Sample records for pathways remain unknown

  1. Infection-derived lipids elicit a novel immune deficiency circuitry in arthropods

    USDA-ARS?s Scientific Manuscript database

    The insect Immune Deficiency (IMD) pathway resembles the tumor necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties elicit the IMD signaling cascade remains unknown. Here, we disclose thoug...

  2. Preschool Children with and without Developmental Delay: Risk, Parenting, and Child Demandingness

    ERIC Educational Resources Information Center

    Brown, Mallory A.; McIntyre, Laura Lee; Crnic, Keith A.; Baker, Bruce L.; Blacher, Jan

    2011-01-01

    Although past literature has established relations between early child risk factors, negative parenting, and problematic child behavior, the nature of these interrelations and pathways of influence over time remains largely unknown, especially in children with developmental delays or disabilities. In the current study, data were drawn from the…

  3. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae

    USDA-ARS?s Scientific Manuscript database

    Although the biosynthesis of oxalic acid is known to occur in a number of bacteria, the mechanism(s) regulating its production remains largely unknown. To date, there is no report on the identification of an oxalic acid biosynthetic pathway gene from bacteria. In an attempt to identify such a gene...

  4. Exposures to Emissions from Combustion of Biodiesel Fuels (B100/B20) Elicit Differential Responses in Redox-Sensitive Pathways

    EPA Science Inventory

    Exposure to airborne particulate matter (PM) is associated with higher risk for cardiopulmonary diseases but mechanisms for the effects remain unknown. Combustion of biodiesel fuels (BD) is associated with lower emission of PM but the health consequences of exposure to exhaust fr...

  5. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra.

    PubMed

    Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F

    2017-11-07

    The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  6. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    USDA-ARS?s Scientific Manuscript database

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  7. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    NASA Astrophysics Data System (ADS)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  8. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets

    PubMed Central

    Kotera, Masaaki; Tabei, Yasuo; Yamanishi, Yoshihiro; Tokimatsu, Toshiaki; Goto, Susumu

    2013-01-01

    Motivation: The metabolic pathway is an important biochemical reaction network involving enzymatic reactions among chemical compounds. However, it is assumed that a large number of metabolic pathways remain unknown, and many reactions are still missing even in known pathways. Therefore, the most important challenge in metabolomics is the automated de novo reconstruction of metabolic pathways, which includes the elucidation of previously unknown reactions to bridge the metabolic gaps. Results: In this article, we develop a novel method to reconstruct metabolic pathways from a large compound set in the reaction-filling framework. We define feature vectors representing the chemical transformation patterns of compound–compound pairs in enzymatic reactions using chemical fingerprints. We apply a sparsity-induced classifier to learn what we refer to as ‘enzymatic-reaction likeness’, i.e. whether compound pairs are possibly converted to each other by enzymatic reactions. The originality of our method lies in the search for potential reactions among many compounds at a time, in the extraction of reaction-related chemical transformation patterns and in the large-scale applicability owing to the computational efficiency. In the results, we demonstrate the usefulness of our proposed method on the de novo reconstruction of 134 metabolic pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our comprehensively predicted reaction networks of 15 698 compounds enable us to suggest many potential pathways and to increase research productivity in metabolomics. Availability: Softwares are available on request. Supplementary material are available at http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2013/. Contact: goto@kuicr.kyoto-u.ac.jp PMID:23812977

  9. Big Events in Greece and HIV Infection Among People Who Inject Drugs

    PubMed Central

    Nikolopoulos, Georgios K.; Sypsa, Vana; Bonovas, Stefanos; Paraskevis, Dimitrios; Malliori-Minerva, Melpomeni; Hatzakis, Angelos; Friedman, Samuel R.

    2015-01-01

    Big Events are processes like macroeconomic transitions that have lowered social well-being in various settings in the past. Greece has been hit by the global crisis and experienced an HIV outbreak among people who inject drugs. Since the crisis began (2008), Greece has seen population displacement, inter-communal violence, cuts in governmental expenditures, and social movements. These may have affected normative regulation, networks, and behaviors. However, most pathways to risk remain unknown or unmeasured. We use what is known and unknown about the Greek HIV outbreak to suggest modifications in Big Events models and the need for additional research. PMID:25723309

  10. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation.

    PubMed

    Kostova, Elena B; Beuger, Boukje M; Klei, Thomas R L; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K; van Bruggen, Robin

    2015-04-16

    Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca(2+) ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)-Akt (protein kinase B) pathway, the Jak-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the Raf-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation.

  11. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation

    PubMed Central

    Kostova, Elena B.; Beuger, Boukje M.; Klei, Thomas R.L.; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K.; van Bruggen, Robin

    2015-01-01

    Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. PMID:25757360

  12. A synaptic trek to autism.

    PubMed

    Bourgeron, Thomas

    2009-04-01

    Autism spectrum disorders (ASD) are diagnosed on the basis of three behavioral features namely deficits in social communication, absence or delay in language, and stereotypy. The susceptibility genes to ASD remain largely unknown, but two major pathways are emerging. Mutations in TSC1/TSC2, NF1, or PTEN activate the mTOR/PI3K pathway and lead to syndromic ASD with tuberous sclerosis, neurofibromatosis, or macrocephaly. Mutations in NLGN3/4, SHANK3, or NRXN1 alter synaptic function and lead to mental retardation, typical autism, or Asperger syndrome. The mTOR/PI3K pathway is associated with abnormal cellular/synaptic growth rate, whereas the NRXN-NLGN-SHANK pathway is associated with synaptogenesis and imbalance between excitatory and inhibitory currents. Taken together, these data strongly suggest that abnormal synaptic homeostasis represent a risk factor to ASD.

  13. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  14. The dark side of hippo signaling: A cancer promoter role.

    PubMed

    Dunn, Brandon; Ma, Xianjue

    2017-10-02

    The Hippo signaling pathway regulates organ size and tissue homeostasis. Given this role it is unsurprising that dysregulation of this pathway has implications for cancer progression. A convincing body of literature shows that the Hippo pathway serves a tumor suppressive function with its inactivation leading to massive overgrowth. However, additional studies have also shown that activation of Hippo signaling can promote tumor progression. It remains unknown how a single pathway can produce such diametrically opposed effects. This lack of knowledge is in part due to our inability to make meaningful comparisons from studies which have taken place in a variety of cell types, tissues, and organisms. Recently however, we have published 2 studies using the Drosophila wing disk to study the Hippo pathway and have found that Hippo pathway activation can promote cell migration and invasion while Hippo pathway inactivation leads to overgrowth. Thus we propose here that Drosophila can provide a research platform with which to begin addressing how the Hippo pathway can both enhance and suppress tumor progression due to published pro- and anti-tumor functionalities of the Hippo pathway in the same tissue.

  15. Sequence Elucidation of an Unknown Cyclic Peptide of High Doping Potential by ETD and CID Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guan, Fuyu; Uboh, Cornelius E.; Soma, Lawrence R.; Rudy, Jeffrey

    2011-04-01

    Identification of an unknown substance without any information remains a daunting challenge despite advances in chemistry and mass spectrometry. However, an unknown cyclic peptide in a sample with very limited volume seized at a Pennsylvania racetrack has been successfully identified. The unknown sample was determined by accurate mass measurements to contain a small unknown peptide as the major component. Collision-induced dissociation (CID) of the unknown peptide revealed the presence of Lys (not Gln, by accurate mass), Phe, and Arg residues, and absence of any y-type product ion. The latter, together with the tryptic digestion results of the unusual deamidation and absence of any tryptic cleavage, suggests a cyclic structure for the peptide. Electron-transfer dissociation (ETD) of the unknown peptide indicated the presence of Gln (not Lys, by the unusual deamidation), Phe, and Arg residues and their connectivity. After all the results were pieced together, a cyclic tetrapeptide, cyclo[Arg-Lys-N(C6H9)Gln-Phe], is proposed for the unknown peptide. Observations of different amino acid residues from CID and ETD experiments for the peptide were interpreted by a fragmentation pathway proposed, as was preferential CID loss of a Lys residue from the peptide. ETD was used for the first time in sequencing of a cyclic peptide; product ions resulting from ETD of the peptide identified were categorized into two types and named pseudo-b and pseudo-z ions that are important for sequencing of cyclic peptides. The ETD product ions were interpreted by fragmentation pathways proposed. Additionally, multi-stage CID mass spectrometry cannot provide complete sequence information for cyclic peptides containing adjacent Arg and Lys residues. The identified cyclic peptide has not been documented in the literature, its pharmacological effects are unknown, but it might be a "designer" drug with athletic performance-enhancing effects.

  16. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea

    PubMed Central

    Kono, Takunari; Mehrotra, Sandhya; Endo, Chikako; Kizu, Natsuko; Matusda, Mami; Kimura, Hiroyuki; Mizohata, Eiichi; Inoue, Tsuyoshi; Hasunuma, Tomohisa; Yokota, Akiho; Matsumura, Hiroyoshi; Ashida, Hiroki

    2017-01-01

    Two enzymes are considered to be unique to the photosynthetic Calvin–Benson cycle: ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for CO2 fixation, and phosphoribulokinase (PRK). Some archaea possess bona fide RuBisCOs, despite not being photosynthetic organisms, but are thought to lack PRK. Here we demonstrate the existence in methanogenic archaea of a carbon metabolic pathway involving RuBisCO and PRK, which we term ‘reductive hexulose-phosphate' (RHP) pathway. These archaea possess both RuBisCO and a catalytically active PRK whose crystal structure resembles that of photosynthetic bacterial PRK. Capillary electrophoresis-mass spectrometric analysis of metabolites reveals that the RHP pathway, which differs from the Calvin–Benson cycle only in a few steps, is active in vivo. Our work highlights evolutionary and functional links between RuBisCO-mediated carbon metabolic pathways in methanogenic archaea and photosynthetic organisms. Whether the RHP pathway allows for autotrophy (that is, growth exclusively with CO2 as carbon source) remains unknown. PMID:28082747

  17. The colibactin warhead crosslinks DNA

    NASA Astrophysics Data System (ADS)

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  18. Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis.

    PubMed

    Kumari, P; Nigam, R; Singh, A; Nakade, U P; Sharma, A; Garg, S K; Singh, S K

    2017-09-01

    Demodex canis infestation in dogs remains one of the main challenges in veterinary dermatology. The exact pathogenesis of canine demodicosis is unknown but an aberration in immune status is considered very significant. No studies have underpinned the nexus between induction of demodicosis and neural immunosuppressive pathways so far. We have evaluated the involvement of cholinergic pathways in association with cytokines regulation as an insight into the immuno-pathogenesis of canine demodicosis in the present study. Remarkable elevations in circulatory immunosuppressive cytokine interleukin-10 and cholinesterase activity were observed in dogs with demodicosis. Simultaneously, remarkable reduction in circulatory pro-inflammatory cytokine tumour necrosis factor-alpha level was observed in dogs with demodicosis. Findings of the present study evidently suggest that Demodex mites might be affecting the cholinergic pathways to induce immunosuppression in their host and then proliferate incessantly in skin microenvironment to cause demodicosis.

  19. Anaerobic biosynthesis of the lower ligand of vitamin B12

    PubMed Central

    Hazra, Amrita B.; Han, Andrew W.; Mehta, Angad P.; Mok, Kenny C.; Osadchiy, Vadim; Begley, Tadhg P.; Taga, Michiko E.

    2015-01-01

    Vitamin B12 (cobalamin) is required by humans and other organisms for diverse metabolic processes, although only a subset of prokaryotes is capable of synthesizing B12 and other cobamide cofactors. The complete aerobic and anaerobic pathways for the de novo biosynthesis of B12 are known, with the exception of the steps leading to the anaerobic biosynthesis of the lower ligand, 5,6-dimethylbenzimidazole (DMB). Here, we report the identification and characterization of the complete pathway for anaerobic DMB biosynthesis. This pathway, identified in the obligate anaerobic bacterium Eubacterium limosum, is composed of five previously uncharacterized genes, bzaABCDE, that together direct DMB production when expressed in anaerobically cultured Escherichia coli. Expression of different combinations of the bza genes revealed that 5-hydroxybenzimidazole, 5-methoxybenzimidazole, and 5-methoxy-6-methylbenzimidazole, all of which are lower ligands of cobamides produced by other organisms, are intermediates in the pathway. The bza gene content of several bacterial and archaeal genomes is consistent with experimentally determined structures of the benzimidazoles produced by these organisms, indicating that these genes can be used to predict cobamide structure. The identification of the bza genes thus represents the last remaining unknown component of the biosynthetic pathway for not only B12 itself, but also for three other cobamide lower ligands whose biosynthesis was previously unknown. Given the importance of cobamides in environmental, industrial, and human-associated microbial metabolism, the ability to predict cobamide structure may lead to an improved ability to understand and manipulate microbial metabolism. PMID:26246619

  20. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells

    PubMed Central

    Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit

    2010-01-01

    Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605

  1. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  2. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  3. A potential peptide pathway from viruses to oral lichen planus.

    PubMed

    Lucchese, Alberta

    2015-06-01

    Oral lichen planus is an idiopathic inflammatory disease of oral mucous membranes, characterized by an autoimmune epidermis attack by T cells. It remains unknown, however, how such aggressive T cells are activated in vivo to cause epidermal damage. This study analyzes the relationship at the peptide level between viruses and oral lichen planus disease. Four potentially immunogenic peptides (SSSSSSS, QEQLEKA, LLLLLLA, and MLSGNAG) are found to be shared between HCV, EBV, HHV-7, HSV-1, and CMV and three human proteins (namely pinin, desmoglein-3, and plectin). The described peptide sharing might be of help in deciphering the still unexplained immunopathogenic pathway that leads to oral lichen planus. © 2015 Wiley Periodicals, Inc.

  4. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis

    PubMed Central

    Fu, Jing; Qu, Zhaoxia; Yan, Pengrong; Ishikawa, Chie; Aqeilan, Rami I.; Rabson, Arnold B.

    2011-01-01

    Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to repress expression of the WWOX tumor suppressor gene. Notably, WWOX specifically inhibited Tax-induced activation of the canonical, but not the noncanonical NF-κB pathway. Mechanistic studies indicated that WWOX blocked Tax-induced inhibitors of κB kinaseα (IKKα) recruitment to RelA and subsequent RelA phosphorylation at S536. In contrast, WWOX Y33R, a mutant unable to block the IKKα recruitment and RelA phosphorylation, lost the ability to inhibit Tax-mediated tumorigenesis. These data provide one important mechanism by which Tax coordinates the 2 NF-κB pathways for tumorigenesis. These data also suggest a novel role of WWOX in NF-κB regulation and viral tumorigenesis. PMID:21115974

  5. Beyond Monoamines-Novel Targets for Treatment-Resistant Depression: A Comprehensive Review

    PubMed Central

    Rosenblat, Christian; McIntyre, Roger S.; Alves, Gilberto S.; Fountoulakis, Konstantinos N.; Carvalho, André F.

    2015-01-01

    Major depressive disorder (MDD) is a leading cause of disability worldwide. Current first line therapies target modulation of the monoamine system. A large variety of agents are currently available that effectively alter monoamine levels; however, approximately one third of MDD patients remain treatment refractory after adequate trials of multiple monoamine based therapies. Therefore, patients with treatment-resistant depression (TRD) may require modulation of pathways outside of the classic monoamine system. The purpose of this review was thus to discuss novel targets for TRD, to describe their potential mechanisms of action, the available clinical evidence for these targets, the limitations of available evidence as well as future research directions. Several alternate pathways involved in the patho-etiology of TRD have been uncovered including the following: inflammatory pathways, the oxidative stress pathway, the hypothalamic-pituitary-adrenal (HPA) axis, the metabolic and bioenergetics system, neurotrophic pathways, the glutamate system, the opioid system and the cholinergic system. For each of these systems, several targets have been assessed in preclinical and clinical models. Preclinical models strongly implicate these pathways in the patho-etiology of MDD. Clinical trials for TRD have been conducted for several novel targets; however, most of the trials discussed are small and several are uncontrolled. Therefore, further clinical trials are required to assess the true efficacy of these targets for TRD. As well, several promising novel agents have been clinically tested in MDD populations, but have yet to be assessed specifically for TRD. Thus, their applicability to TRD remains unknown. PMID:26467412

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reportermore » systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.« less

  7. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia.

    PubMed

    Broix, Loïc; Jagline, Hélène; Ivanova, Ekaterina; Schmucker, Stéphane; Drouot, Nathalie; Clayton-Smith, Jill; Pagnamenta, Alistair T; Metcalfe, Kay A; Isidor, Bertrand; Louvier, Ulrike Walther; Poduri, Annapurna; Taylor, Jenny C; Tilly, Peggy; Poirier, Karine; Saillour, Yoann; Lebrun, Nicolas; Stemmelen, Tristan; Rudolf, Gabrielle; Muraca, Giuseppe; Saintpierre, Benjamin; Elmorjani, Adrienne; Moïse, Martin; Weirauch, Nathalie Bednarek; Guerrini, Renzo; Boland, Anne; Olaso, Robert; Masson, Cecile; Tripathy, Ratna; Keays, David; Beldjord, Cherif; Nguyen, Laurent; Godin, Juliette; Kini, Usha; Nischké, Patrick; Deleuze, Jean-François; Bahi-Buisson, Nadia; Sumara, Izabela; Hinckelmann, Maria-Victoria; Chelly, Jamel

    2016-11-01

    Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.

  8. Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis.

