suggest a tractable means of introducing the health-related benefits of dietary restriction. PMID:19793063

  6. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra.

    PubMed

    Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F

    2017-11-07

    The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  7. Two Distinct Pathways for Metabolism of Theophylline and Caffeine Are Coexpressed in Pseudomonas putida CBB5▿ †

    PubMed Central

    Yu, Chi Li; Louie, Tai Man; Summers, Ryan; Kale, Yogesh; Gopishetty, Sridhar; Subramanian, Mani

    2009-01-01

    Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria. PMID:19447909

  8. Metabolism of 14C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta).

    PubMed

    Slikker, W; Holder, C L; Lipe, G W; Korfmacher, W A; Thompson, H C; Bailey, J R

    1986-01-01

    The time-course of the metabolic fate of [14C]doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus [14C]doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-[1-phenyl-1-(2-pyridinyl)ethoxy] acetic acid, 1-[1-phenyl-1(2-pyridinyl)ethoxy] methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peak 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.

  9. Metabolism of /sup 14/C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, W. Jr.; Holder, C.L.; Lipe, G.W.

    The time-course of the metabolic fate of (/sup 14/C)doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus (/sup 14/C)doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-(1-phenyl-1-(2-pyridinyl)ethoxy) acetic acid, 1-(1-phenyl-1(2-pyridinyl)ethoxy) methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peakmore » 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.« less

  10. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations.

    PubMed

    Martínez-Rincón, Raúl O; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.

  11. Arachidonic acid metabolites follow the preferential course of cyclooxygenase pathway for the basal tone in the internal anal sphincter.

    PubMed

    de Godoy, Márcio A F; Rattan, Neeru; Rattan, Satish

    2009-04-01

    Present studies determined the roles of the cyclooxygenase (COX) versus the lipoxygenase (LO) pathways in the metabolic pathway of arachidonic acid (AA) in the internal anal sphincter (IAS) tone. Studies were performed in the rat IAS versus the nontonic rectal smooth muscle (RSM). Indomethacin, the dual COX inhibitor, but not nordihydroguaiaretic acid (NDGA), the LO inhibitor, produced a precipitous decrease in the IAS tone. However, when added in the background of indomethacin, NDGA caused significant reversal of the IAS tone. These inhibitors had no significant effect on the RSM. To follow the significance of COX versus LO pathways, we examined the effects of AA and its metabolites. In the IAS, AA caused an increase in the IAS tone (Emax=38.8+/-3.0% and pEC50=3.4+/-0.1). In the RSM, AA was significantly less efficacious and potent (Emax=11.3+/-3.5% and pEC50=2.2+/-0.3). The AA metabolites (via COXs) PGF2alpha and U-46619 (a stable analog of thromboxane A2) produced increases in the IAS tone and force in the RSM. Conversely, AA metabolites (via 5-LO) lipoxin A4, 5-HETE, and leukotriene C4 decreased the IAS tone. Finally, the contractile effects of AA in the IAS were selectively attenuated by the COX-1 but not the COX-2 inhibitor. Collectively, the specific effects of AA and the COX inhibitor, the Western blot and RT-PCR analyses showing specifically higher levels of COX-1, suggest a preferential role of the COX (specifically COX-1) pathway versus the LO in the regulation of the IAS tone.

  12. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    PubMed

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies. © 2017 Wiley Periodicals, Inc.

  13. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents

    PubMed Central

    Mhlongo, Msizi I.; Steenkamp, Paul A.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines, or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites. PMID:27803705

  14. Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial

    PubMed Central

    Brown, Dustin G.; Borresen, Erica C.; Brown, Regina J.; Ryan, Elizabeth P.

    2017-01-01

    Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts. PMID:28643618

  15. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  16. Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial.

    PubMed

    Brown, Dustin G; Borresen, Erica C; Brown, Regina J; Ryan, Elizabeth P

    2017-05-01

    Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts.

  17. The environmental occurrence and effect of alkylphenol polyethoxylates and their metabolites in Taiwan

    NASA Astrophysics Data System (ADS)

    Ding, W.

    2009-12-01

    Alkylphenol polyethoxylates (APEOs) are widely used nonionic surfactants in domestic, agricultural and household applications, which have been commonly found in wastewater discharges and in sewage treatment plant effluents. Degradation of APEOs in wastewater or in the environment generates more persistent pollutants, including alkylphenols (APs, such as 4-nonylphenol isomers (4-NPs) and 4-t-octylphenol (4-t-OP)) and shortened ethoxy chain APEO residues (such as AP1~3EO). These metabolites of APEOs are of interest in the field of environmental monitoring because of the volume of these substances used and their activity as either endocrine disruptors or as persistent pollutants. APEOs are mass-produced and used widely in Taiwan. Large quantities of these metabolites in wastewater are discharged into the rivers directly because Taiwan’s municipal and industrial wastewater treatment facilities are deficient. However, the occurrence and fate of these metabolites are unclear and can potentially affect the aquatic environment and public health in Taiwan. Determination of APEOs and their metabolites have been performed for household detergents, various surface water, soil, sediments, biota, foodstuffs and even in breast milk. APEOs and their metabolites were detected in all media analyzed and in all environmental samples. The relatively high concentrations detected in oysters and snails provide evidence for bioaccumulation of APs. The presence of APs in breast milk implies that APs enter the food chain in local biota after long chain APEOs were biodegraded. There are also some indications that the plastic wrappings and containers for foodstuffs sold in Taiwan may contain NP or tris(nonylphenol) phosphate (TNPP) used as plasticizers or antioxidants. In addition, possible sources of APs may come from the extensive use of pesticides containing APEO as emulsifiers in agriculture.

  18. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    PubMed

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  19. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile

    PubMed Central

    Hoshi, Noriyuki; Soga, Tomoyoshi; Tomita, Masaru; Sugimoto, Masahiro; Kimoto, Katsuhiko

    2017-01-01

    Background This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Methods Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. Results In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Conclusions Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation. PMID:28813487

  20. Pathways to Improvement: Using Psychological Strategies to Help College Students Master Developmental Math

    ERIC Educational Resources Information Center

    Silva, Elena; White, Taylor

    2013-01-01

    Drawing on a research base developed over many years in education, Carnegie is testing a set of strategies to help students persist and succeed academically. This kind of persistence, what the researchers and faculty who developed the Pathways call "productive persistence," is a key driver of Quantway® and Statway®. Broadly defined,…

  1. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space.

    PubMed

    Hu, Chaoyang; Ham, Byung-Kook; El-Shabrawi, Hattem M; Alexander, Danny; Zhang, Dabing; Ryals, John; Lucas, William J

    2016-09-01

    The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Mathematical methods to analysis of topology, functional variability and evolution of metabolic systems based on different decomposition concepts.

    PubMed

    Mrabet, Yassine; Semmar, Nabil

    2010-05-01

    Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.

  3. Small-molecule elicitation of microbial secondary metabolites.

    PubMed

    Pettit, Robin K

    2011-07-01

    Microbial natural products continue to be an unparalleled resource for pharmaceutical lead discovery, but the rediscovery rate is high. Bacterial and fungal sequencing studies indicate that the biosynthetic potential of many strains is much greater than that observed by fermentation. Prodding the expression of such silent (cryptic) pathways will allow us to maximize the chemical diversity available from microorganisms. Cryptic metabolic pathways can be accessed in the laboratory using molecular or cultivation-based approaches. A targeted approach related to cultivation-based methods is the application of small-molecule elicitors to specifically affect transcription of secondary metabolite gene clusters. With the isolation of the novel secondary metabolites lunalides A and B, oxylipins, cladochromes F and G, nygerone A, chaetoglobosin-542, -540 and -510, sphaerolone, dihydrosphaerolone, mutolide and pestalone, and the enhanced production of known secondary metabolites like penicillin and bacitracin, chemical elicitation is proving to be an effective way to augment natural product libraries. © 2010 The Authors. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  5. In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity

    PubMed Central

    Gimpel, Javier A.; Henríquez, Vitalia; Mayfield, Stephen P.

    2015-01-01

    The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed. PMID:26696985

  6. Plant MetGenMAP: an integrative analysis system for plant systems biology

    USDA-ARS?s Scientific Manuscript database

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  7. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations.

    PubMed

    Reem, Nathan T; Chen, Han-Yi; Hur, Manhoi; Zhao, Xuefeng; Wurtele, Eve Syrkin; Li, Xu; Li, Ling; Zabotina, Olga

    2018-03-01

    This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.

  8. Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder Cancer Patients from Healthy Controls.

    PubMed

    Kim, Won Tae; Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kim, Ye Hwan; Lee, Il Seok; Kang, Ho Won; Park, Sunghyouk; Moon, Sung Kwon; Choi, Yung Hyun; Choi, Young Deuk; Kim, Isaac Yi; Kim, Jayoung; Kim, Wun Jae

    2016-07-01

    Our previous high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry study identified bladder cancer (BCA)-specific urine metabolites, including carnitine, acylcarnitines, and melatonin. The objective of the current study was to determine which metabolic pathways are perturbed in BCA, based on our previously identified urinary metabolome. A total of 135 primary BCA samples and 26 control tissue samples from healthy volunteers were analyzed. The association between specific urinary metabolites and their related encoding genes was analyzed. Significant alterations in the carnitine-acylcarnitine and tryptophan metabolic pathways were detected in urine specimens from BCA patients compared to those of healthy controls. The expression of eight genes involved in the carnitine-acylcarnitine metabolic pathway (CPT1A, CPT1B, CPT1C, CPT2, SLC25A20, and CRAT) or tryptophan metabolism (TPH1 and IDO1) was assessed by RT-PCR in our BCA cohort (n=135). CPT1B, CPT1C, SLC25A20, CRAT, TPH1, and IOD1 were significantly downregulated in tumor tissues compared to normal bladder tissues (p<0.05 all) of patients with non-muscle invasive BCA, whereas CPT1B, CPT1C, CRAT, and TPH1 were downregulated in those with muscle invasive BCA (p<0.05), with no changes in IDO1 expression. Alterations in the expression of genes associated with the carnitine-acylcarnitine and tryptophan metabolic pathways, which were the most perturbed pathways in BCA, were determined.

  9. Hysteresis and parent-metabolite analyses unravel characteristic pesticide transport mechanisms in a mixed land use catchment.

    PubMed

    Tang, Ting; Stamm, Christian; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan

    2017-11-01

    To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km 2 ) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A bacterial quercetin oxidoreductase QuoA-mediated perturbation in the phenylpropanoid metabolic network increases lignification with a concomitant decrease in phenolamides in Arabidopsis

    PubMed Central

    Swarup, Sanjay

    2013-01-01

    Metabolic perturbations by a gain-of-function approach provide a means to alter steady states of metabolites and query network properties, while keeping enzyme complexes intact. A combination of genetic and targeted metabolomics approach was used to understand the network properties of phenylpropanoid secondary metabolism pathways. A novel quercetin oxidoreductase, QuoA, from Pseudomonas putida, which converts quercetin to naringenin, thus effectively reversing the biosynthesis of quercetin through a de novo pathway, was expressed in Arabidopsis thaliana. QuoA transgenic lines selected for low, medium, and high expression levels of QuoA RNA had corresponding levels of QuoA activity and hypocotyl coloration resulting from increased anthocyanin accumulation. Stems of all three QuoA lines had increased tensile strength resulting from increased lignification. Sixteen metabolic intermediates from anthocyanin, lignin, and shikimate pathways had increased accumulation, of which 11 paralleled QuoA expression levels in the transgenic lines. The concomitant upregulation of the above pathways was explained by a significant downregulation of the phenolamide pathway and its precursor, spermidine. In a tt6 mutant line, lignifications as well as levels of the lignin pathway metabolites were much lower than those of QuoA transgenic lines. Unlike QuoA lines, phenolamides and spermidine were not affected in the tt6 line. Taken together, these results suggest that phenolamide pathway plays a major role in directing metabolic intermediates into the lignin pathway. Metabolic perturbations were accompanied by downregulation of five genes associated with branch-point enzymes and upregulation of their corresponding products. These results suggest that gene–metabolite pairs are likely to be co-ordinately regulated at critical branch points. Thus, these perturbations by a gain-of-function approach have uncovered novel properties of the phenylpropanoid metabolic network. PMID:24085580

  11. Metabolomics Coupled with Multivariate Data and Pathway Analysis on Potential Biomarkers in Gastric Ulcer and Intervention Effects of Corydalis yanhusuo Alkaloid

    PubMed Central

    Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran

    2014-01-01

    Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691

  12. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment

    PubMed Central

    Cassol, Edana; Misra, Vikas; Dutta, Anupriya; Morgello, Susan; Gabuzda, Dana

    2014-01-01

    Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging. PMID:24752083

  13. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.

  14. Exploring the combinatorial space of complete pathways to chemicals.

    PubMed

    Wang, Lin; Ng, Chiam Yu; Dash, Satyakam; Maranas, Costas D

    2018-04-06

    Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Metabolomics: the apogee of the omic triology

    PubMed Central

    Patti, Gary J; Yanes, Oscar; Siuzdak, Gary

    2013-01-01

    Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and shaping our understanding of cell biology, physiology, and medicine. PMID:22436749

  16. β-Thalassemia Patients Revealed a Significant Change of Untargeted Metabolites in Comparison to Healthy Individuals

    PubMed Central

    Musharraf, Syed Ghulam; Iqbal, Ayesha; Ansari, Saqib Hussain; Parveen, Sadia; Khan, Ishtiaq Ahmad; Siddiqui, Amna Jabbar

    2017-01-01

    β-Thalassemia is one of the most prevalent forms of congenital blood disorders characterized by reduced hemoglobin levels with severe complications, affecting all dimensions of life. The mechanisms underlying the phenotypic heterogeneity of β-thalassemia are still poorly understood. We aimed to work over metabolite biomarkers to improve mechanistic understanding of phenotypic heterogeneity and hence better management of disorder at different levels. Untargeted serum metabolites were analyzed after protein precipitation and SPE (solid phase extraction) from 100 β-thalassemia patients and 61 healthy controls using GC-MS. 40 metabolites were identified having a significance difference between these two groups at probability of 0.05 and fold change >1.5. Out of these 40 metabolites, 17 were up-regulated while 23 were down-regulated. PCA and PLS-DA model was also created that revealed a fine separation with a sensitivity of 70% and specificity of 100% on external validation of samples. Metabolic pathway analysis revealed alteration in multiple pathways including glycolysis, pyruvate, propanoate, glycerophospholipid, galactose, fatty acid, starch and sucrose metabolism along with fatty acid elongation in mitochondria, glycerolipid, glyoxylate and dicarboxylate metabolism pointing towards the shift of metabolism in β-thalassemia patients in comparison to healthy individuals. PMID:28198811

  17. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS.

    PubMed

    Zhao, Min; Du, Leyue; Tao, Jinhua; Qian, Dawei; Shang, Er-xin; Jiang, Shu; Guo, Jianming; Liu, Pei; Su, Shu-lan; Duan, Jin-ao

    2014-11-26

    Different human intestinal bacteria were isolated and screened for their ability to transform diosmetin-7-O-glucoside. A Gram-negative anaerobic bacterium, strain 4, capable of metabolizing diosmetin-7-O-glucoside was newly isolated. Its 16S rRNA gene sequence displayed 99% similarity with that of Escherichia. Then strain 4 was identified as a species of the genus Escherichia and was named Escherichia sp. 4. Additionally, an ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx software method was established to screen the metabolites of diosmetin-7-O-glucoside. Comparing the retention time and MS/MS spectrum, three metabolites were detected and tentatively identified. These metabolites were acquired by four proposed metabolic pathways including dehydroxylation, deglycosylation, methylation, and acetylation. Diosmetin-7-O-glucoside was mainly bioconverted to considerable amounts of diosmetin and minor amounts of acacetin by the majority of the isolated intestinal bacteria such as Escherichia sp. 4. Subsequently, several strains could degrade acacetin to produce methylated and acetylated acacetin. The metabolites and metabolic pathways of diosmetin-7-O-glucoside by human intestinal bacterium Escherichia sp. 4 were first investigated.

  18. Biodegradation of nicotine by a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35 and its new biotransformation intermediates.

    PubMed

    Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan

    2014-02-01

    Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.

  19. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE PAGES

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...

    2016-07-11

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  20. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  1. NP1EC Degradation Pathways Under Oxic and Microxic Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery-Brown, John; Li, Yongmei; Ding, Wang-Hsien

    2008-03-22

    The degradation pathway of nonylphenol ethoxyacetic acid (NP1EC) and the conditions favoring CAP1EC formation were studied in aerobic microcosms constructed with soil from the Mesa soil aquifer treatment (SAT) facility (Arizona, USA) and pristine sediments from Coyote Creek (California, USA). In the Mesa microcosms, para-NP1EC was transformed to para-NP, before being rapidly transformed to nonyl alcohols via ipso-hydroxylation. While the formation of NP from APEMs has been observed by several researchers under anaerobic conditions, this is the first time the transient formation of NP from APEMs has been observed under aerobic conditions. Unlike the Mesa microcosms, large quantities of CAP1ECsmore » were observed in the Coyote Creek microcosms. Initially, CA8P1ECs were the dominant metabolites, but as biodegradation continued, CA6P1ECs became the dominant metabolites. Compared to the CA8P1ECs, the number of CA6P1ECs peaks observed was small (<6) even though their concentrations were high. This suggests that several CA8P1ECs are degraded to only a few CA6P1EC isomers (i.e., the degradation pathway converges) or that some CA6P1EC metabolites are significantly more recalcitrant than others. The different biodegradation pathways observed in the Mesa and Coyote Creek microcosms result from the limited availability of dissolved oxygen in the Coyote Creek microcosms. In both sets of microcosms, the ortho isomers were transformed more slowly than the para isomers and in the Coyote Creek microcosms several ortho-CAP1ECs were observed. In addition, several unknown metabolites were observed in the Coyote Creek microcosms that were not seen in the abiotic or Mesa microcosms; these metabolites appear to be CAP1EC metabolites, have a -CH2-C6H4- fragment, and contain one carboxylic acid. Nitro-nonylphenol was observed in the Mesa microcosms, however, further experimentation illustrated that it was the product of an abiotic reaction between nitrite and nonylphenol under acidic conditions.« less

  2. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.

    PubMed

    Simon-Delso, N; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Chagnon, M; Downs, C; Furlan, L; Gibbons, D W; Giorio, C; Girolami, V; Goulson, D; Kreutzweiser, D P; Krupke, C H; Liess, M; Long, E; McField, M; Mineau, P; Mitchell, E A D; Morrissey, C A; Noome, D A; Pisa, L; Settele, J; Stark, J D; Tapparo, A; Van Dyck, H; Van Praagh, J; Van der Sluijs, J P; Whitehorn, P R; Wiemers, M

    2015-01-01

    Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.

  3. Phthalate metabolites in the European eel (Anguilla anguilla) from Mediterranean coastal lagoons.

    PubMed

    Fourgous, C; Chevreuil, M; Alliot, F; Amilhat, E; Faliex, E; Paris-Palacios, S; Teil, M J; Goutte, A

    2016-11-01

    The levels and fate of phthalate metabolites have been poorly evaluated in fish, despite their potential ecotoxicological impacts. The present study aims to characterize the levels of phthalate metabolites in muscle tissue of yellow eels (Anguilla anguilla) from two coastal Mediterranean lagoons, during three sampling periods. Nine phthalate metabolites were detected in >70% of the samples. Slightly higher levels of phthalate metabolites were detected in March and June compared to October, suggesting possible seasonal variations in environmental release and/or phthalate metabolization process by eels. The large sample size (N=117) made it possible to explore correlations between phthalate metabolites' levels and individual parameters, such as body length, age, body condition and hepatic histo-pathologies. Body length and estimated age poorly correlated with phthalate metabolites, suggesting that eels did not accumulate phthalates during growth, contrary to persistent compounds. Eels presented different grades of hepatic fibrosis and lipidosis. A negative correlation was found between the severity of these pathologies in the liver and the sum of phthalate metabolites levels, supporting the hypothesis that eels with damaged liver are less able to metabolize xenobiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: a pilot randomized study of high-dose vitamin D3 administration

    PubMed Central

    Alvarez, Jessica A.; Chong, Elizabeth Y.; Walker, Douglas I.; Chandler, Joshua D.; Michalski, Ellen S.; Grossmann, Ruth E.; Uppal, Karan; Li, Shuzhao; Frediani, Jennifer K.; Tirouvanziam, Rabindra; Tran, ViLinh T.; Tangpricha, Vin; Jones, Dean P.; Ziegler, Thomas R.

    2017-01-01

    Background Cystic fibrosis (CF) is a chronic catabolic disease often requiring hospitalization for acute episodes of worsening pulmonary exacerbations. Limited data suggest that vitamin D may have beneficial clinical effects, but the impact of vitamin D on systemic metabolism in this setting is unknown. Objective We used high-resolution metabolomics (HRM) to assess the impact of baseline vitamin D status and high-dose vitamin D3 administration on systemic metabolism in adults with CF with an acute pulmonary exacerbation. Design Twenty-five hospitalized adults with CF were enrolled in a randomized trial of high-dose vitamin D3 (250,000 IU vitamin D3 bolus) versus placebo. Age-matched healthy subjects served as a reference group for baseline comparisons. Plasma was analyzed with liquid chromatography/ultra-high resolution mass spectrometry. Using recent HRM bioinformatics and metabolic pathway enrichment methods, we examined associations with baseline vitamin D status (sufficient vs deficient per serum 25-hydroxyvitamin D concentrations) and the 7-day response to vitamin D3 supplementation. Results Several amino acids and lipid metabolites differed between CF and healthy control subjects, indicative of an overall catabolic state. In CF subjects, 343 metabolites differed (P<0.05) by baseline vitamin D status and were enriched within 7 metabolic pathways including fatty acid, amino acid, and carbohydrate metabolism. A total of 316 metabolites, which showed enrichment for 15 metabolic pathways--predominantly representing amino acid pathways-- differed between the vitamin D3- and placebo-treated CF subjects over time (P<0.05). In the placebo group, several tricarboxylic acid cycle intermediates increased while several amino acid-related metabolites decreased; in contrast, little change in these metabolites occurred with vitamin D3 treatment. Conclusions Numerous metabolic pathways detected by HRM varied in association with vitamin D status and high-dose vitamin D3 supplementation in adults with CF experiencing a pulmonary exacerbation. Overall, these pilot data suggest an anti-catabolic effect of high-dose vitamin D3 in this clinical setting. PMID:28403943

  5. The dental calculus metabolome in modern and historic samples.

    PubMed

    Velsko, Irina M; Overmyer, Katherine A; Speller, Camilla; Klaus, Lauren; Collins, Matthew J; Loe, Louise; Frantz, Laurent A F; Sankaranarayanan, Krithivasan; Lewis, Cecil M; Martinez, Juan Bautista Rodriguez; Chaves, Eros; Coon, Joshua J; Larson, Greger; Warinner, Christina

    2017-01-01

    Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.

  6. Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in Rats.

    PubMed

    Wang, Liping; Chen, Qingwei; Zhu, Lijun; Li, Qiang; Zeng, Xuejun; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2017-03-01

    Luteolin partially exerts its biologic effects via its metabolites catalyzed by UDP-glucuronosyltransferases (UGTs) and catechol-O-methyltransferases (COMTs). However, the interplay of UGTs and COMTs in mediating luteolin disposition has not been well clarified. In this study, we investigated the glucuronidation and methylation pathways of luteolin mediated by the interplay of UGTs and COMTs in vivo and in vitro. A total of nine luteolin metabolites was detected in rat plasma and bile by liquid chromatography-tandem mass spectrometry, namely, three glucuronides, two methylated metabolites, and four methylated glucuronides. Luteolin-3'-glucuronide (Lut-3'-G) exhibited the highest systemic exposure among these metabolites. Kinetics studies in rat liver S9 fractions suggested two pathways, as follows: 1) Luteolin was glucuronidated to luteolin-7-glucuronide, luteolin-4'-glucuronide, and Lut-3'-G by UGTs, and then Lut-7-G was methylated to chrysoeriol-7-glucuronide and diosmetin-7-glucuronide by COMTs. 2) Alternatively, luteolin was methylated to chrysoeriol and diosmetin by COMTs, and then chrysoeriol and diosmetin were glucuronidated by UGTs to their respective glucuronides. The methylation rate of luteolin was significantly increased by the absence of glucuronidation, whereas the glucuronidation rate was increased by the absence of methylation, but to a lesser extent. In conclusion, two pathways mediated by the interplay of UGTs and COMTs are probably involved in the metabolic disposition of luteolin. The glucuronidation and methylation of luteolin compensate for each other, although glucuronidation is the predominant pathway. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. COMPARISON OF THE URINARY METABOLITES OF RATS, MICE, AND HUMANS AFTER ORAL ARSENIC EXPOSURE FOCUSING ON THIOARSENICALS

    EPA Science Inventory

    Urinary metabolites of arsenic are useful as biomarkers of exposure because ingested arsenic is excreted primarily in urine1. Complete urinary arsenic speciation can provide insight into possible metabolic pathways as well as potential exposure sources. The pattern of excreted me...

  8. Effects of dynamic exercise on plasma arachidonic acid epoxides and diols in human volunteers

    USDA-ARS?s Scientific Manuscript database

    Metabolites of the cytochrome P450 pathway may contribute to vasodilation of the vasculature of skeletal muscle during exercise. We determined effects of exercise intensity and duration on plasma concentrations of specific metabolites in the epoxyeicosatrienoic acid family. This allowed us to dete...

  9. EFFECTS OF METHOPRENE, ITS METABOLITES, AND BREAKDOWN PRODUCTS ON RETINOID-ACTIVATED PATHWAYS IN TRANSFECTED CELL LINES

    EPA Science Inventory

    Methoprene is a terpene-based insecticide designed to act as an agonist of insect juvenile hormone, which is essential for the transition from larval to adult forms in some metamorphic insects. Recent evidence suggests that a methoprene metabolite, methoprene acid, activates a ve...

  10. Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention.

    PubMed

    Miller, Jessica A; Pappan, Kirk; Thompson, Patricia A; Want, Elizabeth J; Siskos, Alexandros P; Keun, Hector C; Wulff, Jacob; Hu, Chengcheng; Lang, Julie E; Chow, H-H Sherry

    2015-01-01

    Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anticancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biologic activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/postintervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography coupled to a linear trap quadrupole system and gas chromatography-mass spectrometry. Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P < 0.01), and significant increases in bile acids (P ≤ 0.05) and multiple collagen breakdown products (P < 0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell-cycle regulatory protein, in patient tumor tissues (P ≤ 0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Furthermore, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. ©2014 American Association for Cancer Research.

  11. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling

    PubMed Central

    2013-01-01

    Backgroud Isatis indigotica is a widely used herb for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine (TCM). Various structural classes of compounds have been identified as effective ingredients. However, little is known at genetics level about these active metabolites. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset of I. indigotica. Results A database of 36,367 unigenes (average length = 1,115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, 104 unigenes were identified covering most of the catalytic steps in the general biosynthetic pathways of indole, terpenoid, and phenylpropanoid. Subsequently, the organ-specific expression patterns of the genes involved in these pathways, and their responses to methyl jasmonate (MeJA) induction, were investigated. Metabolites profile of effective phenylpropanoid showed accumulation pattern of secondary metabolites were mostly correlated with the transcription of their biosynthetic genes. According to the analysis of UDP-dependent glycosyltransferases (UGT) family, several flavonoids were indicated to exist in I. indigotica and further identified by metabolic profile using UPLC/Q-TOF. Moreover, applying transcriptome co-expression analysis, nine new, putative UGTs were suggested as flavonol glycosyltransferases and lignan glycosyltransferases. Conclusions This database provides a pool of candidate genes involved in biosynthesis of effective metabolites in I. indigotica. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb. PMID:24308360

  12. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

    PubMed

    Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping

    2018-05-11

    Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

  13. The "Biased Rhizosphere" Concept: Bacterial Competitiveness and Persistence in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    de Bruijn, Frans J.

    2013-04-01

    The association of plant surfaces with microorganisms has been the subject of intense investigations. Numerous processes have been shown to be important in plant-associative bacteria including attachment, motility, chemotaxis, nutrition, and production of signaling molecules and secondary metabolites. One strategy to favor the competitiveness and persistence of bacteria in the plant environment relies upon manipulation of nutritional compounds secreted into the phytosphere, which comprises the rhizosphere (root surface/zone influenced by secretions) and the phyllosphere (leaf surface/zone influenced by secretions). The pattern of plant host exudate can be bred or engineered to establish "biased phytospheres" with bacteria that can naturally, or by engineering, use metabolic resources produced by the host plant. Over the last two decades, natural biases, generated by opine-like molecules of Agrobacterium-plant interactions and by rhizopine-like molecules of the Rhizobium-legume interactions, have provided tactics based on unique metabolites produced by plants to favor the competitiveness and persistence of bacteria that can catabolize the host-produced novel nutrients. An overview of this field or research will be presented.

  14. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  15. Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.

    PubMed

    Wei, Ru; Li, Guodong; Seymour, Albert B

    2014-01-01

    Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min.

  16. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.

    PubMed

    Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D

    2012-03-01

    Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Serum Metabolomic Profiling of Piglets Infected with Virulent Classical Swine Fever Virus

    PubMed Central

    Gong, Wenjie; Jia, Junjie; Zhang, Bikai; Mi, Shijiang; Zhang, Li; Xie, Xiaoming; Guo, Huancheng; Shi, Jishu; Tu, Changchun

    2017-01-01

    Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and β-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF. PMID:28496435

  18. Choline incorporation by Schistosoma mansoni: distribution of choline metabolites during development and after sexual differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancelin, M.L.; Torpier, G.; Vial, H.J.

    1987-06-01

    Choline metabolism was investigated in Schistosoma mansoni during the main phases of its development, namely, schistosomula, 11- and 15-day-old worms, and adults. At the physiological choline concentration used in the assay (20 microM), betaine was, along with phosphatidylcholine, one of the most abundant choline metabolites, revealing considerable choline oxidation activity. Very little radioactivity was associated with CDP-choline, whereas a sustained incorporation into phosphocholine occurred. These results provide good evidence that CTP:phosphocholine cytidylyltransferase plays a regulatory role in the de novo pathway of phosphatidylcholine biosynthesis. During development, the incorporation of choline into its various metabolites was maximal in 11-day-old worms. Atmore » this stage, the oxidative pathway predominated over the Kennedy pathway, whereas at all other stages the de novo phosphatidylcholine biosynthesis was predominant. Furthermore, choline incorporation into betaine was much more important in the adult female worm than in the male, indicating a major difference in choline incorporation and distribution between the 2 sexes of the adult worms.« less

  19. Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker.