    PubMed

    Nakamura, Kazuhiro; Nakamura, Yoshiko

    2018-06-04

    The recent discovery of the medullary circuit driving "hunger responses" - reduced thermogenesis and promoted feeding - has greatly expanded our knowledge on the central neural networks for energy homeostasis. However, how hypothalamic hunger and satiety signals generated under fasted and fed conditions, respectively, control the medullary autonomic and somatic motor mechanisms remains unknown. Here, in reviewing this field, we propose two hypothalamomedullary neural pathways for hunger and satiety signaling. To trigger hunger signaling, neuropeptide Y activates a group of neurons in the paraventricular hypothalamic nucleus (PVH), which then stimulate an excitatory pathway to the medullary circuit to drive the hunger responses. In contrast, melanocortin-mediated satiety signaling activates a distinct group of PVH neurons, which then stimulate a putatively inhibitory pathway to the medullary circuit to counteract the hunger signaling. The medullary circuit likely contains inhibitory and excitatory premotor neurons whose alternate phasic activation generates the coordinated masticatory motor rhythms to promote feeding. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  9. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory

    PubMed Central

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-01-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  10. RACK1 is required for adipogenesis.

    PubMed

    Kong, Qinghua; Gao, Lan; Niu, Yanfen; Gongpan, Pianchou; Xu, Yuhui; Li, Yan; Xiong, Wenyong

    2016-11-01

    Adipose tissue plays a critical role in metabolic diseases and the maintenance of energy homeostasis. RACK1 has been identified as an adaptor protein involved in multiple intracellular signal transduction pathways and diseases. However, whether it regulates adipogenesis remains unknown. Here, we reported that RACK1 is expressed in 3T3-L1 cells and murine white adipose tissue and that RACK1 knockdown by shRNA profoundly suppressed adipogenesis by reducing the expression of PPAR-γ and C/EBP-β. Depletion of RACK1 increased β-catenin protein levels and activated Wnt signaling. Furthermore, RACK1 knockdown also suppressed the PI3K-Akt-mTOR-S6K signaling pathway by reducing the PI3K p85α, pAkt T473, and S6K p70. Taken together, these results demonstrate that RACK1 is a novel factor required for adipocyte differentiation by emerging Wnt/β-catenin signaling and PI3K-Akt-mTOR-S6K signaling pathway(s). Copyright © 2016 the American Physiological Society.

  11. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials.

    PubMed

    Mitrofanov, Kirill V; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

  12. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    DOE PAGES

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; ...

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge 2Sb 2Te 5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structuremore » experiment confirms the existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.« less

  13. Advances in the pathophysiology of pre-eclampsia and related podocyte injury

    PubMed Central

    Craici, Iasmina M.; Wagner, Steven J.; Weissgerber, Tracey L.; Grande, Joseph P.; Garovic, Vesna D.

    2014-01-01

    Pre-eclampsia is a pregnancy-specific hypertensive disorder that may lead to serious maternal and fetal complications. It is a multisystem disease that is commonly, but not always, accompanied by proteinuria. Its cause(s) remain unknown, and delivery remains the only definitive treatment. It is increasingly recognized that many pathophysiological processes contribute to this syndrome, with different signaling pathways converging at the point of systemic endothelial dysfunction, hypertension, and proteinuria. Different animal models of pre-eclampsia have proven utility for specific aspects of pre-eclampsia research, and offer insights into pathophysiology and treatment possibilities. Therapeutic interventions that specifically target these pathways may optimize pre-eclampsia management and may improve fetal and maternal outcomes. In addition, recent findings regarding placental, endothelial, and podocyte pathophysiology in pre-eclampsia provide unique and exciting possibilities for improved diagnostic accuracy. Emerging evidence suggests that testing for urinary podocytes or their markers may facilitate the prediction and diagnosis of pre-eclampsia. In this review, we explore recent research regarding placental, endothelial, and podocyte pathophysiology. We further discuss new signaling and genetic pathways that may contribute to pre-eclampsia pathophysiology, emerging screening and diagnostic strategies, and potential targeted interventions. PMID:24573315

  14. Defining the computational structure of the motion detector in Drosophila

    PubMed Central

    Clark, Damon A.; Bursztyn, Limor; Horowitz, Mark; Schnitzer, Mark J.; Clandinin, Thomas R.

    2011-01-01

    SUMMARY Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt Correlator (HRC), relates visual inputs to neural and behavioral responses to motion, but the circuits that implement this computation remain unknown. Using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, “reverse phi”, that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. PMID:21689602

  15. BDNF-TrkB signaling through Erk1/2MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids

    PubMed Central

    Revest, J-M; Le Roux, A; Roullot-Lacarrière, V; Kaouane, N; Vallée, M; Kasanetz, F; Rougé-Pont, F; Tronche, F; Desmedt, A; Piazza, P V

    2014-01-01

    Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2MAPK signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GRNesCre). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2MAPK responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2MAPK signaling pathways as one of the core effectors of stress-related effects of GC. PMID:24126929

  16. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation?

    PubMed

    Rodríguez, Juan M

    2014-11-01

    Human milk is a source of bacteria to the infant gut; however, the origin of milk bacteria, as well as their impact on neonatal gut microbiota establishment, remains largely unknown. In the past years, results provided by different research groups suggest that certain bacteria from the maternal gastrointestinal tract could translocate through a mechanism involving mononuclear immune cells, migrate to the mammary glands via an endogenous cellular route (the bacterial entero-mammary pathway), and subsequently colonize the gastrointestinal tract of the breast-fed neonate. If such findings are confirmed in the future, we could exert a positive influence on infant health by modulating the maternal gut microbiota. © 2014 American Society for Nutrition.

  17. A significant abiotic pathway for the formation of unknown nitrogen in nature

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Schulten, H.-R.; Cutler, J. N.; Schnitzer, M.; Huang, P. M.

    2004-03-01

    The global nitrogen cycle is of prime importance in natural ecosystems. However, the origin and nature of up to one-half of total soil N remains obscure despite all attempts at elucidation. Our data provide, for the first time, unequivocal evidence that the promoting action of Mn (IV) oxide on the Maillard reaction (sugar-amino acid condensation) under ambient conditions results in the abiotic formation of heterocyclic N compounds, which are often referred to as unknown nitrogen, and of amides which are apparently the dominant N moieties in nature. The information presented is of fundamental significance in understanding the role of mineral colloids in abiotic transformations of organic N moieties, the incorporation of N in the organic matrix of fossil fuels, and the global N cycle.

  18. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor.

    PubMed

    Vivar, Raul; Soto, Cristian; Copaja, Miguel; Mateluna, Francisca; Aranguiz, Pablo; Muñoz, Juan Pablo; Chiong, Mario; Garcia, Lorena; Letelier, Alan; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2008-08-01

    Cardiac fibroblasts are the major non-myocyte cell constituent in the myocardium, and they are involved in heart remodeling. Angiotensin II type 1 receptor (AT1R) mediates the established actions of angiotensin II (Ang II), and changes in its expression have been reported in cardiac fibroblasts after myocardial infarction. However, the AT1R-dependent signaling pathways involved in cardiac fibroblast death remain unknown. Using adenovirus, we ectopically expressed AT1R in cultured neonatal rat cardiac fibroblasts and investigated the role of the phospholipase (PLC)/protein kinase C (PKC) pathway on Ang II-dependent death. Ang II induced cardiac fibroblast death characterized by an early loss of mitochondrial membrane potential, increased Bax/Bcl-2 ratio, caspase-3 activation, and DNA fragmentation. All these effects were prevented by the AT1R antagonist losartan, PLC inhibitor U73122, and PKC inhibitor Gö6976. We conclude that Ang II stimulates the intrinsic apoptotic pathway in cultured cardiac fibroblasts by the AT1R/PLC/PKC signaling pathway.

  19. Tripartite Motif 24 (Trim24/Tif1α) Tumor Suppressor Protein Is a Novel Negative Regulator of Interferon (IFN)/Signal Transducers and Activators of Transcription (STAT) Signaling Pathway Acting through Retinoic Acid Receptor α (Rarα) Inhibition*

    PubMed Central

    Tisserand, Johan; Khetchoumian, Konstantin; Thibault, Christelle; Dembélé, Doulaye; Chambon, Pierre; Losson, Régine

    2011-01-01

    Recent genetic studies in mice have established that the nuclear receptor coregulator Trim24/Tif1α suppresses hepatocarcinogenesis by inhibiting retinoic acid receptor α (Rara)-dependent transcription and cell proliferation. However, Rara targets regulated by Trim24 remain unknown. We report that the loss of Trim24 resulted in interferon (IFN)/STAT pathway overactivation soon after birth (week 5). Despite a transient attenuation of this pathway by the induction of several IFN/STAT pathway repressors later in the disease, this phenomenon became more pronounced in tumors. Remarkably, Rara haplodeficiency, which suppresses tumorigenesis in Trim24−/− mice, prevented IFN/STAT overactivation. Moreover, together with Rara, Trim24 bound to the retinoic acid-responsive element of the Stat1 promoter and repressed its retinoic acid-induced transcription. Altogether, these results identify Trim24 as a novel negative regulator of the IFN/STAT pathway and suggest that this repression through Rara inhibition may prevent liver cancer. PMID:21768647

  20. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii

    PubMed Central

    Shuman, Howard A.

    2017-01-01

    ABSTRACT A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTSNtr), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTSNtr allows A. baumannii to integrate cellular metabolic status with external environmental cues. IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection. PMID:28264991

  1. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii.

    PubMed

    Gebhardt, Michael J; Shuman, Howard A

    2017-05-15

    A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii , a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTS Ntr ), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii , and coupling this pathway with the PTS Ntr allows A. baumannii to integrate cellular metabolic status with external environmental cues. IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii , encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection. Copyright © 2017 American Society for Microbiology.

  2. Pathway analysis of genome-wide association datasets of personality traits.

    PubMed

    Kim, H-N; Kim, B-H; Cho, J; Ryu, S; Shin, H; Sung, J; Shin, C; Cho, N H; Sung, Y A; Choi, B-O; Kim, H-L

    2015-04-01

    Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  3. Rapid Evolution of piRNA Pathway in the Teleost Fish: Implication for an Adaptation to Transposon Diversity

    PubMed Central

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-01-01

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. PMID:24846630

  4. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    PubMed

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The spinocerebellar ataxias.

    PubMed

    Gilman, S

    2000-01-01

    The spinocerebellar ataxias (SCAs) are diseases characterized by the progressive degeneration and subsequent loss of neurons accompanied by reactive gliosis, degeneration of fibers from the deteriorating neurons, and clinical symptoms reflecting the locations of the lost neurons. The degenerative changes affect specific neuronal groups while others remain preserved, and these diseases can therefore be viewed as system degenerations. The SCAs result from either genetically transmitted diseases with dominant inheritance or unknown causes with sporadic occurrence. Most of these disorders affect the cerebellum and its pathways, resulting in progressive deterioration of cerebellar function manifested by increasing unsteadiness of gait, incoordination of limb movements with impairment of skilled movements such as handwriting, and a distinctive dysarthria. Other neuronal systems are affected in some of these disorders, notably the corticospinal pathway, basal ganglia, and autonomic nuclei of the brain stem and spinal cord.

  6. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemblemore » behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.« less

  7. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis.

    PubMed

    Stefely, Jonathan A; Pagliarini, David J

    2017-10-01

    Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid produced across all domains of life that functions in electron transport and oxidative phosphorylation and whose deficiency causes human diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent progress toward filling these knowledge gaps through both traditional biochemistry and cutting-edge 'omics' approaches. To help fill the remaining gaps, we present questions framed by the recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of numerous human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Homeopathic drug discovery: theory update and methodological aspect.

    PubMed

    Khuda-Bukhsh, Anisur Rahman; Pathak, Surajit

    2008-08-01

    Homeopathy treats patient on the basis of totality of symptoms and is based on the principle of 'like cures like'. It uses ultra-low doses of highly diluted natural substances as remedies that originate from plants, minerals or animals. The objectives of this review are to discuss concepts, controversies and research related to understanding homeopathy in the light of modern science. Attempts have been made to focus on current views of homeopathy and to delineate its most plausible mechanism(s) of action. Although some areas of concern remain, research carried out so far both in vitro and in vivo validates the effects of highly diluted homeopathic medicines in a wide variety of organisms. The precise mechanism(s) and pathway(s) of action of highly diluted homeopathic drugs are still unknown.

  9. Concordance of Changes in Metabolic Pathways Based on Plasma Metabolomics and Skeletal Muscle Transcriptomics in Type 1 Diabetes

    PubMed Central

    Dutta, Tumpa; Chai, High Seng; Ward, Lawrence E.; Ghosh, Aditya; Persson, Xuan-Mai T.; Ford, G. Charles; Kudva, Yogish C.; Sun, Zhifu; Asmann, Yan W.; Kocher, Jean-Pierre A.; Nair, K. Sreekumaran

    2012-01-01

    Insulin regulates many cellular processes, but the full impact of insulin deficiency on cellular functions remains to be defined. Applying a mass spectrometry–based nontargeted metabolomics approach, we report here alterations of 330 plasma metabolites representing 33 metabolic pathways during an 8-h insulin deprivation in type 1 diabetic individuals. These pathways included those known to be affected by insulin such as glucose, amino acid and lipid metabolism, Krebs cycle, and immune responses and those hitherto unknown to be altered including prostaglandin, arachidonic acid, leukotrienes, neurotransmitters, nucleotides, and anti-inflammatory responses. A significant concordance of metabolome and skeletal muscle transcriptome–based pathways supports an assumption that plasma metabolites are chemical fingerprints of cellular events. Although insulin treatment normalized plasma glucose and many other metabolites, there were 71 metabolites and 24 pathways that differed between nondiabetes and insulin-treated type 1 diabetes. Confirmation of many known pathways altered by insulin using a single blood test offers confidence in the current approach. Future research needs to be focused on newly discovered pathways affected by insulin deficiency and systemic insulin treatment to determine whether they contribute to the high morbidity and mortality in T1D despite insulin treatment. PMID:22415876

  10. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

    PubMed Central

    Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.

    2016-01-01

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086

  11. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways.

    PubMed

    Li, Ming-Yi; Liu, Jin-Quan; Chen, Dong-Ping; Li, Zhou-Yu; Qi, Bin; He, Lu; Yu, Yi; Yin, Wen-Jin; Wang, Meng-Yao; Lin, Ling

    2017-09-02

    Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.

  12. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography.

    PubMed

    Knipfer, Thorsten; Fei, Jiong; Gambetta, Gregory A; McElrone, Andrew J; Shackel, Kenneth A; Matthews, Mark A

    2015-08-01

    Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (kh) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatic kh (xylem pathway) was consistently 4 orders of magnitude greater than osmotic kh (intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatic kh declined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specific kh (per xylem area) decreased in a similar fashion to kh despite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicel kh were associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reduced kh remains functional late into berry ripening. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography1[OPEN

    PubMed Central

    Fei, Jiong; McElrone, Andrew J.; Shackel, Kenneth A.; Matthews, Mark A.

    2015-01-01

    Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (kh) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatic kh (xylem pathway) was consistently 4 orders of magnitude greater than osmotic kh (intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatic kh declined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specific kh (per xylem area) decreased in a similar fashion to kh despite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicel kh were associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reduced kh remains functional late into berry ripening. PMID:26077763

  14. miR-373 is regulated by TGFβ signaling and promotes mesendoderm differentiation in human Embryonic Stem Cells

    PubMed Central

    Rosa, Alessandro; Papaioannou, Marilena D.; Krzyspiak, Joanna E.; Brivanlou, Ali H.

    2014-01-01

    MicroRNAs (miRNAs) belonging to the evolutionary conserved miR-302 family play important functions in Embryonic Stem Cells (ESCs). The expression of some members, such as the human miR-302 and mouse miR-290 clusters, is regulated by ESC core transcription factors. However, whether miRNAs act downstream of signaling pathways involved in human ESC pluripotency remains unknown. The maintenance of pluripotency in hESCs is under the control of the TGFβ pathway. Here, we show that inhibition of the Activin/Nodal branch of this pathway affects the expression of a subset of miRNAs in hESCs. Among them, we found miR-373, a member of the miR-302 family. Proper levels of miR-373 are crucial for the maintenance of hESC pluripotency, since its overexpression leads to differentiation towards the mesendodermal lineage. Among miR-373 predicted targets, involved in TGFβ signaling, we validated the Nodal inhibitor Lefty. Our work suggests a crucial role for the interplay between miRNAs and signaling pathways in ESCs. PMID:24709321

  15. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis.

    PubMed

    Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T

    2018-03-06

    Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Mapping the Human Toxome by Systems Toxicology

    PubMed Central

    Bouhifd, Mounir; Hogberg, Helena T.; Kleensang, Andre; Maertens, Alexandra; Zhao, Liang; Hartung, Thomas

    2014-01-01

    Toxicity testing typically involves studying adverse health outcomes in animals subjected to high doses of toxicants with subsequent extrapolation to expected human responses at lower doses. The low-throughput of current toxicity testing approaches (which are largely the same for industrial chemicals, pesticides and drugs) has led to a backlog of more than 80,000 chemicals to which human beings are potentially exposed whose potential toxicity remains largely unknown. Employing new testing strategies that employ the use of predictive, high-throughput cell-based assays (of human origin) to evaluate perturbations in key pathways, referred as pathways of toxicity, and to conduct targeted testing against those pathways, we can begin to greatly accelerate our ability to test the vast “storehouses” of chemical compounds using a rational, risk-based approach to chemical prioritization, and provide test results that are more predictive of human toxicity than current methods. The NIH Transformative Research Grant project Mapping the Human Toxome by Systems Toxicology aims at developing the tools for pathway mapping, annotation and validation as well as the respective knowledge base to share this information. PMID:24443875

  17. MoCha: Molecular Characterization of Unknown Pathways.

    PubMed

    Lobo, Daniel; Hammelman, Jennifer; Levin, Michael

    2016-04-01

    Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.

  18. Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity.

    PubMed

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-05-19

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    PubMed

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  1. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  2. LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway.

    PubMed

    Ji, Jie; Tang, Junwei; Deng, Lei; Xie, Yu; Jiang, Runqiu; Li, Guoqiang; Sun, Beicheng

    2015-12-15

    Hepatocellular carcinoma (HCC) is well known as the sixth most common malignant tumor and the third leading cause of cancer-related deaths globally. LINC00152 was documented as an important long non-coding RNA (lncRNA) involved in the pathogenesis of gastric cancer; however, the detailed mechanism of action of LINC00152 remains unknown. Here, based on the increased level of LINC00152 in HCC tissues, we found that LINC00152 could promote cell proliferation in vitro and tumor growth in vivo. Furthermore, microarray-based analysis indicated that LINC00152 could activate the mechanistic target of rapamycin(mTOR) pathway by binding to the promoter of EpCAM through a cis-regulation, as confirmed by Gal4-λN/BoxB reporter system. Thus, LINC00152 might be involved in the oncogenesis of HCC by activating the mTOR signaling pathway and might be a novel index for clinical diagnosis in the future.

  3. Defining the computational structure of the motion detector in Drosophila.

    PubMed

    Clark, Damon A; Bursztyn, Limor; Horowitz, Mark A; Schnitzer, Mark J; Clandinin, Thomas R

    2011-06-23

    Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation

    PubMed Central

    Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045

  5. Resveratrol enhances HBV replication through activating Sirt1-PGC-1α-PPARα pathway.

    PubMed

    Shi, Yixian; Li, Yongjun; Huang, Chenjie; Ying, Lixiong; Xue, Jihua; Wu, Haicong; Chen, Zhi; Yang, Zhenggang

    2016-04-21

    The population of hepatitis B combined with a number of metabolic disorders is increasing significantly. Resveratrol (RSV) has been used as a preclinical drug for the treatment of the metabolic disorders. However, the impact of RSV on HBV replication remains unknown. In this study, the HBV-expressing hepatocelluar carcinoma cell line and mouse model created by hydrodynamic injection of viral DNA were used. We found that RSV activates Sirt1, which in turn deacetylates PGC-1α and subsequently increases the transcriptional activity of PPARα, leading to the enhanced HBV transcription and replication in vitro and in vivo. In addition, we found that this pathway is also required for fasting-induced HBV transcription. Taken together, this study identifies that RSV enhances HBV transcription and replication especially acting on the core promoter, which depends on Sirt1-PGC-1α-PPARα pathway. We conclude that RSV may exacerbate the progression of hepatitis B and that patients with hepatitis B infection should be cautious taking RSV as a dietary supplement.

  6. LncRNA EGOT Promotes Tumorigenesis Via Hedgehog Pathway in Gastric Cancer.

    PubMed

    Peng, Wei; Wu, Jianzhong; Fan, Hong; Lu, Jianwei; Feng, Jifeng

    2017-12-05

    Gastric cancer (GC) is one of the mostly terminal malignancies with poor prognosis. Long noncoding RNA EGOT (EGOT) acts as a crucial regulator in the breast cancer. However, the function of EGOT in GC remains unknown. This work was to explore the clinical value and biological significance of EGOT in GC. EGOT levels in GC tissue and cell were analyzed by qRT-PCR. After knockdown of EGOT, GC cell growth and cycle progression were detected. The expression of EGOT was observably elevated in GC. Upregulation of EGOT was related with lymphatic metastasis and TNM stage. In addition, knockdown of EGOT by siRNA could significantly inhibit GC cell proliferation and arrest cycle progression in G1 phase. Moreover, EGOT mediated cyclin D1 expression in GC cells which was regulated by Hedgehog pathway. Further, loss of EGOT downregulated Hedgehog signaling pathway in GC cells. EGOT functions as an oncogene in GC, and may be useful as a conceivable diagnostic and prognostic biomarker for GC tumorigenesis.

  7. Discovering the infectome of human endothelial cells challenged with Aspergillus fumigatus applying a mass spectrometry label-free approach.

    PubMed

    Curty, N; Kubitschek-Barreira, P H; Neves, G W; Gomes, D; Pizzatti, L; Abdelhay, E; Souza, G H M F; Lopes-Bezerra, L M

    2014-01-31

    Blood vessel invasion is a key feature of invasive aspergillosis. This angioinvasion process contributes to tissue thrombosis, which can impair the access of leukocytes and antifungal drugs to the site of infection. It has been demonstrated that human umbilical vein endothelial cells (HUVECs) are activated and assume a prothrombotic phenotype following contact with Aspergillus fumigatus hyphae or germlings, a process that is independent of fungus viability. However, the molecular mechanisms by which this pathogen can activate endothelial cells, together with the endothelial pathways that are involved in this process, remain unknown. Using a label-free approach by High Definition Mass Spectrometry (HDMS(E)), differentially expressed proteins were identified during HUVEC-A. fumigatus interaction. Among these, 89 proteins were determined to be up- or down-regulated, and another 409 proteins were exclusive to one experimental condition: the HUVEC control or HUVEC:AF interaction. The in silico predictions provided a general view of which biological processes and/or pathways were regulated during HUVEC:AF interaction, and they mainly included cell signaling, immune response and hemostasis pathways. This work describes the first global proteomic analysis of HUVECs following interaction with A. fumigatus germlings, the fungus morphotype that represents the first step of invasion and dissemination within the host. A. fumigatus causes the main opportunistic invasive fungal infection related to neutropenic hematologic patients. One of the key steps during the establishment of invasive aspergillosis is angioinvasion but the mechanism associated with the interaction of A. fumigatus with the vascular endothelium remains unknown. The identification of up- and down-regulated proteins expressed by human endothelial cells in response to the fungus infection can contribute to reveal the mechanism of endothelial response and, to understand the physiopathology of this high mortality disease. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. © 2013 Elsevier B.V. All rights reserved.

  8. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    PubMed

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  9. A chemical genetic strategy identify the PHOSTIN, a synthetic molecule that triggers phosphate starvation responses in Arabidopsis thaliana.

    PubMed

    Bonnot, Clémence; Pinson, Benoît; Clément, Mathilde; Bernillon, Stéphane; Chiarenza, Serge; Kanno, Satomi; Kobayashi, Natsuko; Delannoy, Etienne; Nakanishi, Tomoko M; Nussaume, Laurent; Desnos, Thierry

    2016-01-01

    Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis. We assessed the effects of PSN and structural analogues on the induction of Pi-deficiency responses in mutants and wild-type and followed their accumulation in plants organs by high pressure liquid chromotography (HPLC) or mass-spectrophotometry. We show that PSN is cleaved in the growth medium, releasing its active motif (PSN11), which accumulates in plants roots. Despite the overaccumulation of Pi in the roots of treated plants, PSN11 elicits both local and systemic Pi-starvation effects. Nevertheless, albeit that the transcriptional activation of low-Pi genes by PSN11 is lost in the phr1;phl1 double mutant, neither PHO1 nor PHO2 are required for PSN11 effects. The range of local and systemic responses to Pi-starvation elicited, and their dependence on the PHR1/PHL1 function suggests that PSN11 affects an important and early step of Pi-starvation signalling. Its independence from PHO1 and PHO2 suggest the existence of unknown pathway(s), showing the usefulness of PSN and chemical genetics to bring new elements to this field. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. PPAR-γ and Akt regulate GLUT1 and GLUT3 surface localization during Mycobacterium tuberculosis infection.

    PubMed

    Dasgupta, Shyamashree; Rai, Ramesh Chandra

    2018-03-01

    The success of Mycobacterium tuberculosis (Mtb) as a pathogen stems from its ability to manipulate the host macrophage towards increased lipid biogenesis and lipolysis inhibition. Inhibition of lipolysis requires augmented uptake of glucose into the host cell causing an upregulation of the glucose transporters GLUT1 and GLUT3 on the cell surface. Mechanism behind this upregulation of the GLUT proteins during Mtb infection is hitherto unknown and demands intensive investigation in order to understand the pathways linked with governing them. Our endeavor to investigate some of the key proteins that have been found to be affected during Mtb infection led us to investigate host molecular pathways such as Akt and PPAR-γ that remain closely associated with the survival of the bacilli by modulating the localization of glucose transporters GLUT1 and GLUT3.

  11. Fasting increases survival to cold in FOXO, DIF, autophagy mutants and in other genotypes of Drosophila melanogaster.

    PubMed

    Le Bourg, Éric; Massou, Isabelle

    2015-08-01

    Fasting increases survival to a severe cold stress in young and middle-aged wild-type flies, this effect being lowered or absent at old age. As an attempt to determine the mechanisms of this effect, genes involved in metabolism (dFOXO), autophagy (Atg7), innate immunity (Dif (1) ), and resistance to cold (Frost) were studied. The 12 mutant, RNAi and control lines tested in this study displayed an increased survival to cold after fasting. This shows that fasting has a robust effect on survival to cold in many genotypes, but the mechanism of this effect remains unknown. This mechanism does not seem to be linked to metabolic pathways often considered to play a critical role in ageing and longevity determinations (insulin/insulin-like growth factor-1 pathway and autophagy).

  12. Quasi-specific access of the potassium channel inactivation gate

    PubMed Central

    Venkataraman, Gaurav; Srikumar, Deepa; Holmgren, Miguel

    2014-01-01

    Many voltage-gated potassium channels open in response to membrane depolarization and then inactivate within milliseconds. Neurons use these channels to tune their excitability. In Shaker K+ channels, inactivation is caused by the cytoplasmic amino terminus, termed the inactivation gate. Despite having four such gates, inactivation is caused by the movement of a single gate into a position that occludes ion permeation. The pathway that this single inactivation gate takes into its inactivating position remains unknown. Here we show that a single gate threads through the intracellular entryway of its own subunit, but the tip of the gate has sufficient freedom to interact with all four subunits deep in the pore, and does so with equal probability. This pathway demonstrates that flexibility afforded by the inactivation peptide segment at the tip of the N-terminus is used to mediate function. PMID:24909510

  13. Mitochondrial fission proteins Fis1 and Mdv1, but not Dnm1, play a role in maintenance of heteroplasmy in budding yeast.

    PubMed

    Bradshaw, Elliot; Yoshida, Minoru; Ling, Feng

    2012-04-24

    In budding yeast, the mitochondrial DNA (mtDNA) replication pathway involving the homologous DNA pairing protein Mhr1 promotes mitochondrial allele segregation. Mitochondrial fusion facilitates the recombination-mediated replication pathway; however, the role of fission remains largely unknown. By monitoring mitochondrial allele segregation during zygotic division, we found that the absence of fission proteins Fis1 or Mdv1, but not Dnm1, resulted in increased initial homoplasmy levels and decreased mtDNA copy number. However, decreases in mtDNA copy number alone were not sufficient for rapid establishment of homoplasmy, suggesting that inhibiting the activities of certain fission proteins promotes homoplasmy by reducing the number of mtDNA segregation units. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway.

    PubMed

    Lin, Dongjia; Gao, Yan; Zhao, Luodan; Chen, Yanhuo; An, Shaofeng; Peng, Zhixiang

    2018-04-15

    Enterococcus faecalis (E. faecalis) infection is considered an important etiological factor for the development of persistent apical periodontitis (PAP), but the exact mechanisms of autophagy between E. faecalis and immune cells remain unknown. In this study, we elucidated how E. faecalis lipoteichoic acid (LTA) is associated with macrophages autophagy. We found that E. faecalis LTA apparently activated macrophage autophagy with significant increase of autophagosomes and autophagy relative protein. Meanwhile, we noticed significantly decreasing expression of p-Akt and p-mTOR. However, these effect were absent in macrophages knockdown of Beclin1. In summary, these findings suggested E. faecalis LTA may increased macrophages autophagy via inhibiting PI3K/Akt/mTOR pathway and this process was Beclin1 dependent. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Copyright © 2015, American Association for the Advancement of Science.

  16. Identification of a motor to auditory pathway important for vocal learning

    PubMed Central

    Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard

    2017-01-01

    Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672

  17. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis

    PubMed Central

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  18. Phosphoinositide function in cytokinesis.

    PubMed

    Brill, Julie A; Wong, Raymond; Wilde, Andrew

    2011-11-22

    In systems as diverse as yeast, slime mold and animal cells, the levels and distribution of phosphatidylinositol phosphates (PIPs) must be strictly regulated for successful cell cleavage. The precise mechanism by which PIPs function in this process remains unknown. Recent experiments are beginning to shed light on the cellular pathways in which PIPs make key contributions during cytokinesis. In particular, PIPs promote proper actin cytoskeletal organization and direct membrane trafficking in dividing cells. Future research will uncover temporal and spatial regulation of the different PIPs, thus elucidating their role in cytoskeletal and membrane events that drive cell cleavage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway

    PubMed Central

    Wu, Ching-Shyi; Ouyang, Jian; Mori, Eiichiro; Nguyen, Hai Dang; Maréchal, Alexandre; Hallet, Alexander; Chen, David J.; Zou, Lee

    2014-01-01

    The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR–Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11–RAD50–NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway. PMID:24990965

  20. Mechanisms that limit the light stimulus frequency following through the APB sensitive and insensitive rod Off-pathways

    PubMed Central

    Bai, Xia; Zhu, Junling; Yang, Jinnan; Savoie, Brian T.; Wang, Guo-Yong

    2009-01-01

    In the retina, rod signal pathways process scotopic visual information. Light decrements are mediated by two distinct groups of rod pathways in the dark adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist DL-2-amino-4-phosphonobutyric acid (APB). We have found that the APB sensitive and insensitive rod Off-pathways signal different light decrement information: the APB sensitive rod Off-pathway conveys slow and low frequency light signals, whereas the APB insensitive rod Off-pathways mediate fast and high frequency light signals (Wang, 2006). However, the mechanisms which limit the frequency following through the APB sensitive and insensitive rod Off-pathways remain unknown. In the current study, whole-cell patch-clamp recordings were made from ganglion cells in dark and light adapted mouse retina to identify the mechanisms that limit the frequency following through the APB sensitive and insensitive rod Off-pathways. The results showed that the sites from AII amacrine cells to Off cone bipolar cells are the major mechanisms that limit the frequency following through the APB sensitive rod Off-pathway. In the APB insensitive rod Off-pathways, rods themselves limited the frequency following through these pathways. Moreover, ganglion cells were able to follow higher frequencies under photopic conditions than under scotopic conditions. The Off responses followed lower frequencies than On responses under photopic conditions. This finding was observed in cells that yielded On or Off responses only as well as in On-Off cells. PMID:19406212

  1. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgani-Firuzjaee, Sattar; Adeli, Khosrow; Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome cmore » and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.« less

  2. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.

    PubMed

    Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu

    2016-07-01

    The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the Fungus Aspergillus oryzae in Fermented Soy Sauce

    PubMed Central

    Zhao, Guozhong; Yao, Yunping; Wang, Chunling; Tian, Fengwei; Liu, Xiaoming; Hou, Lihua; Yang, Zhen; Zhao, Jianxin; Zhang, Hao

    2015-01-01

    Amino acids comprise the majority of the flavor compounds in soy sauce. A portion of these amino acids are formed from the biosynthesis and metabolism of the fungus Aspergillus oryzae; however, the metabolic pathways leading to the formation of these amino acids in A. oryzae remain largely unknown. We sequenced the transcriptomes of A. oryzae 100-8 and A. oryzae 3.042 under similar soy sauce fermentation conditions. 2D gel electrophoresis was also used to find some differences in protein expression. We found that many amino acid hydrolases (endopeptidases, aminopeptidases, and X-pro-dipeptidyl aminopeptidase) were expressed at much higher levels (mostly greater than double) in A. oryzae 100-8 than in A. oryzae 3.042. Our results indicated that glutamate dehydrogenase may activate the metabolism of amino acids. We also found that the expression levels of some genes changed simultaneously in the metabolic pathways of tyrosine and leucine and that these conserved genes may modulate the function of the metabolic pathway. Such variation in the metabolic pathways of amino acids is important as it can significantly alter the flavor of fermented soy sauce. PMID:25945335

  4. Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the Fungus Aspergillus oryzae in Fermented Soy Sauce.

    PubMed

    Zhao, Guozhong; Yao, Yunping; Wang, Chunling; Tian, Fengwei; Liu, Xiaoming; Hou, Lihua; Yang, Zhen; Zhao, Jianxin; Zhang, Hao; Cao, Xiaohong

    2015-01-01

    Amino acids comprise the majority of the flavor compounds in soy sauce. A portion of these amino acids are formed from the biosynthesis and metabolism of the fungus Aspergillus oryzae; however, the metabolic pathways leading to the formation of these amino acids in A. oryzae remain largely unknown. We sequenced the transcriptomes of A. oryzae 100-8 and A. oryzae 3.042 under similar soy sauce fermentation conditions. 2D gel electrophoresis was also used to find some differences in protein expression. We found that many amino acid hydrolases (endopeptidases, aminopeptidases, and X-pro-dipeptidyl aminopeptidase) were expressed at much higher levels (mostly greater than double) in A. oryzae 100-8 than in A. oryzae 3.042. Our results indicated that glutamate dehydrogenase may activate the metabolism of amino acids. We also found that the expression levels of some genes changed simultaneously in the metabolic pathways of tyrosine and leucine and that these conserved genes may modulate the function of the metabolic pathway. Such variation in the metabolic pathways of amino acids is important as it can significantly alter the flavor of fermented soy sauce.