    PubMed

    Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.

    2002-09-01

    We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.

  20. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  1. SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.

    PubMed

    Katsuragi, Tetsuo; Ono, Naoaki; Yasumoto, Keiichi; Altaf-Ul-Amin, Md; Hirai, Masami Y; Sriyudthsak, Kansuporn; Sawada, Yuji; Yamashita, Yui; Chiba, Yukako; Onouchi, Hitoshi; Fujiwara, Toru; Naito, Satoshi; Shiraishi, Fumihide; Kanaya, Shigehiko

    2013-05-01

    Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.

  2. Identification of a new sulfonic acid metabolite of metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.

    1996-01-01

    An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.

  3. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis

    DOE PAGES

    Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.; ...

    2018-04-20

    A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less

  4. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.

    A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less

  5. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway.

    PubMed

    Yu, Hong; Li, Xiaoqian; Duchoud, Fabienne; Chuang, Derrick S; Liao, James C

    2018-05-22

    The Calvin-Benson-Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 sugar limits the maximum carbon yield of photosynthesis. Here we design a synthetic malyl-CoA-glycerate (MCG) pathway to augment the CBB cycle for efficient acetyl-CoA synthesis. This pathway converts a C3 metabolite to two acetyl-CoA by fixation of one additional CO 2 equivalent, or assimilates glyoxylate, a photorespiration intermediate, to produce acetyl-CoA without net carbon loss. We first functionally demonstrate the design of the MCG pathway in vitro and in Escherichia coli. We then implement the pathway in a photosynthetic organism Synechococcus elongates PCC7942, and show that it increases the intracellular acetyl-CoA pool and enhances bicarbonate assimilation by roughly 2-fold. This work provides a strategy to improve carbon fixation efficiency in photosynthetic organisms.

  6. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis.

    PubMed

    Wang, Jack P; Matthews, Megan L; Williams, Cranos M; Shi, Rui; Yang, Chenmin; Tunlaya-Anukit, Sermsawat; Chen, Hsi-Chuan; Li, Quanzi; Liu, Jie; Lin, Chien-Yuan; Naik, Punith; Sun, Ying-Hsuan; Loziuk, Philip L; Yeh, Ting-Feng; Kim, Hoon; Gjersing, Erica; Shollenberger, Todd; Shuford, Christopher M; Song, Jina; Miller, Zachary; Huang, Yung-Yun; Edmunds, Charles W; Liu, Baoguang; Sun, Yi; Lin, Ying-Chung Jimmy; Li, Wei; Chen, Hao; Peszlen, Ilona; Ducoste, Joel J; Ralph, John; Chang, Hou-Min; Muddiman, David C; Davis, Mark F; Smith, Chris; Isik, Fikret; Sederoff, Ronald; Chiang, Vincent L

    2018-04-20

    A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.

  7. Engineering dynamic pathway regulation using stress-response promoters.

    PubMed

    Dahl, Robert H; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S; Redding-Johanson, Alyssa M; Petzold, Christopher J; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D

    2013-11-01

    Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.

  8. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    PubMed

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  9. Microbial models of mammalian metabolism: production of novel alpha-diketone metabolites of warfarin and phenprocoumon using Aspergillus niger.

    PubMed

    Rizzo, J D; Davis, P J

    1988-12-01

    1. The coumarin anticoagulants warfarin and phenprocoumon were metabolized by Aspergillus niger via oxidative ring cleavage to yield the corresponding alpha-diketone metabolites. 2. Structural identification was based upon physical, spectral, and chromatographic comparisons of isolated metabolites and synthetic standards generated by the oxidative cleavage of warfarin or phenprocoumon with pyridinium chlorochromate. 3. This pathway of metabolism has been previously observed for coumarin anticoagulants in mammalian systems.

  10. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach.

    PubMed

    Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2015-01-01

    Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19

    PubMed Central

    Chen, Shaohua; Deng, Yinyue; Chang, Changqing; Lee, Jasmine; Cheng, Yingying; Cui, Zining; Zhou, Jianuan; He, Fei; Hu, Meiying; Zhang, Lian-Hui

    2015-01-01

    Cyhalothrin is a common environmental pollutant which poses increased risks to non-target organisms including human beings. This study reported for the first time a newly isolated strain, Bacillus thuringiensis ZS-19 completely degraded cyhalothrin in minimal medium within 72 h. The bacterium transformed cyhalothrin by cleavage of both the ester linkage and diaryl bond to yield six intermediate products. Moreover, a novel degradation pathway of cyhalothrin in strain ZS-19 was proposed on the basis of the identified metabolites. In addition to degradation of cyhalothrin, this strain was found to be capable of degrading 3-phenoxybenzoic acid, a common metabolite of pyrethroids. Furthermore, strain ZS-19 participated in efficient degradation of a wide range of pyrethroids including cyhalothrin, fenpropathrinn, deltamethrin, beta-cypermethrin, cyfluthrin and bifenthrin. Taken together, our results provide insights into the mechanism of cyhalothrin degradation and also highlight the promising potentials of B.thuringiensis ZS-19 in bioremediation of pyrethroid-contaminated environment. This is the first report of (i) degradation of cyhalothrin and other pyrethroids by B.thuringiensis, (ii) identification of 3-phenoxyphenyl acetonitrile and N-(2-isoproxy-phenyl)-4-phenoxy-benzamide as the metabolites in the degradation pathway of pyrethroids, and (iii) a pathway of degradation of cyhalothrin by cleavage of both the ester linkage and diaryl bond in a microorganism. PMID:25740758

  12. Farmworker and nonfarmworker Latino immigrant men in North Carolina have high levels of specific pesticide urinary metabolites.

    PubMed

    Arcury, Thomas A; Chen, Haiying; Laurienti, Paul J; Howard, Timothy D; Barr, Dana Boyd; Mora, Dana C; Quandt, Sara A

    2017-06-16

    This article compares detections and concentrations of specific organophosphate (OP), bis-dithiocarbamate, and pyrethroid pesticide urinary metabolites among Latino male farmworkers and nonfarmworkers in North Carolina. Data are from interviews and urine samples collected in 2012 and 2013. Farmworkers and nonfarmworkers frequently had detections for OP and pyrethroid pesticide urinary metabolites. Detection of bis-dithiocarbamate urinary metabolites was less frequent, but substantial among the nonfarmworkers. The concentrations of organophosphate, bis-dithiocarbamate, and pyrethroid pesticide urinary metabolites were high for farmworkers and nonfarmworkers compared to National Health and Nutrition Examination Survey results. Pesticide urinary metabolite detection was not associated with occupation in nonfarmworkers. Research for reducing pesticide exposure among farmworkers remains important; research is also needed to determine pesticide exposure pathways among Latino nonfarmworkers.

  13. A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations.

    PubMed

    Bojsen, Rasmus; Regenberg, Birgitte; Gresham, David; Folkesson, Anders

    2016-02-23

    Fungal infections are an increasing clinical problem. Decreased treatment effectiveness is associated with biofilm formation and drug recalcitrance is thought to be biofilm specific. However, no systematic investigations have tested whether resistance mechanisms are shared between biofilm and planktonic populations. We performed multiplexed barcode sequencing (Bar-seq) screening of a pooled collection of gene-deletion mutants cultivated as biofilm and planktonic cells. Screening for resistance to the ergosterol-targeting fungicide amphotericin B (AmB) revealed that the two growth modes had significant overlap in AmB-persistent mutants. Mutants defective in sterol metabolism, ribosome biosynthesis, and the TORC1 and Ras pathways showed increased persistence when treated with AmB. The ras1, ras2 and tor1 mutants had a high-persister phenotype similar to wild-type biofilm and planktonic cells exposed to the TORC1 pathway inhibitor rapamycin. Inhibition of TORC1 with rapamycin also increased the proportion of persisters in Candida albicans and Candida glabrata. We propose that decreased TORC1-mediated induction of ribosome biosynthesis via Ras can lead to formation of AmB-persister cells regardless of whether the cells are in planktonic or biofilm growth mode. Identification of common pathways leading to growth mode-independent persister formation is important for developing novel strategies for treating fungal infections.

  14. Principles for circadian orchestration of metabolic pathways.

    PubMed

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O

    2017-02-14

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.

  15. Principles for circadian orchestration of metabolic pathways

    PubMed Central

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim

    2017-01-01

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888

  16. Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs.

    PubMed

    Li, Qinghong; Freeman, Lisa M; Rush, John E; Huggins, Gordon S; Kennedy, Adam D; Labuda, Jeffrey A; Laflamme, Dorothy P; Hannah, Steven S

    2015-08-01

    Canine degenerative mitral valve disease (DMVD) is the most common form of heart disease in dogs. The objective of this study was to identify cellular and metabolic pathways that play a role in DMVD by performing metabolomics and transcriptomics analyses on serum and tissue (mitral valve and left ventricle) samples previously collected from dogs with DMVD or healthy hearts. Gas or liquid chromatography followed by mass spectrophotometry were used to identify metabolites in serum. Transcriptomics analysis of tissue samples was completed using RNA-seq, and selected targets were confirmed by RT-qPCR. Random Forest analysis was used to classify the metabolites that best predicted the presence of DMVD. Results identified 41 known and 13 unknown serum metabolites that were significantly different between healthy and DMVD dogs, representing alterations in fat and glucose energy metabolism, oxidative stress, and other pathways. The three metabolites with the greatest single effect in the Random Forest analysis were γ-glutamylmethionine, oxidized glutathione, and asymmetric dimethylarginine. Transcriptomics analysis identified 812 differentially expressed transcripts in left ventricle samples and 263 in mitral valve samples, representing changes in energy metabolism, antioxidant function, nitric oxide signaling, and extracellular matrix homeostasis pathways. Many of the identified alterations may benefit from nutritional or medical management. Our study provides evidence of the growing importance of integrative approaches in multi-omics research in veterinary and nutritional sciences.

  17. [Research of mechanism of secondary metabolites of phenolic acids in Salvia miltiorrhiza hairy root induced by jasmonate].

    PubMed

    Li, Wenyuan; Gao, Wei; Zhao, Jing; Cui, Guanghong; Shao, Aijuan; Huang, Luqi

    2012-01-01

    To study the mechanism of secondary metabolites of some phenolic acids in the hairy roots of Salvia miltiorrhiza induced by methyl jasmonate. The hairy roots of S. miltiorrhiza were induced with methyl jasmonate (100 micromol x L(-1)) and collected at 0, 12, 24, 36 h after treatment. Real-time quantitative PCR was used for detecting the mRNA expression level of the key enzyme genes on the secondary metabolites pathway of rosmarinic acid, while a LC-MS method was developed to determine the content of rosmarinic acid, caffeic acid and salvianolic acid B. The concentration of phenolic acids grew up and accumulated quickly in the hairy roots with exogenous signal molecule MJ induced, and it was showed that the content of CA and RA reached the maximum after 24 h and the content of LAB reached the maximum in 36 h by MJ induced. The induction mechanism may be activated with different levels of RA synthesis in PAL, 4CL, C4H genes on the key enzyme phenylalanine pathway and TAT, HPPR genes on tyrosine pathway. The time of gene expression was different, among them, 4CL and PAL genes were more important. In a word, the result can provide some basis data about the mechanism of secondary metabolites of phenolic acids for further research.

  18. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius.

    PubMed

    Nunn, Charlotte E M; Johnsen, Ulrike; Schönheit, Peter; Fuhrer, Tobias; Sauer, Uwe; Hough, David W; Danson, Michael J

    2010-10-29

    We have previously shown that the hyperthermophilic archaeon, Sulfolobus solfataricus, catabolizes d-glucose and d-galactose to pyruvate and glyceraldehyde via a non-phosphorylative version of the Entner-Doudoroff pathway. At each step, one enzyme is active with both C6 epimers, leading to a metabolically promiscuous pathway. On further investigation, the catalytic promiscuity of the first enzyme in this pathway, glucose dehydrogenase, has been shown to extend to the C5 sugars, D-xylose and L-arabinose. In the current paper we establish that this promiscuity for C6 and C5 metabolites is also exhibited by the third enzyme in the pathway, 2-keto-3-deoxygluconate aldolase, but that the second step requires a specific C5-dehydratase, the gluconate dehydratase being active only with C6 metabolites. The products of this pathway for the catabolism of D-xylose and L-arabinose are pyruvate and glycolaldehyde, pyruvate entering the citric acid cycle after oxidative decarboxylation to acetyl-coenzyme A. We have identified and characterized the enzymes, both native and recombinant, that catalyze the conversion of glycolaldehyde to glycolate and then to glyoxylate, which can enter the citric acid cycle via the action of malate synthase. Evidence is also presented that similar enzymes for this pentose sugar pathway are present in Sulfolobus acidocaldarius, and metabolic tracer studies in this archaeon demonstrate its in vivo operation in parallel with a route involving no aldol cleavage of the 2-keto-3-deoxy-pentanoates but direct conversion to the citric acid cycle C5-metabolite, 2-oxoglutarate.

  19. Global Metabolic Profiling of Infection by an Oncogenic Virus: KSHV Induces and Requires Lipogenesis for Survival of Latent Infection

    PubMed Central

    Delgado, Tracie; Sanchez, Erica L.; Camarda, Roman; Lagunoff, Michael

    2012-01-01

    Like cancer cells, virally infected cells have dramatically altered metabolic requirements. We analyzed global metabolic changes induced by latent infection with an oncogenic virus, Kaposi's Sarcoma-associated herpesvirus (KSHV). KSHV is the etiologic agent of Kaposi's Sarcoma (KS), the most common tumor of AIDS patients. Approximately one-third of the nearly 200 measured metabolites were altered following latent infection of endothelial cells by KSHV, including many metabolites of anabolic pathways common to most cancer cells. KSHV induced pathways that are commonly altered in cancer cells including glycolysis, the pentose phosphate pathway, amino acid production and fatty acid synthesis. Interestingly, over half of the detectable long chain fatty acids detected in our screen were significantly increased by latent KSHV infection. KSHV infection leads to the elevation of metabolites involved in the synthesis of fatty acids, not degradation from phospholipids, and leads to increased lipid droplet organelle formation in the infected cells. Fatty acid synthesis is required for the survival of latently infected endothelial cells, as inhibition of key enzymes in this pathway led to apoptosis of infected cells. Addition of palmitic acid to latently infected cells treated with a fatty acid synthesis inhibitor protected the cells from death indicating that the products of this pathway are essential. Our metabolomic analysis of KSHV-infected cells provides insight as to how oncogenic viruses can induce metabolic alterations common to cancer cells. Furthermore, this analysis raises the possibility that metabolic pathways may provide novel therapeutic targets for the inhibition of latent KSHV infection and ultimately KS tumors. PMID:22916018

  20. The study of flavonolignan association patterns in fruits of diverging Silybum marianum (L.) Gaertn. chemotypes provides new insights into the silymarin biosynthetic pathway.

    PubMed

    Martinelli, Tommaso; Whittaker, Anne; Benedettelli, Stefano; Carboni, Andrea; Andrzejewska, Jadwiga

    2017-12-01

    Silymarin is the phytochemical with medicinal properties extracted from Silybum marianum (L.) Gaertn. fruits. Yet, little information is available about silymarin biosynthesis. Moreover, the generally accepted pathway, formulated thus far, is not in agreement with actual experimental measurements on flavonolignan contents. The present work analyses flavonolignan and taxifolin content in 201 S. marianum samples taking into consideration a wide phenotypic variability. Two stable chemotypes were identified: one characterized by both high silychristin and silybin content (chemotype A) and another by a high silydianin content (chemotype B). Through the correlation analysis of samples divided according to chemotype, it was possible to construct a simplified silymarin biosynthetic pathway that is sufficiently versatile in explaining experimental results responding to the actually unresolved questions about this process. The proposed pathway highlights that three separate and equally sized metabolite pools exist, namely: diastereoisomers A (silybin A plus isosilybin A), diastereoisomers B (silybin B plus isosilybin B) and silychristin. In both A and B diastereoisomers pools, isosilybin A and isosilybin B always represent a given amount of the metabolite flux through the specific metabolite pool suggesting the possible involvement of dirigent protein-like enzymes. We suggest that chemotype B possesses a complete silymarin biosynthetic pathway in which silydianin biosynthesis is enzymatically controlled. On the contrary, chemotype A is probably a natural mutant unable to biosynthesize silydianin. The present simplified pathway for silymarin biosynthesis will constitute an important tool for the further understanding of the reactions that drive flavonolignan biosynthesis in S. marianum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  2. Whole Blood Reveals More Metabolic Detail of the Human Metabolome than Serum as Measured by 1H-NMR Spectroscopy: Implications for Sepsis Metabolomics

    PubMed Central

    Stringer, Kathleen A.; Younger, John G.; McHugh, Cora; Yeomans, Larisa; Finkel, Michael A.; Puskarich, Michael A.; Jones, Alan E.; Trexel, Julie; Karnovsky, Alla

    2015-01-01

    Serum is a common sample of convenience for metabolomics studies. Its processing time can be lengthy and may result in the loss of metabolites including those of red blood cells (RBC). Unlike serum, whole blood (WB) is quickly processed, minimizing the influence of variable hemolysis while including RBC metabolites. To determine differences between serum and WB metabolomes, both sample types, collected from healthy volunteers, were assayed by 1H-NMR spectroscopy. A total of 34 and 50 aqueous metabolites were quantified from serum and WB, respectively. Free hemoglobin (Hgb) levels in serum were measured and the correlation between Hgb and metabolite concentrations was determined. All metabolites detected in serum were at higher concentrations in WB with the exception of acetoacetate and propylene glycol. The 18 unique metabolites of WB included adenosine, AMP, ADP and ATP, which are associated with RBC metabolism. The use of serum results in the underrepresentation of a number of metabolic pathways including branched chain amino acid degradation and glycolysis and gluconeogenesis. The range of free Hgb in serum was 0.03-0.01 g/dL and 8 metabolites were associated (p ≤ 0.05) with free Hgb. The range of free Hgb in serum samples from 18 sepsis patients was 0.02-0.46 g/dL. WB and serum have unique aqueous metabolite profiles but the use of serum may introduce potential pathway bias. Use of WB for metabolomics may be particularly important for studies in diseases like sepsis in which RBC metabolism is altered and mechanical and sepsis-induced hemolysis contributes to variance in the metabolome. PMID:26009817

  3. The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxu; Luo, Jie; Ye, Yangfang; Yan, Xiaojun; Liu, Baoning; Wen, Xin

    2016-07-01

    Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1-0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.

  4. 24,25,28-Trihydroxyvitamin D sub 2 and 24,25,26-trihydroxyvitamin D sub 2 : Novel metabolites of vitamin D sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, G.S.; Tserng, K.

    1990-01-30

    Understanding of the inactivation pathways of 25-hydroxyvitamin D{sub 2} and 24-hydroxyvitamin D{sub 2}, the two physiologically significant monohydroxylated metabolites of vitamin D{sub 2}, is of importance, especially during hypervitaminosis D{sub 2}. At present, little information is available regarding the inactivation pathway of 25-hydroxyvitamin D{sub 2} except its further metabolism into 24,25-dihydroxyvitamin D{sub 2}. In our present study, the authors investigated the metabolic fate of 25-hydroxyvitamin D{sub 2} in the isolated perfused rat kidney and demonstrated its conversion not only into 24,25-dihydroxyvitamin D{sub 2} but also into two other new metabolites, namely, 24,25,28-trihydroxyvitamin D{sub 2} and 24,25,26-trihydroxyvitamin D{sub 2}. The structuremore » identification of the new metabolites was established by the techniques of ultraviolet absorption spectrophotometry and mass spectrometry and by the characteristic nature of each new metabolite's susceptibility to sodium metaperiodate oxidation. In order to demonstrate the physiological significance of the two new trihydroxy metabolites of vitamin D{sub 2}, induced hypervitaminosis D{sub 2} in a rat using (3{alpha}-{sup 3}H)vitamin D{sub 2} and analyzed its plasma for the various (3{alpha}-{sup 3}H)vitamin D{sub 2} metabolites on two different high-pressure liquid chromatography systems. The results indicate that both 24,25,26-trihydroxyvitamin D{sub 2} and 24,25,26-trihydroxyvitamin D{sub 2} circulate in the vitamin D{sub 2} intoxicated rat in significant amounts along with other previously identified monohydroxy and dihydroxy metabolites of vitamin D{sub 2}, namely, 24-hydroxyvitamin D{sub 2}, 25-hydroxyvitamin D{sub 2}, and 24,25-dihydroxyvitamin D{sub 2}.« less

  5. Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome

    PubMed Central

    Yu, Lei-Min; Zhao, Ke-Jia; Wang, Shuang-Shuang; Wang, Xi; Lu, Bin

    2018-01-01

    AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome (IBS). METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum (C. butyricum) treatment. C57BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress (WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry (GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS (days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A (CoA) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways. CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism. PMID:29491683

  6. Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes

    PubMed Central

    Puhka, Maija; Takatalo, Maarit; Nordberg, Maria-Elisa; Valkonen, Sami; Nandania, Jatin; Aatonen, Maria; Yliperttula, Marjo; Laitinen, Saara; Velagapudi, Vidya; Mirtti, Tuomas; Kallioniemi, Olli; Rannikko, Antti; Siljander, Pia R-M; af Hällström, Taija Maria

    2017-01-01

    Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials. PMID:29109780

  7. Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymes.

    PubMed

    Wu, Fei; Pelster, Lindsey N; Minteer, Shelley D

    2015-01-25

    Dynamics of metabolon formation in mitochondria was probed by studying diffusional motion of two sequential Krebs cycle enzymes in a microfluidic channel. Enhanced directional co-diffusion of both enzymes against a substrate concentration gradient was observed in the presence of intermediate generation. This reveals a metabolite directed compartmentation of metabolic pathways.

  8. Genomic analysis of Ascochyta rabiei identifies dynamic genome environments of solanapyrone biosynthesis gene cluster and a novel type of pathway-specific regulator

    USDA-ARS?s Scientific Manuscript database

    Secondary metabolite genes are often clustered together and situated in particular genomic regions such as the subtelomere, which can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full genome sequencing of...

  9. The study on serum and urine of renal interstitial fibrosis rats induced by unilateral ureteral obstruction based on metabonomics and network analysis methods.

    PubMed

    Xiang, Zheng; Sun, Hao; Cai, Xiaojun; Chen, Dahui

    2016-04-01

    Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."

  10. [Study on Precursors for Synthesis of Anthraquinone Metabolites from Rheum tanguticum].

    PubMed

    Hasi, Qi-mei-ge; Lj, Hai-ling; Cheng, Yan; Menggen, Qi-qi-ge; Zhang, Yang

    2015-01-01

    To explore the potential precursors of the anthraquinone metabolites from Rheum tanguticum and preliminanly identify the synthesis pathway thereof. Sterile seedlings sprouted from the seeds of Rheum tanguticum were chosen as materials for inducing callus. The effects of different precursors and feeding duration on the callus of Rheum tanguticum and the anthraquinone yield in adult rheum were studied. The greatest improvement of anthraquinone yield was achieved by acetic acid, increasing 43. 9% for the callus and 45. 8% in the adult rheum; the second greatest improvement was achieved by malonic acid, increasing 15. 8% for the callus and only 3. 6% in the adult rheum. The yield of anthraquinone was not influenced significantly by benzoic acid and p-benzoquinone, and in contrast, was inhibited in some degree by shikimic acid and α-ketoglutaric acid. A suitable feeding duration was 36 h, which worked well for the effects of precursors. The precursor for synthesis of anthraquinone metabolites from Rheum tan- guticum is acetic acid, which improves the yields of callus and anthraquinone in adult rheum, concluding that the anthraquinone metabolites are synthesized via polyketone pathway.

  11. Metabolites in vertebrate Hedgehog signaling.

    PubMed

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A Comprehensive Metabolomic Investigation in Urine of Mice Exposed to Strontium-90

    PubMed Central

    Goudarzi, Maryam; Weber, Waylon M.; Mak, Tytus D.; Chung, Juijung; Doyle-Eisele, Melanie; Melo, Dunstana R.; Strawn, Steven J.; Brenner, David J.; Guilmette, Raymond A.; Fornace, Albert J.

    2017-01-01

    Internal emitters such as Strontium-90 (90Sr) pose a substantial health risk during and immediately after a nuclear disaster or detonation of an improvised device. The environmental persistency and potency of 90Sr calls for urgent development of high-throughput tests to establish levels of exposure and to help triage potentially exposed individuals who were in the immediate area of the disaster. In response to these concerns, our team focused on developing a robust metabolomic profile for 90Sr exposure in urine using a mouse model. The sensitivity of modern time-of-flight mass spectrometry (TOFMS) combined with the separation power of ultra performance liquid chromatography (UPLC) was used to determine perturbations in the urinary metabolome of mice exposed to 90Sr. The recently developed statistical suite, MetaboLyzer, was used to explore the mass spectrometry data. The results indicated a significant change in the urinary abundances of metabolites pertaining to butanoate metabolism, vitamin B metabolism, glutamate and fatty acid oxidation. All of these pathways are either directly or indirectly connected to the central energy production pathway, the tricarboxylic acid (TCA) cycle. To our knowledge, this is the first in vivo metabolomics to evaluate the effects of exposure to 90Sr using the easily accessible biofluid, urine. PMID:26010713

  13. A Comprehensive Metabolomic Investigation in Urine of Mice Exposed to Strontium-90.

    PubMed

    Goudarzi, Maryam; Weber, Waylon M; Mak, Tytus D; Chung, Juijung; Doyle-Eisele, Melanie; Melo, Dunstana R; Strawn, Steven J; Brenner, David J; Guilmette, Raymond A; Fornace, Albert J

    2015-06-01

    Internal emitters such as Strontium-90 ((90)Sr) pose a substantial health risk during and immediately after a nuclear disaster or detonation of an improvised device. The environmental persistency and potency of (90)Sr calls for urgent development of high-throughput tests to establish levels of exposure and to help triage potentially exposed individuals who were in the immediate area of the disaster. In response to these concerns, our team focused on developing a robust metabolomic profile for (90)Sr exposure in urine using a mouse model. The sensitivity of modern time-of-flight mass spectrometry (TOFMS) combined with the separation power of ultra performance liquid chromatography (UPLC) was used to determine perturbations in the urinary metabolome of mice exposed to (90)Sr. The recently developed statistical suite, MetaboLyzer, was used to explore the mass spectrometry data. The results indicated a significant change in the urinary abundances of metabolites pertaining to butanoate metabolism, vitamin B metabolism, glutamate and fatty acid oxidation. All of these pathways are either directly or indirectly connected to the central energy production pathway, the tricarboxylic acid (TCA) cycle. To our knowledge, this is the first in vivo metabolomics to evaluate the effects of exposure to (90)Sr using the easily accessible biofluid, urine.

  14. The active transport of histidine and its role in ATP production in Trypanosoma cruzi.

    PubMed

    Barisón, M J; Damasceno, F S; Mantilla, B S; Silber, A M

    2016-08-01

    Trypanosoma cruzi, the aetiological agent of Chagas's disease, metabolizes glucose, and after its exhaustion, degrades amino acids as energy source. Here, we investigate histidine uptake and its participation in energy metabolism. No putative genes for the histidine biosynthetic pathway have been identified in genome databases of T. cruzi, suggesting that its uptake from extracellular medium is a requirement for the viability of the parasite. From this assumption, we characterized the uptake of histidine in T. cruzi, showing that this amino acid is incorporated through a single and saturable active system. We also show that histidine can be completely oxidised to CO2. This finding, together with the fact that genes encoding the putative enzymes for the histidine - glutamate degradation pathway were annotated, led us to infer its participation in the energy metabolism of the parasite. Here, we show that His is capable of restoring cell viability after long-term starvation. We confirm that as an energy source, His provides electrons to the electron transport chain, maintaining mitochondrial inner membrane potential and O2 consumption in a very efficient manner. Additionally, ATP biosynthesis from oxidative phosphorylation was found when His was the only oxidisable metabolite present, showing that this amino acid is involved in bioenergetics and parasite persistence within its invertebrate host.

  15. Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields.

    PubMed

    Biswas, Sagor; Kranz, William L; Shapiro, Charles A; Snow, Daniel D; Bartelt-Hunt, Shannon L; Mamo, Mitiku; Tarkalson, David D; Zhang, Tian C; Shelton, David P; van Donk, Simon J; Mader, Terry L

    2017-02-15

    Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8-86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17β-estradiol, estrone, estriol, testosterone, and α-zearalenol at concentrations ranging up to 100-200ngL -1 . Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Residues of acephate and its metabolite methamidophos in/on mango fruit (Mangifera indica L.).

    PubMed

    Mohapatra, Soudamini; Ahuja, A K; Deepa, M; Sharma, Debi

    2011-01-01

    Mango, the major fruit crop of India is affected by stone weevil, which can cause serious damage to the fruits. Acephate gives good control of mango stone weevil. Residues of acephate and its major metabolite, methamidophos were evaluated on mango fruits following repeated spray applications at the recommended dose (0.75 kg a.i. ha⁻¹) and double the recommended dose (1.5 kg a.i. ha⁻¹). Acephate residues mostly remained on the fruit peel which persisted up to 30 days. Movement of residues to the fruit pulp was detected after 1 day of application, increased to maximum of 0.14 and 0.26 mg kg⁻¹ after 3 days and reached to below detectable level (BDL) after 20 days. Methamidophos, a metabolite of acephate, was detected from 3rd day onwards in both peel and pulp and persisted up to 15 days. The residues (acephate + methamidophos) dissipated with the half-life of 5 days in peel and pulp. A safe pre-harvest interval of 30 days is recommended for consumption of mango fruits following treatment of acephate at the recommended dose of 0.75 kg a.i. ha⁻¹.

  17. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production

    PubMed Central

    Remali, Juwairiah; Sarmin, Nurul ‘Izzah Mohd; Ng, Chyan Leong; Tiong, John J.L.; Aizat, Wan M.; Keong, Loke Kok

    2017-01-01

    Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites. PMID:29201559

  18. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    PubMed Central

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  19. Metabolites Associated With Malnutrition in the Intensive Care Unit Are Also Associated With 28-Day Mortality.

    PubMed

    Mogensen, Kris M; Lasky-Su, Jessica; Rogers, Angela J; Baron, Rebecca M; Fredenburgh, Laura E; Rawn, James; Robinson, Malcolm K; Massarro, Anthony; Choi, Augustine M K; Christopher, Kenneth B

    2017-02-01

    We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.

  20. Screening and identification of three typical phenylethanoid glycosides metabolites from Cistanches Herba by human intestinal bacteria using UPLC/Q-TOF-MS.

    PubMed

    Li, Yang; Zhou, Guisheng; Peng, Ying; Tu, Pengfei; Li, Xiaobo

    2016-01-25

    Acteoside, isoacteoside, and 2'-acetylacteoside are three representative phenylethanoid glycosides (PhGs), which are widely distributed in many plants and also known as the active components of Cistanches Herba. However, the extremely low oral bioavailability of acteoside in rats implies that these structural similar components may go through multiple sequential routes of hydrolysis in gastrointestinal tract before they are absorbed into blood. Therefore, the metabolites of these three components and other PhGs from gastrointestinal tract such as echinacoside, are supposed to be the bioactive elements. In this study, we established an approach combining ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) with MS(E) technology and MetaboLynx™ software for the rapid metabolic profiling of acteoside, isoacteoside, and 2'-acetylacteoside by human intestinal bacteria. As a result, 11 metabolites of acteoside, 7 metabolites of isoacteoside, and 11 metabolites of 2'-acetylacteoside were identified respectively. 8 metabolic pathways including deglycosylation, de-rhamnose, de-hydroxytyrosol, de-caffeoyl, deacetylation, reduction, acetylation, and sulfate conjugation were proposed to involve in the generation of these metabolites. Furthermore, we found that the degraded metabolites hydroxytyrosol (HT) and 3-hydroxyphenylpropionic (3-HPP) were transformed from acteoside, isoacteoside, and 2'-acetylacteoside by human intestinal bacteria and demonstrated similar bioactivities to their precursors. These findings are significant for our understanding of the metabolism of PhGs and the proposed metabolic pathways of bioactive components might be crucial for further pharmacokinetic evaluations of Cistanches Herba. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16

    PubMed Central

    Khan, Sabaz Ali; Chibon, Pierre-Yves; de Vos, Ric C.H.; Schipper, Bert A.; Walraven, Evert; Beekwilder, Jules; van Dijk, Thijs; Finkers, Richard; Visser, Richard G.F.; van de Weg, Eric W.; Bovy, Arnaud; Cestaro, Alessandro; Velasco, Riccardo; Jacobsen, Evert; Schouten, Henk J.

    2012-01-01

    Apple (Malus×domestica Borkh) is among the main sources of phenolic compounds in the human diet. The genetic basis of the quantitative variations of these potentially beneficial phenolic compounds was investigated. A segregating F1 population was used to map metabolite quantitative trait loci (mQTLs). Untargeted metabolic profiling of peel and flesh tissues of ripe fruits was performed using liquid chromatography–mass spectrometry (LC-MS), resulting in the detection of 418 metabolites in peel and 254 in flesh. In mQTL mapping using MetaNetwork, 669 significant mQTLs were detected: 488 in the peel and 181 in the flesh. Four linkage groups (LGs), LG1, LG8, LG13, and LG16, were found to contain mQTL hotspots, mainly regulating metabolites that belong to the phenylpropanoid pathway. The genetics of annotated metabolites was studied in more detail using MapQTL®. A number of quercetin conjugates had mQTLs on LG1 or LG13. The most important mQTL hotspot with the largest number of metabolites was detected on LG16: mQTLs for 33 peel-related and 17 flesh-related phenolic compounds. Structural genes involved in the phenylpropanoid biosynthetic pathway were located, using the apple genome sequence. The structural gene leucoanthocyanidin reductase (LAR1) was in the mQTL hotspot on LG16, as were seven transcription factor genes. The authors believe that this is the first time that a QTL analysis was performed on such a high number of metabolites in an outbreeding plant species. PMID:22330898

  2. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    PubMed

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  3. Synthesis and analytical follow-up of the mineralization of a new fluorosurfactant prototype.

    PubMed

    Peschka, M; Fichtner, N; Hierse, W; Kirsch, P; Montenegro, E; Seidel, M; Wilken, R D; Knepper, T P

    2008-08-01

    Fluorinated surfactants have become essential in numerous technical applications due to their unparalleled effectiveness and efficiency. The environmental persistence of the non-biodegradable perfluorinated alkyl moiety has become a matter of concern. Therefore, it was searched for new molecules with chemically stable fluorinated end groups which can be microbially transformed into labile fluorinated substances. One prototype substance, 10-(trifluoromethoxy)decane-1-sulfonate, has shown biomineralization. Monitoring the formation of metabolites over time elucidated the mechanism of biotransformation. Analysis was performed utilizing liquid chromatography-single quadrupole mass spectrometry (LC-MS) and quadrupole-time of flight tandem mass spectrometry (QqTOF-MS). It was possible to distinguish between two major degradation pathways of the fluorinated alkylsulfonate derivative: (i) a desulfonation and subsequent oxidation and degradation of the alkyl chain being predominant and (ii) an insertion of oxygen with a subsequent cleavage and degradation of the molecule. The utilized trifluoromethoxy-endgroup resulted in instable trifluoromethanol after degradation of the alkyl chain, which led to a high degree of mineralization of the molecule.

  4. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli.

    PubMed

    Bent, Stephen; Lawton, Brittany; Warren, Tracy; Widjaja, Felicia; Dang, Katherine; Fahey, Jed W; Cornblatt, Brian; Kinchen, Jason M; Delucchi, Kevin; Hendren, Robert L

    2018-01-01

    Children with autism spectrum disorder (ASD) have urinary metabolites suggesting impairments in several pathways, including oxidative stress, inflammation, mitochondrial dysfunction, and gut microbiome alterations. Sulforaphane, a supplement with indirect antioxidant effects that are derived from broccoli sprouts and seeds, was recently shown to lead to improvements in behavior and social responsiveness in children with ASD. We conducted the current open-label study to determine if we could identify changes in urinary metabolites that were associated with clinical improvements with the goal of identifying a potential mechanism of action. Children and young adults enrolled in a school for children with ASD and related neurodevelopmental disorders were recruited to participate in a 12-week, open-label study of sulforaphane. Fasting urinary metabolites and measures of behavior (Aberrant Behavior Checklist-ABC) and social responsiveness (Social Responsiveness Scale-SRS) were measured at baseline and at the end of the study. Pearson's correlation coefficient was calculated for the pre- to post-intervention change in each of the two clinical scales (ABS and SRS) versus the change in each metabolite. Fifteen children completed the 12-week study. Mean scores on both symptom measures showed improvements (decreases) over the study period, but only the change in the SRS was significant. The ABC improved - 7.1 points (95% CI - 17.4 to 3.2), and the SRS improved - 9.7 points (95% CI - 18.7 to - 0.8). We identified 77 urinary metabolites that were correlated with changes in symptoms, and they clustered into pathways of oxidative stress, amino acid/gut microbiome, neurotransmitters, hormones, and sphingomyelin metabolism. Urinary metabolomics analysis is a useful tool to identify pathways that may be involved in the mechanism of action of treatments targeting abnormal physiology in ASD. This study was prospectively registered at clinicaltrials.gov (NCT02654743) on January 11, 2016.

  5. Biotransformation of the novel inotropic agent toborinone (OPC-18790) in rats and dogs. Evidence for the formation of novel glutathione and two cysteine conjugates.

    PubMed

    Kitani, M; Miyamoto, G; Nagasawa, M; Yamada, T; Matsubara, J; Uchida, M; Odomi, M

    1997-06-01

    The metabolism of toborinone, (+/-)-6-[3-(3,4-dimethoxybenzylamino)-2-hydroxypropoxy]-2(1H)-quin - olinone, a novel inotropic agent, was studied in rats and dogs after intravenous administration. Chemical structures of the 13 metabolites were characterized by direct-probe FAB/MS and field desorption/MS, LC/FAB/MS, and various NMR measurements. After intravenous dosing of 10 mg/kg [14C]toborinone, fecal and urinary recoveries of the 14C dose were approximately 70% and 26-30%, respectively, in both rats and dogs. The predominant component of radioactivity was the unchanged toborinone in every biological specimen in rats and dogs. Although unchanged toborinone was predominantly observed, toborinone underwent extensive conjugations with glucuronic acid, sulfate, and glutathione, either directly or following phase I reaction. Metabolites resulting from oxidative N-C cleavage were minor both in number and in quantity in every biological specimen in rats and dogs. In rats, toborinone underwent O-demethylation to form M-7 and successive phase it reaction to yield the glucuronide M-1 and the sulfoconjugate M-2, and deconjugation to yield M-7, which was a primary metabolite accounted for 35.67% of the radioactivity excreted in the feces by 48 hr. Conjugates M-1 and M-2 were the major metabolites in rat plasma. In dogs, toborinone was metabolized via mercapturic acid pathway to yield the primary metabolites, cysteine conjugates M-10 and M-11 that accounted for 19.10% and 6.70% of the radioactivity excreted in the feces by 48 hr and that were detected species specifically in dogs. The glutathione conjugate M-13, which was isolated from in vitro incubations using dog liver, led us to consider a possible mercapturic acid pathway from the parent compound to M-10. Metabolites in dog plasma and those in urine in both rats and dogs were minor in quantity. The metabolic pathways of toborinone in rats and dogs are proposed herein.

  6. Shaofu Zhuyu decoction ameliorates obesity-mediated hepatic steatosis and systemic inflammation by regulating metabolic pathways

    PubMed Central

    Park, Hee-Sook; Lee, So Min; Jeong, Nam-Joo; Kim, Soon-Hee; Lee, Kyoung-Won; Lee, Ju-A

    2017-01-01

    Shaofu Zhuyu decoction (SFZYD, also known as Sobokchugeo-tang), a classical prescription drug in traditional East Asian medicine, has been used to treat blood stasis syndrome (BSS). Hepatic steatosis is the result of excess caloric intake, and its pathogenesis involves internal retention of phlegm and dampness, blood stasis, and liver Qi stagnation. To evaluate the effects of treatment with SFZYD on obesity-induced inflammation and hepatic steatosis, we fed male C57BL/6N mice a high fat diet (HFD) for 8 weeks and then treated them with SFZYD by oral gavage for an additional 4 weeks. The results of histological and biochemical examinations indicated that SFZYD treatment ameliorates systemic inflammation and hepatic steatosis. A partial least squares-discriminant analysis (PLS-DA) scores plot of serum metabolites showed that HFD mice began to produce metabolites similar to those of normal chow (NC) mice after SFZYD administration. We noted significant alterations in the levels of twenty-seven metabolites, alterations indicating that SFZYD regulates the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism. Increases in the levels of TCA cycle intermediate metabolites, such as 2-oxoglutaric acid, isocitric acid, and malic acid, in the serum of obese mice were significantly reversed after SFZYD treatment. In addition to inducing changes in the above metabolites, treatment with SFZYD also recovered the expression of genes related to hepatic mitochondrial dysfunction, including Ucp2, Cpt1α, and Ppargc1α, as well as the expression of genes involved in lipid metabolism and inflammation, without affecting glucose uptake or insulin signaling. Taken together, these findings suggest that treatment with SFZYD ameliorated obesity-induced systemic inflammation and hepatic steatosis by regulating inflammatory cytokine and adipokine levels in the circulation and various tissues. Moreover, treatment with SFZYD also reversed alterations in the levels of metabolites of the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism. PMID:28570676

  7. Screening for in vitro metabolites of kakkalide and irisolidone in human and rat intestinal bacteria by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhang, Guozhe; Gong, Tianxing; Kano, Yoshihiro; Yuan, Dan

    2014-02-01

    Kakkalide and irisolidone, the main isoflavones of Flos Puerariae, exhibit a wide spectrum of bioactivities. Intestinal bacteria biotransformation plays an important role in the metabolic pathways of flavones, and is directly related to the bioactivities of the prodrugs after oral administration. To the best of our knowledge, the metabolic pathways of kakkalide and irisolidone in vitro have not been comprehensively studied yet. This paper describes the strategy using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) for the rapid analysis of the metabolic profiles of kakkalide and irisolidone after incubated with human and rat intestinal bacteria. Bacteria incubated samples were prepared and analyzed after incubated under anaerobic conditions for 48 h. A total of 17 metabolites, including parent compounds, were detected in human and rat intestinal bacteria incubated samples. The results obtained indicate that hydrolysis, dehydroxylation, demethoxylation, demethylation, hydroxylation, decarbonylation, and reduction were the detected metabolic pathways of kakkalide and irisolidone in vitro. The conversion rate of irisolidone in human and rat bacteria was 8.57% and 6.51%, respectively. Biochanin A was the relatively main metabolite of irisolidone, and the content of biochanin A in human and rat bacteria was 3.68% and 4.25%, respectively. The conversion rate of kakkalide in human and rat bacteria was 99.92% and 98.58%, respectively. Irisolidone was the main metabolite of kakkalide, and the content of irisolidone in human and rat bacteria was 89.58% and 89.38%, respectively. This work not only provides the evidence of kakkalide and irisolidone metabolites in vivo, but also demonstrates a simple, fast, sensitive, and inexpensive method for identification of metabolites of other compounds transformed by intestinal bacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Multi-omics Evidence for Inheritance of Energy Pathways in Red Blood Cells.

    PubMed

    Weisenhorn, Erin M M; van T Erve, Thomas J; Riley, Nicholas M; Hess, John R; Raife, Thomas J; Coon, Joshua J

    2016-12-01

    Each year over 90 million units of blood are transfused worldwide. Our dependence on this blood supply mandates optimized blood management and storage. During storage, red blood cells undergo degenerative processes resulting in altered metabolic characteristics which may make blood less viable for transfusion. However, not all stored blood spoils at the same rate, a difference that has been attributed to variable rates of energy usage and metabolism in red blood cells. Specific metabolite abundances are heritable traits; however, the link between heritability of energy metabolism and red blood cell storage profiles is unclear. Herein we performed a comprehensive metabolomics and proteomics study of red blood cells from 18 mono- and di-zygotic twin pairs to measure heritability and identify correlations with ATP and other molecular indices of energy metabolism. Without using affinity-based hemoglobin depletion, our work afforded the deepest multi-omic characterization of red blood cell membranes to date (1280 membrane proteins and 330 metabolites), with 119 membrane protein and 148 metabolite concentrations found to be over 30% heritable. We demonstrate a high degree of heritability in the concentration of energy metabolism metabolites, especially glycolytic metabolites. In addition to being heritable, proteins and metabolites involved in glycolysis and redox metabolism are highly correlated, suggesting that crucial energy metabolism pathways are inherited en bloc at distinct levels. We conclude that individuals can inherit a phenotype composed of higher or lower concentrations of these proteins together. This can result in vastly different red blood cells storage profiles which may need to be considered to develop precise and individualized storage options. Beyond guiding proper blood storage, this intimate link in heritability between energy and redox metabolism pathways may someday prove useful in determining the predisposition of an individual toward metabolic diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Degradation of kresoxim-methyl in soil: impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level.

    PubMed

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2014-09-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in two different soil types of India namely Inceptisol and Ultisol. Results revealed that kresoxim-methyl readily form acid metabolite in soil. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. Among the two soil types, kresoxim-methyl and total residues dissipated at a faster rate in Inceptisol (T1/2 0.9 and 33.8d) than in Ultisol (T1/2 1.5 and 43.6d). Faster dissipation of kresoxim-methyl and total residues was observed in submerged soil conditions (T1/2 0.5 and 5.2d) followed by field capacity (T1/2 0.9 and 33.8d) and air dry (T1/2 2.3 and 51.0d) conditions. Residues also dissipated faster in 5% sludge amended soil (T1/2 0.7 and 21.1d) and on Xenon-light exposure (T1/2 0.5 and 8.0d). Total residues of kresoxim-methyl dissipated at a faster rate under elevated CO2 condition (∼550μLL(-)(1)) than ambient condition (∼385μLL(-)(1)). The study suggests that kresoxim-methyl alone has low persistence in soil. Because of the slow dissipation of acid metabolite, the total residues (kresoxim-methyl+acid metabolite) persist for a longer period in soil. Statistical analysis using SAS 9.3 software and Duncan's Multiple Range Test (DMRT) revealed the significant effect of moisture regime, organic matter, microbial population, soil type, light exposure and atmospheric CO2 level on the dissipation of kresoxim-methyl from soil (at 95% confidence level p<0.0001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Natural genetic variation of freezing tolerance in Arabidopsis.

    PubMed

    Hannah, Matthew A; Wiese, Dana; Freund, Susanne; Fiehn, Oliver; Heyer, Arnd G; Hincha, Dirk K

    2006-09-01

    Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.

  11. Bisphenol A and its analogs: Do their metabolites have endocrine activity?

    PubMed

    Gramec Skledar, Darja; Peterlin Mašič, Lucija

    2016-10-01

    Structural analogs of bisphenol A are commonly used as its alternatives in industrial and commercial applications. Nevertheless, the question arises whether the use of other bisphenols is justified as replacements for bisphenol A in mass production of plastic materials. To evaluate the influence of metabolic reactions on endocrine activities of bisphenols, we conducted a systematic review of the literature. Knowledge about the metabolic pathways and enzymes involved in metabolic biotransformations is essential for understanding and predicting mechanisms of toxicity. Bisphenols are metabolized predominantly by the glucuronidation reaction, which is considered their most important detoxification pathway, as based on current knowledge, glucuronides do not have activity on endocrine receptors. In contrast, several oxidative metabolites of bisphenols with enhanced endocrine activities are presented, and these findings indicate that oxidative metabolites of bisphenols can still have endocrine activities in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice.

    PubMed

    Chandler, Joshua D; Hu, Xin; Ko, Eun-Ju; Park, Soojin; Lee, Young-Tae; Orr, Michael; Fernandes, Jolyn; Uppal, Karan; Kang, Sang-Moo; Jones, Dean P; Go, Young-Mi

    2016-11-01

    Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation. Copyright © 2016 the American Physiological Society.

  13. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice

    PubMed Central

    Chandler, Joshua D.; Hu, Xin; Ko, Eun-Ju; Park, Soojin; Lee, Young-Tae; Orr, Michael; Fernandes, Jolyn; Uppal, Karan; Kang, Sang-Moo; Jones, Dean P.

    2016-01-01

    Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation. PMID:27558316

  14. Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention

    PubMed Central

    Miller, Jessica A.; Pappan, Kirk; Thompson, Patricia A.; Want, Elizabeth J.; Siskos, Alexandros; Keun, Hector C.; Wulff, Jacob; Hu, Chengcheng; Lang, Julie E.; Chow, H-H. Sherry

    2014-01-01

    Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anti-cancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biological activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/post-intervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography (UPLC) coupled to a linear trap quadrupole (LTQ) system and gas chromatography mass spectrometry (GC-MS). Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database (HMDB) and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P’s<0.01), and significant increases in bile acids (P’s≤0.05) and multiple collagen breakdown products (P’s<0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell cycle regulatory protein, in patient tumor tissues (P’s≤0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Further, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. PMID:25388013

  15. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit.

    PubMed

    Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D

    2017-01-01

    Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  16. Different interactions of prolyl oligopeptidase and neurotensin in dopaminergic function of the rat nigrostriatal and mesolimbic pathways.

    PubMed

    Peltonen, I; Myöhänen, T T; Männistö, P T

    2012-09-01

    Prolyl oligopeptidase (PREP) is an intracellular enzyme digesting small proline-containing peptides. Since PREP resides the same brain areas as neurotensin in the nigrostriatal and mesolimbic dopaminergic pathways, we were interested to study if there is an intracellular interaction between them. A colocalization of PREP with neurotensin and neurotensin receptor 1 (NTS1) in the rat striatum, nucleus accumbens (NAcc), substantia nigra (SN) and ventral tegmental area (VTA) was studied with immunofluorescence. From the same brain areas, the levels of dopamine and its metabolites were measured 1 h after the injection of saline, NTS1 ligands (JMV-449; 5 μg) or antagonist (SR142948; 5 μg) to the rat striatum or NAcc. We also studied whether an intraperitoneal injection of a PREP inhibitor (KYP-2047; 5 mg/kg) affects the levels of dopamine and its metabolites alone or modifies the effects of the NTS1 ligands. PREP was highly colocalized with neurotensin and NTS1 in the VTA, and with NTS1 in the SN. Colocalization was moderate or low in other brain areas. When injected to the striatum, JMV-449 had a tendency to increase dopamine (p = 0.052) and metabolite levels in the striatum and SN, whereas SR142948 did not. After the injection to the NAcc, JMV-449 but not SR142948, increased dopamine levels in the VTA and dopamine metabolite levels in the NAcc and VTA. KYP-2047 decreased the dopamine levels in the striatum, but increased dopamine metabolite levels in the NAcc and VTA. Our results suggest a novel role for PREP in the modulation of dopaminergic transmission, which may be different in nigrostriatal and mesolimbic pathways.

  17. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification

    PubMed Central

    Wolkenstein, Klaus

    2015-01-01

    Secondary metabolites often play an important role in the adaptation of organisms to their environment. However, little is known about the secondary metabolites of ancient organisms and their evolutionary history. Chemical analysis of exceptionally well-preserved colored fossil crinoids and modern crinoids from the deep sea suggests that bioactive polycyclic quinones related to hypericin were, and still are, globally widespread in post-Paleozoic crinoids. The discovery of hypericinoid pigments both in fossil and in present-day representatives of the order Isocrinida indicates that the pigments remained almost unchanged since the Mesozoic, also suggesting that the original color of hypericinoid-containing ancient crinoids may have been analogous to that of their modern relatives. The persistent and widespread occurrence, spatially as well as taxonomically, of hypericinoid pigments in various orders during the adaptive radiation of post-Paleozoic crinoids suggests a general functional importance of the pigments, contributing to the evolutionary success of the Crinoidea. PMID:25730856

  18. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp

    PubMed Central

    Corbett, Michael D.; Corbett, Bernadette R.

    1981-01-01

    The yeast Rhodosporidium sp. metabolized 4-chloronitrobenzene by a reductive pathway to give 4-chloroacetanilide and 4-chloro-2-hydroxyacetanilide as the major final metabolites. The intermediate production of 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, and 4-chloroaniline was demonstrated by high-pressure liquid chromatography. Additional studies with selected metabolites established that the metabolite 4-chloro-2-hydroxyacetanilide was produced by an initial Bamberger rearrangement of the hydroxylamine metabolite, followed by acetylation. Direct C hydroxylation of the aromatic ring was not observed in this species. No hydroxamic acid production was detected, even though significant concentrations of the nitroso and hydroxylamine precursors to this functional group were observed. PMID:16345757

  19. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis.

    PubMed

    Gu, Jinping; Hu, Xiaomin; Shao, Wei; Ji, Tianhai; Yang, Wensheng; Zhuo, Huiqin; Jin, Zeyu; Huang, Huiying; Chen, Jiacheng; Huang, Caihua; Lin, Donghai

    2016-09-13

    Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. Alterations in metabolic pathways are inextricably linked to GC progression. However, the underlying molecular mechanisms remain elusive. We performed NMR-based metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, revealed significantly altered metabolic pathways correlated with the progression of gastric carcinogenesis. Rats were histologically classified into four pathological groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, HGD; GC) and the normal control group (CON). The metabolic profiles of the five groups were clearly distinguished from each other. Furthermore, significant inter-metabolite correlations were extracted and used to reconstruct perturbed metabolic networks associated with the four pathological stages compared with the normal stage. Then, significantly altered metabolic pathways were identified by pathway analysis. Our results showed that oxidative stress-related metabolic pathways, choline phosphorylation and fatty acid degradation were continually disturbed during gastric carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in gastric dysplasia and GC. The GC stage showed more changed metabolite levels and more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine and threonine metabolism) substantially contributed to the metabolic alterations in GC. These results lay the basis for addressing the molecular mechanisms underlying gastric carcinogenesis and extend our understanding of GC progression.

  20. Species differences in the metabolism of benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, R.F.

    1996-12-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of the benzene to hydroquinone metabolites than do rats or chimpanzees, especially at low doses. Nonhuman primates metabolize less of the benzene to muconic acid than domore » rodents or humans. In all species studied, a greater proportion of benzene is converted to hydroquinone and ring-breakage metabolites at low doses than at high doses. This finding should be considered in attempting to extrapolate the toxicity of benzene observed at high doses to predicted toxicity at low doses. Because ring-breakage metabolites and hydroquinone have both been implicated in the toxicity of benzene, the higher formation of those metabolites in the mouse may partially explain why mice are more sensitive to benzene than are rats. Metabolism of benzene in humans, the species of interest, does not exactly mimic that of any animal species studied. More information on the urinary and blood metabolites of occupationally exposed people is required to determine the fractional conversion of benzene to putative toxic metabolites and the degree of variability present in human subjects. 12 refs., 4 tabs.« less

  1. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling.

    PubMed

    Abdelrahman, Mostafa; Abdel-Motaal, Fatma; El-Sayed, Magdi; Jogaiah, Sudisha; Shigyo, Masayoshi; Ito, Shin-Ichi; Tran, Lam-Son Phan

    2016-05-01

    Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress

    PubMed Central

    Das, Aayudh; Rushton, Paul J.; Rohila, Jai S.

    2017-01-01

    Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions. PMID:28587097

  3. Metabolic Profile of Skimmianine in Rats Determined by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Huang, Aihua; Xu, Hui; Zhan, Ruoting; Chen, Weiwen; Liu, Jiawei; Chi, Yuguang; Chen, Daidi; Ji, Xiaoyu; Luo, Chaoquan

    2017-03-23

    Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family. It has been reported to have analgesic, antispastic, sedative, anti-inflammatory, and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. In this study, the in vivo metabolite profiling of skimmianine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilot TM software. These predicted metabolites were further analyzed by MS² spectra, and compared with the detailed fragmentation pathway of the skimmianine standard and literature data. A total of 16 metabolites were identified for the first time in rat plasma, urine, and feces samples after oral administration of skimmianine. Skimmianine underwent extensive Phase I and Phase II metabolism in rats. The Phase I biotransformations of skimmianine consist of epoxidation of olefin on its furan ring (M1) followed by the hydrolysis of the epoxide ring (M4), hydroxylation (M2, M3), O -demethylation (M5-M7), didemethylation (M14-M16). The Phase II biotransformations include glucuronide conjugation (M8-M10) and sulfate conjugation (M11-M13). The epoxidation of 2,3-olefinic bond followed by the hydrolysis of the epoxide ring and O -demethylation were the major metabolic pathways of skimmianine. The results provide key information for understanding the biotransformation processes of skimmianine and the related furoquinoline alkaloids.

  4. Tryptophan, kynurenine, and kynurenine metabolites: Relationship to lifetime aggression and inflammatory markers in human subjects

    PubMed Central

    Coccaro, Emil F.; Lee, Royce; Fanning, Jennifer R.; Fuchs, Dietmar; Goiny, Michel; Erhardt, Sophie; Christensen, Kyle; Brundin, Lena; Coussons-Read, Mary

    2017-01-01

    Inflammatory proteins are thought to be causally involved in the generation of aggression, possibly due to direct effects of cytokines in the central nervous system and/or by generation of inflammatory metabolites along the tryptophan-kynurenine (TRP/KYN) pathway, including KYN and its active metabolites kynurenic acid (KA), quinolinic acid (QA), and picolinic acid (PA). We examined plasma levels of TRP, KYN, KA, QA, and PA in 172 medication-free, medically healthy, human subjects to determine if plasma levels of these substances are altered as a function of trait aggression, and if they correlate with current plasma levels of inflammatory markers. Plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6), and soluble interleukin-1 receptor-II (sIL-1RII) protein were also available in these subjects. We found normal levels of TRP but reduced plasma levels of KYN (by 48%), QA (by 6%), and a QA/KA (by 5%) ratio in subjects with Intermittent Explosive Disorder (IED) compared to healthy controls and psychiatric controls. Moreover, the metabolites were not associated with any of the inflammatory markers studied. These data do not support the hypothesis that elevated levels of KYN metabolites would be present in plasma of subjects with IED, and associated with plasma inflammation. However, our data do point to a dysregulation of the KYN pathway metabolites in these subjects. Further work will be necessary to replicate these findings and to understand their role in inflammation and aggression in these subjects. PMID:27318828

  5. Characterization of Metabolic Pathways and Absorption of Sea Cucumber Saponins, Holothurin A and Echinoside A, in Vitro and in Vivo.

    PubMed

    Song, Shanshan; Zhang, Lingyu; Cao, Jian; Xiang, Gao; Cong, Peixu; Dong, Ping; Li, Zhaojie; Xue, Changhu; Xue, Yong; Wang, Yuming

    2017-08-01

    Sea cucumber saponins (SCSs) exhibit a wide spectrum of bioactivities, but their metabolic characteristics are not well elucidated. In this study, the metabolism of holothurin A (HA) and echinoside A (EA), 2 major saponins in sea cucumber, by gut microflora were investigated. First, we conducted an in vitro study, where in the SCSs were incubated with intestinal microflora and the metabolites were detected by high pressure liquid chromatography-high resolution mass spectrometry. We also conducted an in vivo study on rats, where in the intestinal contents, serum, urine, and feces were collected and evaluated after oral administration of SCSs. In the in vitro study, we identified 6 deglycosylated metabolites of HA and EA, assigned M1-M6. In the in vivo study, we found all the deglycosylated metabolites in the intestinal contents after oral administration, and both the metabolites and their prototype components could be absorbed. Four metabolites were identified in the serum, 6 in the urine, and 4 in the feces. The saponins with different structures showed different absorption characteristics in rats. According to our results, deglycosylation is the main intestinal microflora-mediated metabolic pathway for SCSs, and both the SCSs and deglycosylated metabolites can be absorbed by intestine. This study improves the understanding of the metabolism of HA and EA by gut flora, which will be useful for further analysis of the bioactivity mechanism of SCSs. © 2017 Institute of Food Technologists®.

  6. DIFFICULTY OF MODE OF ACTION DETERMINATION FOR TRICHLOROETHYLENE: AN EXAMPLE OF COMPLEX INTERACTIONS OF METABOLITES AND OTHER CHEMICAL EXPOSURES (Journal Article)

    EPA Science Inventory

    The mode(s) of action (MOA) of a pollutant for adverse health effects may be dependent on the mixture of metabolites resulting from exposure to a single agent and may also be affected by co-exposure to pollutants that have similar targets or affected pathways. Trichloroethylene ...