  5. The stress polarity pathway: AMPK ‘GIV’-es protection against metabolic insults

    PubMed Central

    Ghosh, Pradipta

    2017-01-01

    Loss of cell polarity impairs organ development and function; it can also serve as one of the first triggers for oncogenesis. In 2006-2007 two groups simultaneously reported the existence of a special pathway for maintaining epithelial polarity in the face of environmental stressors. In this pathway, AMPK, a key sensor of metabolic stress stabilizes tight junctions, preserves cell polarity, and thereby, maintains epithelial barrier functions. Accumulating evidence since has shown that pharmacologic activation of AMPK by Metformin protects the epithelial barrier against multiple environmental and pathological stressful states and suppresses tumorigenesis. How AMPK protects the epithelium remained unknown until recently Aznar et al. identified GIV/Girdin as a novel effector of AMPK at the cell-cell junctions; phosphorylation of GIV at a single site by AMPK appears to be both necessary and sufficient for strengthening tight junctions and preserving cell polarity and epithelial barrier function in the face of energetic stress. Here we review the fundamentals of this specialized signaling pathway that buttresses cell-cell junctions against stress-induced collapse and discuss its pathophysiologic relevance in the context of a variety of diseases, including cancers, diabetes, aging, and the growing list of beneficial effects of the AMPK-activator, Metformin. PMID:28209925

  6. FER mediated HGF-independent regulation of HGFR/MET activates RAC1-PAK1 pathway to potentiate metastasis in ovarian cancer.

    PubMed

    Fan, Gaofeng

    2017-11-03

    Uncontrolled metastasis significantly contributes to high lethality of patients suffering from ovarian cancer. To date, the detailed molecular mechanisms which account for ovarian tumor cell spreading and metastasis remain largely unknown. In a recent study, we have demonstrated that aberrantly high expression of the non-receptor tyrosine kinase FER is responsible for ovarian tumor cell metastasis both in vitro and in vivo. Mechanistically, we indentified Hepatocyte Growth Factor Receptor HGFR/MET as a novel substrate of FER, and through which the kinase FER modulates ovarian cancer cell motility and invasiveness in a ligand-independent manner. We also observed aberrantly high expression of PAK1 kinase in cancer cells, and RNAi-mediated knockdown of FER kinase inactivated the RAC1-PAK1 signaling pathway and decreased metastatic potential of CAOV4 ovarian cancer cells. Overall, our study revealed a previously uncharacterized, pro-metastatic role of the kinase FER in ovarian cancer through the MET-RAC1-PAK1 pathway. Further efforts are essential to investigating beneficial outcomes towards targeting the RAC1-PAK1 signaling pathway in reducing metastatic burden of this deadly disease.

  7. Pioglitazone inhibits angiotensin II-induced atrial fibroblasts proliferation via NF-κB/TGF-β1/TRIF/TRAF6 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiao-qing; Liu, Xu, E-mail: xkliuxu@126.com; Wang, Quan-xing, E-mail: wqxejd@126.com

    2015-01-01

    The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transformingmore » growth factor-β1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway. - Highlights: • Angiotensin II increased atrial fibrosis and related gene expressions in mice. • Angiotensin II induced atrial fibroblasts proliferation by activating signaling pathway. • Pioglitazone reversed both aforementioned changes.« less

  8. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma

    PubMed Central

    Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R.; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S.; Andoniadou, Cynthia L.

    2017-01-01

    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ cells and suggest that persistent proliferative capacity of Sox2+ cells may underlie the pathogenesis of PCP. PMID:28506993

  9. A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants

    PubMed Central

    Borowsky, Alexander T.

    2017-01-01

    Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products. PMID:28408660

  10. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Integrin αv in the mechanical response of osteoblast lineage cells.

    PubMed

    Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji

    2014-05-02

    Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src-JNK-YAP/TAZ pathway in response to mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    DOE PAGES

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...

    2015-03-06

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less

  13. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake.

    PubMed

    Nakajima, Ken-ichiro; Cui, Zhenzhong; Li, Chia; Meister, Jaroslawna; Cui, Yinghong; Fu, Ou; Smith, Adam S; Jain, Shalini; Lowell, Bradford B; Krashes, Michael J; Wess, Jürgen

    2016-01-08

    Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.

  14. Origin and function of myofibroblasts in kidney fibrosis.

    PubMed

    LeBleu, Valerie S; Taduri, Gangadhar; O'Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2013-08-01

    Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.

  15. Origin and Function of Myofibroblasts in Kidney Fibrosis

    PubMed Central

    LeBleu, Valerie S.; Taduri, Gangadhar; O’Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G.; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2014-01-01

    Myofibroblasts are associated with organ fibrosis but their precise origin and functional role remain unknown. We employed multiple genetically engineered mice to track, fate-map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Such comprehensive analysis identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts via proliferation. The non-proliferating myofibroblasts derive via differentiation from bone marrow (35%), endothelial to mesenchymal transition (EndMT) program (10%) and epithelial to mesenchymal transition (EMT) program (5%). Specific deletion of Tgfbr2 in αSMA+ cells revealed the importance of this pathway in recruitment of myofibroblasts via differentiation. Using genetic mouse models and fate-mapping strategy we determined that vascular pericytes likely do not contribute to the emergence of myofibroblasts or fibrosis. This study suggests that targeting diverse pathways is required to significantly inhibit composite accumulation of myofibroblasts in kidney fibrosis. PMID:23817022

  16. Exploring the microbial biodegradation and biotransformation gene pool.

    PubMed

    Galvão, Teca Calcagno; Mohn, William W; de Lorenzo, Víctor

    2005-10-01

    Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.

  17. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.

    PubMed

    Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis

    PubMed Central

    Zielinski, Daniel C.; Filipp, Fabian V.; Bordbar, Aarash; Jensen, Kasper; Smith, Jeffrey W.; Herrgard, Markus J.; Mo, Monica L.; Palsson, Bernhard O.

    2015-01-01

    Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways dysregulated by drugs are linked to the development of side effects. We show such dysregulated metabolic pathways contain genes with sequence variants affecting side effect incidence, play established roles in pathophysiology, have significantly altered activity in corresponding diseases, are susceptible to metabolic inhibitors and are effective targets for therapeutic nutrient supplementation. Our results indicate that metabolic dysregulation represents a common mechanism underlying side effect pathogenesis that is distinct from the role of metabolism in drug clearance. We suggest that elucidating the relationships between the cellular response to drugs, genetic variation of patients and cell metabolism may help managing side effects by personalizing drug prescriptions and nutritional intervention strategies. PMID:26055627

  19. Long non-coding RNA GAS5 is induced by interferons and plays an antitumor role in esophageal squamous cell carcinoma.

    PubMed

    Huang, Jianbing; Li, Yuan; Lu, Zhiliang; Che, Yun; Sun, Shouguo; Mao, Shuangshuang; Lei, Yuanyuan; Zang, Ruochuan; Li, Ning; Sun, Nan; He, Jie

    2018-05-09

    The long non-coding RNA GAS5 has been reported as a tumor suppressor in many cancers. However, its functions and mechanisms remain largely unknown in esophageal squamous cell carcinoma (ESCC). In this study, we found that GAS5 was over-expressed in ESCC tissue compared with that in normal esophageal tissue in a public database. Functional studies showed that GAS5 could inhibit ESCC cell proliferation, migration and invasion in vitro. Further analysis revealed that GAS5 was regulated by interferon (IFN) responses via the JAK-STAT pathway. Moreover, as an IFN-stimulated gene (ISG), GAS5 was a positive regulator of IFN responses. The feedback loop between GAS5 and the IFN signaling pathway plays an important antitumor role in ESCC, thus providing novel potential therapeutic targets. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway.

    PubMed

    Lee, Hyeong-Seon; Lee, Gyeong-Seon; Kim, Seon-Hee; Kim, Hyun-Kyung; Suk, Dong-Hee; Lee, Dong-Seok

    2014-02-01

    Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway.

  1. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  2. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M

    2016-01-01

    Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework.

  3. The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You

    Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less

  4. Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.

    PubMed

    Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng

    2015-12-01

    Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Cocoon formation in patients with midgut neuroendocrine tumors: a rare and unrecognized final pathway.

    PubMed

    Wang, Yi-Zarn; King, Heather; Diebold, Anne

    2013-08-01

    Neuroendocrine tumors (NETs) are relatively rare with an indolent nature. As a result, treatment is often delayed and passive. The most commonly recognized disease progression leading to death is from the sequelae of bowel obstruction, ischemia, or liver failure secondary to liver metastasis. We recently recognized a rare cocoon-like formation in patients with metastatic gastroenteropancreatic NETs and hypothesize that this may be a distinct, final pathway for these patients. Ten patients with stage IV gastroenteropancreatic NETs, seen at our center between October 2008 and November 2011, who developed a cocoon were identified. Patient's charts, operative reports, pathology, and tumor markers were reviewed. No discernable predictors were identified as precursors to this condition. One patient survived 13 months after cocoon diagnosis, and the remaining 9 patients were all deceased within 5 months. Surgical treatment was attempted in 6 patients and was only partially successful in 1 patient who had the earliest stage of cocoon formation (type 1). Cocoon-like formations in patients with stage IV gastroenteropancreatic NETs is rare and may be a terminal disease progression that has not been previously recognized. The best treatment option remains unknown. Surgical treatment is not advisable, with the exception of type 1 abdominal cocoons.

  6. Genome-Wide Identification of Circular RNAs as a Novel Class of Putative Biomarkers for an Ocular Surface Disease.

    PubMed

    Li, Xiu-Miao; Ge, Hui-Min; Yao, Jin; Zhou, Yun-Fan; Yao, Mu-Di; Liu, Chang; Hu, Hai-Tao; Zhu, Yun-Xi; Shan, Kun; Yan, Biao; Jiang, Qin

    2018-06-27

    Pterygium is a common ocular surface disease with an unknown etiology and threatens vision as it invades into the cornea. Circular RNAs (circRNAs) are a novel class of RNA transcripts that participate in several physiological and pathological processes. However, the role of circRNAs in pathogenesis of pterygium remains largely unknown. Genome-wide circRNA expression profiling was performed to identify pterygium -related circRNAs. GO analysis, pathway analysis, and miRNA response elements analysis was performed to predict the function of differentially expressed circRNAs in pterygium. MTT assays, Ki67 staining, Transwell assay, Hoechst 33342 staining, and Calcein-AM/PI staining were performed to determine the effect of circRNA silencing on pterygium fibroblast and epithelial cell function. Approximately 669 circRNAs were identified to be abnormally expressed in pterygium tissues. GO analysis demonstrated that the host genes of differentially expressed circRNAs were targeted to extracellular matrix organization (ontology: biological process), cytoplasm (ontology: cellular component), and protein binding (ontology: molecular function). Pathway analysis showed that dysregulated circRNAs-mediated regulatory networks were mostly enriched in focal adhesion signaling pathway. Notably, circ_0085020 (circ-LAPTM4B) was shown as a potential biomarker for pterygium. circ_0085020 (circ-LAPTM4B) silencing affected the viability, proliferation, migration, and apoptosis of pterygium fibroblast and epithelial cells in vitro. This study provides evidence that circRNAs are involved in the pathogenesis of pterygium and might constitute promising targets for the therapeutic intervention of pterygium. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    PubMed

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia , arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail. Copyright © 2017 Driscoll et al.

  8. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle.

    PubMed

    Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S; Marazzi, Giovanna; Sassoon, David A

    2018-01-01

    Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70-80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.

  9. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    PubMed

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma

    PubMed Central

    Fahrmann, Johannes F.; Grapov, Dmitry; Wanichthanarak, Kwanjeera; DeFelice, Brian C.; Salemi, Michelle R.; Rom, William N.; Gandara, David R.; Phinney, Brett S.; Fiehn, Oliver; Pass, Harvey

    2017-01-01

    Abstract Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma (1): increased glycosylation and glutaminolysis (2); elevated Nrf2 activation (3); increase in nicotinic and nicotinamide salvaging pathways and (4) elevated polyamine biosynthesis linked to differential regulation of the s-adenosylmethionine/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompany early stage lung tumorigenesis and highlight potential therapeutic targets. PMID:28049629

  11. High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.

    PubMed

    Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis

    2009-09-24

    Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.

  12. A novel pathway to detect and cope with exogenous dsDNA.

    PubMed

    Kobayashi, Shouhei; Haraguchi, Tokuko

    2015-01-01

    How a living cell responds to exogenous materials is one of the fundamental questions in the life sciences. In particular, understanding the mechanisms by which a cell recognizes exogenous double-stranded DNA (dsDNA) is important for immunology research because it will facilitate the control of pathogen infections that entail the presence of exogenous dsDNA in the cytoplasm of host cells. Several cytosolic dsDNA sensor proteins that trigger innate immune responses have been identified and the downstream signaling pathways have been investigated. However, the events that occur at the site of exogenous dsDNA when it is exposed to the cytosol of the host cell remain unknown. Using dsDNA-coated polystyrene beads incorporated into living cells, we recently found that barrier-to-autointegration factor (BAF) binds to the exogenous dsDNA immediately after its appearance in the cytosol and plays a role in DNA avoidance of autophagy. Our findings reveal a novel pathway in which BAF plays a key role in the detection of and response to exogenous dsDNA.

  13. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription.

    PubMed

    Akay, Alper; Di Domenico, Tomas; Suen, Kin M; Nabih, Amena; Parada, Guillermo E; Larance, Mark; Medhi, Ragini; Berkyurek, Ahmet C; Zhang, Xinlian; Wedeles, Christopher J; Rudolph, Konrad L M; Engelhardt, Jan; Hemberg, Martin; Ma, Ping; Lamond, Angus I; Claycomb, Julie M; Miska, Eric A

    2017-08-07

    Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in Caenorhabditis elegans. Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway

    PubMed Central

    Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.

    2009-01-01

    Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158

  15. Histidinol Phosphate Phosphatase, Catalyzing the Penultimate Step of the Histidine Biosynthesis Pathway, Is Encoded by ytvP (hisJ) in Bacillus subtilis

    PubMed Central

    le Coq, Dominique; Fillinger, Sabine; Aymerich, Stéphane

    1999-01-01

    The deduced product of the Bacillus subtilis ytvP gene is similar to that of ORF13, a gene of unknown function in the Lactococcus lactis histidine biosynthesis operon. A B. subtilis ytvP mutant was auxotrophic for histidine. The only enzyme of the histidine biosynthesis pathway that remained uncharacterized in B. subtilis was histidinol phosphate phosphatase (HolPase), catalyzing the penultimate step of this pathway. HolPase activity could not be detected in crude extracts of the ytvP mutant, while purified glutathione S-transferase-YtvP fusion protein exhibited strong HolPase activity. These observations demonstrated that HolPase is encoded by ytvP in B. subtilis and led us to rename this gene hisJ. Together with the HolPase of Saccharomyces cerevisiae and the presumed HolPases of L. lactis and Schizosaccharomyces pombe, HisJ constitutes a family of related enzymes that are not homologous to the HolPases of Escherichia coli, Salmonella typhimurium, and Haemophilus influenzae. PMID:10322033

  16. The integrity of PRRSV nucleocapsid protein is necessary for up-regulation of optimal interleukin-10 through NF-κB and p38 MAPK pathways in porcine alveolar macrophages.

    PubMed

    Yu, Jiang; Liu, Yanyan; Zhang, Yuyu; Zhu, Xiwang; Ren, Sufang; Guo, Lihui; Liu, Xing; Sun, Wenbo; Chen, Zhi; Cong, Xiaoyan; Chen, Lei; Shi, Jianli; Du, Yijun; Li, Jun; Wu, Jiaqiang; Wang, Jinbao

    2017-08-01

    Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease, has been constantly causing huge economic losses all over the world. PRRS virus (PRRSV) infection results in immunosuppression and IL-10 up-regulation. The relationship between them is still in dispute. Previous studies demonstrated the protein of PRRSV nucleocapsid (N) protein is able to up-regulate IL-10, yet the underlying molecular mechanisms remain unknown. In this study, the expression kinetics of IL-10 up-regulation induced by PRRSV N protein were analyzed in immortalized porcine alveolar macrophages (PAMs). N protein induced IL-10 expression in a time- and dose-dependent manner. Inhibition experiments of signaling pathways suggested NF-κB and p38 MAPK pathways are both involved in N protein-induced IL-10 up-regulation. Besides, the integrity of N protein is essential for significant IL-10 up-regulation. This research is beneficial for further understanding of the interplay between PRRSV and host immune system. Copyright © 2017. Published by Elsevier Ltd.

  17. Steroid and sterol 7-hydroxylation: ancient pathways.

    PubMed

    Lathe, Richard

    2002-11-01

    B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.

  18. Design and Analysis of a Petri Net Model of the Von Hippel-Lindau (VHL) Tumor Suppressor Interaction Network

    PubMed Central

    Minervini, Giovanni; Panizzoni, Elisabetta; Giollo, Manuel; Masiero, Alessandro; Ferrari, Carlo; Tosatto, Silvio C. E.