  7. Effects of acquisition, loss, and neofunctionalization of trichothecene biosynthetic genes on variation in trichothecene structure, pathway regulation, and self-protection mechanisms in the Hypocreales

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are secondary metabolites produced by multiple genera in the order Hypocreales, including Fusarium, Myrothecium, Stachybotrys, and Trichoderma. These metabolites are of concern because they are toxic to humans and animals, can contribute to pathogenicity in Fusarium, and are required ...

  8. Activation of the Silent Secondary Metabolite Production by Introducing Neomycin-Resistance in a Marine-Derived Penicillium purpurogenum G59

    PubMed Central

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-01-01

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1–5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1–5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways. PMID:25913704

  9. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  10. Trafficking of glucose, lactate, and amyloid-β from the inferior colliculus through perivascular routes

    PubMed Central

    Ball, Kelly K; Cruz, Nancy F; Mrak, Robert E; Dienel, Gerald A

    2010-01-01

    Metabolic brain imaging is widely used to evaluate brain function and disease, and quantitative assays require local retention of compounds used to register changes in cellular activity. As labeled metabolites of [1- and 6-14C]glucose are rapidly released in large quantities during brain activation, this study evaluated release of metabolites and proteins through perivascular fluid flow, a pathway that carries solutes from brain to peripheral lymphatic drainage sites. Assays with [3,4-14C]glucose ruled out local oxidation of glucose-derived lactate as a major contributor of label loss. Brief infusion of [1-14C]glucose and -[14C]lactate into the inferior colliculus of conscious rats during acoustic stimulation labeled the meninges, consistent with perivascular clearance of [14C]metabolites from interstitial fluid. Microinfusion of Evans blue albumin and amyloid-β1−40 (Aβ) caused perivascular labeling in the inferior colliculus, labeled the surrounding meninges, and Aβ-labeled-specific blood vessels in the caudate and olfactory bulb and was deposited in cervical lymph nodes. Efflux of extracellular glucose, lactate, and Aβ into perivascular fluid pathways is a normal route for clearance of material from the inferior colliculus that contributes to underestimates of brain energetics. Convergence of ‘watershed' drainage to common pathways may facilitate perivascular amyloid plaque formation and pathway obstruction in Alzheimer's disease. PMID:19794399

  11. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis

    PubMed Central

    Cook, Daniel; Fowler, Sarah; Fiehn, Oliver; Thomashow, Michael F.

    2004-01-01

    The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat/dehydration responsive element-binding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. PMID:15383661

  12. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine

    PubMed Central

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-01-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) ‘classically’ catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli. In vitro, VvSDH1 exhibited the highest ‘classical’ SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower ‘classical’ activity but were able to produce gallic acid in vitro. The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  13. Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae.

    PubMed

    Shetty, K

    1997-09-01

    Phytochemicals from herbs and fermented legumes are excellent dietary sources of phenolic metabolites. These phenolics have importance not only as food preservatives but increasingly have therapeutic and pharmaceutical applications. The long-term research objecitves of the food biotechnology program at the University of Massachusetts are to elucidate the molecular and physiological mechanisms associated with synthesis of important health-related, therapeutic phenolic metabolites in food-related plants and fermented plant foods. Current efforts focus on elucidation of the role of the proline-linked pentose phosphate pathway in regulating the synthesis of anti-inflammatory compound, rosmarinic acid (RA). Specific aims of the current research efforts are: (i) To develop novel tissue culture-based selection techniques to isolate high RA-producing, shoot-based clonal lines from genetically heterogeneous, cross-pollinating species in the family Lamiaceae; (ii) To target genetically uniform, regenerated shoot-based clonal lines for: (a) preliminary characterization of key enzymes associated with the pentose phosphate pathway and linked to RA synthesis; (b) development of genetic transformation techniques for subsequent engineering of metabolic pathways associated with RA synthesis. These research objectives have substantial implications for harnessing the genetic and biochemical potential of genetically heterogeneous, food-related medicinal plant species. The success of this research also provides novel methods and strategies to gain access to metabolic pathways of pharmaceutically important metabolites from ginger, curcuma, chili peppers, melon or other food-related species with novel phenolics.

  14. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guntaka, Naga Sandhya; Healy, Alan R.; Crawford, Jason M.

    Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0more » Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.« less

  15. Metabolomic Analysis and Visualization Engine for LC–MS Data

    PubMed Central

    Melamud, Eugene; Vastag, Livia; Rabinowitz, Joshua D.

    2017-01-01

    Metabolomic analysis by liquid chromatography–high-resolution mass spectrometry results in data sets with thousands of features arising from metabolites, fragments, isotopes, and adducts. Here we describe a software package, Metabolomic Analysis and Visualization ENgine (MAVEN), designed for efficient interactive analysis of LC–MS data, including in the presence of isotope labeling. The software contains tools for all aspects of the data analysis process, from feature extraction to pathway-based graphical data display. To facilitate data validation, a machine learning algorithm automatically assesses peak quality. Users interact with raw data primarily in the form of extracted ion chromatograms, which are displayed with overlaid circles indicating peak quality, and bar graphs of peak intensities for both unlabeled and isotope-labeled metabolite forms. Click-based navigation leads to additional information, such as raw data for specific isotopic forms or for metabolites changing significantly between conditions. Fast data processing algorithms result in nearly delay-free browsing. Drop-down menus provide tools for the overlay of data onto pathway maps. These tools enable animating series of pathway graphs, e.g., to show propagation of labeled forms through a metabolic network. MAVEN is released under an open source license at http://maven.princeton.edu. PMID:21049934

  16. Agmatine: at the crossroads of the arginine pathways.

    PubMed

    Satriano, Joseph

    2003-12-01

    In acute inflammatory responses, such as wound healing and glomerulonephritis, arginine is the precursor for production of the cytostatic molecule nitric oxide (NO) and the pro-proliferative polyamines. NO is an early phase response whereas increased generation of polyamines is requisite for the later, repair phase response. The temporal switch of arginine as a substrate for the inducible nitric oxide synthase (iNOS)/NO axis to arginase/ornithine decarboxylase (ODC)/polyamine axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Herein we describe the capacity of another arginine pathway, the metabolism of arginine to agmatine by arginine decarboxylase (ADC), to aid in this interregulation. Agmatine is an antiproliferative molecule due to its suppressive effects on intracellular polyamine levels, whereas the aldehyde metabolite of agmatine is a potent inhibitor of iNOS. We propose that the catabolism of agmatine to its aldehyde metabolite may act as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Thus, agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in inflammation.

  17. Metabolism of mequindox and its metabolites identification in chickens using LC-LTQ-Orbitrap mass spectrometry.

    PubMed

    Shan, Qi; Liu, Yiming; He, Limin; Ding, Huanzhong; Huang, Xianhui; Yang, Fan; Li, Yafei; Zeng, Zhenling

    2012-01-15

    Mequindox (MEQ), 3-methyl-2-quinoxalinacetyl-1,4-dioxide, is widely used in Chinese veterinary medicine as an antimicrobial and feed additive. Its toxicities have been reported to be closely related to its metabolism. To understand more clearly the metabolic pathways of MEQ, its metabolism in chickens was studied using liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole orbitrap (LC-LTQ-Orbitrap) mass spectrometry. The structures of the MEQ metabolites and their product ions were easily and reliably characterized based on the accurate MS-squared spectra and known structure of MEQ. Twenty-four metabolites were detected in chicken plasma, bile, faeces, and tissues, of which 12 were detected in vivo for the first time. The major metabolic pathways reported previously for in vitro metabolism of MEQ in chicken microsomes were confirmed in this study, including N→O group reduction, carbonyl reduction, and methyl mono-hydroxylation. In addition, deacetylation and acetyl-hydroxylation of MEQ were shown to be important metabolic pathways. Collectively, these data contribute to our understanding of the in vivo metabolism of MEQ. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Promoting Student Learning and Productive Persistence in Developmental Mathematics: Research Frameworks Informing the Carnegie Pathways

    ERIC Educational Resources Information Center

    Edwards, Ann R.; Beattie, Rachel L.

    2016-01-01

    This paper focuses on two research-based frameworks that inform the design of instruction and promote student success in accelerated, developmental mathematics pathways. These are Learning Opportunities--productive struggle on challenging and relevant tasks, deliberate practice, and explicit connections, and Productive Persistence--promoting…

  19. Modular Engineering of l-Tyrosine Production in Escherichia coli

    PubMed Central

    Juminaga, Darmawi; Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Burd, Helcio; Mukhopadhyay, Aindrila; Petzold, Christopher J.

    2012-01-01

    Efficient biosynthesis of l-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for l-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to l-tyrosine on two plasmids. Rational engineering to improve l-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to l-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter l-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways. PMID:22020510

  20. Developmental origins of NAFLD: a womb with a clue

    PubMed Central

    Wesolowski, Stephanie R.; El Kasmi, Karim C.; Jonscher, Karen R.; Friedman, Jacob E.

    2017-01-01

    Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation. PMID:27780972

  1. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells

    PubMed Central

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M.; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K.; Chan, Edmond; Kranc, Kamil R.; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L.; Helgason, G. Vignir

    2016-01-01

    ABSTRACT A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34+ progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  2. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    PubMed

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.

  3. Metabolomics Characterization of Two Apocynaceae Plants, Catharanthus roseus and Vinca minor, Using GC-MS and LC-MS Methods in Combination.

    PubMed

    Chen, Qi; Lu, Xueyan; Guo, Xiaorui; Guo, Qingxi; Li, Dewen

    2017-06-17

    Catharanthus roseus ( C. roseus ) and Vinca minor ( V. minor ) are two common important medical plants belonging to the family Apocynaceae. In this study, we used non-targeted GC-MS and targeted LC-MS metabolomics to dissect the metabolic profile of two plants with comparable phenotypic and metabolic differences. A total of 58 significantly different metabolites were present in different quantities according to PCA and PLS-DA score plots of the GC-MS analysis. The 58 identified compounds comprised 16 sugars, eight amino acids, nine alcohols and 18 organic acids. We subjected these metabolites into KEGG pathway enrichment analysis and highlighted 27 metabolic pathways, concentrated on the TCA cycle, glycometabolism, oligosaccharides, and polyol and lipid transporter (RFOS). Among the primary metabolites, trehalose, raffinose, digalacturonic acid and gallic acid were revealed to be the most significant marker compounds between the two plants, presumably contributing to species-specific phenotypic and metabolic discrepancy. The profiling of nine typical alkaloids in both plants using LC-MS method highlighted higher levels of crucial terpenoid indole alkaloid (TIA) intermediates of loganin, serpentine, and tabersonine in V. minor than in C. roseus . The possible underlying process of the metabolic flux from primary metabolism pathways to TIA synthesis was discussed and proposed. Generally speaking, this work provides a full-scale comparison of primary and secondary metabolites between two medical plants and a metabolic explanation of their TIA accumulation and phenotype differences.

  4. Elucidation of the trigonelline degradation pathway reveals previously undescribed enzymes and metabolites.

    PubMed

    Perchat, Nadia; Saaidi, Pierre-Loïc; Darii, Ekaterina; Pellé, Christine; Petit, Jean-Louis; Besnard-Gonnet, Marielle; de Berardinis, Véronique; Dupont, Maeva; Gimbernat, Alexandra; Salanoubat, Marcel; Fischer, Cécile; Perret, Alain

    2018-05-08

    Trigonelline (TG; N- methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5-C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields ( Z )-2-(( N- methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into ( E )-2-(( N- methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.

  5. N-(3-Oxo-acyl)-homoserine lactone induces apoptosis primarily through a mitochondrial pathway in fibroblasts.

    PubMed

    Neely, Aaron M; Zhao, Guoping; Schwarzer, Christian; Stivers, Nicole S; Whitt, Aaron G; Meng, Shuhan; Burlison, Joseph A; Machen, Terry E; Li, Chi

    2018-01-01

    N-(3-Oxododecanoyl)-l-homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum-sensing molecule for bacteria-bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12-triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in "initiator" caspases or "effector" caspases. Our data indicate that C12 selectively induces the mitochondria-dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both "initiator" and "effector" caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis. © 2017 John Wiley & Sons Ltd.

  6. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms.

    PubMed

    Dziggel, Clarissa; Schäfer, Holger; Wink, Michael

    2017-01-01

    Plant secondary metabolites exhibit a variety of biological activities and therefore serve as valuable therapeutics or flavoring compounds. However, the small amounts isolated from plants often cannot meet market demands. This led to the exploration of other, more profitable methods for their production, including plant cell culture systems, chemical synthesis and biotechnological production in microbial hosts. The biotechnological production can be pursued by reconstructing metabolic pathways in selected microbial systems. But due to their complexity, most of these pathways are not completely understood and require the expression of a multitude of genes in a foreign organism. Recently, next generation sequencing data and advances in gene silencing in plants allowed the elucidation of some biosynthetic pathways in more detail. Thus, the de novo production of some natural products, including morphine, strictosidine, artemisinin, taxol ® and resveratrol, in extensively engineered microbial hosts has become feasible. This review highlights the reconstruction of these pathways, missing pieces and novel techniques employed. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile

    PubMed Central

    Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene

    2013-01-01

    The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling. PMID:24958148

  8. Detecting breakdown points in metabolic networks.

    PubMed

    Tagore, Somnath; De, Rajat K

    2011-12-14

    A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways. It is also seen that if any one of the paths for production of the same metabolite is hampered, an alternate path tries to overcome this defect and helps in combating the damage. Certain physical, chemical or genetic change in any of the precursor substrate of a biochemical reaction may damage the production of the ultimate product. We employ a quantitative approach for simulating this phenomena of causing a physical change in the biochemical reactions by performing external perturbations to 12 metabolic pathways under carbohydrate metabolism in Saccharomyces cerevisae as well as 14 metabolic pathways under carbohydrate metabolism in Homo sapiens. Here, we investigate the relationship between structure and degree of compatibility of metabolites against external perturbations, i.e., robustness. Robustness can also be further used to identify the extent to which a metabolic pathway can resist a mutation event. Biological networks with a certain connectivity distribution may be very resilient to a particular attack but not to another. The goal of this work is to determine the exact boundary of network breakdown due to both random and targeted attack, thereby analyzing its robustness. We also find that compared to various non-standard models, metabolic networks are exceptionally robust. Here, we report the use of a 'Resilience-based' score for enumerating the concept of 'network-breakdown'. We also use this approach for analyzing metabolite essentiality providing insight into cellular robustness that can be further used for future drug development. We have investigated the behavior of metabolic pathways under carbohydrate metabolism in S. cerevisae and H. sapiens against random and targeted attack. Both random as well as targeted resilience were calculated by formulating a measure, that we termed as 'Resilience score'. Datasets of metabolites were collected for 12 metabolic pathways belonging to carbohydrate metabolism in S. cerevisae and 14 metabolic pathways belonging to carbohydrate metabolism in H. sapiens from Kyoto Encyclopedia for Genes and Genomes (KEGG). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Persistence behavior of metamifop and its metabolite in rice ecosystem.

    PubMed

    Barik, Suhrid Ranjan; Ganguly, Pritam; Patra, Sandip; Dutta, Swaraj Kumar; Goon, Arnab; Bhattacharyya, Anjan

    2018-02-01

    A field experiment was conducted to determine the persistence of metamifop in transplanted rice crop for two seasons. Metamifop 10% EC was applied at two doses: 100 g a.i. ha -1 and 200 g a.i. ha -1 at 2-3 leaf stage of Echinochloa crusgalli. The residues of metamifop along with its major metabolite, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HFMPA), were estimated in rice plant, field water and soil using Liquid Chromatography Mass Spectrometry. Limit of detection and limit of quantification of the method for both the compounds were set at 0.003 μg g -1 and 0.010 μg g -1 respectively. Metamifop showed less persistence in field water and rice plant as compared to soil samples. Presence of HFMPA was recorded in rice plant and soil. Both the compounds were found below level of quantification in harvest samples of straw, grains, husk and soil. A safe waiting period of 52 d was suggested for harvesting of rice when metamifop was applied at 100 g a.i. ha -1 (recommended dose). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    PubMed

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [Gas chromatographic/mass spectrometric analysis of boldenone urinary metabolites in man].

    PubMed

    Zhang, J; Liu, C S; Zhou, T H

    1991-01-01

    The metabolism of boldenone (17 beta-hydroxy-1,4-androstem-3-one) in man has been investigated by gas chromatography/mass spectrometry. After oral administration of a 20 mg dose to man, six metabolites were detected in the conjugated fraction of the urinary samples. Boldenone, the major compound excreted in urine, was detected within 34 h after administration. In addition, several metabolites, resulting from the hydroxylation of boldenone and the reduction of the unsaturated carbon bonds of boldenone, were detected in the urine samples varying from 9 to 83 h. Extraction and fractionation of these metabolites were achieved by using XAD-2 column and gas chromatography. The recovery of the whole procedure was studied. Furthermore, the mass spectra of the metabolites are presented and major fragment pathways are discussed.

  12. High-throughput method for the quantitation of metabolites and co-factors from homocysteine-methionine cycle for nutritional status assessment.

    PubMed

    Da Silva, Laeticia; Collino, Sebastiano; Cominetti, Ornella; Martin, Francois-Pierre; Montoliu, Ivan; Moreno, Sergio Oller; Corthesy, John; Kaput, Jim; Kussmann, Martin; Monteiro, Jacqueline Pontes; Guiraud, Seu Ping

    2016-09-01

    There is increasing interest in the profiling and quantitation of methionine pathway metabolites for health management research. Currently, several analytical approaches are required to cover metabolites and co-factors. We report the development and the validation of a method for the simultaneous detection and quantitation of 13 metabolites in red blood cells. The method, validated in a cohort of healthy human volunteers, shows a high level of accuracy and reproducibility. This high-throughput protocol provides a robust coverage of central metabolites and co-factors in one single analysis and in a high-throughput fashion. In large-scale clinical settings, the use of such an approach will significantly advance the field of nutritional research in health and disease.

  13. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.

    PubMed

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-02-16

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.

  14. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin.

    PubMed

    Hosseinzadeh, Azam; Javad-Moosavi, Seyed Ali; Reiter, Russel J; Hemati, Karim; Ghaznavi, Habib; Mehrzadi, Saeed

    2018-05-15

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. White matter pathways in persistent developmental stuttering: Lessons from tractography.

    PubMed

    Kronfeld-Duenias, Vered; Civier, Oren; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal

    2018-03-01

    Fluent speech production relies on the coordinated processing of multiple brain regions. This highlights the role of neural pathways that connect distinct brain regions in producing fluent speech. Here, we aim to investigate the role of the white matter pathways in persistent developmental stuttering (PDS), where speech fluency is disrupted. We use diffusion weighted imaging and tractography to compare the white matter properties between adults who do and do not stutter. We compare the diffusion properties along 18 major cerebral white matter pathways. We complement the analysis with an overview of the methodology and a roadmap of the pathways implicated in PDS according to the existing literature. We report differences in the microstructural properties of the anterior callosum, the right inferior longitudinal fasciculus and the right cingulum in people who stutter compared with fluent controls. Persistent developmental stuttering is consistently associated with differences in bilateral distributed networks. We review evidence showing that PDS involves differences in bilateral dorsal fronto-temporal and fronto-parietal pathways, in callosal pathways, in several motor pathways and in basal ganglia connections. This entails an important role for long range white matter pathways in this disorder. Using a wide-lens analysis, we demonstrate differences in additional, right hemispheric pathways, which go beyond the replicable findings in the literature. This suggests that the affected circuits may extend beyond the known language and motor pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Signal persistence and amplification in cancer development and possible, related opportunities for novel therapies.

    PubMed

    Ford, Shea A; Blanck, George

    2015-01-01

    Research in cancer biology has been largely driven by experimental approaches whereby discreet inputs are used to assess discreet outputs, for example, gene-knockouts to assess cancer occurrence. However, cancer hallmarks are only rarely, if ever, exclusively dependent on discreet regulatory processes. Rather, cancer-related regulatory factors affect multiple cancer hallmarks. Thus, novel approaches and paradigms are needed for further advances. Signal pathway persistence and amplification, rather than signal pathway activation resulting from an on/off switch, represent emerging paradigms for cancer research, closely related to developmental regulatory paradigms. In this review, we address both mechanisms and effects of signal pathway persistence and amplification in cancer settings; and address the possibility that hyper-activation of pro-proliferative signal pathways in certain cancer settings could be exploited for therapy. Copyright © 2014. Published by Elsevier B.V.

  17. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model

    PubMed Central

    Cook, Sarah F.; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Wilkins, Diana G.; van den Anker, John N.

    2017-01-01

    Objectives This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CLformation) of oxidative pathway metabolites. Methods Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks’ gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks’ gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. Results The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CLformation for all metabolites increased with weight; CLformation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CLformation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038–0.062; 62 %) for glucuronidation, 0.21 L/h (0.17–0.24; 33 %) for sulfation, and 0.058 L/h (0.044–0.078; 72 %) for oxidation. Expression of individual oxidation CLformation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CLformation increased <15 % when plotted against weight or postnatal age. Conclusions The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability. PMID:27209292

  18. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model.

    PubMed

    Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-11-01

    This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks' gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks' gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased <15 % when plotted against weight or postnatal age. The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.

  19. 24,25,28-trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2: novel metabolites of vitamin D2.

    PubMed

    Reddy, G S; Tserng, K Y

    1990-01-30

    Understanding of the inactivation pathways of 25-hydroxyvitamin D2 and 24-hydroxyvitamin D2, the two physiologically significant monohydroxylated metabolites of vitamin D2, is of importance, especially during hypervitaminosis D2. In a recent study, it has been demonstrated that the inactivation of 24-hydroxyvitamin D2 occurs through its conversion into 24,26-dihydroxyvitamin D2 [Koszewski, N.J., Reinhardt, T.A., Napoli, J.L., Beitz, C.D., & Horst, R.L. (1988) Biochemistry 27, 5785]. At present, little information is available regarding the inactivation pathway of 25-hydroxyvitamin D2 except its further metabolism into 24,25-dihydroxyvitamin D2 [Jones, G., Rosenthal, A., Segev, D., Mazur, Y., Frolow, F., Halfon, Y., Rabinovich, D., & Shakked, Z. (1979) Biochemistry 18, 1094]. In our present study, we investigated the metabolic fate of 25-hydroxyvitamin D2 in the isolated perfused rat kidney and demonstrated its conversion not only into 24,25-dihydroxyvitamin D2 but also into two other new metabolites, namely, 24,25,28-trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2. The structure identification of the new metabolites was established by the techniques of ultraviolet absorption spectrophotometry and mass spectrometry and by the characteristic nature of each new metabolite's susceptibility to sodium metaperiodate oxidation. In order to demonstrate the physiological significance of the two new trihydroxy metabolites of vitamin D2, we induced hypervitaminosis D2 in a rat using [3 alpha-3H]vitamin D2 and analyzed its plasma for the various [3 alpha-3H]vitamin D2 metabolites on two different high-pressure liquid chromatography systems.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Functional associations between the metabolome and manganese tolerance in Vigna unguiculata

    PubMed Central

    Führs, Hendrik; Specht, André; Erban, Alexander; Kopka, Joachim; Horst, Walter J.

    2012-01-01

    Genotypic- and silicon (Si)-mediated differences in manganese (Mn) tolerance of cowpea (Vigna unguiculata) arise from a combination of symplastic and apoplastic traits. A detailed metabolomic inspection could help to identify functional associations between genotype- and Si-mediated Mn tolerance and metabolism. Two cowpea genotypes differing in Mn tolerance (TVu 91, Mn sensitive; TVu 1987, Mn tolerant) were subjected to differential Mn and Si treatments. Gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling of leaf material was performed. Detailed evaluation of the response of metabolites was combined with gene expression and physiological analyses. After 2 d of 50 μM Mn supply TVu 91 expressed toxicity symptoms first in the form of brown spots on the second oldest trifoliate leaves. Silicon treatment suppressed symptom development in TVu 91. Despite higher concentrations of Mn in leaves of TVu 1987 compared with TVu 91, the tolerant genotype did not show symptoms. From sample cluster formation as identified by independent component analysis (ICA) of metabolite profiles it is concluded that genotypic differences accounted for the highest impact on variation in metabolite pools, followed by Mn and Si treatments in one of two experiments. Analysis of individual metabolites corroborated a comparable minor role for Mn and Si treatments in the modulation of individual metabolites. Mapping individual metabolites differing significantly between genotypes onto biosynthetic pathways and gene expression studies on the corresponding pathways suggest that genotypic Mn tolerance is a consequence of differences (i) in the apoplastic binding capacity; (ii) in the capability to maintain a high antioxidative state; and (iii) in the activity of shikimate and phenylpropanoid metabolism. PMID:21934118

  1. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity

    DOE PAGES

    Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.; ...

    2015-07-13

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less

  2. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online

    PubMed Central

    Forsberg, Erica M; Huan, Tao; Rinehart, Duane; Benton, H Paul; Warth, Benedikt; Hilmers, Brian; Siuzdak, Gary

    2018-01-01

    Systems biology is the study of complex living organisms, and as such, analysis on a systems-wide scale involves the collection of information-dense data sets that are representative of an entire phenotype. To uncover dynamic biological mechanisms, bioinformatics tools have become essential to facilitating data interpretation in large-scale analyses. Global metabolomics is one such method for performing systems biology, as metabolites represent the downstream functional products of ongoing biological processes. We have developed XCMS Online, a platform that enables online metabolomics data processing and interpretation. A systems biology workflow recently implemented within XCMS Online enables rapid metabolic pathway mapping using raw metabolomics data for investigating dysregulated metabolic processes. In addition, this platform supports integration of multi-omic (such as genomic and proteomic) data to garner further systems-wide mechanistic insight. Here, we provide an in-depth procedure showing how to effectively navigate and use the systems biology workflow within XCMS Online without a priori knowledge of the platform, including uploading liquid chromatography (LCLC)–mass spectrometry (MS) data from metabolite-extracted biological samples, defining the job parameters to identify features, correcting for retention time deviations, conducting statistical analysis of features between sample classes and performing predictive metabolic pathway analysis. Additional multi-omics data can be uploaded and overlaid with previously identified pathways to enhance systems-wide analysis of the observed dysregulations. We also describe unique visualization tools to assist in elucidation of statistically significant dysregulated metabolic pathways. Parameter input takes 5–10 min, depending on user experience; data processing typically takes 1–3 h, and data analysis takes ~30 min. PMID:29494574

  3. Application of LC-MS analysis to the characterisation of the in vitro and in vivo metabolite profiles of RGH-1756 in the rat.

    PubMed

    Gémesi, L I; Kapás, M; Szeberényi, S

    2001-03-01

    RGH-1756, 1-(2-methoxy-phenyl)-4-(4-[4-(6-imidazol[2,1-b] thiazolyl)-phenoxy]-butyl-4-(14)C)-piperazine dimethane is a novel atypical antipsychotic drug candidate of Gedeon Richter Ltd. The metabolic pathways of the compound have been investigated by profiling the metabolites present in plasma, bile, and faeces samples of rats treated with (14)C-RGH-1756. The metabolites formed in vitro by rat liver microsomes have also been analysed. Good separation of the compounds has been achieved by gradient HPLC method on Zorbax/Bonus RP-C18 column. Radiometry and mass spectrometry have been applied to detect and characterise the metabolites. The metabolite formed by oxidative cleavage of the chain at the carbon atom adjacent to the piperazine nitrogen has been identified as the major plasma metabolite. Glucuronide conjugate of hydroxy-RGH-1756 has been found as one of the main metabolites excreted in the bile where the unchanged compound has not been detected.

  4. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  5. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2016-09-02

    Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Metabolomics study on the hepatoprotective effect of scoparone using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry.

    PubMed

    Zhang, Aihua; Sun, Hui; Dou, Shengshan; Sun, Wenjun; Wu, Xiuhong; Wang, Ping; Wang, Xijun

    2013-01-07

    Scoparone is an important constituent of Yinchenhao (Artemisia annua L.), a famous medicinal plant, and displayed bright prospects in the prevention and therapy of liver injury. However, the precise molecular mechanism of hepatoprotective effects has not been comprehensively explored. Here, metabolomics techniques are the comprehensive assessment of endogenous metabolites in a biological system and may provide additional insight into the mechanisms. The present investigation was designed to assess the effects and possible mechanisms of scoparone against carbon tetrachloride-induced liver injury. Ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) combined with pattern recognition approaches including principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were integrated to discover differentiating metabolites. Results indicate five ions in the positive mode as differentiating metabolites. Functional pathway analysis revealed that the alterations in these metabolites were associated with primary bile acid biosynthesis, pyrimidine metabolism. Of note, scoparone has a potential pharmacological effect through regulating multiple perturbed pathways to the normal state. Our findings also showed that the robust metabolomics techniques are promising for getting biomarkers and clarifying mechanisms of disease, highlighting insights into drug discovery.

  7. [Comparative metabolism of three amide alkaloids from Piper longum in five different species of liver microsomes].

    PubMed

    He, Huan; Guo, Wei-Wei; Chen, Xiao-Qing; Zhao, Hai-Yu; Wu, Xia

    2016-08-01

    Piperine, piperlonguminine and pellitorine are three major amide alkaloids from Piper longum, showing a variety of pharmacological activities. In order to investigate the different metabolism pathways of these compounds in five species of liver microsomes in vitro, the data of full mass spectrum, and MS2, MS3 spectra of these three alkaloids were collected and analyzed by using ultra-high-performance liquid chromatography coupled with a LTQ-orbitrap mass spectrometer (UHPLC-LTQ-Orbitrap MS); gragment ion information was collected and combined with fragmentation regularities of mass spectra and accurate mass spectrometry data of metabolites, to compare the metabolism difference of three amide alkaloids in liver microsomes of human, rhesus monkey, Beagle dogs, rats and mice. 3 metabolites of piperine, 2 metabolites of piperlonguminine and 1 metabolite of pellitorine were identified quickly. The results showed that the major metabolic pathways of these amide alkaloids in liver microsomes were methylenedioxy group demethylation and oxidation reaction, and metabolic rates were different between species. This study provides basis for further research on in vivo metabolism of piperine analogues from Piper longum. Copyright© by the Chinese Pharmaceutical Association.

  8. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor.

    PubMed

    Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale

    2018-04-21

    The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Chromatographic analysis of tryptophan metabolites

    PubMed Central

    Sadok, Ilona; Gamian, Andrzej

    2017-01-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate‐limiting enzymes indoleamine 2,3‐dioxygenase, or tryptophan 2,3‐dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. PMID:28590049

  10. Postsecondary pathways and persistence for STEM versus non-STEM majors: among college students with an autism spectrum disorder.

    PubMed

    Wei, Xin; Christiano, Elizabeth R A; Yu, Jennifer W; Blackorby, Jose; Shattuck, Paul; Newman, Lynn A

    2014-05-01

    Little is known about postsecondary pathways and persistence among college students with an autism spectrum disorder (ASD). This study analyzed data from the National Longitudinal Transition Study-2, 2001-2009, a nationally representative sample of students in special education with an ASD who progressed from high school to postsecondary education. Findings suggest that most college students with an ASD enrolled in a 2-year community college at some point in the postsecondary careers (81%). Those in science, technology, engineering and mathematics (STEM) fields were more likely to persist in a 2-year community college and were twice as likely to transfer from a 2-year community college to a 4-year university than their peers in the non-STEM fields. College persistence rates varied by gender, race, parent education level, and college pathway and major. Educational policy implications are discussed.

  11. Postsecondary Pathways and Persistence for STEM versus non-STEM Majors: Among College Students with an Autism Spectrum Disorder

    PubMed Central

    Wei, Xin; Christiano, Elizabeth R. A.; Yu, Jennifer W.; Blackorby, Jose; Shattuck, Paul; Newman, Lynn

    2014-01-01

    Little is known about postsecondary pathways and persistence among college students with an Autism Spectrum Disorder (ASD). This study analyzed data from the National Longitudinal Transition Study-2, 2001–2009, a nationally representative sample of students in special education with an ASD who progressed from high school to postsecondary education. Findings suggest that most college students with an ASD enrolled in a 2-year community college at some point in their postsecondary careers (81%). Those in science, technology, engineering and mathematics (STEM) fields were more likely to persist in a 2-year community college and were twice as likely to transfer from a 2-year community college to a 4-year university than their peers in the non-STEM fields. College persistence rates varied by gender, race, parent education level, and college pathway and major. Educational policy implications are discussed. PMID:24158680

  12. Gene Discovery of Characteristic Metabolic Pathways in the Tea Plant (Camellia sinensis) Using ‘Omics’-Based Network Approaches: A Future Perspective

    PubMed Central

    Zhang, Shihua; Zhang, Liang; Tai, Yuling; Wang, Xuewen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Characteristic secondary metabolites, including flavonoids, theanine and caffeine, in the tea plant (Camellia sinensis) are the primary sources of the rich flavors, fresh taste, and health benefits of tea. The decoding of genes involved in these characteristic components is still significantly lagging, which lays an obstacle for applied genetic improvement and metabolic engineering. With the popularity of high-throughout transcriptomics and metabolomics, ‘omics’-based network approaches, such as gene co-expression network and gene-to-metabolite network, have emerged as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus, it is pivotal to summarize and introduce such system-based strategies in facilitating gene identification of characteristic metabolic pathways in the tea plant (or other plants). In this review, we describe recent advances in transcriptomics and metabolomics for transcript and metabolite profiling, and highlight ‘omics’-based network strategies using successful examples in model and non-model plants. Further, we summarize recent progress in ‘omics’ analysis for gene identification of characteristic metabolites in the tea plant. Limitations of the current strategies are discussed by comparison with ‘omics’-based network approaches. Finally, we demonstrate the potential of introducing such network strategies in the tea plant, with a prospects ending for a promising network discovery of characteristic metabolite genes in the tea plant. PMID:29915604

  13. Metabolomic determinants of metabolic risk in Mexican adolescents

    PubMed Central

    Perng, Wei; Hector, Emily C.; Song, Peter X.K.; Rojo, Martha Maria Tellez; Raskind, Sasha; Kachman, Maureen; Cantoral, Alejandra; Burant, Charles F.; Peterson, Karen E.

    2017-01-01

    Objective To identify metabolites associated with metabolic risk, separately by sex, in Mexican adolescents. Methods We carried out untargeted metabolomic profiling on fasting serum of 238 youth age 8–14 years, and identified metabolites associated with a metabolic syndrome risk z-score (MetRisk z-score), separately for boys and girls using the simulation and extrapolation (SIMEX) algorithm. We examined associations of each metabolite with MetRisk z-score using linear regression models that accounted for maternal education, child’s age, and pubertal status. Results Of the 938 features identified in metabolomics analysis, 7 named compounds (of 27 identified metabolites) were associated with MetRisk z-score in girls, and 3 named compounds (of 14 identified) were associated with MetRisk z-score in boys. In girls, diacylglycerol (DG) 16:0/16:0, 1,3-dielaidin, myo-inositol, and urate corresponded with higher MetRisk z-score, whereas N-acetylglycine, thymine, and dodecenedioic acid were associated with lower MetRisk z-score. For example, each z-score increment in DG 16:0/16:0 corresponded with 0.60 (0.47, 0.74). In boys, we found positive associations of DG 16:0/16:0, tyrosine, and 5′-methylthioadenosine with MetRisk z-score. Conclusions Metabolites on lipid, amino acid, and carbohydrate metabolism pathways are associated with metabolic risk in girls. Compounds on lipid and DNA pathways correspond with metabolic risk in boys. PMID:28758362

  14. Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization

    PubMed Central

    Yanai, Ryoji; Mulki, Lama; Hasegawa, Eiichi; Takeuchi, Kimio; Sweigard, Harry; Suzuki, Jun; Gaissert, Philipp; Vavvas, Demetrios G.; Sonoda, Koh-Hei; Rothe, Michael; Schunck, Wolf-Hagen; Miller, Joan W.; Connor, Kip M.

    2014-01-01

    Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)–epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD. PMID:24979774

  15. Identifying Metabolically Active Chemicals Using a Consensus ...

    EPA Pesticide Factsheets

    Endocrine disrupting chemicals (EDCs) are abundant throughout the environment and can alter neurodevelopment, behavior, and reproductive success of humans and other species by perturbing signaling pathways related to the estrogen receptor (ER). A recent study compared results across 18 ER-related assays in the ToxCast™ in vitro screening program to predict the likelihood of a chemical exhibiting in vivo estrogenic activity, with the purpose of eliminating chemicals that may produce a false signal by interfering with the technological attributes of an individual assay. However, flaws in in vitro assay design can also prevent induction of signal activity by EDCs. Another reason for not observing activity for some EDCs in in vitro assays is that metabolic activation is required to perturb ER-related pathways. In the current study, 1,024 chemicals were identified as lacking ER activity after establishing a consensus across each of the 18 ER-related in vitro assays, and nearly 2,000 primary and 3,700 secondary unique metabolites were predicted for these chemicals. The ER binding activity for each metabolite was then predicted using an existing ER activity quantitative structure activity relationship (QSAR) consensus model. Binding activity was predicted for 2-3% of the metabolites within each generation. Of the inactive parent compounds generating at least one metabolite predicted to have ER-binding activity, nearly 30% were found to have metabolites from both gene

  16. Loss-of-function variants influence the human serum metabolome

    PubMed Central

    Yu, Bing; Li, Alexander H.; Metcalf, Ginger A.; Muzny, Donna M.; Morrison, Alanna C.; White, Simon; Mosley, Thomas H.; Gibbs, Richard A.; Boerwinkle, Eric

    2016-01-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study. PMID:27602404

  17. Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea

    PubMed Central

    Leao, Tiago; Castelão, Guilherme; Monroe, Emily A.; Podell, Sheila; Glukhov, Evgenia; Allen, Eric E.; Gerwick, William H.; Gerwick, Lena

    2017-01-01

    Cyanobacteria are major sources of oxygen, nitrogen, and carbon in nature. In addition to the importance of their primary metabolism, some cyanobacteria are prolific producers of unique and bioactive secondary metabolites. Chemical investigations of the cyanobacterial genus Moorea have resulted in the isolation of over 190 compounds in the last two decades. However, preliminary genomic analysis has suggested that genome-guided approaches can enable the discovery of novel compounds from even well-studied Moorea strains, highlighting the importance of obtaining complete genomes. We report a complete genome of a filamentous tropical marine cyanobacterium, Moorea producens PAL, which reveals that about one-fifth of its genome is devoted to production of secondary metabolites, an impressive four times the cyanobacterial average. Moreover, possession of the complete PAL genome has allowed improvement to the assembly of three other Moorea draft genomes. Comparative genomics revealed that they are remarkably similar to one another, despite their differences in geography, morphology, and secondary metabolite profiles. Gene cluster networking highlights that this genus is distinctive among cyanobacteria, not only in the number of secondary metabolite pathways but also in the content of many pathways, which are potentially distinct from all other bacterial gene clusters to date. These findings portend that future genome-guided secondary metabolite discovery and isolation efforts should be highly productive. PMID:28265051

  18. Deriving in vivo biotransformation rate constants and metabolite parent concentration factor/stable metabolite factor from bioaccumulation and bioconcentration experiments: An illustration with worm accumulation data.

    PubMed

    Kuo, Dave Ta Fu; Chen, Ciara Chun

    2016-12-01

    Growing concern for the biological fate of organic contaminants and their metabolites and the urge to connect in vitro and in vivo toxicokinetics have prompted researchers to characterize the biotransformation behavior of organic contaminants in biota. The whole body biotransformation rate constant (k M ) is currently determined by the difference approach, which has significant methodological limitations. A new approach for determining k M from the kinetic observations of the parent contaminant and its intermediate metabolites is proposed. In this method, k M can be determined by fitting kinetic data of the parent contaminant and the metabolites to analytical equations that depict the bioaccumulation kinetics. The application of the proposed method is illustrated using worm bioaccumulation-biotransformation data collected from the literature. Furthermore, a metabolite parent concentration factor (MPCF) is also proposed to characterize the persistence of the metabolite in biota. Because both the proposed k M method and MPCF build on the existing theoretical framework for bioaccumulation, they can be readily incorporated into standard experimental bioaccumulation protocols or risk assessment procedures or frameworks. Possible limitations, implications, and future directions are elaborated. Environ Toxicol Chem 2016;35:2903-2909. © 2016 SETAC. © 2016 SETAC.

  19. Obesity-related metabolite profiles of black women spanning the epidemiologic transition.

    PubMed

    Dugas, Lara R; Chorell, Elin; Plange-Rhule, Jacob; Lambert, Estelle V; Cao, Guichan; Cooper, Richard S; Layden, Brian T; Scholten, Denise; Olsson, Tommy; Luke, Amy; Goedecke, Julia H

    2016-03-01

    In developed countries, specific metabolites have been associated with obesity and metabolic diseases, e.g. type 2 diabetes. It is unknown whether a similar profile persists across populations of African-origin, at increased risk for obesity and related diseases. In a cross-sectional study of normal-weight and obese black women (33.3 ± 6.3 years) from the US ( N = 69, 65 % obese), South Africa (SA, N = 97, 49 % obese) and Ghana ( N = 82, 33 % obese) serum metabolite profiles were characterized via gas chromatography-time of flight/mass spectrometry. In US and SA women, BMI correlated with branched-chain and aromatic amino acids, as well as dopamine and aminoadipic acid. The relationship between BMI and lipid metabolites differed by site; BMI correlated positively with palmitoleic acid (16:1) in the US; negatively with stearic acid (18:0) in SA, and positively with arachidonic acid (20:4) in Ghana. BMI was also positively associated with sugar-related metabolites in the US; i.e. uric acid, and mannitol, and with glucosamine, glucoronic acid and mannitol in SA. While we identified a common amino acid metabolite profile associated with obesity in black women from the US and SA, we also found site-specific obesity-related metabolites suggesting that the local environment is a key moderator of obesity.

  20. Obesity-related metabolite profiles of black women spanning the epidemiologic transition

    PubMed Central

    Plange-Rhule, Jacob; Lambert, Estelle V.; Cao, Guichan; Cooper, Richard S.; Layden, Brian T.; Scholten, Denise; Olsson, Tommy; Luke, Amy; Goedecke, Julia H.

    2016-01-01

    In developed countries, specific metabolites have been associated with obesity and metabolic diseases, e.g. type 2 diabetes. It is unknown whether a similar profile persists across populations of African-origin, at increased risk for obesity and related diseases. In a cross-sectional study of normal-weight and obese black women (33.3 ± 6.3 years) from the US (N = 69, 65 % obese), South Africa (SA, N = 97, 49 % obese) and Ghana (N = 82, 33 % obese) serum metabolite profiles were characterized via gas chromatography-time of flight/mass spectrometry. In US and SA women, BMI correlated with branched-chain and aromatic amino acids, as well as dopamine and aminoadipic acid. The relationship between BMI and lipid metabolites differed by site; BMI correlated positively with palmitoleic acid (16:1) in the US; negatively with stearic acid (18:0) in SA, and positively with arachidonic acid (20:4) in Ghana. BMI was also positively associated with sugar-related metabolites in the US; i.e. uric acid, and mannitol, and with glucosamine, glucoronic acid and mannitol in SA. While we identified a common amino acid metabolite profile associated with obesity in black women from the US and SA, we also found site-specific obesity-related metabolites suggesting that the local environment is a key moderator of obesity. PMID:27346989

  1. Use of liquid chromatography hybrid triple-quadrupole mass spectrometry for the detection of emodin metabolites in rat bile and urine.

    PubMed

    Wu, Songyan; Zhang, Yaqing; Zhang, Zunjian; Song, Rui

    2017-10-01

    Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti-inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple-quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple-quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Product-to-parent reversion processes: Stream-hyporheic spiraling increases ecosystem exposure and environmental persistence

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Cwiertny, D. M.; Kolodziej, E. P.

    2014-12-01

    The product-to-parent reversion of metabolites of trenbolone acetate (TBA), a steroidal growth promoter used widely in beef cattle production, was recently observed to occur in environmental waters. The rapid forward reaction is by direct photolysis (i.e., photohydration), with the much slower reversion reaction occurring via dehydration in the dark. The objective of this study is to quantify the potential effect of this newly discovered reversible process on TBA metabolite concentrations and total bioactivity exposure in fluvial systems. Here, we demonstrate increased persistence of TBA metabolites in the stream and hyporheic zone due to the reversion process, increasing chronic and acute exposure to these endocrine-active compounds along a stream. The perpetually dark hyporheic zone is a key location for reversion in the system, ultimately providing a source of the parent compound to the stream and increasing mean in-stream concentration of 17α-trenbolone (17α-TBOH) by 40% of the input concentration under representative fluvial conditions. As such, regulatory frameworks for compounds undergoing product-to-parent reversion will require new approaches for assessing total exposure to bioactive compounds. Further, we demonstrate generalized cases for prediction of exposure for species with product-to-parent reversion in stream-hyporheic systems.

  3. Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus

    PubMed Central

    Figueiredo, Ana Sofia; Esser, Dominik; Haferkamp, Patrick; Wieloch, Patricia; Schomburg, Dietmar; Siebers, Bettina; Schaber, Jörg

    2017-01-01

    Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness. PMID:28692669

  4. RiboFACSeq: A new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing

    PubMed Central

    Li, Yingfu

    2017-01-01

    The elucidation of the cellular processes involved in vitamin and cofactor biosynthesis is a challenging task. The conventional approaches to these investigations rely on the discovery and purification of the products (i.e proteins and metabolites) of a particular transport or biosynthetic pathway, prior to their subsequent analysis. However, the purification of low-abundance proteins or metabolites is a formidable undertaking that presents considerable technical challenges. As a solution, we present an alternative approach to such studies that circumvents the purification step. The proposed approach takes advantage of: (1) the molecular detection capabilities of a riboswitch-based sensor to detect the cellular levels of its cognate molecule, as a means to probe the integrity of the transport and biosynthetic pathways of the target molecule in cells, (2) the high-throughput screening ability of fluorescence-activated cell sorters to isolate cells in which only these specific pathways are disrupted, and (3) the ability of next-generation sequencing to quickly identify the genes of the FACS-sorted populations. This approach was named “RiboFACSeq”. Following their identification by RiboFACSeq, the role of these genes in the presumed pathway needs to be verified through appropriate functional assays. To demonstrate the utility of our approach, an adenosylcobalamin (AdoCbl)-responsive riboswitch-based sensor was used in this study to demonstrate that RiboFACSeq can be used to track and sort cells carrying genetic mutations in known AdoCbl transport and biosynthesis genes with desirable sensitivity and specificity. This method could potentially be used to elucidate any pathway of interest, as long as a suitable riboswitch-based sensor can be created. We believe that RiboFACSeq would be especially useful for the elucidation of biological pathways in which the proteins and/or their metabolites are present at very low physiological concentrations in cells, as is the case with vitamin and cofactor biosynthesis. PMID:29211762

  5. Network design and analysis for multi-enzyme biocatalysis.

    PubMed

    Blaß, Lisa Katharina; Weyler, Christian; Heinzle, Elmar

    2017-08-10

    As more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells. We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative. We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.

  6. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  7. Characterization of thiol-conjugated metabolites of ginger components shogaols in mouse and human urine and modulation of the glutathione levels in cancer cells by [6]-shogaol.

    PubMed

    Chen, Huadong; Soroka, Dominique N; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-03-01

    Shogaols, a series of major constituents in dried ginger with the most abundant being [6]-, [8]-, and [10]-shogaols, show much higher anticancer potencies than gingerols. Previously, we reported the mercapturic acid pathway as a major metabolic route for [6]-shogaol in mice. However, it is still unclear how the side chain length affects the metabolism of shogaols and how shogaols are metabolized in humans. We first investigate the metabolism of [10]-shogaol in mouse urine, and then investigate the biotransformation of shogaols in human urine. Our results show that eight major thiol-conjugated metabolites of [10]-shogaol were detected in mouse urine, while six major thiol-conjugated metabolites of [6]-shogaol, two thiol-conjugated metabolites of [8]-shogaol, and two thiol-conjugated metabolites of [10]-shogaol were detected in urine collected from human after drinking ginger tea, using LC/ESI-MS/MS. Our results clearly indicate the mercapturic acid pathway is a major metabolic route for [10]-shogaol in mice and for shogaols in human. Furthermore, we also investigated the regulation of glutathione (GSH) by [6]-shogaol in human colon cancer cells HCT-116. Our results show [6]-shogaol, after initially depleting glutathione levels, can subsequently restore and increase GSH levels over time. Shogaols are metabolized extensively in mouse and human to form thiol-conjugated metabolites and GSH might play an important role in the cancer-preventive activity of ginger. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.

    PubMed

    Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M

    2017-11-01

    Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.

  9. HMDB 4.0: the human metabolome database for 2018

    PubMed Central

    Feunang, Yannick Djoumbou; Marcu, Ana; Guo, An Chi; Liang, Kevin; Vázquez-Fresno, Rosa; Sajed, Tanvir; Johnson, Daniel; Li, Carin; Karu, Naama; Sayeeda, Zinat; Lo, Elvis; Assempour, Nazanin; Berjanskii, Mark; Singhal, Sandeep; Arndt, David; Liang, Yonjie; Badran, Hasan; Grant, Jason; Serra-Cayuela, Arnau; Liu, Yifeng; Mandal, Rupa; Neveu, Vanessa; Pon, Allison; Knox, Craig; Wilson, Michael; Manach, Claudine; Scalbert, Augustin

    2018-01-01

    Abstract The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB’s chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC–MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science. PMID:29140435

  10. Characterization of thiol-conjugated metabolites of ginger components shogaols in mouse and human rrine and modulation of the glutathione levels in cancer cells by [6]-shogaol

    PubMed Central

    Chen, Huadong; Soroka, Dominique N.; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-01-01

    Scope Shogaols, a series of major constituents in dried ginger with the most abundant being [6]-, [8]-, and [10]-shogaols, show much higher anti-cancer potencies than gingerols. Previously, we reported the mercapturic acid pathway as a major metabolic route for [6]-shogaol in mice. However, it is still unclear how the side chain length affects the metabolism of shogaols and how shogaols are metabolized in humans. Methods and results We first investigate the metabolism of [10]-shogaol in mouse urine, and then investigate the biotransformation of shogaols in human urine. Our results show that eight major thiol-conjugated metabolites of [10]-shogaol were detected in mouse urine, while six major thiol-conjugated metabolites of [6]-shogaol, two thiol-conjugated metabolites of [8]-shogaol, and two thiol-conjugated metabolites of [10]-shogaol were detected in urine collected from human after drinking ginger tea, using liquid chromatography/electrospray ionization tandem mass spectrometry. Our results clearly indicate the mercapturic acid pathway is a major metabolic route for [10]-shogaol in mice and for shogaols in human. Furthermore, we also investigated the regulation of glutathione (GSH) by [6]-shogaol in human colon cancer cells HCT-116. Our results show [6]-shogaol, after initially depleting glutathione levels, can subsequently restore and increase GSH levels over time. Conclusion Shogaols are metabolized extensively in mouse and human to form thiol-conjugated metabolites and GSH might play an important role in the cancer preventative activity of ginger. PMID:23322393

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less

  12. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder.

    PubMed

    Meier, Timothy B; Drevets, Wayne C; Wurfel, Brent E; Ford, Bart N; Morris, Harvey M; Victor, Teresa A; Bodurka, Jerzy; Teague, T Kent; Dantzer, Robert; Savitz, Jonathan

    2016-03-01

    Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (p<0.01) and BA32 (p<0.05) regions and MDD patients with a greater number of depressive episodes displayed thinner cortex in BA32 (p<0.05). Consistent with our previous findings in an overlapping sample, the KynA/3HK ratio and the log KynA/QA were reduced in the MDD group relative to the HC group (p's<0.05) and symptoms of anhedonia were negatively correlated with log KynA/QA in the MDD group (p<0.05). Both KynA/3HK and log KynA/QA at least partially mediated the relationship between diagnosis and cortical thickness of right BA32 (p's<0.05). CRP was inversely associated with BA32 thickness (p<0.01) and KynA/3HK partially mediated the relationship between CRP and the thickness of right BA32 (p<0.05). The results raise the possibility that the relative imbalance between KynA and neurotoxic kynurenine metabolites may partially explain the reductions in mPFC thickness observed in MDD, and further that these changes are more strongly linked to the putative effects of neuroactive kynurenine metabolites than those of inflammatory mediators. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states.

    PubMed

    Carlson, Ross; Srienc, Friedrich

    2004-04-20

    We have previously shown that the metabolism for most efficient cell growth can be realized by a combination of two types of elementary modes. One mode produces biomass while the second mode generates only energy. The identity of the four most efficient biomass and energy pathway pairs changes, depending on the degree of oxygen limitation. The identification of such pathway pairs for different growth conditions offers a pathway-based explanation of maintenance energy generation. For a given growth rate, experimental aerobic glucose consumption rates can be used to estimate the contribution of each pathway type to the overall metabolic flux pattern. All metabolic fluxes are then completely determined by the stoichiometries of involved pathways defining all nutrient consumption and metabolite secretion rates. We present here equations that permit computation of network fluxes on the basis of unique pathways for the case of optimal, glucose-limited Escherichia coli growth under varying levels of oxygen stress. Predicted glucose and oxygen uptake rates and some metabolite secretion rates are in remarkable agreement with experimental observations supporting the validity of the presented approach. The entire most efficient, steady-state, metabolic rate structure is explicitly defined by the developed equations without need for additional computer simulations. The approach should be generally useful for analyzing and interpreting genomic data by predicting concise, pathway-based metabolic rate structures. Copyright 2004 Wiley Periodicals, Inc.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardiola, John J.

    Background: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. Methods: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS{sup 2} analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. Results: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated thatmore » the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-D-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. Conclusions: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity. - Highlights: • Occupational vinyl chloride exposure is linked to toxicant-associated steatohepatitis, liver cancer, and other diseases. • Vinyl chloride exposure led to a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. • A metabolomics approach can provide useful information regarding exposure in chemical workers.« less

  15. Simulation of branched serial first-order decay of atrazine and metabolites in adapted and nonadapted soils

    USGS Publications Warehouse

    Webb, R.M.; Sandstrom, M.W.; Krutz, L.J.; Shaner, D.L.

    2011-01-01

    In the present study a branched serial first-order decay (BSFOD) model is presented and used to derive transformation rates describing the decay of a common herbicide, atrazine, and its metabolites observed in unsaturated soils adapted to previous atrazine applications and in soils with no history of atrazine applications. Calibration of BSFOD models for soils throughout the country can reduce the uncertainty, relative to that of traditional models, in predicting the fate and transport of pesticides and their metabolites and thus support improved agricultural management schemes for reducing threats to the environment. Results from application of the BSFOD model to better understand the degradation of atrazine supports two previously reported conclusions: atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and its primary metabolites are less persistent in adapted soils than in nonadapted soils; and hydroxyatrazine was the dominant primary metabolite in most of the soils tested. In addition, a method to simulate BSFOD in a one-dimensional solute-transport unsaturated zone model is also presented. ?? 2011 SETAC.

  16. Simulation of branched serial first-order decay of atrazine and metabolites in adapted and nonadapted soils

    USGS Publications Warehouse

    Webb, Richard M.; Sandstrom, Mark W.; Jason L. Krutz,; Dale L. Shaner,

    2011-01-01

    In the present study a branched serial first-order decay (BSFOD) model is presented and used to derive transformation rates describing the decay of a common herbicide, atrazine, and its metabolites observed in unsaturated soils adapted to previous atrazine applications and in soils with no history of atrazine applications. Calibration of BSFOD models for soils throughout the country can reduce the uncertainty, relative to that of traditional models, in predicting the fate and transport of pesticides and their metabolites and thus support improved agricultural management schemes for reducing threats to the environment. Results from application of the BSFOD model to better understand the degradation of atrazine supports two previously reported conclusions: atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and its primary metabolites are less persistent in adapted soils than in nonadapted soils; and hydroxyatrazine was the dominant primary metabolite in most of the soils tested. In addition, a method to simulate BSFOD in a one-dimensional solute-transport unsaturated zone model is also presented.

  17. Regulation and Role of Fungal Secondary Metabolites.

    PubMed

    Macheleidt, Juliane; Mattern, Derek J; Fischer, Juliane; Netzker, Tina; Weber, Jakob; Schroeckh, Volker; Valiante, Vito; Brakhage, Axel A

    2016-11-23

    Fungi have the capability to produce a tremendous number of so-called secondary metabolites, which possess a multitude of functions, e.g., communication signals during coexistence with other microorganisms, virulence factors during pathogenic interactions with plants and animals, and in medical applications. Therefore, research on this topic has intensified significantly during the past 10 years and thus knowledge of regulatory mechanisms and the understanding of the role of secondary metabolites have drastically increased. This review aims to depict the complexity of all the regulatory elements involved in controlling the expression of secondary metabolite gene clusters, ranging from epigenetic control and signal transduction pathways to global and specific transcriptional regulators. Furthermore, we give a short overview on the role of secondary metabolites, focusing on the interaction with other microorganisms in the environment as well as on pathogenic relationships.

  18. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE PAGES

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  19. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  20. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation.

    PubMed

    Webhofer, C; Gormanns, P; Tolstikov, V; Zieglgänsberger, W; Sillaber, I; Holsboer, F; Turck, C W

    2011-12-13

    Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery.

  1. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity.

    PubMed

    Fan, Pengxiang; Miller, Abigail M; Liu, Xiaoxiao; Jones, A Daniel; Last, Robert L

    2017-12-12

    Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty.

  2. Applying high resolution mass spectrometry and network analysis to assess exposure to a novel androgen, spironolactone, on metabolic pathways in fish

    EPA Science Inventory

    Although metabolomics can successfully detect effects from overall contaminant exposure, its ability to elucidate specific metabolic pathways impacted by those exposures can be hindered by bottlenecks in metabolite identification. However, improved analytical approaches that com...

  3. Nanoparticle bioconjugates as "bottom-up" assemblies of artifical multienzyme complexes

    NASA Astrophysics Data System (ADS)

    Keighron, Jacqueline D.

    2010-11-01

    The sequential enzymes of several metabolic pathways have been shown to exist in close proximity with each other in the living cell. Although not proven in all cases, colocalization may have several implications for the rate of metabolite formation. Proximity between the sequential enzymes of a metabolic pathway has been proposed to have several benefits for the overall rate of metabolite formation. These include reduced diffusion distance for intermediates, sequestering of intermediates from competing pathways and the cytoplasm. Restricted diffusion in the vicinity of an enzyme can also cause the pooling of metabolites, which can alter reaction equilibria to control the rate of reaction through inhibition. Associations of metabolic enzymes are difficult to isolate ex vivo due to the weak interactions believed to colocalize sequential enzymes within the cell. Therefore model systems in which the proximity and diffusion of intermediates within the experiment system are controlled are attractive alternatives to explore the effects of colocalization of sequential enzymes. To this end three model systems for multienzyme complexes have been constructed. Direct adsorption enzyme:gold nanoparticle bioconjugates functionalized with malate dehydrogenase (MDH) and citrate synthase (CS) allow for proximity between to the enzymes to be controlled from the nanometer to micron range. Results show that while the enzymes present in the colocalized and non-colocalized systems compared here behaved differently overall the sequential activity of the pathway was improved by (1) decreasing the diffusion distance between active sites, (2) decreasing the diffusion coefficient of the reaction intermediate to prevent escape into the bulk solution, and (3) decreasing the overall amount of bioconjugate in the solution to prevent the pathway from being inhibited by the buildup of metabolite over time. Layer-by-layer (LBL) assemblies of MDH and CS were used to examine the layering effect of sequential enzymes found in multienzyme complexes such as the pyruvate dehydrogenase complex (PDC). By controlling the orientation of enzymes in the complex (i.e. how deeply embedded each enzyme is) it was hypothesized that differences in sequential activity would determine an optimal orientation for a multienzyme complex. It was determined during the course of these experiments that the polyelectrolyte (PE) assembly itself served to slow diffusion of intermediates, leading to a buildup of oxaloacetate within the PE layers to form a pool of metabolite that equalized the rate of sequential reaction between the different orientations tested. Hexahistidine tag -- Ni(II) nitriliotriacetic acid (NTA) chemistry is an attractive method to control the proximity between sequential enzymes because each enzyme can be bound in a specific orientation, with minimal loss of activity, and the interaction is reversible. Modifying gold nanoparticles or large unilamellar vesicles with this functionality allows for another class of model to be constructed in which proximity between enzymes is dynamic. Some metabolic pathways (such as the de novo purine biosynthetic pathway), have demonstrated dynamic proximity of sequential enzymes in response to specific cellular stimuli. Results indicate that Ni(II)NTA scaffolds immobilize histidine-tagged enzymes non-destructively, with a near 100% reversibility. This model can be used to demonstrate the possible implications of dynamic proximity such as pathway regulation. Insight into the benefits and mechanisms of sequential enzyme colocalization can enhance the general understanding of cellular processes, as well as allow for the development of new and innovative ways to modulate pathway activity. This may provide new designs for treatments of metabolic diseases and cancer, where metabolic pathways are altered.