    2014-01-01

    Von Hippel-Lindau (VHL) syndrome is a hereditary condition predisposing to the development of different cancer forms, related to germline inactivation of the homonymous tumor suppressor pVHL. The best characterized function of pVHL is the ubiquitination dependent degradation of Hypoxia Inducible Factor (HIF) via the proteasome. It is also involved in several cellular pathways acting as a molecular hub and interacting with more than 200 different proteins. Molecular details of pVHL plasticity remain in large part unknown. Here, we present a novel manually curated Petri Net (PN) model of the main pVHL functional pathways. The model was built using functional information derived from the literature. It includes all major pVHL functions and is able to credibly reproduce VHL syndrome at the molecular level. The reliability of the PN model also allowed in silico knockout experiments, driven by previous model analysis. Interestingly, PN analysis suggests that the variability of different VHL manifestations is correlated with the concomitant inactivation of different metabolic pathways. PMID:24886840

  19. Design and analysis of a Petri net model of the Von Hippel-Lindau (VHL) tumor suppressor interaction network.

    PubMed

    Minervini, Giovanni; Panizzoni, Elisabetta; Giollo, Manuel; Masiero, Alessandro; Ferrari, Carlo; Tosatto, Silvio C E

    2014-01-01

    Von Hippel-Lindau (VHL) syndrome is a hereditary condition predisposing to the development of different cancer forms, related to germline inactivation of the homonymous tumor suppressor pVHL. The best characterized function of pVHL is the ubiquitination dependent degradation of Hypoxia Inducible Factor (HIF) via the proteasome. It is also involved in several cellular pathways acting as a molecular hub and interacting with more than 200 different proteins. Molecular details of pVHL plasticity remain in large part unknown. Here, we present a novel manually curated Petri Net (PN) model of the main pVHL functional pathways. The model was built using functional information derived from the literature. It includes all major pVHL functions and is able to credibly reproduce VHL syndrome at the molecular level. The reliability of the PN model also allowed in silico knockout experiments, driven by previous model analysis. Interestingly, PN analysis suggests that the variability of different VHL manifestations is correlated with the concomitant inactivation of different metabolic pathways.

  20. The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways.

    PubMed

    Sessa, Alessandro; Ciabatti, Ernesto; Drechsel, Daniela; Massimino, Luca; Colasante, Gaia; Giannelli, Serena; Satoh, Takashi; Akira, Shizuo; Guillemot, Francois; Broccoli, Vania

    2017-06-01

    The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. 77 FR 40901 - Notice of Inventory Completion: Gregg County Historical Museum, Longview, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... adult, one adult of unknown sex, and one juvenile of unknown sex. The human remains from Burial 6 include an occipital cranial bone fragment of one adult of unknown sex. The human remains from Burial 7 include one adult of unknown sex. No known individuals were identified. The 11 associated funerary objects...

  2. Novel genetic loci underlying human intracranial volume identified through genome-wide association.

    PubMed

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-12-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.

  3. Alterations in metabolic pathways and networks in Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-01-01

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809

  4. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  5. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies

    PubMed Central

    Becker, Dirk; Larisch, Christina; Kreuzer, Ines; Escalante-Perez, Maria; Schulze, Waltraud X.; Ankenbrand, Markus; Van de Weyer, Anna-Lena; Krol, Elzbieta; Al-Rasheid, Khaled A.; Mithöfer, Axel; Weber, Andreas P.; Schultz, Jörg

    2016-01-01

    Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death–related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition. PMID:27197216

  6. [Current Topics on Vitamin D. The vitamin D functions in keratinocytes and its therapeutic applications].

    PubMed

    Sawatsubashi, Shun

    2015-03-01

    1,25 (OH) 2D and calcium have been shown to promote epidermal keratinocyte differentiation and prevent proliferation. These prodifferentiation and antiproliferative effects of 1,25 (OH) 2D have led to its clinical use in the treatment of psoriasis. However, the mechanism of vitamin D action on keratinocytes remains largely unknown. While the actions of calcium and the vitamin D receptor signaling pathways on epidermal keratinocyte differentiation are redundant, their effects on the hair follicle are not. In this review, we discuss how the vitamin D and its receptor contribute to skin and hair follicle homeostasis.

  7. Validate Mitotic Checkpoint and Kinetochore Motor Proteins in Breast Cancer Cells as Targets for the Development of Novel Anti-Mitotic Drugs

    DTIC Science & Technology

    2004-07-01

    checkpoint pathway remains to MAD1 MAD1 xMADI be clarified, it is dear that all of them MAD2 MAD2 xMAD2 are essential for cells to arrest in mitosis MPS1 ...TrK in response to unattached kineto- chores. Given that MPS1 , BUB1 and (G) Structural Proteins/Unknown Functions the Mad3-related BUBR1 are all pro...BUB3, MADI, MAD2, MAD3, and MPS1 have been shown to be essential for establishing the checkpoint response in all eukaryotes examined to date (Abrieu et

  8. Psoriasis and Comorbid Diseases Part I. Epidemiology

    PubMed Central

    Takeshita, Junko; Grewal, Sungat; Langan, Sinéad M.; Mehta, Nehal N.; Ogdie, Alexis; Van Voorhees, Abby S.; Gelfand, Joel M.

    2017-01-01

    Psoriasis is a common chronic inflammatory disease of the skin that is increasingly being recognized as a systemic inflammatory disorder. Psoriatic arthritis is a well-known comorbidity of psoriasis. A rapidly expanding body of literature in various populations and settings supports additional associations between psoriasis and cardiometabolic disease, gastrointestinal disease, kidney disease, malignancies, infections, and mood disorders. The pathogenesis of comorbid disease in psoriasis patients remains unknown; however, shared inflammatory pathways, cellular mediators, genetic susceptibility, and common risk factors are hypothesized to be contributing elements. As additional psoriasis comorbidities continue to emerge, education of healthcare providers is essential to ensuring comprehensive medical care for patients with psoriasis. PMID:28212759

  9. Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief

    PubMed Central

    2017-01-01

    Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons. PMID:28971682

  10. Defocused low-energy shock wave activates adipose tissue-derived stem cells in vitro via multiple signaling pathways.

    PubMed

    Xu, Lina; Zhao, Yong; Wang, Muwen; Song, Wei; Li, Bo; Liu, Wei; Jin, Xunbo; Zhang, Haiyang

    2016-12-01

    We found defocused low-energy shock wave (DLSW) could be applied in regenerative medicine by activating mesenchymal stromal cells. However, the possible signaling pathways that participated in this process remain unknown. In the present study, DLSW was applied in cultured rat adipose tissue-derived stem cells (ADSCs) to explore its effect on ADSCs and the activated signaling pathways. After treating with DLSW, the cellular morphology and cytoskeleton of ADSCs were observed. The secretions of ADSCs were detected. The expressions of ADSC surface antigens were analyzed using flow cytometry. The expressions of proliferating cell nuclear antigen and Ki67 were analyzed using western blot. The expression of CXCR2 and the migrations of ADSCs in vitro and in vivo were detected. The phosphorylation of selected signaling pathways with or without inhibitors was also detected. DLSW did not change the morphology and phenotype of ADSCs, and could promote the secretion, proliferation and migration of ADSCs. The phosphorylation levels were significantly higher in mitogen-activated protein kinases (MAPK) pathway, phosphoinositide 3-kinase (PI-3K)/AKT pathway and nuclear factor-kappa B (NF-κB) signaling pathway but not in Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Furthermore, ADSCs were not activated by DLSW after adding the inhibitors of these pathways simultaneously. Our results demonstrated for the first time that DLSW could activate ADSCs through MAPK, PI-3K/AKT and NF-κB signaling pathways. Combination of DLSW and agonists targeting these pathways might improve the efficacy of ADSCs in regenerative medicine in the future. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4

    PubMed Central

    Sun, Zhenfei; Li, Min; Zhou, Ying; Guo, Tongtong; Liu, Yin; Zhang, Hui

    2018-01-01

    Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. PMID:29522510

  12. MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma

    PubMed Central

    Ranjan, Atul; Iyer, Swathi V.; Ward, Christopher; Link, Tim; Diaz, Francisco J.; Dhar, Animesh; Tawfik, Ossama W.; Weinman, Steven A.; Azuma, Yoshiaki; Izumi, Tadahide; Iwakuma, Tomoo

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk. PMID:29765550

  13. Whales Use Distinct Strategies to Counteract Solar Ultraviolet Radiation

    PubMed Central

    Martinez-Levasseur, Laura M.; Birch-Machin, Mark A.; Bowman, Amy; Gendron, Diane; Weatherhead, Elizabeth; Knell, Robert J.; Acevedo-Whitehouse, Karina

    2013-01-01

    A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies. PMID:23989080

  14. The IgE-dependent pathway in allergic transfusion reactions: involvement of donor blood allergens other than plasma proteins.

    PubMed

    Matsuyama, Nobuki; Yasui, Kazuta; Amakishi, Etsuko; Hayashi, Tomoya; Kuroishi, Ayumu; Ishii, Hiroyuki; Matsukura, Harumichi; Tani, Yoshihiko; Furuta, Rika A; Hirayama, Fumiya

    2015-07-01

    On transfusion, several plasma proteins can cause anaphylaxis in patients deficient in the corresponding plasma proteins. However, little is known about other allergens, which are encountered much more infrequently. Although it has been speculated that an allergen-independent pathway underlying allergic transfusion reactions (ATRs) is elicited by biological response modifiers accumulated in blood components during storage, the exact mechanisms remain unresolved. Furthermore, it is difficult even to determine whether ATRs are induced via allergen-dependent or allergen-independent pathways. To distinguish these two pathways in ATR cases, we established a basophil activation test, in which the basophil-activating ability of supernatants of residual transfused blood of ATR cases to whole blood basophils was assessed in the presence or absence of dasatinib, an inhibitor of IgE-mediated basophil activation. Three of 37 supernatants from the platelet concentrates with ATRs activated panel blood basophils in the absence, but not in the presence, of dasatinib. The basophil activation was inhibited by treatment of anti-fish collagen I MoAb in one case, suggesting that the involvement of fish allergens may have been present in donor plasma. We concluded that unknown non-plasma proteins, some of which had epitopes similar to fish antigens, in blood component may be involved in ATRs via an allergen/IgE-dependent pathway.

  15. A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants.

    PubMed

    Wisecaver, Jennifer H; Borowsky, Alexander T; Tzin, Vered; Jander, Georg; Kliebenstein, Daniel J; Rokas, Antonis

    2017-05-01

    Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products. © 2017 American Society of Plant Biologists. All rights reserved.

  16. Pulsed electromagnetic field inhibits RANKL-dependent osteoclastic differentiation in RAW264.7 cells through the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Xu, Haixia; Han, Zhongyu

    Pulsed electromagnetic field (PEMF) has been reported to improve bone healing in osteoporosis patients. However, the precise mechanism has remained largely unknown. This study aimed to investigate the effects of PEMF on nuclear factor κB ligand (RANKL)-dependent osteoclastic differentiation and the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway in RAW264.7 cells in vitro. Treating RAW264.7 cells with RANKL for 4 days induced osteoclastic differentiation in vitro, and the formation of multinucleated osteoclasts, bone resorption-pit formation, tartrate-resistant acid phosphatase (TRAP) activity and the protein levels of cathepsin K, TRAP, Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and matrix metalloproteinase 9 (MMP-9) were significantly decreased. The mRNA levelsmore » of specific genes related to osteoclastogenesis (TRAP, NFATc1, CTSK and MMP-9) were also reduced. Moreover, the oscillations of intracellular Ca{sup 2+} in RANKL-dependent RAW264.7 cells were suppressed by PEMF, as well as by inhibitors of membrane and store-operated Ca{sup 2+} channels. Meanwhile, calcineurin activity was increased, although its protein level was not changed. PEMF increased phospho-NFATc1 in the cytosol while suppressing the nuclear translocation of NFATc1, thus inhibiting osteoclastic differentiation by suppressing the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway. Although many questions remain unresolved, to our knowledge, this is the first report demonstrating that PEMF is beneficial against RANKL-dependent osteoclastic differentiation in RAW264.7 cells in vitro via inhibiting the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway.« less

  17. Pulsed electromagnetic field inhibits RANKL-dependent osteoclastic differentiation in RAW264.7 cells through the Ca2+-calcineurin-NFATc1 signaling pathway.

    PubMed

    Zhang, Jie; Xu, Haixia; Han, Zhongyu; Chen, Ping; Yu, Qiang; Lei, Yutian; Li, Zongze; Zhao, Ming; Tian, Jing

    2017-01-08

    Pulsed electromagnetic field (PEMF) has been reported to improve bone healing in osteoporosis patients. However, the precise mechanism has remained largely unknown. This study aimed to investigate the effects of PEMF on nuclear factor κB ligand (RANKL)-dependent osteoclastic differentiation and the Ca 2+ -calcineurin-NFATc1 signaling pathway in RAW264.7 cells in vitro. Treating RAW264.7 cells with RANKL for 4 days induced osteoclastic differentiation in vitro, and the formation of multinucleated osteoclasts, bone resorption-pit formation, tartrate-resistant acid phosphatase (TRAP) activity and the protein levels of cathepsin K, TRAP, Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and matrix metalloproteinase 9 (MMP-9) were significantly decreased. The mRNA levels of specific genes related to osteoclastogenesis (TRAP, NFATc1, CTSK and MMP-9) were also reduced. Moreover, the oscillations of intracellular Ca 2+ in RANKL-dependent RAW264.7 cells were suppressed by PEMF, as well as by inhibitors of membrane and store-operated Ca 2+ channels. Meanwhile, calcineurin activity was increased, although its protein level was not changed. PEMF increased phospho-NFATc1 in the cytosol while suppressing the nuclear translocation of NFATc1, thus inhibiting osteoclastic differentiation by suppressing the Ca 2+ -calcineurin-NFATc1 signaling pathway. Although many questions remain unresolved, to our knowledge, this is the first report demonstrating that PEMF is beneficial against RANKL-dependent osteoclastic differentiation in RAW264.7 cells in vitro via inhibiting the Ca 2+ -calcineurin-NFATc1 signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma.

    PubMed

    Haston, Scott; Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-06-15

    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2 + stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2 + cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2 + cells and suggest that persistent proliferative capacity of Sox2 + cells may underlie the pathogenesis of PCP. © 2017. Published by The Company of Biologists Ltd.

  19. Tissue factor pathway inhibitor-2: a novel gene involved in zebrafish central nervous system development.

    PubMed

    Zhang, Yanli; Wang, Lina; Zhou, Wenhao; Wang, Huijun; Zhang, Jin; Deng, Shanshan; Li, Weihua; Li, Huawei; Mao, Zuohua; Ma, Duan

    2013-09-01

    Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    PubMed Central

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  1. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    PubMed

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  2. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    PubMed Central

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  3. Ghrelin and gastrointestinal stromal tumors.

    PubMed

    Zhu, Chang-Zhen; Liu, Dong; Kang, Wei-Ming; Yu, Jian-Chun; Ma, Zhi-Qiang; Ye, Xin; Li, Kang

    2017-03-14

    Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs.

  4. The Auditory Anatomy of the Minke Whale (Balaenoptera acutorostrata): A Potential Fatty Sound Reception Pathway in a Baleen Whale

    PubMed Central

    Yamato, Maya; Ketten, Darlene R; Arruda, Julie; Cramer, Scott; Moore, Kathleen

    2012-01-01

    Cetaceans possess highly derived auditory systems adapted for underwater hearing. Odontoceti (toothed whales) are thought to receive sound through specialized fat bodies that contact the tympanoperiotic complex, the bones housing the middle and inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen whales), which have very different cranial anatomies compared to odontocetes. Here, we report a potential fatty sound reception pathway in the minke whale (Balaenoptera acutorostrata), a mysticete of the balaenopterid family. The cephalic anatomy of seven minke whales was investigated using computerized tomography and magnetic resonance imaging, verified through dissections. Findings include a large, well-formed fat body lateral, dorsal, and posterior to the mandibular ramus and lateral to the tympanoperiotic complex. This fat body inserts into the tympanoperiotic complex at the lateral aperture between the tympanic and periotic bones and is in contact with the ossicles. There is also a second, smaller body of fat found within the tympanic bone, which contacts the ossicles as well. This is the first analysis of these fatty tissues' association with the auditory structures in a mysticete, providing anatomical evidence that fatty sound reception pathways may not be a unique feature of odontocete cetaceans. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc. PMID:22488847

  5. A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration.

    PubMed

    Huang, Lin; Lv, Qi; Liu, Fenfen; Shi, Tieliu; Wen, Chengping

    2015-11-12

    Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.