  4. Sunlight photolysis of benzotriazoles - Identification of transformation products and pathways.

    PubMed

    Weidauer, Cindy; Davis, Caroline; Raeke, Julia; Seiwert, Bettina; Reemtsma, Thorsten

    2016-07-01

    Benzotriazoles (BTs) are widely used corrosion inhibitors, incompletely removed in municipal wastewater treatment. The photochemical fate of the three BTs 1H-benzotriazole (1H-BT), 4-methyl-1H-benzotriazole (4Me-BT) and 5-methyl-1H-benzotriazole (5Me-BT) and of three microbial metabolites, was studied under simulated sunlight (290-800 nm) at neutral pH in aqueous solution for 24 h. The half-life, the quantum yield and the reaction rate were determined and a total of 36 photolysis products were detected and identified using liquid chromatography-high resolution-mass spectrometry. The half-lives of all six BTs were in the range of 6-24 h under the experimental conditions. Though the quantum yields were comparatively low (0.0007-0.0021), the environmental half-lives ranged from 2.4 to 8 d, suggesting that sunlight photolysis is still a relevant degradation process of BTs in surface waters. The photolysis pathway of 1H-BT under simulated sunlight differed from that suggested for UV-radiation, in that aminophenol is formed directly rather than via aniline. Similar pathways were found for the other BTs, except for 4-hydroxy-1H-benzotriazole (4OH-BT). Most identified transformation products of the BTs showed a high reactivity and appear not to persist in the environment. Upon co-photolysis of BTs with dissolved organic matter (DOM), however, series of reaction products were determined by Fourier transform - ion cyclotron resonance - mass spectrometry (FTICR-MS) which are formed by reaction of photolysis intermediates of the BTs with DOM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice

    PubMed Central

    Allen, Julie M.; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Quicksall, Zachary S.; Warnow, Tandy; Mugisha, Lawrence; Johnson, Kevin P.; Reed, David L.

    2017-01-01

    Abstract Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53–0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology. PMID:28419279

  6. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration

    PubMed Central

    Zwilling, Daniel; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Guidetti, Paolo; Wu, Hui-Qiu; Lee, Jason; Truong, Jennifer; Andrews-Zwilling, Yaisa; Hsieh, Eric W.; Louie, Jamie Y.; Wu, Tiffany; Scearce-Levie, Kimberly; Patrick, Christina; Adame, Anthony; Giorgini, Flaviano; Moussaoui, Saliha; Laue, Grit; Rassoulpour, Arash; Flik, Gunnar; Huang, Yadong; Muchowski, Joseph M.; Masliah, Eliezer; Schwarcz, Robert; Muchowski, Paul J.

    2011-01-01

    SUMMARY Metabolites in the kynurenine pathway of tryptophan degradation are thought to play an important role in neurodegenerative disorders such as Alzheimer’s disease and Huntington’s disease. Metabolites that cause glutamate receptor-mediated excitotoxicity and free radical formation are elevated in the blood and vulnerable brain regions in these diseases, while levels of the neuroprotective metabolite kynurenic acid are often decreased. Here we describe the synthesis and characterization of JM6, a novel small-molecule pro-drug inhibitor of kynurenine 3-monooxygenase (KMO). JM6 raises kynurenic acid and reduces extracellular glutamate in the brain after chronic oral administration by inhibiting KMO in blood. In a transgenic mouse model of Alzheimer’s disease, JM6 prevented spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extended life span, prevented synaptic loss, and decreased microglial activation in a mouse model of Huntington’s disease. These findings support a critical link between blood cells and neurodegeneration that is mediated by KMO and the kynurenine pathway. PMID:21640374

  7. Identification of the First Diketomorpholine Biosynthetic Pathway Using FAC-MS Technology.

    PubMed

    Robey, Matthew T; Ye, Rosa; Bok, Jin Woo; Clevenger, Kenneth D; Islam, Md Nurul; Chen, Cynthia; Gupta, Raveena; Swyers, Michael; Wu, Edward; Gao, Peng; Thomas, Paul M; Wu, Chengcang C; Keller, Nancy P; Kelleher, Neil L

    2018-05-18

    Filamentous fungi are prolific producers of secondary metabolites with drug-like properties, and their genome sequences have revealed an untapped wealth of potential therapeutic leads. To better access these secondary metabolites and characterize their biosynthetic gene clusters, we applied a new platform for screening and heterologous expression of intact gene clusters that uses fungal artificial chromosomes and metabolomic scoring (FAC-MS). We leverage FAC-MS technology to identify the biosynthetic machinery responsible for production of acu-dioxomorpholine, a metabolite produced by the fungus, Aspergilllus aculeatus. The acu-dioxomorpholine nonribosomal peptide synthetase features a new type of condensation domain (designated C R ) proposed to use a noncanonical arginine active site for ester bond formation. Using stable isotope labeling and MS, we determine that a phenyllactate monomer deriving from phenylalanine is incorporated into the diketomorpholine scaffold. Acu-dioxomorpholine is highly related to orphan inhibitors of P-glycoprotein targets in multidrug-resistant cancers, and identification of the biosynthetic pathway for this compound class enables genome mining for additional derivatives.

  8. MassTRIX: mass translator into pathways.

    PubMed

    Suhre, Karsten; Schmitt-Kopplin, Philippe

    2008-07-01

    Recent technical advances in mass spectrometry (MS) have brought the field of metabolomics to a point where large numbers of metabolites from numerous prokaryotic and eukaryotic organisms can now be easily and precisely detected. The challenge today lies in the correct annotation of these metabolites on the basis of their accurate measured masses. Assignment of bulk chemical formula is generally possible, but without consideration of the biological and genomic context, concrete metabolite annotations remain difficult and uncertain. MassTRIX responds to this challenge by providing a hypothesis-driven approach to high precision MS data annotation. It presents the identified chemical compounds in their genomic context as differentially colored objects on KEGG pathway maps. Information on gene transcription or differences in the gene complement (e.g. samples from different bacterial strains) can be easily added. The user can thus interpret the metabolic state of the organism in the context of its potential and, in the case of submitted transcriptomics data, real enzymatic capacities. The MassTRIX web server is freely accessible at http://masstrix.org.

  9. Postsecondary Pathways and Persistence for STEM versus Non-STEM Majors: Among College Students with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Wei, Xin; Christiano, Elizabeth R. A.; Yu, Jennifer W.; Blackorby, Jose; Shattuck, Paul; Newman, Lynn A.

    2014-01-01

    Little is known about postsecondary pathways and persistence among college students with an autism spectrum disorder (ASD). This study analyzed data from the National Longitudinal Transition Study-2, 2001-2009, a nationally representative sample of students in special education with an ASD who progressed from high school to postsecondary…

  10. Postsecondary Pathways and Persistence for STEM versus Non-STEM Majors; Among College Students with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Wei, Xin; Christiano, Elizabeth R.; Yu, Jennifer W.; Blackorby, Jose; Shattuck, Paul; Newman, Lynn

    2014-01-01

    Little is known about postsecondary pathways and persistence among college students with an Autism Spectrum Disorder (ASD). This study analyzed data from the National Longitudinal Transition Study-2, 2001-2009, a nationally representative sample of students in special education with an ASD who progressed from high school to postsecondary…

  11. Persistence of spiromesifen in soil: influence of moisture, light, pH and organic amendment.

    PubMed

    Mate, Ch Jamkhokai; Mukherjee, Irani; Das, Shaon Kumar

    2015-02-01

    Persistence of spiromesifen in soil as affected by varying moisture, light, compost amendment, soil sterilization and pH in aqueous medium were studied. Degradation of spiromesifen in soil followed the first-order reaction kinetics. Effect of different moisture regimes indicated that spiromesifen dissipated faster in submerged soil (t 1/2 14.3-16.7 days) followed by field capacity (t 1/2 18.7-20.0 days), and dry soil (t 1/2 21.9-22.9 days). Dissipation was faster in sterilized submerged (t 1/2 17.7 days) than in sterilized dry (t 1/2 35.8 days). Photo spiromesifen metabolite was not detected under different moisture regimes. After 30 days, enol spiromesifen metabolite was detected under submerged condition and was below detectable limit (<0.001 μg g(-1)) after 90 days. Soil amendment compost (2.5 %) at field capacity enhanced dissipation of the insecticide, and half-life value was 14.3 against 22.4 days without compost amendment. Under different pH condition, residues persisted in water with half-life values 5.7 to 12.5 days. Dissipation in water was faster at pH 9.0 (t 1/2 5.7 days), followed by pH 4.0 (t 1/2 9.7 days) and pH 7.2 (t 1/2 12.5 days). Exposure of spiromesifen to different light conditions indicated that it was more prone to degradation under UV light (t 1/2 3-4 days) than sunlight exposure (t 1/2 5.2-8.1 days). Under sunlight exposure, photo spiromesifen metabolite was detected after 10 and 15 days as compared to 3 and 5 days under UV light exposure.

  12. Evidence for non-linear metabolism at low benzene exposures? A reanalysis of data.

    PubMed

    McNally, K; Sams, C; Loizou, G D; Jones, K

    2017-12-25

    The presence of a high-affinity metabolic pathway for low level benzene exposures of less than one part per million (ppm) has been proposed although a pathway has not been identified. The variation of metabolite molar fractions with increasing air benzene concentrations was suggested as evidence of significantly more efficient benzene metabolism at concentrations <0.1 ppm The evidence for this pathway is predicated on a rich data set from a study of Chinese shoe workers exposed to a wide range of benzene concentrations (not just "low level"). In this work we undertake a further independent re-analysis of this data with a focus on the evidence for an increase in the rate of metabolism of benzene exposures of less than 1 ppm. The analysis dataset consisted of measurements of benzene and toluene from personal air samplers, and measurements of unmetabolised benzene and toluene and five metabolites (phenol hydroquinone, catechol, trans, trans-muconic acid and s-phenylmercapturic acid) from post-shift urine samples for 213 workers with an occupational exposure to benzene (and toluene) and 139 controls. Measurements from control subjects were used to estimate metabolite concentrations resulting from non-occupational sources, including environmental sources of benzene. Data from occupationally exposed subjects were used to estimate metabolite concentrations as a function of benzene exposure. Correction for background (environmental exposure) sources of metabolites was achieved through a comparison of geometric means in occupationally exposed and control populations. The molar fractions of the five metabolites as a function of benzene exposure were computed. A supra-linear relationship between metabolite concentrations and benzene exposure was observed over the range 0.1-10 ppm benzene, however over the range benzene exposures of between 0.1 and 1 ppm only a modest departure from linearity was observed. The molar fractions estimated in this work were near constant over the range 0.1-10 ppm. No evidence of high affinity metabolism at these low level exposures was observed. Our reanalysis brings in to question the appropriateness of the dataset for commenting on low dose exposures and the use of a purely statistical approach to the analysis. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways.

    PubMed

    Martín, Juan F

    2017-05-01

    Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.

  14. Serum metabolomics differentiating pancreatic cancer from new-onset diabetes

    PubMed Central

    He, Xiangyi; Zhong, Jie; Wang, Shuwei; Zhou, Yufen; Wang, Lei; Zhang, Yongping; Yuan, Yaozong

    2017-01-01

    To establish a screening strategy for pancreatic cancer (PC) based on new-onset diabetic mellitus (NO-DM), serum metabolomics analysis and a search for the metabolic pathways associated with PC related DM were performed. Serum samples from patients with NO-DM (n = 30) and patients with pancreatic cancer and NO-DM were examined by liquid chromatography-mass spectrometry. Data were analyzed using principal components analysis (PCA) and orthogonal projection to latent structures (OPLS) of the most significant metabolites. The diagnostic model was constructed using logistic regression analysis. Metabolic pathways were analyzed using the web-based tool MetPA. PC patients with NO-DM were older and had a lower BMI and shorter duration of DM than those with NO-DM. The metabolomic profiles of patients with PC and NO-DM were significantly different from those of patients with NO-DM in the PCA and OPLS models. Sixty two differential metabolites were identified by the OPLS model. The logistic regression model using a panel of two metabolites including N_Succinyl_L_diaminopimelic_acid and PE (18:2) had high sensitivity (93.3%) and specificity (93.1%) for PC. The top three metabolic pathways associated with PC related DM were valine, leucine and isoleucine biosynthesis and degradation, primary bile acid biosynthesis, and sphingolipid metabolism. In conclusion, screening for PC based on NO-DM using serum metabolomics in combination with clinic characteristics and CA19-9 is a potential useful strategy. Several metabolic pathways differed between PC related DM and type 2 DM. PMID:28418859

  15. Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections.

    PubMed

    Reddy, Umesh K; Almeida, Aldo; Abburi, Venkata L; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil; Nimmakayala, Padma

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.

  16. Identification of Gene-Specific Polymorphisms and Association with Capsaicin Pathway Metabolites in Capsicum annuum L. Collections

    PubMed Central

    Abburi, Venkata L.; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1. PMID:24475113

  17. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes.

    PubMed

    Lanza, Ian R; Zhang, Shucha; Ward, Lawrence E; Karakelides, Helen; Raftery, Daniel; Nair, K Sreekumaran

    2010-05-10

    Insulin is as a major postprandial hormone with profound effects on carbohydrate, fat, and protein metabolism. In the absence of exogenous insulin, patients with type 1 diabetes exhibit a variety of metabolic abnormalities including hyperglycemia, glycosurea, accelerated ketogenesis, and muscle wasting due to increased proteolysis. We analyzed plasma from type 1 diabetic (T1D) humans during insulin treatment (I+) and acute insulin deprivation (I-) and non-diabetic participants (ND) by (1)H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. The aim was to determine if this combination of analytical methods could provide information on metabolic pathways known to be altered by insulin deficiency. Multivariate statistics differentiated proton spectra from I- and I+ based on several derived plasma metabolites that were elevated during insulin deprivation (lactate, acetate, allantoin, ketones). Mass spectrometry revealed significant perturbations in levels of plasma amino acids and amino acid metabolites during insulin deprivation. Further analysis of metabolite levels measured by the two analytical techniques indicates several known metabolic pathways that are perturbed in T1D (I-) (protein synthesis and breakdown, gluconeogenesis, ketogenesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress). This work demonstrates the promise of combining multiple analytical methods with advanced statistical methods in quantitative metabolomics research, which we have applied to the clinical situation of acute insulin deprivation in T1D to reflect the numerous metabolic pathways known to be affected by insulin deficiency.

  18. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    PubMed Central

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  19. Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation.

    PubMed

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-05-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Identification and analysis of chemical constituents and rat serum metabolites in Suan-Zao-Ren granule using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multiple data processing approaches.

    PubMed

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-07-01

    Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Non-invasively predicting differentiation of pancreatic cancer through comparative serum metabonomic profiling.

    PubMed

    Wen, Shi; Zhan, Bohan; Feng, Jianghua; Hu, Weize; Lin, Xianchao; Bai, Jianxi; Huang, Heguang

    2017-11-02

    The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis and may influence the choices of clinical management. No applicable methods could reliably predict the tumor differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations through metabonomic strategy based on nuclear magnetic resonance spectroscopy. By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic profiling of serum from different PDAC was achieved and analyzed by using 1 H nuclear magnetic resonance (NMR) spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were used for enrichment analysis of metabolic pathways to get a deep insight. An obvious metabonomic difference was demonstrated between all groups and the pattern recognition models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated, which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation. The NMR-based metabonomic strategy may be served as a non-invasive detection method for predicting tumor differentiation preoperatively.

  3. A NOVEL METABOLIC ACTIVATION PATHWAY FOR POLYCYCLIC AROMATIC HYDROCARBONS: REACTIVE OXYGEN SPECIES-MEDIATED DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN MOUSE EMBRYO CELLS BY K-REGION DIOL METABOLITES

    EPA Science Inventory

    Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
    mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
    remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...

  4. Comprehensive analysis of serum metabolites in gestational diabetes mellitus by UPLC/Q-TOF-MS.

    PubMed

    Liu, Tianhu; Li, Jiaxun; Xu, Fengcheng; Wang, Mengni; Ding, Shijia; Xu, Hongbing; Dong, Fang

    2016-02-01

    Gestational diabetes mellitus (GDM) refers to the first sign or onset of diabetes mellitus during pregnancy rather than progestation. In recent decades, more and more research has focused on the etiology and pathogenesis of GDM in order to further understand GDM progress and recovery. Using an advanced metabolomics platform based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), we explored the changes in serum metabolites between women with GDM and healthy controls during and after pregnancy. Some significant differences were discovered using multivariate analysis including partial least-squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA). The dysregulated metabolites were further compared and verified in several databases to understand how these compounds might function as potential biomarkers. Analyses of the metabolic pathways associated with these potential biomarkers were subsequently explored. A total of 35 metabolites were identified, contributing to GDM progress to some extent. The identified biomarkers were involved in some important metabolic pathways including glycine, serine, and threonine metabolism; steroid hormone biosynthesis; tyrosine metabolism; glycerophospholipid metabolism; and fatty acid metabolism. The above mentioned metabolic pathways mainly participate in three major metabolic cycles in humans, including lipid metabolism, carbohydrate metabolism, and amino acid metabolism. In this pilot study, the valuable comprehensive analysis gave us further insight into the etiology and pathophysiology of GDM, which might benefit the feasibility of a rapid, accurate diagnosis and reasonable treatment as soon as possible but also prevent GDM and its related short- and long-term complications.

  5. Multiple metal exposures and their correlation with monoamine neurotransmitter metabolism in Chinese electroplating workers.

    PubMed

    Wu, Lin-Lin; Gong, Wei; Shen, Si-Peng; Wang, Zhong-He; Yao, Jia-Xi; Wang, Jun; Yu, Jing; Gao, Rong; Wu, Gang

    2017-09-01

    Excessive metal exposure has been recognized as one of the detrimental factors for brain damage. However, the potential adverse effects induced by heavy metals on monoamine neurotransmitter pathways remains poorly understood. Our study aimed to investigate the possible association between metal exposure and neurotransmitter metabolism. By a cross-sectional investigation, 224 electroplating workers and 213 non-electroplating exposure workers were recruited in the exposure and control groups. Metal exposure levels were analyzed using inductively-coupled plasma mass spectrometry and monoamine neurotransmitter pathway metabolites were measured by ultra-performance liquid chromatography tandem mass spectrometry in human urine samples. Multivariate linear regression model was used to assess the dose-response relationships of urinary metals and neurotransmitter pathway metabolites. Significant dose-dependent trends of urinary vanadium quartiles with all metabolites were observed, and the trends demonstrated significance after multiple testing correction. It also showed that urinary chromium levels were significantly associated with decreased serotonin level and cadmium was positively associated with norepinephrine and epinephrine. In addition, arsenic was positively associated with tryptophan, serotonin, dopamine and norepinephrine. Iron was positively associated with increased homovanillic acid (HVA) and epinephrine while nickel was negatively associated with increased epinephrine levels. Zinc was positively related to tryptophan, kynurenin (KYN), 5-hydroxyindole acetic acid (5-HIAA), dopamine, HVA and norepinephrine. There was no significant association between urinary copper with any other metabolites after adjusting of multiple metal models. Metal exposure may be associated with neurotransmitter metabolism disturbances. The present work is expected to provide some support in the prevention and management of metal-associated neurological diseases. Copyright © 2017. Published by Elsevier Ltd.

  6. Pathways of Metabolite-related Damage to A Synthetic p53 Gene Exon 7 Oligonucleotide using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing.

    PubMed

    Malla, Spundana; Kadimisetty, Karteek; Jiang, Di; Choudhary, Dharamainder; Rusling, James F

    2018-05-11

    Reactive metabolites of environmental chemicals and drugs can cause site-specific damage to p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing to bioactivate test chemicals and identify resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using 8 microsomal cyt P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites, then strand breaks. This is the first demonstration in a cell-free medium that aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method to identify metabolite-related gene damage sites may facilitate predictions of organ-specific cancers for test chemicals via correlations with mutation sites.

  7. Role of phospholipase A2 pathway in regulating activation of Bufo arenarum oocytes.

    PubMed

    Ajmat, M T; Bonilla, F; Hermosilla, P C; Zelarayán, L; Bühler, M I

    2013-08-01

    Transient increases in the concentration of cytosolic Ca(2+) are essential for triggering egg activation events. Increased Ca(2+) results from its rapid release from intracellular stores, mainly mediated by one or both intracellular calcium channels: the inositol trisphosphate receptor (IP3R) and the ryanodine receptor (RyR). Several regulatory pathways that tailor the response of these channels to the specific cell type have been proposed. Among its many modulatory actions, calcium can serve as an activator of a cytosolic phospholipase A(2) (cPLA2), which releases arachidonic acid from phospholipids of the endoplasmic reticulum as well as from the nuclear envelope. Previous studies have suggested that arachidonic acid and/or its metabolites were able to modulate the activity of several ion channels. Based on these findings, we have studied the participation of the phospholipase A(2) (PLA(2)) pathway in the process of Bufo arenarum oocyte activation and the interrelation between any of its metabolites and the ion channels involved in the calcium release from the intracellular reservoirs at fertilization. We found that addition of both melittin, a potent PLA(2) activator, and arachidonic acid, the main PLA(2) reaction metabolite, was able to induce activation events in a bell-shaped manner. Differential regulation of IP3Rs and RyRs by arachidonic acid and its products could explain melittin and arachidonic acid behaviour in Bufo arenarum egg activation. The concerted action of arachidonic acid and/or its metabolites could provide controlled mobilization of calcium from intracellular reservoirs and useful tools for understanding calcium homeostasis in eggs that express both types of receptors.

  8. Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks.

    PubMed

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Lanoue, Arnaud; Gontier, Eric; Dauwe, Rebecca

    2015-08-01

    The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Application of the amniotic fluid metabolome to the study of fetal malformations, using Down syndrome as a specific model.

    PubMed

    Huang, Jun; Mo, Jinhua; Zhao, Guili; Lin, Qiyin; Wei, Guanhui; Deng, Weinan; Chen, Dunjin; Yu, Bolan

    2017-11-01

    Although monitoring and diagnosis of fetal diseases in utero remains a challenge, metabolomics may provide an additional tool to study the etiology and pathophysiology of fetal diseases at a functional level. In order to explore specific markers of fetal disease, metabolites were analyzed in two separate sets of experiments using amniotic fluid from fetuses with Down syndrome (DS) as a model. Both sets included 10‑15 pairs of controls and cases, and amniotic fluid samples were processed separately; metabolomic fingerprinting was then conducted using UPLC‑MS. Significantly altered metabolites involved in respective metabolic pathways were compared in the two experimental sets. In addition, significantly altered metabolic pathways were further compared with the genomic characters of the DS fetuses. The data suggested that metabolic profiles varied across different experiments, however alterations in the 4 metabolic pathways of the porphyrin metabolism, bile acid metabolism, hormone metabolism and amino acid metabolism, were validated for the two experimental sets. Significant changes in metabolites of coproporphyrin III, glycocholic acid, taurochenodeoxycholate, taurocholate, hydrocortisone, pregnenolone sulfate, L‑histidine, L‑arginine, L‑glutamate and L‑glutamine were further confirmed. Analysis of these metabolic alterations was linked to aberrant gene expression at chromosome 21 of the DS fetus. The decrease in coproporphyrin III in the DS fetus may portend abnormal erythropoiesis, and unbalanced glutamine‑glutamate concentration was observed to be closely associated with abnormal brain development in the DS fetus. Therefore, alterations in amniotic fluid metabolites may provide important clues to understanding the etiology of fetal disease and help to develop diagnostic testing for clinical applications.

  10. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in rotenoid biosynthesis in the medicinal plant Mirabilis himalaica.

    PubMed

    Gu, Li; Zhang, Zhong-Yi; Quan, Hong; Li, Ming-Jie; Zhao, Fang-Yu; Xu, Yuan-Jiang; Liu, Jiang; Sai, Man; Zheng, Wei-Lie; Lan, Xiao-Zhong

    2018-06-01

    Mirabilis himalaica (Edgew.) Heimerl is among the most important genuine medicinal plants in Tibet. However, the biosynthesis mechanisms of the active compounds in this species are unclear, severely limiting its application. To clarify the molecular biosynthesis mechanism of the key representative active compounds, specifically rotenoid, which is of special medicinal value for M. himalaica, RNA sequencing and TOF-MS technologies were used to construct transcriptomic and metabolomic libraries from the roots, stems, and leaves of M. himalaica plants collected from their natural habitat. As a result, each of the transcriptomic libraries from the different tissues was sequenced, generating more than 10 Gb of clean data ultimately assembled into 147,142 unigenes. In the three tissues, metabolomic analysis identified 522 candidate compounds, of which 170 metabolites involved in 114 metabolic pathways were mapped to the KEGG. Of these genes, 61 encoding enzymes were identified to function at key steps of the pathways related to rotenoid biosynthesis, where 14 intermediate metabolites were also located. An integrated analysis of metabolic and transcriptomic data revealed that most of the intermediate metabolites and enzymes related to rotenoid biosynthesis were synthesized in the roots, stems and leaves of M. himalaica, which suggested that the use of non-medicinal tissues to extract compounds was feasible. In addition, the CHS and CHI genes were found to play important roles in rotenoid biosynthesis, especially, since CHS might be an important rate-limiting enzyme. This study provides a hypothetical basis for the screening of new active metabolites and the metabolic engineering of rotenoid in M. himalaica.

  11. Intrauterine Growth Restriction Programs the Hypothalamus of Adult Male Rats: Integrated Analysis of Proteomic and Metabolomic Data.

    PubMed

    Pedroso, Amanda P; Souza, Adriana P; Dornellas, Ana P S; Oyama, Lila M; Nascimento, Cláudia M O; Santos, Gianni M S; Rosa, José C; Bertolla, Ricardo P; Klawitter, Jelena; Christians, Uwe; Tashima, Alexandre K; Ribeiro, Eliane B

    2017-04-07

    Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.

  12. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway[S

    PubMed Central

    Alecu, Irina; Othman, Alaa; Penno, Anke; Saied, Essa M.; Arenz, Christoph; von Eckardstein, Arnold; Hornemann, Thorsten

    2017-01-01

    The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic β-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D. PMID:27872144

  13. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture.

    PubMed

    Thomas, Louise; Hodgson, David A; Wentzel, Alexander; Nieselt, Kay; Ellingsen, Trond E; Moore, Jonathan; Morrissey, Edward R; Legaie, Roxane; Wohlleben, Wolfgang; Rodríguez-García, Antonio; Martín, Juan F; Burroughs, Nigel J; Wellington, Elizabeth M H; Smith, Margaret C M

    2012-02-01

    Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.

  14. Tryptophan 2,3-Dioxygenfase and Indoleamine 2,3-Dioxygenase 1 Make Separate, Tissue-Specific Contributions to Basal and Inflammation-Induced Kynurenine Pathway Metabolism in Mice

    PubMed Central

    Larkin, Paul B.; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Funakoshi, Hiroshi; Nakamura, Toshikazu; Schwarcz, Robert; Muchowski, Paul J.

    2018-01-01

    In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system. PMID:27392942

  15. Serum Metabolic Profiling Reveals Altered Metabolic Pathways in Patients with Post-traumatic Cognitive Impairments

    PubMed Central

    Yi, Lunzhao; Shi, Shuting; Wang, Yang; Huang, Wei; Xia, Zi-an; Xing, Zhihua; Peng, Weijun; Wang, Zhe

    2016-01-01

    Cognitive impairment, the leading cause of traumatic brain injury (TBI)-related disability, adversely affects the quality of life of TBI patients, and exacts a personal and economic cost that is difficult to quantify. The underlying pathophysiological mechanism is currently unknown, and an effective treatment of the disease has not yet been identified. This study aimed to advance our understanding of the mechanism of disease pathogenesis; thus, metabolomics based on gas chromatography/mass spectrometry (GC-MS), coupled with multivariate and univariate statistical methods were used to identify potential biomarkers and the associated metabolic pathways of post-TBI cognitive impairment. A biomarker panel consisting of nine serum metabolites (serine, pyroglutamic acid, phenylalanine, galactose, palmitic acid, arachidonic acid, linoleic acid, citric acid, and 2,3,4-trihydroxybutyrate) was identified to be able to discriminate between TBI patients with cognitive impairment, TBI patients without cognitive impairment and healthy controls. Furthermore, associations between these metabolite markers and the metabolism of amino acids, lipids and carbohydrates were identified. In conclusion, our study is the first to identify several serum metabolite markers and investigate the altered metabolic pathway that is associated with post-TBI cognitive impairment. These markers appear to be suitable for further investigation of the disease mechanisms of post-TBI cognitive impairment. PMID:26883691

  16. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  17. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  18. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    PubMed

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  19. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli

    PubMed Central

    Bartelt, Luther A.; Bolick, David T.; Zaenker, Edna I.; Donowitz, Jeffery; Thomas-Beckett, Rose Viguna; Rogala, Allison; Carroll, Ian M.; Swann, Jonathan R.; Guerrant, Richard L.

    2017-01-01

    Diverse enteropathogen exposures associate with childhood malnutrition. To elucidate mechanistic pathways whereby enteric microbes interact during malnutrition, we used protein deficiency in mice to develop a new model of co-enteropathogen enteropathy. Focusing on common enteropathogens in malnourished children, Giardia lamblia and enteroaggregative Escherichia coli (EAEC), we provide new insights into intersecting pathogen-specific mechanisms that enhance malnutrition. We show for the first time that during protein malnutrition, the intestinal microbiota permits persistent Giardia colonization and simultaneously contributes to growth impairment. Despite signals of intestinal injury, such as IL1α, Giardia-infected mice lack pro-inflammatory intestinal responses, similar to endemic pediatric Giardia infections. Rather, Giardia perturbs microbial host co-metabolites of proteolysis during growth impairment, whereas host nicotinamide utilization adaptations that correspond with growth recovery increase. EAEC promotes intestinal inflammation and markers of myeloid cell activation. During co-infection, intestinal inflammatory signaling and cellular recruitment responses to EAEC are preserved together with a Giardia-mediated diminishment in myeloid cell activation. Conversely, EAEC extinguishes markers of host energy expenditure regulatory responses to Giardia, as host metabolic adaptations appear exhausted. Integrating immunologic and metabolic profiles during co-pathogen infection and malnutrition, we develop a working mechanistic model of how cumulative diet-induced and pathogen-triggered microbial perturbations result in an increasingly wasted host. PMID:28750066

  20. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli.