  6. Pharyngeal pumping inhibition and avoidance by acute exposure to high CO2 levels are both regulated by the BAG neurons via different molecular pathways

    PubMed Central

    Sharabi, Kfir; Charar, Chayki; Gruenbaum, Yosef

    2015-01-01

    Carbon dioxide (CO2) is a key molecule in many biological processes. Studies in humans, mice, D. melanogaster, C. elegans, unicellular organisms and plants have shed light on the molecular pathways activated by elevated levels of CO2. However, the mechanisms that organisms use to sense and respond to high CO2 levels remain largely unknown. Previous work has shown that C. elegans quickly avoid elevated CO2 levels using mechanisms that involve the BAG, ASE and AFD neurons via cGMP- and calcium- signaling pathways. Here, we discuss our recent finding that exposure of C. elegans to high CO2 levels leads to a very rapid cessation in the contraction of the pharynx muscles. Surprisingly, none of the tested CO2 avoidance mutants affected the rapid pumping inhibition response to elevated CO2 levels. A forward genetic screen identified that the hid-1-mediated pathway of dense core vesicle maturation regulates the pumping inhibition, probably through affecting neuropeptide secretion. Genetic studies and laser ablation experiments showed that the CO2 response of the pharyngeal muscle pumping is regulated by the BAG neurons, the same neurons that mediate CO2 avoidance. PMID:26430557

  7. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    PubMed

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  8. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction

    PubMed Central

    Tabei, Yasuo; Yamanishi, Yoshihiro; Kotera, Masaaki

    2016-01-01

    Motivation: Metabolic pathways are an important class of molecular networks consisting of compounds, enzymes and their interactions. The understanding of global metabolic pathways is extremely important for various applications in ecology and pharmacology. However, large parts of metabolic pathways remain unknown, and most organism-specific pathways contain many missing enzymes. Results: In this study we propose a novel method to predict the enzyme orthologs that catalyze the putative reactions to facilitate the de novo reconstruction of metabolic pathways from metabolome-scale compound sets. The algorithm detects the chemical transformation patterns of substrate–product pairs using chemical graph alignments, and constructs a set of enzyme-specific classifiers to simultaneously predict all the enzyme orthologs that could catalyze the putative reactions of the substrate–product pairs in the joint learning framework. The originality of the method lies in its ability to make predictions for thousands of enzyme orthologs simultaneously, as well as its extraction of enzyme-specific chemical transformation patterns of substrate–product pairs. We demonstrate the usefulness of the proposed method by applying it to some ten thousands of metabolic compounds, and analyze the extracted chemical transformation patterns that provide insights into the characteristics and specificities of enzymes. The proposed method will open the door to both primary (central) and secondary metabolism in genomics research, increasing research productivity to tackle a wide variety of environmental and public health matters. Availability and Implementation: Contact: maskot@bio.titech.ac.jp PMID:27307627

  9. Changes in the visual-evoked P1 potential as a function of schizotypy and background color in healthy young adults.

    PubMed

    Bedwell, Jeffrey S; Chan, Chi C; Trachik, Benjamin J; Rassovsky, Yuri

    2013-04-01

    Research has suggested a hypoactive visual magnocellular (M) pathway in individuals with schizophrenia-spectrum disorders and traits, along with a unique response of this pathway to red light. As these abnormalities only appear in a subset of these samples, they may reflect unknown subtypes with unique etiologies and corresponding neuropathologies. The P1 transient visual-evoked component has been found to be influenced by M-pathway activity; therefore, the current study assessed the P1 component in response to a 64% contrast checker stimulus on white, red, and green background conditions. The sample consisted of 28 undergraduate participants (61% male) who endorsed a continuous range of total scores from the Schizotypal Personality Questionnaire (SPQ). Participants with higher total SPQ scores had a reduced P1 mean amplitude with the white (baseline) background, which was primarily related to the SPQ Magical Thinking subscale score. In addition, while participants with lower total SPQ scores showed the expected reduction in P1 amplitude to the red (vs. green) background, participants with higher total SPQ scores showed no change, which was primarily related to the SPQ Ideas of Reference subscale. This differential change to the red background remained after covarying for the P1 amplitude to the green background, thus representing a relatively independent effect. Further confirmation of these early visual processing relationships to particular clusters of symptoms in related psychiatric samples may assist in revealing unique, currently unknown, subtypes of particular psychiatric disorders such as schizophrenia. This can direct treatment efforts toward more homogeneous neuropathology targets. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    PubMed

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  11. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells

    PubMed Central

    Driscoll, Timothy P.; Verhoeve, Victoria I.; Guillotte, Mark L.; Lehman, Stephanie S.; Rennoll, Sherri A.; Beier-Sexton, Magda; Rahman, M. Sayeedur; Azad, Abdu F.

    2017-01-01

    ABSTRACT Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. PMID:28951473

  12. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes.

    PubMed

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.

  13. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes

    PubMed Central

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P.; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Aims Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Methods and results Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1pos CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105pos progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. Conclusion We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity. PMID:22997160

  14. Best strategies to implement clinical pathways in an emergency department setting: study protocol for a cluster randomized controlled trial.

    PubMed

    Jabbour, Mona; Curran, Janet; Scott, Shannon D; Guttman, Astrid; Rotter, Thomas; Ducharme, Francine M; Lougheed, M Diane; McNaughton-Filion, M Louise; Newton, Amanda; Shafir, Mark; Paprica, Alison; Klassen, Terry; Taljaard, Monica; Grimshaw, Jeremy; Johnson, David W

    2013-05-22

    The clinical pathway is a tool that operationalizes best evidence recommendations and clinical practice guidelines in an accessible format for 'point of care' management by multidisciplinary health teams in hospital settings. While high-quality, expert-developed clinical pathways have many potential benefits, their impact has been limited by variable implementation strategies and suboptimal research designs. Best strategies for implementing pathways into hospital settings remain unknown. This study will seek to develop and comprehensively evaluate best strategies for effective local implementation of externally developed expert clinical pathways. We will develop a theory-based and knowledge user-informed intervention strategy to implement two pediatric clinical pathways: asthma and gastroenteritis. Using a balanced incomplete block design, we will randomize 16 community emergency departments to receive the intervention for one clinical pathway and serve as control for the alternate clinical pathway, thus conducting two cluster randomized controlled trials to evaluate this implementation intervention. A minimization procedure will be used to randomize sites. Intervention sites will receive a tailored strategy to support full clinical pathway implementation. We will evaluate implementation strategy effectiveness through measurement of relevant process and clinical outcomes. The primary process outcome will be the presence of an appropriately completed clinical pathway on the chart for relevant patients. Primary clinical outcomes for each clinical pathway include the following: Asthma--the proportion of asthmatic patients treated appropriately with corticosteroids in the emergency department and at discharge; and Gastroenteritis--the proportion of relevant patients appropriately treated with oral rehydration therapy. Data sources include chart audits, administrative databases, environmental scans, and qualitative interviews. We will also conduct an overall process evaluation to assess the implementation strategy and an economic analysis to evaluate implementation costs and benefits. This study will contribute to the body of evidence supporting effective strategies for clinical pathway implementation, and ultimately reducing the research to practice gaps by operationalizing best evidence care recommendations through effective use of clinical pathways. ClinicalTrials.gov: NCT01815710.

  15. Theileria-transformed bovine leukocytes have cancer hallmarks.

    PubMed

    Tretina, Kyle; Gotia, Hanzel T; Mann, David J; Silva, Joana C

    2015-07-01

    The genus Theileria includes tick-transmitted apicomplexan parasites of ruminants with substantial economic impact in endemic countries. Some species, including Theileria parva and Theileria annulata, infect leukocytes where they induce phenotypes that are shared with some cancers, most notably immortalization, hyperproliferation, and dissemination. Despite considerable research into the affected host signaling pathways, the parasite proteins directly responsible for these host phenotypes remain unknown. In this review we outline current knowledge on the manipulation of host cells by transformation-inducing Theileria, and we propose that comparisons between cancer biology and host-Theileria interactions can reveal chemotherapeutic targets against Theileria-induced pathogenesis based on cancer treatment approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    PubMed

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  17. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision

    PubMed Central

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-01-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway. PMID:29196762

  18. Algal ancestor of land plants was preadapted for symbiosis.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  19. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells.

    PubMed

    Courtial, Lucile; Picco, Vincent; Grover, Renaud; Cormerais, Yann; Rottier, Cécile; Labbe, Antoine; Pagès, Gilles; Ferrier-Pagès, Christine

    2017-04-04

    Coral reefs are of major ecological and socio-economic interest. They are threatened by global warming and natural pressures such as solar ultraviolet radiation. While great efforts have been made to understand the physiological response of corals to these stresses, the signalling pathways involved in the immediate cellular response exhibited by corals remain largely unknown. Here, we demonstrate that c-Jun N-terminal kinase (JNK) activation is involved in the early response of corals to thermal and UV stress. Furthermore, we found that JNK activity is required to repress stress-induced reactive oxygen species (ROS) accumulation in both the coral Stylophora pistillata and human skin cells. We also show that inhibiting JNK activation under stress conditions leads to ROS accumulation, subsequent coral bleaching and cell death. Taken together, our results suggest that an ancestral response, involving the JNK pathway, is remarkably conserved from corals to human, protecting cells from the adverse environmental effects.

  20. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  1. Sex determination in plants.

    PubMed

    Monéger, Françoise

    2007-05-01

    Most dioecious plant species are believed to derive from hermaphrodite ancestors. The regulatory pathways that have been modified during evolution of the hermaphrodite ancestors and led to the emergence of dioecious species (with separate sexes) still remain unknown. Silene latifolia is a dioecious plant species harbouring XY sex chromosomes. To identify the molecular mechanisms involved in female organ suppression in male flowers of S. latifolia, we looked for genes potentially involved in the establishment of floral organ and whorl boundaries. We identified Arabidopsis thaliana homologs of SHOOTMERISTEMLESS (STM) and CUP SHAPED COTYLEDON 1 (CUC1) and CUC2 genes in S. latifolia. Our phylogenetic analyses suggest that we identified true orthologs for both types of genes. Detailed expression analyses showed a conserved expression pattern for these genes between S. latifolia and A. thaliana, suggesting a conserved function of the corresponding proteins. Both orthologs showed clear differences in their expression pattern between males and females or hermaphrodites suggesting their possible involvement in the sex determination pathway in S. latifolia.

  2. Intricate interplay between astrocytes and motor neurons in ALS

    PubMed Central

    Phatnani, Hemali P.; Guarnieri, Paolo; Friedman, Brad A.; Carrasco, Monica A.; Muratet, Michael; O’Keeffe, Sean; Nwakeze, Chiamaka; Pauli-Behn, Florencia; Newberry, Kimberly M.; Meadows, Sarah K.; Tapia, Juan Carlos; Myers, Richard M.; Maniatis, Tom

    2013-01-01

    ALS results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here, we examine the effects of glial cell/motor neuron interactions on gene expression using the hSOD1G93A (the G93A allele of the human superoxide dismutase gene) mouse model of ALS. We detect striking cell autonomous and nonautonomous changes in gene expression in cocultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data and expression profiles of whole spinal cords and acutely isolated spinal cord cells during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-β signaling pathways. PMID:23388633

  3. Vinpocetine inhibits breast cancer cells growth in vitro and in vivo.

    PubMed

    Huang, Er-Wen; Xue, Sheng-Jiang; Zhang, Zheng; Zhou, Jia-Guo; Guan, Yong-Yuan; Tang, Yong-Bo

    2012-10-01

    Vinpocetine is a clinically used drug for cerebrovascular disorders as well as age-related memory impairment. Of note, vinpocetine has been recently identified as a novel anti-inflammatory agent; however, its effects on cancer cells remain to be investigated. In the present study, we found that vinpocetine potently inhibited proliferation of multiple types of human breast cancer cells by arresting cell cycle at G(0)/G(1) phase. It was also revealed that vinpocetine induced cell apoptosis via mitochondria-dependent pathway. Moreover, vinpocetine impaired the migration of the strongly metastatic cell MDA-MB-231. In xenograft model of human breast cancer in nude mice, both systemic and local administration of vinpocetine significantly suppressed the tumor growth without observed toxicity. Interestingly, vinpocetine markedly attenuated the activation of Akt and signal transducer and activator of transcription factor 3 (STAT3), but had no effects on MAP kinases pathways. Collectively, the data suggest that vinpocetine possesses significant yet previously unknown antitumor properties that may be utilized for the treatment of breast cancer.

  4. DUSP11 – An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells

    PubMed Central

    Burke, James M.; Sullivan, Christopher S.

    2017-01-01

    ABSTRACT Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our laboratory demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells. PMID:28296624

  5. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake

    PubMed Central

    Nakajima, Ken-ichiro; Cui, Zhenzhong; Li, Chia; Meister, Jaroslawna; Cui, Yinghong; Fu, Ou; Smith, Adam S.; Jain, Shalini; Lowell, Bradford B.; Krashes, Michael J.; Wess, Jürgen

    2016-01-01

    Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity. PMID:26743492

  6. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells

    NASA Technical Reports Server (NTRS)

    Wang, Xiang; Khadpe, Jay; Hu, Baocheng; Iliakis, George; Wang, Ya

    2003-01-01

    Induction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response. The mechanism for this ataxia telangiectasia (AT)-independent G2-checkpoint response remains unknown. We report here that the G2 checkpoint in irradiated human AT cells derives from an overactivation of the ATR/CHK1 pathway. Chk1 small interfering RNA abolishes the IR-induced prolonged G2 checkpoint and radiosensitizes AT cells to killing. These results link the activation of ATR/CHK1 with the prolonged G2 arrest in AT cells and show that activation of this G2 checkpoint contributes to the survival of AT cells.

  7. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome

    PubMed Central

    Lanaspa, Miguel A; Ishimoto, Takuji; Li, Nanxing; Cicerchi, Christina; Orlicky, David J.; Ruzicky, Philip; Rivard, Christopher; Inaba, Shinichiro; Roncal-Jimenez, Carlos A.; Bales, Elise S.; Diggle, Christine P.; Asipu, Aruna; Petrash, J. Mark; Kosugi, Tomoki; Maruyama, Shoichi; Sanchez-Lozada, Laura G.; McManaman, James L.; Bonthron, David T; Sautin, Yuri Y.; Johnson, Richard J.

    2013-01-01

    Carbohydrates with high glycemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations glucose are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously-produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase deficient mice were protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism whereby glucose promotes the development of metabolic syndrome. PMID:24022321

  8. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health

    PubMed Central

    Kubinak, Jason L.; Petersen, Charisse; Stephens, W. Zac; Soto, Ray; Bake, Erin; O’Connell, Ryan M.; Round, June L.

    2015-01-01

    SUMMARY Altered commensal communities are associated with human disease. IgA mediates intestinal homeostasis and regulates microbiota composition. Intestinal IgA is produced at high levels as a result of T follicular helper cell (TFH) and B cell interactions in germinal centers. However, the pathways directing host IgA responses towards the microbiota remain unknown. Here, we report that signaling through the innate adaptor MyD88 in gut T cells coordinates germinal center responses, including TFH and IgA+ B cell development. TFH development is deficient in germfree mice and can be restored by feeding TLR2 agonists that activate T cell intrinsic MyD88 signaling. Loss of this pathway diminishes high affinity IgA targeting of the microbiota and fails to control the bacterial community, leading to worsened disease. Our findings identify that T cells converge innate and adaptive immune signals to coordinate IgA against the microbiota, constraining microbial community membership to promote symbiosis. PMID:25620548

  9. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

    PubMed

    Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter

    2017-09-01

    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.

  10. Higher integrity of the motor and visual pathways in long-term video game players.

    PubMed

    Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.

  11. Higher integrity of the motor and visual pathways in long-term video game players

    PubMed Central

    Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance. PMID:25805981

  12. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  13. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: A novel hypothesis on the mechanism of hot flushes

    PubMed Central

    Rance, Naomi E.; Dacks, Penny A.; Mittelman-Smith, Melinda A.; Romanovsky, Andrej A.; Krajewski-Hall, Sally J.

    2013-01-01

    Despite affecting millions of individuals, the etiology of hot flushes remains unknown. Here we review the physiology of hot flushes, CNS pathways regulating heat-dissipation effectors, and effects of estrogen on thermoregulation in animal models. Based on the marked changes in hypothalamic kisspeptin, neurokinin B and dynorphin (KNDy) neurons in postmenopausal women, we hypothesize that KNDy neurons play a role in the mechanism of flushes. In the rat, KNDy neurons project to preoptic thermoregulatory areas that express the neurokinin 3 receptor (NK3R), the primary receptor for NKB. Furthermore, activation of NK3R in the median preoptic nucleus, part of the heat-defense pathway, reduces body temperature. Finally, ablation of KNDy neurons reduces cutaneous vasodilatation and partially blocks the effects of estrogen on thermoregulation. These data suggest that arcuate KNDy neurons relay estrogen signals to preoptic structures regulating heat-dissipation effectors, supporting the hypothesis that KNDy neurons participate in the generation of flushes. PMID:23872331

  14. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway

    PubMed Central

    Frungillo, Lucas; Skelly, Michael J.; Loake, Gary J.; Spoel, Steven H.; Salgado, Ione

    2014-01-01

    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, i.e. covalent attachment of NO to cysteines to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine-tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity. PMID:25384398

  15. The anti-inflammatory effect of tramadol in the temporomandibular joint of rats.

    PubMed

    Lamana, Simone Monaliza S; Napimoga, Marcelo H; Nascimento, Ana Paula Camatta; Freitas, Fabiana F; de Araujo, Daniele R; Quinteiro, Mariana S; Macedo, Cristina G; Fogaça, Carlos L; Clemente-Napimoga, Juliana T

    2017-07-15

    Tramadol is a centrally acting analgesic drug able to prevent nociceptor sensitization when administered into the temporomandibular joint (TMJ) of rats. The mechanism underlying the peripheral anti-inflammatory effect of tramadol remains unknown. This study demonstrated that intra-TMJ injection of tramadol (500µg/TMJ) was able to inhibit the nociceptive response induced by 1.5% formalin or 1.5% capsaicin, suggesting that tramadol has an antinociceptive effect, acting directly on the primary nociceptive neurons activating the nitric oxide/cyclic guanosine monophosphate signaling pathway. Tramadol also inhibited the nociceptive response induced by carrageenan (100µg/TMJ) or 5-hydroxytryptamine (225µg/TMJ) along with inhibition of inflammatory cytokines levels, leukocytes migration and plasma extravasation. In conclusion, the results demonstrate that peripheral administration of tramadol has a potential antinociceptive and anti-inflammatory effect. The antinociceptive effect is mediated by activation of the intracellular nitric oxide/cyclic guanosine monophosphate pathway, at least in part, independently from the opioid system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors.