    PubMed

    Bartelt, Luther A; Bolick, David T; Mayneris-Perxachs, Jordi; Kolling, Glynis L; Medlock, Gregory L; Zaenker, Edna I; Donowitz, Jeffery; Thomas-Beckett, Rose Viguna; Rogala, Allison; Carroll, Ian M; Singer, Steven M; Papin, Jason; Swann, Jonathan R; Guerrant, Richard L

    2017-07-01

    Diverse enteropathogen exposures associate with childhood malnutrition. To elucidate mechanistic pathways whereby enteric microbes interact during malnutrition, we used protein deficiency in mice to develop a new model of co-enteropathogen enteropathy. Focusing on common enteropathogens in malnourished children, Giardia lamblia and enteroaggregative Escherichia coli (EAEC), we provide new insights into intersecting pathogen-specific mechanisms that enhance malnutrition. We show for the first time that during protein malnutrition, the intestinal microbiota permits persistent Giardia colonization and simultaneously contributes to growth impairment. Despite signals of intestinal injury, such as IL1α, Giardia-infected mice lack pro-inflammatory intestinal responses, similar to endemic pediatric Giardia infections. Rather, Giardia perturbs microbial host co-metabolites of proteolysis during growth impairment, whereas host nicotinamide utilization adaptations that correspond with growth recovery increase. EAEC promotes intestinal inflammation and markers of myeloid cell activation. During co-infection, intestinal inflammatory signaling and cellular recruitment responses to EAEC are preserved together with a Giardia-mediated diminishment in myeloid cell activation. Conversely, EAEC extinguishes markers of host energy expenditure regulatory responses to Giardia, as host metabolic adaptations appear exhausted. Integrating immunologic and metabolic profiles during co-pathogen infection and malnutrition, we develop a working mechanistic model of how cumulative diet-induced and pathogen-triggered microbial perturbations result in an increasingly wasted host.

  1. [Application and prospect of fungi elicitors in fermentation industry].

    PubMed

    Gu, Shaobin; Gong, Hui; Yang, Bin; Bu, Meiling

    2013-11-01

    Fungal elicitors are a group of chemicals that can stimulate the secondary metabolite production in plants and microbial cells. After being recognized, it could enhance the expression of related genes through the signal-transduction pathway; regulate the activity of the enzyme involved in the biosynthesis of secondary metabolites. In recent years, the inducible mechanism of fungal elicitors has been studied deeply worldwide. Meanwhile, it has acquired wide concern in the area of biological industry, especially in the fermentation industry. This paper addresses the application and prospect of fungal elicitors in the secondary metabolites of plant and microbial cells.

  2. Structure Elucidation of Verucopeptin, a HIF-1 Inhibitory Polyketide-Hexapeptide Hybrid Metabolite from an Actinomycete.

    PubMed

    Yoshimura, Aya; Nishimura, Shinichi; Otsuka, Saori; Hattori, Akira; Kakeya, Hideaki

    2015-11-06

    The transcriptional factor, hypoxia inducible factor-1 (HIF-1), is a promising target for cancer chemotherapy. From an actinomycete, verucopeptin (1) was identified as a HIF-1 signaling inhibitor. By a combination of chemical degradation and spectroscopic analyses, the absolute stereochemistry of metabolite 1 was determined to be 10R, 15S, 16S, 23S, 27S, 28R, 31S, 33S, 35R. Moreover, metabolite 1 was revealed to attenuate the HIF-1α and mTORC1 pathway, indicating that verucopeptin (1) would be a potent lead compound for anticancer chemotherapy.

  3. Persistent Organochlorine Pesticides and their Metabolites in Alligator Livers from Lakes Apopka and Woodruff, Florida, USA

    EPA Science Inventory

    Reproductive disorders in American alligators (Alligator mississippiensis) inhabiting Lake Apopka, Florida, have been observed for several years. Such disorders are hypothesized to be caused by endocrine disrupting contaminants occurring in the Lake due to pesticide spills and ...

  4. Chronic Mild Stress Alters Kynurenine Pathways Changing the Glutamate Neurotransmission in Frontal Cortex of Rats.

    PubMed

    Martín-Hernández, David; Tendilla-Beltrán, Hiram; Madrigal, José L M; García-Bueno, Borja; Leza, Juan C; Caso, Javier R

    2018-05-03

    Immune stimulation might be involved in the pathophysiology of major depressive disorder (MDD). This stimulation induces indoleamine 2,3-dioxygenase (IDO), an enzyme that reduces the tryptophan bioavailability to synthesize serotonin. IDO products, kynurenine metabolites, exert neurotoxic/neuroprotective actions through glutamate receptors. Thus, we study elements of these pathways linked to kynurenine metabolite activity examining whether antidepressants (ADs) can modulate them. Male Wistar rats were exposed to chronic mild stress (CMS), and some of them were treated with ADs. The expression of elements of the IDO pathway, including kynurenine metabolites, and their possible modulation by ADs was studied in the frontal cortex (FC). CMS increased IDO expression in FC compared to control group, and ADs restored the IDO expression levels to control values. CMS-induced IDO expression led to increased levels of the excitotoxic quinolinic acid (QUINA) compared to control, and ADs prevented the rise in such levels. Neither CMS nor ADs changed significantly the antiexcitotoxic kynurenic acid (KYNA) levels. The QUINA/KYNA ratio, calculated as excitotoxicity risk indicator, increased after CMS and ADs prevented this increase. CMS lowered excitatory amino acid transporter (EAAT)-1 and EAAT-4 expression, and some ADs restored their expression levels. Furthermore, CMS decreased N-methyl-D-aspartate receptor (NMDAR)-2A and 2B protein expression, and ADs mitigated this decrease. Our research examines the link between CMS-induced pro-inflammatory cytokines and the kynurenine pathway; it shows that CMS alters the kynurenine pathway in rat FC. Importantly, it also reveals the ability of classic ADs to prevent potentially harmful situations related to the brain scenario caused by CMS.

  5. Trichloroethylene Biotransformation and its Role in Mutagenicity, Carcinogenicity and Target Organ Toxicity

    PubMed Central

    Lash, Lawrence H.; Chiu, Weihsueh A.; Guyton, Kathryn Z.; Rusyn, Ivan

    2014-01-01

    Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity. PMID:25484616

  6. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  7. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    PubMed Central

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  8. Qishen Yiqi Drop Pill improves cardiac function after myocardial ischemia.

    PubMed

    JianXin, Chen; Xue, Xu; ZhongFeng, Li; Kuo, Gao; FeiLong, Zhang; ZhiHong, Li; Xian, Wang; HongCai, Shang

    2016-04-14

    Myocardial ischemia (MI) is one of the leading causes of death, while Qishen Yiqi Drop Pill (QYDP) is a representative traditional Chinese medicine to treat this disease. Unveiling the pharmacological mechanism of QYDP will provide a great opportunity to promote the development of novel drugs to treat MI. 64 male Sprague-Dawley (SD) rats were divided into four groups: MI model group, sham operation group, QYDP treatment group and Fosinopril treatment group. Echocardiography results showed that QYDP exhibited significantly larger LV end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVEDs), compared with the MI model group, indicating the improved cardiac function by QYDP. (1)H-NMR based metabonomics further identify 9 significantly changed metabolites in the QYDP treatment group, and the QYDP-related proteins based on the protein-metabolite interaction networks and the corresponding pathways were explored, involving the pyruvate metabolism pathway, the retinol metabolism pathway, the tyrosine metabolism pathway and the purine metabolism pathway, suggesting that QYDP was closely associated with blood circulation. ELISA tests were further employed to identify NO synthase (iNOS) and cathepsin K (CTSK) in the networks. For the first time, our work combined experimental and computational methods to study the mechanism of the formula of traditional Chinese medicine.

  9. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies

    PubMed Central

    Averesch, Nils J. H.; Krömer, Jens O.

    2018-01-01

    The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Re)construction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations. PMID:29632862

  10. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Salem, Intidhar; Boussabbeh, Manel

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). In the present study, we investigated the underlying mechanism of the toxicity induced by ZEN, α-ZOL and β-ZOL in cardiac cells (H9c2). We show that treatment with ZEN or its metabolites induces the activation of the mitochondrial pathway of apoptosis as characterized by an increase in ROS generation, a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspases. Besides, we demonstrate that these mycotoxins promote the activation of autophagy beforemore » the onset of apoptosis. Indeed, we observed that a short-time (6 h) treatment with ZEN, α-ZOL or β-ZOL, increased the level of Beclin-1 and LC3-II and induced the accumulation of the CytoID® autophagy detection probe. Moreover, the inhibition of autophagy by Chloroquine significantly increased cell death induced by ZEN, α-ZOL or β-ZOL, suggesting that the activation of autophagy serves as a cardioprotective mechanism against these mycotoxins. In addition, we found that the inhibition (EX527) or the knockdown of SIRT1 (siRNA) significantly increased apoptosis induced by ZEN or its derivatives, whereas SIRT1 activation with RSV greatly prevents the cytotoxic effects of these mycotoxins. By contrast, when autophagy was inhibited by CQ, the activation of SIRT1 by RSV had no protection against the cardiotoxicity of ZEN or its metabolites, suggesting that SIRT1 protects cardiac cells by an autophagy-dependent pathway. - Highlights: • ZEN, α- and β-ZOL induce the mitochondrial pathway of apoptosis in cardiac cells. • Inhibition of autophagy enhanced ZEN-, α-ZOL- and β-ZOL-induced apoptosis. • SIRT1 activates autophagy to protect cells from ZEN, α- and β-ZOL-induced toxicity.« less

  11. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources.

    PubMed

    Martinez-Moya, Pilar; Niehaus, Karsten; Alcaíno, Jennifer; Baeza, Marcelo; Cifuentes, Víctor

    2015-04-12

    Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis.

  12. Modulation of the Major Paths of Carbon in Photorespiratory Mutants of Synechocystis

    PubMed Central

    Huege, Jan; Goetze, Jan; Schwarz, Doreen; Bauwe, Hermann; Hagemann, Martin; Kopka, Joachim

    2011-01-01

    Background Recent studies using transcript and metabolite profiles of wild-type and gene deletion mutants revealed that photorespiratory pathways are essential for the growth of Synechocystis sp. PCC 6803 under atmospheric conditions. Pool size changes of primary metabolites, such as glycine and glycolate, indicated a link to photorespiration. Methodology/Principal Findings The 13C labelling kinetics of primary metabolites were analysed in photoautotrophically grown cultures of Synechocystis sp. PCC 6803 by gas chromatography-mass spectrometry (GC-MS) to demonstrate the link with photorespiration. Cells pre-acclimated to high CO2 (5%, HC) or limited CO2 (0.035%, LC) conditions were pulse-labelled under very high (2% w/w) 13C-NaHCO3 (VHC) conditions followed by treatment with ambient 12C at HC and LC conditions, respectively. The 13C enrichment, relative changes in pool size, and 13C flux of selected metabolites were evaluated. We demonstrate two major paths of CO2 assimilation via Rubisco in Synechocystis, i.e., from 3PGA via PEP to aspartate, malate and citrate or, to a lesser extent, from 3PGA via glucose-6-phosphate to sucrose. The results reveal evidence of carbon channelling from 3PGA to the PEP pool. Furthermore, 13C labelling of glycolate was observed under conditions thought to suppress photorespiration. Using the glycolate-accumulating ΔglcD1 mutant, we demonstrate enhanced 13C partitioning into the glycolate pool under conditions favouring photorespiration and enhanced 13C partitioning into the glycine pool of the glycine-accumulating ΔgcvT mutant. Under LC conditions, the photorespiratory mutants ΔglcD1 and ΔgcvT showed enhanced activity of the additional carbon-fixing PEP carboxylase pathway. Conclusions/Significance With our approach of non-steady-state 13C labelling and analysis of metabolite pool sizes with respective 13C enrichments, we identify the use and modulation of major pathways of carbon assimilation in Synechocystis in the presence of high and low inorganic carbon supplies. PMID:21283704

  13. Metabolomic Profiling of Plasma Samples from Women with Recurrent Spontaneous Abortion.

    PubMed

    Li, XiaoCui; Yin, MingHong; Gu, JinPing; Hou, YanYan; Tian, FuJu; Sun, Feng

    2018-06-13

    BACKGROUND Gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS) metabolomics have been deployed to detect novel differential metabolites in cases with recurrent spontaneous abortion (RSA). MATERIAL AND METHODS Fifty patients who had recurrent spontaneous abortions (RSAs) and 51 control patients (age, gestational age, and body mass index (BMI) match) were enrolled in this study. Untargeted GC-MS and targeted LC-MS were combined to discover and validate the different metabolomic profiles between groups. Score plots of orthogonal partial least-squares discriminant analysis (OPLS-DA) clearly separated the RSA group from the control group. The variable importance in projection (VIP) generated in OPLS-DA processing represented the contribution to the discrimination of each metabolite ion between groups. Variables with a VIP >1 and P<0.05 were considered to be different variables. We also used MetaboAnalyst 3.0 to analyze the pathway impact of potential metabolite biomarkers. RESULTS Fifty-four metabolites were significantly different between the two groups, as indicated by a VIP >1 and P<0.05. The metabolic pathways involving glycine, serine, threonine (P=0.00529, impact=0.26), beta-alanine (P=0.0284, impact=0.27), and phenylalanine metabolism (P=0.0217, impact=0.17), along with the tricarboxylic acid (TCA) cycle (P=0.0113, impact=0.19) and the glycolysis pathway (P=0.037, impact=0.1) are obviously related to RSA. Verification by LC-MS showed that the concentration of lactic acid in RSA was higher than that in the control group (P<0.05), while the concentration of 5-methoxytryptamine was significantly lower in the RSA group (P<0.05). CONCLUSIONS In our study, untargeted GC-MS was used to detect disturbance of metabolism occurs in RSA and targeted LC-MS further was used to show that plasma concentrations of two metabolites (lactic acid and 5-methoxytryptamine) were different in the RSA compared to the control group.

  14. Identification of fentanyl metabolites in rat urine by gas chromatography-mass spectrometry with stable-isotope tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goromaru, T.; Matsuura, H.; Furuta, T.

    The metabolites of fentanyl (l), which has been widely used as a neuroleptic analgesic agent, were identified in urine of rats by gas chromatography-mass spectrometry combined with a stable-isotope tracer technique. After the oral administration of an equimolar mixture of l and deuterium-labeled l (l/l-d5), the urinary metabolites were extracted with chloroform at pH 9.0. Extracts were derivatized and analyzed by GC/MS. Metabolites were identified by the presence of doublet ion peaks separated by 5 amu, and chemical structures were established from analyses of fragmentation pathways. The metabolites were identified as 4-N-(N-propionylanilino)-piperidine, 4-N-(N-hydroxypropionylanilino)piperidine, 4-N-(N-propionylanilino) hydroxypiperidine, 1-(2-phenethyl)-4-N-(N-hydroxypropionylanilino)piperidine and 1-(2-phenethyl)-4-N-(N-propionylanilino)hydroxypiperidine. These metabolites,more » together with unchanged l, were also detected in urine of rats receiving l/l-d5 intravenously, by selected-ion monitoring of the specific cluster ions.« less

  15. Identification of 4-oxo-13-cis-retinoic acid as the major metabolite of 13-cis-retinoic acid in human blood.

    PubMed

    Vane, F M; Buggé, C J

    1981-01-01

    The metabolites of 13-cis-retinoic acid (Accutane) were investigated in blood samples from human volunteers on chronic treatment for dermatological disorders. The major metabolite was isolated by reverse-phase high-pressure liquid chromatography and identified as 4-oxo-13-cis-retinoic acid by comparison of its mass and NMR spectra to the spectra of the reference compound. 4-Oxo-all-trans-retinoic acid was also identified, but the extent to which this compound was a metabolite of 13-cis-retinoic acid or an artifactual isomerization product of the major metabolite is unknown. Chromatographic data suggested that small amounts of 13-cis-retinoic acid, 4-hydroxy-13-cis-retinoic acid, and dioxygenated metabolites of 13-cis-retinoic acid may also be present in the blood. This study indicates that a major metabolic pathway of 13-cis-retinoic acid in humans is oxidation at C4 of the cyclohexenyl group.

  16. CYP3A-Mediated Generation of Aldehyde and Hydrazine in Atazanavir MetabolismS⃞

    PubMed Central

    Li, Feng; Lu, Jie; Wang, Laiyou

    2011-01-01

    Atazanavir (ATV) is an antiretroviral drug of the protease inhibitor class. Multiple adverse effects of ATV have been reported in clinical practice, such as jaundice, nausea, abdominal pain, and headache. The exact mechanisms of ATV-related adverse effects are unknown. It is generally accepted that a predominant pathway of drug-induced toxicity is through the generation of reactive metabolites. Our current study was designed to explore reactive metabolites of ATV. We used a metabolomic approach to profile ATV metabolism in mice and human liver microsomes. We identified 5 known and 13 novel ATV metabolites. Three potential reactive metabolites were detected and characterized for the first time: one aromatic aldehyde, one α-hydroxyaldehyde, and one hydrazine. These potential reactive metabolites were primarily generated by CYP3A. Our results provide a clue for studies on ATV-related adverse effects from the aspect of metabolic activation. Further studies are suggested to illustrate the impact of these potential reactive metabolites on ATV-related adverse effects. PMID:21148252

  17. Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection.

    PubMed

    Cui, Liang; Hou, Jue; Fang, Jinling; Lee, Yie Hou; Costa, Vivian Vasconcelos; Wong, Lan Hiong; Chen, Qingfeng; Ooi, Eng Eong; Tannenbaum, Steven R; Chen, Jianzhu; Ong, Choon Nam

    2017-07-15

    Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly increased the challenges in the study of dengue pathogenesis and the development of therapeutics. Metabolomics provides global views of small-molecule metabolites and is a useful tool for finding metabolic pathways related to disease processes. Here, we conducted a serum metabolomics study on a model using humanized mice with dengue infection that had significant levels of human platelets, monocytes/macrophages, and hepatocytes. Forty-eight differential metabolites were identified, and the underlying perturbed metabolic pathways are quite similar to the pathways found to be altered in dengue patients in previous metabolomics studies, indicating that humanized mice could be a highly relevant small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. Copyright © 2017 Cui et al.

  18. The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug trimethoprim.

    PubMed

    Sangurdekar, Dipen P; Zhang, Zhigang; Khodursky, Arkady B

    2011-11-28

    Trimethoprim is a widely prescribed antibiotic for a variety of bacterial infections. It belongs to a class of anti-metabolites - antifolates - which includes drugs used against malarial parasites and in cancer therapy. However, spread of bacterial resistance to the drug has severely hampered its clinical use and has necessitated further investigations into its mechanism of action and treatment regimen. Trimethoprim selectively starves bacterial cells for tetrahydrofolate, a vital cofactor necessary for the synthesis of several metabolites. The outcome (bacteriostatic or bactericidal) of such starvation, however, depends on the availability of folate-dependent metabolites in the growth medium. To characterize this dependency, we investigated in detail the regulatory and structural components of Escherichia coli cellular response to trimethoprim in controlled growth and supplementation conditions. We surveyed transcriptional responses to trimethoprim treatment during bacteriostatic and bactericidal conditions and analyzed associated gene sets/pathways. Concurrent starvation of all folate dependent metabolites caused growth arrest, and this was accompanied by induction of general stress and stringent responses. Three gene sets were significantly associated with the bactericidal effect of TMP in different media including LB: genes of the SOS regulon, genes of the pyrimidine nucleotide biosynthetic pathway and members of the multiple antibiotic resistance (mar) regulon controlled by the MarR repressor. However, the SOS response was identified as the only universal transcriptional signature associated with the loss of viability by direct thymine starvation or by folate stress. We also used genome-wide gene knock-out screen to uncover means of sensitization of bacteria to the drug. We observed that among a number of candidate genes and pathways, the effect of knock-outs in the deoxyribose nucleotide salvage pathway, encoded by the deoCABD operon and under the control of the DeoR repressor, was most informative. Transcriptional induction of DNA damage response is an essential feature of the bactericidal effect of trimethoprim. Either the observation of the transcriptional response or DNA damage itself, or both, is made possible by thymine starvation when other folate-dependent metabolites are not limited. The effect of DNA damage by the drug takes place prior to its bactericidal effect, at the beginning of the lag stage of the treatment. Mutations in the deoxyribose nucleotide salvage pathway can affect duration of the lag as well as the rate of killing. This information can be used to postulate certain mechanistic differences between direct thymine starvation in thymidylate synthase deficient mutants and thymine starvation by anti-folate inhibitors. © 2011 Sangurdekar et al; licensee BioMed Central Ltd.

  19. Prediction of Relative In Vivo Metabolite Exposure from In Vitro Data Using Two Model Drugs: Dextromethorphan and Omeprazole

    PubMed Central

    Lutz, Justin D.

    2012-01-01

    Metabolites can have pharmacological or toxicological effects, inhibit metabolic enzymes, and be used as probes of drug-drug interactions or specific cytochrome P450 (P450) phenotypes. Thus, better understanding and prediction methods are needed to characterize metabolite exposures in vivo. This study aimed to test whether in vitro data could be used to predict and rationalize in vivo metabolite exposures using two model drugs and P450 probes: dextromethorphan and omeprazole with their primary metabolites dextrorphan, 5-hydroxyomeprazole (5OH-omeprazole), and omeprazole sulfone. Relative metabolite exposures were predicted using metabolite formation and elimination clearances. For dextrorphan, the formation clearances of dextrorphan glucuronide and 3-hydroxymorphinan from dextrorphan in human liver microsomes were used to predict metabolite (dextrorphan) clearance. For 5OH-omeprazole and omeprazole sulfone, the depletion rates of the metabolites in human hepatocytes were used to predict metabolite clearance. Dextrorphan/dextromethorphan in vivo metabolite/parent area under the plasma concentration versus time curve ratio (AUCm/AUCp) was overpredicted by 2.1-fold, whereas 5OH-omeprazole/omeprazole and omeprazole sulfone/omeprazole were predicted within 0.75- and 1.1-fold, respectively. The effect of inhibition or induction of the metabolite's formation and elimination on the AUCm/AUCp ratio was simulated. The simulations showed that unless metabolite clearance pathways are characterized, interpretation of the metabolic ratios is exceedingly difficult. This study shows that relative in vivo metabolite exposure can be predicted from in vitro data and characterization of secondary metabolism of probe metabolites is critical for interpretation of phenotypic data. PMID:22010218

  20. Considerations of temperature in the context of the persistence classification in the EU.

    PubMed

    Matthies, Michael; Beulke, Sabine

    2017-01-01

    Simulation degradation studies for industrial chemicals, biocidal products and plant protection products are required in the EU to estimate half-lives in soil, water and sediment for the comparison to persistence criteria for hazard (P/vP) assessment, and for use in exposure assessments. There is a discrepancy between European regulatory approaches regarding the temperature at which degradation half-lives should be (1) measured in simulation degradation testing of environmental compartments, and (2) compared to the P/vP criteria. In this paper, an opinion is provided on the options for the experimental temperature and extrapolation to other conditions. A review of the historical development of persistence criteria did not give conclusive evidence of the temperature at which the half-lives that underpin the P-criteria were measured, but room temperature is likely. Half-lives measured at 20 °C are in line with the intentions of some international agreements, but in the EU there is a continued political debate regarding the relevant temperature for comparison with persistence criteria. Measuring degradation at 20 °C has the advantage that metabolites/transformation products can be identified with greater accuracy, and that kinetic fits to determine half-lives for parent compounds and metabolites carry less uncertainty. Extrapolation of half-lives to lower temperatures is possible for assessing environmental exposure, but the uncertainty of the persistence classification is smaller when measured half-lives are used for direct comparison with P/vP criteria, without extrapolation. Model simulations demonstrate the pattern of concentrations that can be expected for realistic worst case climate scenarios in the EU based on the half-life of 120 days in soil at 20 °C and of 40 days in water at 20 °C, and their temporal and spatial variability.

  1. Metabonomics Approach to Assessing the Metabolism Variation and Endoexogenous Metabolic Interaction of Ginsenosides in Cold Stress Rats.

    PubMed

    Zhang, Zhihao; Wang, Xiaoyan; Wang, Jingcheng; Jia, Zhiying; Liu, Yumin; Xie, Xie; Wang, Chongchong; Jia, Wei

    2016-06-03

    Metabolic profiling technology, a massive information provider, has promoted the understanding of the metabolism of multicomponent medicines and its interactions with endogenous metabolites, which was previously a challenge in clarification. In this study, an untargeted GC/MS-based approach was employed to investigate the urinary metabolite profile in rats with oral administration of ginsenosides and the control group. Significant changes of urinary metabolites contents were observed in the total ginsenosides group, revealing the impact of ginsenosides as indicated by the up- or down-regulation of several pathways involving neurotransmitter-related metabolites, tricarboxylic acid (TCA) cycle, fatty acids β-oxidation, and intestinal microflora metabolites. Meanwhile, a targeted UPLC-QQQ/MS-based metabonomic approach was developed to investigate the changes of urinary ginsenoside metabolites during the process of acute cold stress. Metabolic analysis indicated that upstream ginsenosides (rg1, re, and rf) increased significantly, whereas downstream ginsenosides (ck, ppd, and ppt) decreased correspondingly after cold exposure. Finally, the relationships between ginsenosides and significantly changed metabolites were investigated by correlation analysis.

  2. Determining conserved metabolic biomarkers from a million database queries.

    PubMed

    Kurczy, Michael E; Ivanisevic, Julijana; Johnson, Caroline H; Uritboonthai, Winnie; Hoang, Linh; Fang, Mingliang; Hicks, Matthew; Aldebot, Anthony; Rinehart, Duane; Mellander, Lisa J; Tautenhahn, Ralf; Patti, Gary J; Spilker, Mary E; Benton, H Paul; Siuzdak, Gary

    2015-12-01

    Metabolite databases provide a unique window into metabolome research allowing the most commonly searched biomarkers to be catalogued. Omic scale metabolite profiling, or metabolomics, is finding increased utility in biomarker discovery largely driven by improvements in analytical technologies and the concurrent developments in bioinformatics. However, the successful translation of biomarkers into clinical or biologically relevant indicators is limited. With the aim of improving the discovery of translatable metabolite biomarkers, we present search analytics for over one million METLIN metabolite database queries. The most common metabolites found in METLIN were cross-correlated against XCMS Online, the widely used cloud-based data processing and pathway analysis platform. Analysis of the METLIN and XCMS common metabolite data has two primary implications: these metabolites, might indicate a conserved metabolic response to stressors and, this data may be used to gauge the relative uniqueness of potential biomarkers. METLIN can be accessed by logging on to: https://metlin.scripps.edu siuzdak@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Structural elucidation of new urinary tamoxifen metabolites by liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Lu, Jianghai; He, Chunji; He, Genye; Wang, Xiaobing; Xu, Youxuan; Wu, Yun; Dong, Ying; Ouyang, Gangfeng

    2014-07-01

    In this study, tamoxifen metabolic profiles were investigated carefully. Tamoxifen was administered to two healthy male volunteers and one female patient suffering from breast cancer. Urinary extracts were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry using full scan and targeted MS/MS techniques with accurate mass measurement. Chromatographic peaks for potential metabolites were selected by using the theoretical [M + H](+) as precursor ion in full-scan experiment and m/z 72, 58 or 44 as characteristic product ions for N,N-dimethyl, N-desmethyl and N,N-didesmethyl metabolites in targeted MS/MS experiment, respectively. Tamoxifen and 37 metabolites were detected in extraction study samples. Chemical structures of seven unreported metabolites were elucidated particularly on the basis of fragmentation patterns observed for these metabolites. Several metabolic pathways containing mono- and di-hydroxylation, methoxylation, N-desmethylation, N,N-didesmethylation, oxidation and combinations were suggested. All the metabolites were detected in the urine samples up to 1 week. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinshead, Whitney D.; Rodriguez, Sarah; Martin, Hector Garcia

    Background: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. Results: Overexpression of edd and eda in E. coli to enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP bymore » phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of E. coli glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). Conclusions: We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E. coli glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the glycolytic pathways, a potentially overlooked mechanism for regulating glucose catabolism and coutilization of other substrates. The presence of channeling in native pathways, if proven true, would affect synthetic biology applications and metabolic modeling.« less

  5. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.

  6. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants

    DOE PAGES

    Hollinshead, Whitney D.; Rodriguez, Sarah; Martin, Hector Garcia; ...

    2016-10-10

    Background: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. Results: Overexpression of edd and eda in E. coli to enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP bymore » phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of E. coli glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). Conclusions: We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E. coli glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the glycolytic pathways, a potentially overlooked mechanism for regulating glucose catabolism and coutilization of other substrates. The presence of channeling in native pathways, if proven true, would affect synthetic biology applications and metabolic modeling.« less

  7. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression.

    PubMed

    Pangburn, Heather A; Kraus, Hanna; Ahnen, Dennis J; Rice, Pamela L

    2005-09-02

    Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a decreased mortality from colorectal cancer (CRC). NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2) signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF) receptor (EGFR). HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068), total EGFR, phosphorylated ERK1/2 (pERK1/2), total ERK1/2, activated caspase-3, and alpha-tubulin. EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. These results suggest that downregulation of EGFR signaling by sulindac metabolites may occur, at least in part, by inhibiting activation and expression of EGFR. Inhibition of EGFR signaling may account for part of the growth inhibitory and chemopreventive effects of these compounds.

  8. Metabolomics reveals metabolic biomarkers of Crohn's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, J.K.; Willing, B.; Lucio, M.

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonicmore » acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.« less

  9. Chromatographic separation of piracetam and its metabolite in a mixture of microsomal preparations, followed by an MS/MS analysis.