    PubMed

    Motamedi, Fariba Jian; Badro, Danielle A; Clarkson, Michael; Lecca, M Rita; Bradford, Stephen T; Buske, Fabian A; Saar, Kathrin; Hübner, Norbert; Brändli, André W; Schedl, Andreas

    2014-07-17

    Kidney organogenesis requires the tight control of proliferation, differentiation and apoptosis of renal progenitor cells. How the balance between these cellular decisions is achieved remains elusive. The Wilms' tumour suppressor Wt1 is required for progenitor survival, but the molecular cause for renal agenesis in mutants is poorly understood. Here we demonstrate that lack of Wt1 abolishes fibroblast growth factor (FGF) and induces BMP/pSMAD signalling within the metanephric mesenchyme. Addition of recombinant FGFs or inhibition of pSMAD signalling rescues progenitor cell apoptosis induced by the loss of Wt1. We further show that recombinant BMP4, but not BMP7, induces an apoptotic response within the early kidney that can be suppressed by simultaneous addition of FGFs. These data reveal a hitherto unknown sensitivity of early renal progenitors to pSMAD signalling, establishes FGF and pSMAD signalling as antagonistic forces in early kidney development and places WT1 as a key regulator of pro-survival FGF signalling pathway genes.

  17. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    PubMed Central

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  18. Neural Pathway of Renovative and Innovative Products Appreciation

    NASA Astrophysics Data System (ADS)

    Huang, Furong; Chiu, Chiyue; Luo, Jing

    2016-12-01

    According to the level of change an invention makes on existing things and how it overrides people’s mental schemas on established categories, new inventions can be classified into two groups: incremental inventions (i.e., renovations), which make minor improvements on existing designs, and radical inventions (i.e., innovations), which make major developments that enable people to do things they have never been able to do before. Although innovation and renovation are two fundamentally different types of creation that feature new changes ranging from those in product development to those in large scale social changes, and people tend to report higher subjective preferences for incremental inventions compared to radical inventions, the cognitive brain mechanisms underlying the mental representation of these two types of inventions remains unknown. Through the use of innovative and renovative designs as materials, we found that relative to non-creative designs, creative (renovative &innovative) designs enhanced memory or association-related activation in the right parahippocampus. In particular, innovations evoked more activation in the conceptual pathway for representing objects than did renovations, whereas renovations evoked more activation in the motor pathway than innovations. These results suggest that operating experiences may provide advantages for understanding and appreciating creative designs.

  19. The injury of fine particulate matter from cooking oil fumes on umbilical cord blood vessels in vitro.

    PubMed

    Hou, Lijuan; Zhang, Jian; Zhang, Chao; Xu, Yachun; Zhu, Xiaoxia; Yao, Cijiang; Liu, Ying; Li, Tao; Cao, Jiyu

    2017-01-01

    Cooking oil fumes (COFs) derived PM 2.5 is the major source of indoor air pollution in Asia. For this, a pregnant rat model within different doses of cooking oil fumes (COFs) derived PM 2.5 was established in pregnancy in our research. Our previous studies have showed that exposure to COFs-derived PM 2.5 was related to adverse pregnancy outcomes. However, the mechanisms of signaling pathways remain unknown. Therefore, this study aimed to investigate the underlying mechanisms induced by COFs-derived PM2.5 injury on umbilical cord blood vessels (UCs) in vitro. Exposure to COFs-derived PM 2.5 resulted in changing the expression of eNOS, ET-1, ETRA, and ETRB. In additions, western blot analysis indicated that the HIF-1α/iNOS/NO signaling pathway and VEGF/VEGFR1/iNOS signaling pathway were involved in UCs injury triggered by COFs-derived PM 2.5 . In conclusion, our data suggested that exposure to COFs-derived PM 2.5 resulted in increasing of oxidative stress and inflammation, as well as dysfunction of UCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    PubMed

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis.

    PubMed

    Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2017-06-13

    Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.

  2. Neural Pathway of Renovative and Innovative Products Appreciation

    PubMed Central

    Huang, Furong; Chiu, Chiyue; Luo, Jing

    2016-01-01

    According to the level of change an invention makes on existing things and how it overrides people’s mental schemas on established categories, new inventions can be classified into two groups: incremental inventions (i.e., renovations), which make minor improvements on existing designs, and radical inventions (i.e., innovations), which make major developments that enable people to do things they have never been able to do before. Although innovation and renovation are two fundamentally different types of creation that feature new changes ranging from those in product development to those in large scale social changes, and people tend to report higher subjective preferences for incremental inventions compared to radical inventions, the cognitive brain mechanisms underlying the mental representation of these two types of inventions remains unknown. Through the use of innovative and renovative designs as materials, we found that relative to non-creative designs, creative (renovative &innovative) designs enhanced memory or association-related activation in the right parahippocampus. In particular, innovations evoked more activation in the conceptual pathway for representing objects than did renovations, whereas renovations evoked more activation in the motor pathway than innovations. These results suggest that operating experiences may provide advantages for understanding and appreciating creative designs. PMID:27941936

  3. Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway

    PubMed Central

    Vitorino, Marta; Silva, Ana Cristina; Inácio, José Manuel; Ramalho, José Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José António

    2015-01-01

    Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PMID:26270962

  4. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    PubMed

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  5. PI3K and MEK1/2 molecular pathways are involved in the erythropoietin-mediated regulation of the central respiratory command.

    PubMed

    Caravagna, Céline; Soliz, Jorge

    2015-01-15

    Erythropoietin stimulation modulates the central respiratory command in newborn mice. Specifically, the central respiratory depression induced by hypoxia is attenuated by acute (1h) or abolished by chronic erythropoietin stimulation. However, the underlying mechanisms remain unknown. As MEK and PI3K pathways are commonly involved in Epo-mediated effects of neuroprotection and erythropoiesis, we investigated here the implication of PI3K and MEK1/2 in the Epo-mediated regulation of the central respiratory command. To this end, in vitro brainstem-spinal cord preparations from 3 days old transgenic (Tg21; constitutively overexpressing erythropoietin in the brain specifically) and control mice were used. Our results show that blockade of PI3K or MEK1/2 stimulates normoxic bursts frequency in Tg21 preparations and abolish hypoxia-induced frequency depression in control preparations. These results show that MEK1/2 and PI3K pathways are involved in the Epo-mediated regulation of the central respiratory command. Moreover, this is the first demonstration that MEK1/2 and PI3K are involved in the brainstem central respiratory command. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Neural Pathway of Renovative and Innovative Products Appreciation.

    PubMed

    Huang, Furong; Chiu, Chiyue; Luo, Jing

    2016-12-12

    According to the level of change an invention makes on existing things and how it overrides people's mental schemas on established categories, new inventions can be classified into two groups: incremental inventions (i.e., renovations), which make minor improvements on existing designs, and radical inventions (i.e., innovations), which make major developments that enable people to do things they have never been able to do before. Although innovation and renovation are two fundamentally different types of creation that feature new changes ranging from those in product development to those in large scale social changes, and people tend to report higher subjective preferences for incremental inventions compared to radical inventions, the cognitive brain mechanisms underlying the mental representation of these two types of inventions remains unknown. Through the use of innovative and renovative designs as materials, we found that relative to non-creative designs, creative (renovative &innovative) designs enhanced memory or association-related activation in the right parahippocampus. In particular, innovations evoked more activation in the conceptual pathway for representing objects than did renovations, whereas renovations evoked more activation in the motor pathway than innovations. These results suggest that operating experiences may provide advantages for understanding and appreciating creative designs.

  7. Stool-based biomarkers of interstitial cystitis/bladder pain syndrome.

    PubMed

    Braundmeier-Fleming, A; Russell, Nathan T; Yang, Wenbin; Nas, Megan Y; Yaggie, Ryan E; Berry, Matthew; Bachrach, Laurie; Flury, Sarah C; Marko, Darlene S; Bushell, Colleen B; Welge, Michael E; White, Bryan A; Schaeffer, Anthony J; Klumpp, David J

    2016-05-18

    Interstitial cystitis/bladder pain syndrome (IC) is associated with significant morbidity, yet underlying mechanisms and diagnostic biomarkers remain unknown. Pelvic organs exhibit neural crosstalk by convergence of visceral sensory pathways, and rodent studies demonstrate distinct bacterial pain phenotypes, suggesting that the microbiome modulates pelvic pain in IC. Stool samples were obtained from female IC patients and healthy controls, and symptom severity was determined by questionnaire. Operational taxonomic units (OTUs) were identified by16S rDNA sequence analysis. Machine learning by Extended Random Forest (ERF) identified OTUs associated with symptom scores. Quantitative PCR of stool DNA with species-specific primer pairs demonstrated significantly reduced levels of E. sinensis, C. aerofaciens, F. prausnitzii, O. splanchnicus, and L. longoviformis in microbiota of IC patients. These species, deficient in IC pelvic pain (DIPP), were further evaluated by Receiver-operator characteristic (ROC) analyses, and DIPP species emerged as potential IC biomarkers. Stool metabolomic studies identified glyceraldehyde as significantly elevated in IC. Metabolomic pathway analysis identified lipid pathways, consistent with predicted metagenome functionality. Together, these findings suggest that DIPP species and metabolites may serve as candidates for novel IC biomarkers in stool. Functional changes in the IC microbiome may also serve as therapeutic targets for treating chronic pelvic pain.

  8. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle

    PubMed Central

    Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S.; Marazzi, Giovanna; Sassoon, David A.

    2018-01-01

    Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70–80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration. PMID:29881353

  9. Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway

    PubMed Central

    Yan, Tiantian; Zhang, Junhui; Tang, Di; Zhang, Xingyue; Jiang, Xupin; Zhao, Liping; Zhang, Qiong; Zhang, Dongxia; Huang, Yuesheng

    2017-01-01

    Keratinocyte migration, the initial event and rate-limiting step in wound healing, plays a vital role in restoration of the intact skin barrier, also known as re-epithelialization. After acute tissue injury, hypoxic microenvironment gradually develops and acts as an early stimulus to initiate the healing process. Although we have previously found that hypoxia induces keratinocyte migration, the underlying mechanism remains unknown. Here, we first observed that hypoxia increased mTORC1 activity. Recombinant lentivirus vector and Rapamycin were used for silencing mTORC1 in HaCaT cells and primary mouse keratinocytes (MKs). Using cell migration assay and a Zeiss chamber equipped with imaging system, we also demonstrated that mTORC1 downregulation reversed hypoxia-induced keratinocyte motility and lateral migration. Importantly, hypoxia-activated mTORC1 was accompanied by the AMPK downregulation, and we found that the AMPK pathway activators Metformin (Met) and 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) decreased the mTORC1 activity, cell motility and lateral migration. Thus, our results suggest that hypoxia regulates mTORC1-mediated keratinocyte motility and migration via the AMPK pathway. PMID:28068384

  10. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    PubMed Central

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  11. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    PubMed

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  12. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    PubMed

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  13. Microscale frictional strains determine chondrocyte fate in loaded cartilage.

    PubMed

    Bonnevie, Edward D; Delco, Michelle L; Bartell, Lena R; Jasty, Naveen; Cohen, Itai; Fortier, Lisa A; Bonassar, Lawrence J

    2018-06-06

    Mounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses. Our incorporation of cell-scale strain measurements reveals that elevated friction generates high shear strains localized near the tissue surface, and that these elevated strains are closely associated with mitochondrial dysfunction, apoptosis, and cell death. Collectively, our data establish two pathways by which chondrocytes negatively respond to friction: an immediate necrotic response and a longer term pathway involving mitochondrial dysfunction and apoptosis. Specifically, in the surface region, where shear strains can exceed 0.07, cells are predisposed to acute death; however, below this surface region, cells exhibit a pathway consistent with apoptosis in a manner predicted by local shear strains. These data reveal a mechanism through which cellular damage in cartilage arises from compromised lubrication and show that in addition to boundary lubricants, there are opportunities upstream of apoptosis to preserve chondrocyte health in arthritis therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Progranulin Is a Chemoattractant for Microglia and Stimulates Their Endocytic Activity

    PubMed Central

    Pickford, Fiona; Marcus, Jacob; Camargo, Luiz Miguel; Xiao, Qiurong; Graham, Danielle; Mo, Jan-Rung; Burkhardt, Matthew; Kulkarni, Vinayak; Crispino, Jamie; Hering, Heike; Hutton, Michael

    2011-01-01

    Mutations resulting in progranulin haploinsufficiency cause disease in patients with a subset of frontotemporal lobar degeneration; however, the biological functions of progranulin in the brain remain unknown. To address this subject, the present study initially assessed changes in gene expression and cytokine secretion in rat primary cortical neurons treated with progranulin. Molecular pathways enriched in the progranulin gene set included cell adhesion and cell motility pathways and pathways involved in growth and development. Secretion of cytokines and several chemokines linked to chemoattraction but not inflammation were also increased from progranulin-treated primary neurons. Therefore, whether progranulin is involved in recruitment of immune cells in the brain was investigated. Localized lentiviral expression of progranulin in C57BL/6 mice resulted in an increase of Iba1-positive microglia around the injection site. Moreover, progranulin alone was sufficient to promote migration of primary mouse microglia in vitro. Primary microglia and C4B8 cells demonstrated more endocytosis of amyloid β1-42 when treated with progranulin. These data demonstrate that progranulin acts as a chemoattractant in the brain to recruit or activate microglia and can increase endocytosis of extracellular peptides such as amyloid β. PMID:21224065

  15. Jolkinolide B inhibits glycolysis by downregulating hexokinase 2 expression through inactivating the Akt/mTOR pathway in non-small cell lung cancer cells.

    PubMed

    Gao, Xiang; Han, Han

    2018-06-01

    Jolkinolide B (JB), a bioactive compound isolated from herbal medicine, has been found to inhibit tumor growth by altering glycolysis. However, whether glycolysis is influenced by JB in non-small cell lung cancer (NSCLC) cells and the mechanism remain unknown. The aim of the present study was to evaluate the effect of JB on the glycolysis in NSCLC cells and the underlying molecular mechanism. The results showed that JB treatment inhibited cell viability of A549 and H1299 cells in a concentration-dependent manner. JB reduced the glucose consumption, lactate production, and HK2 expression. The expressions of p-Akt and p-mTOR were also decreased by JB treatment. Knockdown of HK2 reduced glucose consumption and lactate production. Inhibition of the Akt/mTOR pathway decreased HK2 expression and inhibited glycolysis. In conclusion, the results indicated that JB inhibits glycolysis by down-regulating HK2 expression through inactivating the Akt/mTOR pathway in NSCLC cells, suggesting that JB might be a potential therapeutic agent for the treatment of NSCLC. © 2018 Wiley Periodicals, Inc.

  16. The Response to High CO2 Levels Requires the Neuropeptide Secretion Component HID-1 to Promote Pumping Inhibition

    PubMed Central

    Sharabi, Kfir; Charar, Chayki; Friedman, Nurit; Mizrahi, Inbar; Zaslaver, Alon; Sznajder, Jacob I.; Gruenbaum, Yosef

    2014-01-01

    Carbon dioxide (CO2) is a key molecule in many biological processes; however, mechanisms by which organisms sense and respond to high CO2 levels remain largely unknown. Here we report that acute CO2 exposure leads to a rapid cessation in the contraction of the pharynx muscles in Caenorhabditis elegans. To uncover the molecular mechanisms underlying this response, we performed a forward genetic screen and found that hid-1, a key component in neuropeptide signaling, regulates this inhibition in muscle contraction. Surprisingly, we found that this hid-1-mediated pathway is independent of any previously known pathways controlling CO2 avoidance and oxygen sensing. In addition, animals with mutations in unc-31 and egl-21 (neuropeptide secretion and maturation components) show impaired inhibition of muscle contraction following acute exposure to high CO2 levels, in further support of our findings. Interestingly, the observed response in the pharynx muscle requires the BAG neurons, which also mediate CO2 avoidance. This novel hid-1-mediated pathway sheds new light on the physiological effects of high CO2 levels on animals at the organism-wide level. PMID:25101962

  17. Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress.

    PubMed

    Mishra, Ranjan; van Drogen, Frank; Dechant, Reinhard; Oh, Soojung; Jeon, Noo Li; Lee, Sung Sik; Peter, Matthias

    2017-12-19

    Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine-threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.

  18. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes

    PubMed Central

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-01-01

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. PMID:23313877

  19. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less

  20. Effects of 5-h multimodal stress on the molecules and pathways involved in dendritic morphology and cognitive function.

    PubMed

    Xu, Yiran; Cheng, Xiaorui; Cui, Xiuliang; Wang, Tongxing; Liu, Gang; Yang, Ruishang; Wang, Jianhui; Bo, Xiaochen; Wang, Shengqi; Zhou, Wenxia; Zhang, Yongxiang

    2015-09-01

    Stress induces cognitive impairments, which are likely related to the damaged dendritic morphology in the brain. Treatments for stress-induced impairments remain limited because the molecules and pathways underlying these impairments are unknown. Therefore, the aim of this study was to find the potential molecules and pathways related to damage of the dendritic morphology induced by stress. To do this, we detected gene expression, constructed a protein-protein interaction (PPI) network, and analyzed the molecular pathways in the brains of mice exposed to 5-h multimodal stress. The results showed that stress increased plasma corticosterone concentration, decreased cognitive function, damaged dendritic morphologies, and altered APBB1, CLSTN1, KCNA4, NOTCH3, PLAU, RPS6KA1, SYP, TGFB1, KCNA1, NTRK3, and SNCA expression in the brains of mice. Further analyses found that the abnormal expressions of CLSTN1, PLAU, NOTCH3, and TGFB1 induced by stress were related to alterations in the dendritic morphology. These four genes demonstrated interactions with 55 other genes, and configured a closed PPI network. Molecular pathway analysis use the Database for Annotation, Visualization, and Integrated Discovery (DAVID), specifically the gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG), each identified three pathways that were significantly enriched in the gene list of the PPI network, with genes belonging to the Notch and transforming growth factor-beta (TGF-B) signaling pathways being the most enriched. Our results suggest that TGFB1, PLAU, NOTCH3, and CLSTN1 may be related to the alterations in dendritic morphology induced by stress, and imply that the Notch and TGF-B signaling pathways may be involved. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Proteome Profiling of BEAS-2B Cells Treated with Titanium Dioxide Reveals Potential Toxicity of and Detoxification Pathways for Nanomaterial

    EPA Science Inventory

    Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...