    PubMed

    Sahu, Kapendra; Siddiqui, Anees A; Shaharyar, Mohammad; Ahmad, Niyaz; Anwar, Mohammad; Ahmad, Farhan J

    2013-07-01

    A rapid bioanalytical method was evaluated for the simultaneous determination of piracetam and its metabolite (M1) in human microsomal preparations by fast ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). In addition, a validated method of M1 in rat plasma was developed and successfully applied on pharmacokinetic studies. The present study was carried out to determine the metabolic pathways of piracetam for phase I metabolism and used cytochrome P450 isoforms responsible for the piracetam metabolism in human liver microsomes (HLMs). While additional potential metabolites of piracetam were suggested by computer-modeling. The resulting 2-(2-oxopyrrolidin-1-yl) acetic acid was the sole metabolite detected after the microsomal treatment. The amide hydrolysis mainly underwent to form a metabolite i.e., 2-(2-oxopyrrolidin-1-yl) acetic acid (M1). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Koji; Kawashima, Fujimasa; Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604

    2016-05-13

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MSmore » and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. -- Highlights: •A novel endosulfan sulfate-degrading bacterium was isolated and named strain S1-1. •Strain S1-1 degraded endosulfan sulfate into a novel metabolite endosulfan diol monosulfate. •Endosulfan diol monosulfate showed higher polarity than other known metabolites of endosulfan. •We proposed the plausible metabolic pathway of endosulfan in terms of organic chemistry.« less

  11. Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents.

    PubMed

    Idowu, O R; Peggins, J O; Brewer, T G

    1995-01-01

    Primaquine, 8-(4-amino-1-methylbutylamino)-6-methoxyquinoline, is an antimalarial 8-aminoquinoline derivative. Although it has been in use since 1952, its metabolism has not been clearly defined. This is due to the instability of the expected aminophenol metabolites and their amphoteric nature, which makes their isolation difficult. Recent studies on the metabolism of WR 238605, a new primaquine analog, has shown that these problems may be solved by extracting the metabolites in the presence of ethyl chloroformate. Subsequent identification of the ethoxycarbonyl derivatives of the metabolites has made it possible to define the in vitro metabolism of primaquine. The primary metabolic pathways of primaquine involved hydroxylation of the phenyl ring of the quinoline nucleus and C-hydroxylation of the 3'-position of the 8-aminoalkylamino side chain. Ring-hydroxylation of primaquine gives rise to 5-hydroxyprimaquine, which on demethylation produces 5-hydroxy-6-demethylprimaquine. Side-chain hydroxylation of primaquine gives rise to 3'-hydroxyprimaquine, which also undergoes O-demethylation to 3'-hydroxy-6-demethylprimaquine. 6-Demethylprimaquine, a putative metabolite of primaquine, also underwent metabolism involving 3'-hydroxylation of the side chain. WR 6026, 8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline, is an antileishmanial 8-aminoquinoline derivative. The in vitro metabolism of WR 6026 also results in the formation of side chain-oxygenated metabolites. The present results, together with previous observations on the metabolism of WR 238605 and closely related primaquine analog, suggest that side-chain oxygenation is an important metabolic pathway of antiparasitic 8-aminoquinoline compounds in general.

  12. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

    PubMed Central

    Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.

    2010-01-01

    Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119

  13. Mass spectrometric imaging as a high-spatial resolution tool for functional genomics: Tissue-specific gene expression of TT7 inferred from heterogeneous distribution of metabolites in Arabidopsis flowers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korte, Andrew R.; Song, Zhihong; Nikolau, Basil J.

    Laser desorption/ionization (LDI) mass spectrometry imaging (MSI) was used to acquire chemical images of flavonoid metabolites on the surface of wild-type and mutant (tt7) Arabidopsis thaliana flowers. Flavonoids were localized to the petals and carpels of flowers, with tissue heterogeneity in the petals. Specifically, kaempferol and/or its glycosides were abundant in the distal region of petals and quercetin and its downstream flavonoids were highly enriched in the more proximal region of petals. As a result of a mutation in the TT7 gene which blocks the conversion of dihydrokaempferol to dihydroquercetin, the downstream metabolites, quercetin, isohamnetin, and their glycosides, were notmore » observed in the mutant flowers. Instead, the metabolites in an alternative pathway, kaempferol and/or its glycosides, were as highly abundant on the proximal region of the petals as in the distal region. In addition, the combined flavonoid amounts on the proximal region of petals in the wild-type are almost equivalent to the amounts of kaempferol and/or its glycosides in the mutant. This strongly suggests that the expression of the TT7 gene is localized on the proximal part of the petal while the other genes in the upper stream pathway are evenly expressed throughout the petal. Most importantly, this work demonstrates MSI of metabolites can be utilized for the localization of gene expression.« less

  14. Designing overall stoichiometric conversions and intervening metabolic reactions

    DOE PAGES

    Chowdhury, Anupam; Maranas, Costas D.

    2015-11-04

    Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e.,more » minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C 2+ metabolites with higher carbon efficiency.« less

  15. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLoache, William; Russ, Zachary; Samson, Jennifer

    The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurementsmore » of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  16. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks.

    PubMed

    Celiz, Mary D; Tso, Jerry; Aga, Diana S

    2009-12-01

    The occurrence of human and veterinary pharmaceuticals in the environment has been a subject of concern for the past decade because many of these emerging contaminants have been shown to persist in soil and water. Although recent studies indicate that pharmaceutical contaminants can pose long-term ecological risks, many of the investigations regarding risk assessment have only considered the ecotoxicity of the parent drug, with very little attention given to the potential contributions that metabolites may have. The scarcity of available environmental data on the human metabolites excreted into the environment or the microbial metabolites formed during environmental biodegradation of pharmaceutical residues can be attributed to the difficulty in analyzing trace amounts of previously unknown compounds in complex sample matrices. However, with the advent of highly sensitive and powerful analytical instrumentations that have become available commercially, it is likely that an increased number of pharmaceutical metabolites will be identified and included in environmental risk assessment. The present study will present a critical review of available literature on pharmaceutical metabolites, primarily focusing on their analysis and toxicological significance. It is also intended to provide an overview on the recent advances in analytical tools and strategies to facilitate metabolite identification in environmental samples. This review aims to provide insight on what future directions might be taken to help scientists in this challenging task of enhancing the available data on the fate, behavior, and ecotoxicity of pharmaceutical metabolites in the environment.

  17. Biodegradation of fluorinated alkyl substances.

    PubMed

    Frömel, Tobias; Knepper, Thomas P

    2010-01-01

    The incorporation of fluorine into organic molecules entails both positive and adverse effects. Although fluorine imparts positive and unique properties such as water-and oil-repellency and chemical stability, adverse effects often pervade members of this compound class. A striking property of long perfluoroalkyl chains is their very pronounced environmental persistence. The present review is the first one designed to summarize recent accomplishments in the field of biodegradation of fluorine-containing surfactants, their metabolites, and structural analogs. The pronounced scientific and public interest in these chemicals has given impetus to undertake numerous degradation studies to assess the sources and origins of different fluorinated analog chemical known to exist in the environment. It was shown that biodegradation plays an important role in understanding how fluorinated substances reach the environment and, once they do, what their fate is. Today, PFOS and PFOA are ubiquitously detected as environmental contaminants. Their prominence as contaminants is mainly due to their extreme persistence, which is linked to their perfluoroalkyl chain length. It appears that desulfonation of a highly fluorinated surfactants can be achieved if an α-situated H atom, in relation to the sulfonate group, is present, at least under sulfur-limiting conditions. Molecules that are less heavily fluorinated can show very complex metabolic behavior, as is the case for fluorotelomer alcohols. These compounds are degraded via different but simultaneous pathways, which produce different stable metabolites, one of which is the respective perfluoroalkanoate (8:2-FTOH is transformed to PFOA). Preliminary screening tests indicate that fluorinated functional groups, such as the trifluoromethoxy group and the p-(trifluoromethyl)phenoxy group, may be useful implementations in novel, environmentally benign fluorosurfactants. More specifically, trifluoromethoxy groups constitute a substitute for those that have been used in the past; this functionality is degradable when it appears in structures that are normally subject to biodegradation. Other compounds tested did not meet this criterion. Interdisciplinary investigations on fluorinated surfactants are still very much needed and will certainly continue during the next many years. For instance, the role of fluorinated polymers in contributing small fluorinated molecules to the environmental burden still has not been fully understood.

  18. Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes

    PubMed Central

    Bazzini, Ariel A.; Manacorda, Carlos A.; Tohge, Takayuki; Conti, Gabriela; Rodriguez, Maria C.; Nunes-Nesi, Adriano; Villanueva, Sofía; Fernie, Alisdair R.; Carrari, Fernando; Asurmendi, Sebastian

    2011-01-01

    Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration. PMID:22174812

  19. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data

    PubMed Central

    Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara J.; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.

    2016-01-01

    The study of metabolism has had a long history. Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. The National Institutes of Health Common Fund Metabolomics Program was established in 2012 to stimulate interest in the approaches and technologies of metabolomics. To deliver one of the program’s goals, the University of Alabama at Birmingham has hosted an annual 4-day short course in metabolomics for faculty, postdoctoral fellows and graduate students from national and international institutions. This paper is the first part of a summary of the training materials presented in the course to be used as a resource for all those embarking on metabolomics research. PMID:27434804

  20. The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of C57BL/6 Mice.

    PubMed

    Green, Cara L; Soltow, Quinlyn A; Mitchell, Sharon E; Derous, Davina; Wang, Yingchun; Chen, Luonan; Han, Jing-Dong J; Promislow, Daniel E L; Lusseau, David; Douglas, Alex; Jones, Dean P; Speakman, John R

    2018-04-30

    Calorie restriction (CR) remains the most robust intervention to extend life span and improve health span. Using a global mass spectrometry-based metabolomics approach, we identified metabolites that were significantly differentially expressed in the plasma of C57BL/6 mice, fed graded levels of calorie restriction (10% CR, 20% CR, 30% CR, and 40% CR) compared with mice fed ad libitum for 12 hours a day. The differential expression of metabolites increased with the severity of CR. Pathway analysis revealed that graded CR had an impact on vitamin E and vitamin B levels, branched chain amino acids, aromatic amino acids, and fatty acid pathways. The majority of amino acids correlated positively with fat-free mass and visceral fat mass, indicating a strong relationship with body composition and vitamin E metabolites correlated with stomach and colon size, which may allude to the beneficial effects of investing in gastrointestinal organs with CR. In addition, metabolites that showed a graded effect, such as the sphinganines, carnitines, and bile acids, match our previous study on liver, which suggests not only that CR remodels the metabolome in a way that promotes energy efficiency, but also that some changes are conserved across tissues.

  1. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet.

    PubMed

    Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-01-01

    Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host.

  2. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet

    PubMed Central

    Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-01-01

    Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host. PMID:27303373

  3. Metabolism of mequindox in liver microsomes of rats, chicken and pigs.

    PubMed

    Liu, Zhao-Ying; Huang, Ling-Li; Chen, Dong-Mei; Yuan, Zong-Hui

    2010-04-15

    Mequindox, 3-methyl-2-quinoxalinacetyl-1,4-dioxide, is a quinoxaline-N,N-dioxide used in veterinary medicine as a antibacterial in China. To gain an understanding of the interspecies differences in the metabolism of mequindox, comparative metabolite profiles were qualitatively and quantitatively carried out for the first time in rat, chicken and pig liver microsomes by high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. A total of 14 metabolites were characterized based on their accurate MS(2) spectra and known structure of mequindox. The in vitro metabolic pathways of mequindox in three species were proposed as N-->O group reduction, carbonyl reduction, N-->O group reduction followed by carbonyl reduction or methyl mono-hydroxylation. A metabolic pathway involving N-->O group reduction followed by acetyl group mono-hydroxylation in only chicken was also proposed. There was also quantitative species difference for mequindox metabolism in three species. 1-Desoxymequindox was the main metabolite in all species, but otherwise there were some qualitative interspecies differences in mequindox major metabolites. This work has revealed biotransformation characteristics of mequindox among different species, and moreover will further facilitate the explanations of the biological activities of mequindox in animals. 2010 John Wiley & Sons, Ltd.

  4. Hydrolysis is the dominating in vivo metabolism pathway for arctigenin: identification of novel metabolites of arctigenin by LC/MS/MS after oral administration in rats.

    PubMed

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2013-04-01

    The phenylpropanoid dibenzylbutyrolactone lignan arctigenin, a key component found in Arctium lappa, or burdock, has been reported with a variety of therapeutic effects including anticancer, anti-inflammation, and antivirus effects. Using LC/MS/MS, three novel metabolites of arctigenin, namely, arctigenic acid, arctigenin-4-O'-glucuronide, and 4-O-demethylarctigenin were identified after oral administration of arctigenin in rats for the first time. Another potential metabolite of arctigenin, arctigenin-4'-O-sulfate, was identified in vitro but not in vivo. Structure of arctigenic acid, the major metabolite of arctigenin, was confirmed by 13C-NMR and 1H-NMR. Rapid hydrolysis in plasma was identified as the major metabolic pathway of arctigenin after its oral administration, with Vmax, Km, and Clint in rat plasma determined to be 2.21 ± 0.12 nmol/min/mg, 89.12 ± 9.44 µM, and 24.74 µL/min/mg, respectively. Paraoxonase 1 was further confirmed to be the enzyme responsible for arctigenin hydrolysis, with Vmax, Km, and Clint determined to be 55.39 ± 1.49 nmol/min/mg, 300.3 ± 10.86 µM, and 184.45 µL/min/mg, respectively. Georg Thieme Verlag KG Stuttgart · New York.

  5. Analysis of metabolic networks of Streptomyces leeuwenhoekii C34 by means of a genome scale model: Prediction of modifications that enhance the production of specialized metabolites.

    PubMed

    Razmilic, Valeria; Castro, Jean F; Andrews, Barbara; Asenjo, Juan A

    2018-07-01

    The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains. © 2018 Wiley Periodicals, Inc.

  6. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.

    PubMed

    Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans

    2008-01-01

    Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research.

  7. The gut microbiota metabolite indole alleviates liver inflammation in mice.

    PubMed

    Beaumont, Martin; Neyrinck, Audrey M; Olivares, Marta; Rodriguez, Julie; de Rocca Serra, Audrey; Roumain, Martin; Bindels, Laure B; Cani, Patrice D; Evenepoel, Pieter; Muccioli, Giulio G; Demoulin, Jean-Baptiste; Delzenne, Nathalie M

    2018-06-15

    The gut microbiota regulates key hepatic functions, notably through the production of bacterial metabolites that are transported via the portal circulation. We evaluated the effects of metabolites produced by the gut microbiota from aromatic amino acids (phenylacetate, benzoate, p-cresol, and indole) on liver inflammation induced by bacterial endotoxin. Precision-cut liver slices prepared from control mice, Kupffer cell (KC)-depleted mice, and obese mice ( ob/ ob) were treated with or without LPS and bacterial metabolites. We observed beneficial effects of indole that dose-dependently reduced the LPS-induced up-regulation of proinflammatory mediators at both mRNA and protein levels in precision-cut liver slices prepared from control or ob/ ob mice. KC depletion partly prevented the antiinflammatory effects of indole, notably through a reduction of nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain-containing 3 (NLRP3) pathway activation. In vivo, the oral administration of indole before an LPS injection reduced the expression of key proteins of the NF-κB pathway and downstream proinflammatory gene up-regulation. Indole also prevented LPS-induced alterations of cholesterol metabolism through a transcriptional regulation associated with increased 4β-hydroxycholesterol hepatic levels. In summary, indole appears as a bacterial metabolite produced from tryptophan that is able to counteract the detrimental effects of LPS in the liver. Indole could be a new target to develop innovative strategies to decrease hepatic inflammation.-Beaumont, M., Neyrinck, A. M., Olivares, M., Rodriguez, J., de Rocca Serra, A., Roumain, M., Bindels, L. B., Cani, P. D., Evenepoel, P., Muccioli, G. G., Demoulin, J.-B., Delzenne, N. M. The gut microbiota metabolite indole alleviates liver inflammation in mice.

  8. Responses of metabolic pathways to polycyclic aromatic compounds in flounder following oil spill in the Baltic Sea near the Estonian coast.

    PubMed

    Kreitsberg, Randel; Zemit, Irina; Freiberg, Rene; Tambets, Meelis; Tuvikene, Arvo

    2010-09-15

    In January 2006 an oil spill that involved approximately 40tons of heavy fuel oil affected more than 30km of the north-west coast of Estonia. The aquatic pollution of the coastal area of the Baltic Sea was monitored by measuring the content of selected polycyclic aromatic hydrocarbons (PAHs and PAH metabolites) in flounder (Platichthys flesus trachurus Duncker). One hundred and thirty-one fish were collected: muscle and liver tissues were analyzed by high-performance liquid chromatography (HPLC); bile and urine samples were analyzed using fixed wavelengths fluorescence. Fifteen different types of PAHs were analyzed in liver and muscle, and four types of PAH metabolites were analyzed in bile and urine (2-, 3-, 4- and 5-ringed PAH metabolites represented by naphthalene, phenanthrene, pyrene and benzo(a)pyrene). Fluorescence analyses were carried out using excitation/emission wavelength pairs: 290/380, 256/380, 341/383 and 380/430nm, respectively. There was a time-dependent decrease of PAH concentrations in liver (83%), bile (82%) and urine (113%). HPLC analysis of muscle tissues demonstrated low concentrations of single PAHs, but a decrease of concentrations during the study period was not observed. During the analyses concentrations of PAH metabolites in bile and urine were compared. Liver metabolic transformation activity is believed to exceed that of the kidney but the analyses demonstrated high metabolite concentration in fish urine, particularly of 4- and 5-ring PAH metabolites. The results indicate remarkable buffer capacity of hydrodynamically active sea as well as considerable importance of kidney-urine metabolic pathways in flounder physiology. 2010 Elsevier B.V. All rights reserved.

  9. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via1H NMR-based metabolomics approach.

    PubMed

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Mohd Dom, Nur Sumirah; Machap, Chandradevan; Hamid, Muhajir; Ismail, Amin; Khatib, Alfi; Abas, Faridah

    2017-12-01

    Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. By using a combination of 1 H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): Identification of the nephrotoxic metabolic pathway.

    PubMed

    Kharasch, Evan D; Schroeder, Jesara L; Liggitt, H Denny; Park, Sang B; Whittington, Dale; Sheffels, Pamela

    2006-10-01

    Methoxyflurane nephrotoxicity results from biotransformation; inorganic fluoride is a toxic metabolite. Concern exists about potential renal toxicity from volatile anesthetic defluorination, but many anesthetics increase fluoride concentrations without consequence. Methoxyflurane is metabolized by both dechlorination to methoxydifluoroacetic acid (MDFA, which may degrade to fluoride) and O-demethylation to fluoride and dichloroacetatic acid. The metabolic pathway responsible for methoxyflurane nephrotoxicity has not, however, been identified, which was the aim of this investigation. Experiments evaluated methoxyflurane metabolite formation and effects of enzyme induction or inhibition on methoxyflurane metabolism and toxicity. Rats pretreated with phenobarbital, barium sulfate, or nothing were anesthetized with methoxyflurane, and renal function and urine methoxyflurane metabolite excretion were assessed. Phenobarbital effects on MDFA metabolism and toxicity in vivo were also assessed. Metabolism of methoxyflurane and MDFA in microsomes from livers of pretreated rats was determined in vitro. Phenobarbital pretreatment increased methoxyflurane nephrotoxicity in vivo (increased diuresis and blood urea nitrogen and decreased urine osmolality) and induced in vitro hepatic microsomal methoxyflurane metabolism to inorganic fluoride (2-fold), dichloroacetatic acid (1.5-fold), and MDFA (5-fold). In contrast, phenobarbital had no influence on MDFA renal effects in vivo or MDFA metabolism in vitro or in vivo. MDFA was neither metabolized to fluoride nor nephrotoxic. Barium sulfate diminished methoxyflurane metabolism and nephrotoxicity in vivo. Fluoride from methoxyflurane anesthesia derives from O-demethylation. Phenobarbital increases in methoxyflurane toxicity do not seem attributable to methoxyflurane dechlorination, MDFA toxicity, or MDFA metabolism to another toxic metabolite, suggesting that nephrotoxicity is attributable to methoxyflurane O-demethylation. Fluoride, one of many metabolites from O-demethylation, may be toxic and/or reflect formation of a different toxic metabolite. These results may have implications for interpreting anesthetic defluorination, volatile anesthetic use, and methods to evaluate anesthetic toxicity.

  11. HMDB 4.0: the human metabolome database for 2018.

    PubMed

    Wishart, David S; Feunang, Yannick Djoumbou; Marcu, Ana; Guo, An Chi; Liang, Kevin; Vázquez-Fresno, Rosa; Sajed, Tanvir; Johnson, Daniel; Li, Carin; Karu, Naama; Sayeeda, Zinat; Lo, Elvis; Assempour, Nazanin; Berjanskii, Mark; Singhal, Sandeep; Arndt, David; Liang, Yonjie; Badran, Hasan; Grant, Jason; Serra-Cayuela, Arnau; Liu, Yifeng; Mandal, Rupa; Neveu, Vanessa; Pon, Allison; Knox, Craig; Wilson, Michael; Manach, Claudine; Scalbert, Augustin

    2018-01-04

    The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. In Vitro and In Vivo Metabolism and Inhibitory Activities of Vasicine, a Potent Acetylcholinesterase and Butyrylcholinesterase Inhibitor

    PubMed Central

    Liu, Wei; Shi, Xiaoyuan; Yang, Yadi; Cheng, Xuemei; Liu, Qing; Han, Han; Yang, Baohua; He, Chunyong; Wang, Yongli; Jiang, Bo; Wang, Zhengtao; Wang, Changhong

    2015-01-01

    Vasicine (VAS), a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer’s disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity. PMID:25849329

  13. Characterization of in vivo metabolites in rat urine following an oral dose of masitinib by liquid chromatography tandem mass spectrometry.

    PubMed

    Kadi, Adnan A; Amer, Sawsan M; Darwish, Hany W; Attwa, Mohamed W

    2018-05-15

    Masitinib (MST) is an orally administered drug that targets mast cells and macrophages, important cells for immunity, by inhibiting a limited number of tyrosine kinases. It is currently registered in Europe and USA for the treatment of mast cell tumors in dogs. AB Science announced that the European Medicines Agency has accepted a conditional marketing authorization application for MST to treat amyotrophic lateral sclerosis. In our work, we focused on studying in vivo metabolism of MST in Sprague-Dawley rats. Single oral dose of MST (33 mg kg -1 ) was given to Sprague-Dawley rats (kept in metabolic cages) using oral gavage. Urine was collected and filtered at 0, 6, 12, 18, 24, 48, 72 and 96 h from MST dosing. An equal amount of ACN was added to urine samples. Both organic and aqueous layers were injected into liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect in vivo phase I and phase II MST metabolites. The current work reports the identification and characterization of twenty in vivo phase I and four in vivo phase II metabolites of MST by LC-MS/MS. Phase I metabolic pathways were reduction, demethylation, hydroxylation, oxidative deamination, oxidation and N-oxide formation. Phase II metabolic pathways were the direct conjugation of MST, N-demethyl metabolites and oxidative metabolites with glucuronic acid. Part of MST dose was excreted unchanged in urine. The literature review showed no previous articles have been made on in vivo metabolism of MST or detailed structural identification of the formed in vivo phase I and phase II metabolites.

  14. Mood symptoms correlate with kynurenine pathway metabolites following sports-related concussion.

    PubMed

    Singh, Rashmi; Savitz, Jonathan; Teague, T Kent; Polanski, David W; Mayer, Andrew R; Bellgowan, Patrick S F; Meier, Timothy B

    2016-06-01

    An imbalance of neuroactive kynurenine pathway metabolites has been proposed as one mechanism behind the neuropsychiatric sequelae of certain neurological disorders. We hypothesized that concussed football players would have elevated plasma levels of neurotoxic kynurenine metabolites and reduced levels of neuroprotective metabolites relative to healthy football players and that altered kynurenine levels would correlate with post-concussion mood symptoms. Mood scales and plasma concentrations of kynurenine metabolites were assessed in concussed (N=18; 1.61 days post-injury) and healthy football players (N=18). A subset of football players returned at 1-week (N=14; 9.29 days) and 1-month post-concussion (N=14, 30.93 days). Concussed athletes had significantly elevated levels of quinolinic acid (QUIN) and significantly lower ratios of kynurenic acid (KYNA) to QUIN at all time points compared with healthy athletes (p's<0.05), with no longitudinal evidence of normalization of KYNA or KYNA/QUIN. At 1-day post-injury, concussed athletes with lower levels of the putatively neuroprotective KYNA/QUIN ratio reported significantly worse depressive symptoms (p=0.04), and a trend toward worse anxiety symptoms (p=0.06), while at 1-month higher QUIN levels were associated with worse mood symptoms (p's<0.01). Finally, concussed athletes with worse concussion outcome, defined as number of days until return-to-play, had higher QUIN and lower KYNA/QUIN at 1-month post-injury (p's<0.05). These results converge with existing kynurenine literature on psychiatric patients and provide the first evidence of altered peripheral levels of kynurenine metabolites following sports-related concussion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Studies of metabolic pathways of trimebutine by simultaneous administration of trimebutine and its deuterium-labeled metabolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Y.; Chishima, S.; Takeyama, S.

    1989-07-01

    Trimebutine maleate (I), (+-)-2-dimethylamino-2-phenylbutyl 3,4,5-trimethoxybenzoate hydrogen maleate, and a deuterium-labeled sample of its hydrolyzed metabolite, 2-dimethylamino-2-phenylbutanol-d3 (II-d3), were simultaneously administered to experimental animals at an oral dose of 10 or 50 mumol/kg, and distribution ratios of the two alternative initial metabolic steps, i.e., ester hydrolysis and N-demethylation, were estimated by determining the composition of the urinary alcohol-moiety metabolites, II, and its mono- and di-demethylated metabolites, III and IV, by GC/MS. In dogs, the order of quantities of the metabolites from II-d3 was II much greater than III much greater than IV, showing predominance of conjugation over N-demethylation. However, this ordermore » was reversed when the amounts of the metabolites from I were compared, indicating that I was preferentially metabolized by N-demethylation followed by ester hydrolysis and conjugation in this order. In rats, a considerable proportion of I was presumed to be metabolized by ester hydrolysis before N-demethylation. In in vitro experiments employing the liver microsomes and homogenates of liver and small intestine from rats and dogs, it was found that both ester-hydrolizing and N-demethylating activities were higher in rats than in dogs, and the conjugating activity was higher in dogs than in rats. It was also found that I, having a high lipophilicity, was more susceptible to N-demethylation than less lipophilic II. These results from the in vitro experiments could account for the species differences in the distribution ratio of the metabolic pathways of I in vivo.« less

  16. Metabolomic patterns and alcohol consumption in African Americans in the Atherosclerosis Risk in Communities Study123

    PubMed Central

    Zheng, Yan; Yu, Bing; Alexander, Danny; Steffen, Lyn M; Nettleton, Jennifer A

    2014-01-01

    Background: Effects of alcohol consumption on health and disease are complex and involve a number of cellular and metabolic processes. Objective: We examined the association between alcohol consumption habits and metabolomic profiles. Design: We conducted a cross-sectional study to explore the association of alcohol consumption habits measured by using a questionnaire with serum metabolites measured by using untargeted mass spectrometry in 1977 African Americans from the Jackson field center in the Atherosclerosis Risk in Communities Study. The whole sample was split into a discovery set (n = 1500) and a replication set (n = 477). Alcohol consumption habits were treated as an ordinal variable, with nondrinkers as the reference group and quartiles of current drinkers as ordinal groups with higher values. For each metabolite, a linear regression was conducted to estimate its relation with alcohol consumption habits separately in both sets. A modified Bonferroni procedure was used in the discovery set to adjust the significance threshold (P < 1.9 × 10−4). Results: In 356 named metabolites, 39 metabolites were significantly associated with alcohol consumption habits in both discovery and replication sets. In general, alcohol consumption was associated with higher levels of most metabolites such as those in amino acid and lipid pathways and with lower levels of γ-glutamyl dipeptides. Three pathways, 2-hydroxybutyrate-related metabolites, γ-glutamyl dipeptides, and lysophosphatidylcholines, which are considered to be involved in inflammation and oxidation, were associated with incident cardiovascular diseases. Conclusions: To our knowledge, this is the largest metabolomic study thus far conducted in nonwhites. Metabolomic biomarkers of alcohol consumption were identified and replicated. The results lend new insight into potential mediating effects between alcohol consumption and future health and disease. PMID:24760976

  17. The antihistamine diphenhydramine is demethylated by anaerobic wastewater microorganisms.

    PubMed

    Wolfson, Sarah J; Porter, Abigail W; Villani, Thomas S; Simon, James E; Young, Lily Y

    2018-07-01

    While emerging pharmaceutical contaminants are monitored in wastewater treatment and the environment, there is little information concerning their microbial metabolites. The transformation of diphenhydramine by microorganisms in anaerobic digester sludge was investigated using anaerobic cultures amended with 1 mM diphenhydramine as the sole carbon source. Complete transformation of the parent compound to a persistent metabolite occurred within 191 days. Using GC/MS analysis, the metabolite was identified as N-desmethyl diphenhydramine. Loss of the parent compound diphenhydramine followed a first order rate constant of 0.013 day -1 . There was no observed decrease in metabolite concentration even after a further 12 months of incubation, suggesting that the metabolite resists further degradation during wastewater treatment. Bacterial community diversity in the diphenhydramine transforming assay cultures showed enrichment in Comamonadaceae, Symbiobacteriaceae, Anaerolineaceae, and Prevotellaceae relative to unamended background controls. An anaerobic toxicity assay demonstrated that diphenhydramine has an inhibitory effect on both fermentative bacteria and methanogenic archaea in the wastewater community. In contrast, the metabolite N-desmethyl diphenhydramine partially suppressed methanogens but did not impact the fermenting community. To our knowledge, this is the first report of diphenhydramine metabolism by a bacterial community. The limited transformation of diphenhydramine by wastewater microorganisms indicates that N-desmethyl diphenhydramine will enter the environment along with unmetabolized diphenhydramine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    PubMed

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  19. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov; Smith, A.M.; West, P.R.

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoAmore » biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and pregnancy. Black-Right-Pointing-Pointer Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.« less

  20. Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells.

    PubMed

    Liu, Peng; Wang, Wei; Zhou, Zhigang; Smith, Andrew J O; Bowater, Richard P; Wormstone, Ian Michael; Chen, Yuqiong; Bao, Yongping

    2018-05-09

    Sulforaphane (SFN) exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane- N -acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs) and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H₂O₂ challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and the induction of intracellular glutathione (GSH) played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.

Top