  2. Four Chemical Trends Will Shape the Next Decade's Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research.

    PubMed

    Kotthoff, Matthias; Bücking, Mark

    2018-01-01

    Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS load individual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern.Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules.Unknown "Dark Matter": The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix.

  3. Four Chemical Trends Will Shape the Next Decade's Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research

    PubMed Central

    Kotthoff, Matthias; Bücking, Mark

    2018-01-01

    Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS load individual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern.Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules.Unknown “Dark Matter”: The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix. PMID:29675408

  4. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin.

    PubMed

    Yang, Jingjing; Feng, Yanmei; Zhan, Hui; Liu, Jie; Yang, Fang; Zhang, Kaiyang; Zhang, Lianhui; Chen, Shaohua

    2018-01-01

    D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100%) D-phenothrin at 50 mg⋅L -1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva . Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant ( K i ) of 482.1673 mg⋅L -1 and maximum specific degradation constant ( q max ) of 0.0455 h -1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L -1 . The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  5. Two pathways for pyrrole formation in coumermycin A(1) biosynthesis: the central pyrrole moiety is formed from L-threonine.

    PubMed

    Siebenberg, Stefanie; Burkard, Nadja; Knuplesch, Anna; Gust, Bertolt; Grond, Stephanie; Heide, Lutz

    2011-11-25

    Coumermycin A(1) is an aminocoumarin antibiotic produced by Streptomyces rishiriensis. It contains three pyrrole rings, that is, two terminal 5-methyl-pyrrole-2-carboxyl moieties and a central 3-methylpyrrole-2,4-dicarboxylic acid moiety. The biosynthesis of the terminal pyrrole moieties has been elucidated previously. However, the biosynthetic precursors of the central pyrrole moiety have remained unknown, and none of the genes or enzymes involved in its formation has been identified. We now show that five genes, contained in a contiguous 4.7 kb region within the coumermycin biosynthetic gene cluster, are required for the biosynthesis of this central pyrrole moiety. Each of these genes was deleted individually, resulting in a strong reduction or an abolishment of coumermycin production. External feeding of the central pyrrole moiety restored coumermycin production. One of these genes shows similarity to L-threonine kinase genes. Feeding of [U-(13)C,(15) N]L-threonine and (13)C NMR analysis of the resulting compound unequivocally proved that threonine was incorporated intact into the central pyrrole (19 % enrichment) to provide the heterocyclic nitrogen as well as four of the seven carbons of this moiety. Therefore, this pyrrole is formed via a new, hitherto unknown biosynthetic pathway. A hypothesis for the reaction sequence leading to the central pyrrole moiety of coumermycin A(1) is presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family

    PubMed Central

    2004-01-01

    Manganese is an essential, but potentially toxic, trace metal in biological systems. Overexposure to manganese is known to cause neurological deficits in humans, but the pathways that lead to manganese toxicity are largely unknown. We have employed the bakers' yeast Saccharomyces cerevisiae as a model system to identify genes that contribute to manganese-related damage. In a genetic screen for yeast manganese-resistance mutants, we identified S. cerevisiae MAM3 as a gene which, when deleted, would increase cellular tolerance to toxic levels of manganese and also increased the cell's resistance towards cobalt and zinc. By sequence analysis, Mam3p shares strong similarity with the mammalian ACDP (ancient conserved domain protein) family of polypeptides. Mutations in human ACDP1 have been associated with urofacial (Ochoa) syndrome. However, the functions of eukaryotic ACDPs remain unknown. We show here that S. cerevisiae MAM3 encodes an integral membrane protein of the yeast vacuole whose expression levels directly correlate with the degree of manganese toxicity. Surprisingly, Mam3p contributes to manganese toxicity without any obvious changes in vacuolar accumulation of metals. Furthermore, through genetic epistasis studies, we demonstrate that MAM3 operates independently of the well-established manganese-trafficking pathways in yeast, involving the manganese transporters Pmr1p, Smf2p and Pho84p. This is the first report of a eukaryotic ACDP family protein involved in metal homoeostasis. PMID:15498024

  7. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis.

    PubMed

    Lee, Chunghee; Clark, Steven E

    2015-01-01

    The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.

  8. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis

    PubMed Central

    Lee, Chunghee; Clark, Steven E.

    2015-01-01

    The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified. PMID:26011610

  9. Sirt1 activation prevents anti-Thy 1.1 mesangial proliferative glomerulonephritis in the rat through the Nrf2/ARE pathway.

    PubMed

    Huang, Kaipeng; Li, Ruiming; Wei, Wentao

    2018-08-05

    Mesangial proliferative glomerulonephritis (MsPGN) is characterized by glomerular mesangial cells proliferation and extracellular matrix deposition in mesangial area, which develop into glomerulosclerosis. Both silent information regulator 2-related protein 1 (Sirt1) and nuclear factor erythroid 2-related factor 2/anti-oxidant response element (Nrf2/ARE) pathway had remarkable renoprotective effects. However, whether Sirt1 and Nrf2/ARE pathway can regulate the pathological process of MsPGN remains unknown. Here, we found that Sirt1 activation by SRT1720 decreased mesangial hypercellularity and mesangial matrix areas, reduced renal Col4 and α-SMA expressions, lowered 24 h proteinuria, and eventually reduced FN and TGF-β1 expressions in rats received anti-Thy 1.1 IgG. Further study showed that SRT1720 markedly enhanced the activity of Nrf2/ARE pathway including promoting the nuclear content and ARE-binding ability of Nrf2, elevating the protein levels of HO-1 and SOD1, two target genes of Nrf2, which eventually increased total SOD activity and decreased malondialdehyde level in the kidney tissues of experimental anti-Thy 1.1 MsPGN rats. Taken together, Sirt1 prevented the pathological process of experimental anti-Thy 1.1 MsPGN through promoting the activation of Nrf2/ARE pathway, which warrants further elucidation. Sirt1 might be a potential therapeutic target for treating MsPGN. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    PubMed

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  11. Shared molecular pathways and gene networks for cardiovascular disease and type 2 diabetes mellitus in women across diverse ethnicities.

    PubMed

    Chan, Kei Hang K; Huang, Yen-Tsung; Meng, Qingying; Wu, Chunyuan; Reiner, Alexander; Sobel, Eric M; Tinker, Lesley; Lusis, Aldons J; Yang, Xia; Liu, Simin

    2014-12-01

    Although cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D) share many common risk factors, potential molecular mechanisms that may also be shared for these 2 disorders remain unknown. Using an integrative pathway and network analysis, we performed genome-wide association studies in 8155 blacks, 3494 Hispanic American, and 3697 Caucasian American women who participated in the national Women's Health Initiative single-nucleotide polymorphism (SNP) Health Association Resource and the Genomics and Randomized Trials Network. Eight top pathways and gene networks related to cardiomyopathy, calcium signaling, axon guidance, cell adhesion, and extracellular matrix seemed to be commonly shared between CVD and T2D across all 3 ethnic groups. We also identified ethnicity-specific pathways, such as cell cycle (specific for Hispanic American and Caucasian American) and tight junction (CVD and combined CVD and T2D in Hispanic American). In network analysis of gene-gene or protein-protein interactions, we identified key drivers that included COL1A1, COL3A1, and ELN in the shared pathways for both CVD and T2D. These key driver genes were cross-validated in multiple mouse models of diabetes mellitus and atherosclerosis. Our integrative analysis of American women of 3 ethnicities identified multiple shared biological pathways and key regulatory genes for the development of CVD and T2D. These prospective findings also support the notion that ethnicity-specific susceptibility genes and process are involved in the pathogenesis of CVD and T2D. © 2014 American Heart Association, Inc.

  12. Mechanism of depression as a risk factor in the development of Alzheimer's disease: the function of AQP4 and the glymphatic system.

    PubMed

    Xia, Maosheng; Yang, Li; Sun, Guangfeng; Qi, Shuang; Li, Baoman

    2017-02-01

    Many studies have indicated that a history of depression increases the risk of developing Alzheimer's disease (AD); however, the potential pathogenestic mechanism by which depression functions as a high risk factor for AD remains unknown. Recently, a "cerebral lymphatic system" referred to as "glymphatic system" has been demonstrated to be responsible for neuronal extracellular waste protein clearance via a paravascular pathway. However, the function of glymphatic pathway has not been determined in depressive disorders. The present study used an animal model of chronic unpredictable mild stress (CUMS) to determine the function of glymphatic pathway by using fluorescence tracers. Immunohistochemistry was used to assess the accumulation of endogenous mouse and exogenous human amyloid beta 42 (Aβ42) in CUMS-treated mice with or without treatment with antidepressant fluoxetine. Glymphatic pathway circulation was impaired in mice treated with CUMS; moreover, glymphatic pathway dysfunction suppressed Aβ42 metabolism, because the accumulation of endogenous and exogenous Aβ42 was increased in the brains of the CUMS-treated mice. However, treatment with fluoxetine reversed these destructive effects of CUMS on glymphatic system. In anhedonic mice, the expression of the water channel aquaporin 4 (AQP4), a factor in glymphatic pathway dysfunction, was down-regulated in cortex and hippocampus. The dysfunction of glymphatic system suggested why a history of depression may be a strong risk factor for AD in anhedonic mice. We hope our study will contribute to an understanding of the risk mechanism of depressive disorder in the development of AD and the mechanisms of antidepressant therapies in AD.

  13. The human newborn's umwelt: Unexplored pathways and perspectives.

    PubMed

    André, Vanessa; Henry, Séverine; Lemasson, Alban; Hausberger, Martine; Durier, Virginie

    2018-02-01

    Historically, newborns, and especially premature newborns, were thought to "feel nothing." However, over the past decades, a growing body of evidence has shown that newborns are aware of their environment, but the extent and the onset of some sensory capacities remain largely unknown. The goal of this review is to update our current knowledge concerning newborns' perceptual world and how ready they are to cope with an entirely different sensory environment following birth. We aim to establish not only how and when each sensory ability arises during the pre-/postbirth period but also discuss how senses are studied. We conclude that although many studies converge to show that newborns are clearly sentient beings, much is still unknown. Further, we identify a series of internal and external factors that could explain discrepancies between studies, and we propose perspectives for future studies. Finally, through examples from animal studies, we illustrate the importance of this detailed knowledge to pursue the enhancement of newborns' daily living conditions. Indeed, this is a prerequisite for assessing the effects of the physical environment and routine procedures on newborns' welfare.

  14. NRF2 Mediates Neuroblastoma Proliferation and Resistance to Retinoic Acid Cytotoxicity in a Model of In Vitro Neuronal Differentiation.

    PubMed

    de Miranda Ramos, Vitor; Zanotto-Filho, Alfeu; de Bittencourt Pasquali, Matheus Augusto; Klafke, Karina; Gasparotto, Juciano; Dunkley, Peter; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-11-01

    Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y. Our data showed that n-acetyl-cysteine (NAC) reduced cells' proliferation rate and increased cells' sensitivity to RA toxicity. Simultaneously, NAC pre-incubation attenuated nuclear factor erythroid 2-like factor 2 (NRF2) activation by RA. None of these effects were obtained with Trolox ® as antioxidant, suggesting a cysteine signalization by RA. NRF2 knockdown increased cell sensibility to RA after 96 h of treatment and diminished neuroblastoma proliferation rate. Conversely, NRF2 overexpression limited RA anti-proliferative effects and increased cell proliferation. In addition, a rapid and non-genomic activation of the ERK 1/2 and PI3K/AKT pathways revealed to be equally required to promote NRF2 activation and necessary for RA-induced differentiation. Together, we provide data correlating NRF2 activity with neuroblastoma proliferation and resistance to RA treatments; thus, this pathway could be a potential target to optimize neuroblastoma chemotherapeutic response as well as in vitro neuronal differentiation protocols.

  15. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    PubMed Central

    Wang, Wenting; Li, Chenchen; Chen, Qian; Hawrot, James; Yao, Annie Y.; Gao, Xian; Lu, Congyi; Zang, Ying; Lyman, Katherine; Wang, Dongqing; Guo, Baolin; Wu, Shengxi; Gerfen, Charles R.; Fu, Zhanyan

    2017-01-01

    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice. PMID:28414301

  16. Potential pathways by which maternal second-hand smoke exposure during pregnancy causes full-term low birth weight.

    PubMed

    Niu, Zhongzheng; Xie, Chuanbo; Wen, Xiaozhong; Tian, Fuying; Yuan, Shixin; Jia, Deqin; Chen, Wei-Qing

    2016-04-29

    It is well documented that maternal exposure to second-hand smoke (SHS) during pregnancy causes low birth weight (LBW), but its mechanism remains unknown. This study explored the potential pathways. We enrolled 195 pregnant women who delivered full-term LBW newborns, and 195 who delivered full-term normal birth weight newborns as the controls. After controlling for maternal age, education level, family income, pre-pregnant body mass index, newborn gender and gestational age, logistic regression analysis revealed that LBW was significantly and positively associated with maternal exposure to SHS during pregnancy, lower placental weight, TNF-α and IL-1β, and that SHS exposure was significantly associated with lower placental weight, TNF-α and IL-1β. Structural equation modelling identified two plausible pathways by which maternal exposure to SHS during pregnancy might cause LBW. First, SHS exposure induced the elevation of TNF-α, which might directly increase the risk of LBW by transmission across the placenta. Second, SHS exposure first increased maternal secretion of IL-1β and TNF-α, which then triggered the secretion of VCAM-1; both TNF-α and VCAM-1 were significantly associated with lower placental weight, thus increasing the risk of LBW. In conclusion, maternal exposure to SHS during pregnancy may lead to LBW through the potential pathways of maternal inflammation and lower placental weight.

  17. Semaphorin 3F Is a Bifunctional Guidance Cue for Dopaminergic Axons and Controls Their Fasciculation, Channeling, Rostral Growth, and Intracortical Targeting

    PubMed Central

    Kolk, Sharon M.; Gunput, Rou-Afza F.; Tran, Tracy S.; van den Heuvel, Dianne M. A.; Prasad, Asheeta A.; Hellemons, Anita J. C. G. M.; Adolfs, Youri; Ginty, David D.; Kolodkin, Alex L.; Burbach, J. Peter H.; Smidt, Marten P.; Pasterkamp, R. Jeroen

    2010-01-01

    Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F−/−, npn-2−/−, and npn-2−/−;TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease. PMID:19812329

  18. Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.

    PubMed

    Suresh, Rahul; Li, Xing; Chiriac, Anca; Goel, Kashish; Terzic, Andre; Perez-Terzic, Carmen; Nelson, Timothy J

    2014-09-01

    Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome expression microarray on blood samples from normal cardiac function controls (n=21) and first-time AMI patients (n=31) within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways. To determine molecular signatures at the time of AMI associated with long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially-expressed genes. Bioinformatic analysis of this differential gene-set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of genes involved in the developmental epithelial-to-mesenchymal transition pathway, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. Differentially regulated genes and modulated pathways were identified that were associated with recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients and warrants further study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system

    PubMed Central

    Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda

    2016-01-01

    The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system. PMID:27626310

  20. A specific sexual orientation-related difference in navigation strategy.

    PubMed

    Rahman, Qazi; Andersson, Davinia; Govier, Ernest

    2005-02-01

    During spatial navigation, women typically navigate an environment using a landmark strategy, whereas men typically use an orientation strategy. To examine the as yet unknown effects of sexual orientation on these normative sex differences, this study required 80 healthy heterosexual and homosexual adult men and women to provide directions from experimental maps for 4 routes. The frequency and type of strategy used by each participant were computed. Expected sex differences were demonstrated, and a robust cross-sex shift was shown by homosexual men in using landmarks. This remained after controlling for differences in mental rotation, directional sense, and general intelligence. The findings may limit the number of putative neurodevelopmental pathways responsible for sex differences in navigation strategy utility. Copyright 2005 APA.

  1. A new regulatory pathway of mRNA export by an F-box protein, Mdm30.

    PubMed

    Durairaj, Geetha; Lahudkar, Shweta; Bhaumik, Sukesh R

    2014-02-01

    Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.

  2. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system.

    PubMed

    Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda

    2016-11-08

    The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system.

  3. Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans.

    PubMed

    Sugi, Takuma; Nishida, Yukuo; Mori, Ikue

    2011-06-26

    Animals cope with environmental changes by altering behavioral strategy. Environmental information is generally received by sensory neurons in the neural circuit that generates behavior. However, although environmental temperature inevitably influences an animal's entire body, the mechanism of systemic temperature perception remains largely unknown. We show here that systemic temperature signaling induces a change in a memory-based behavior in C. elegans. During behavioral conditioning, non-neuronal cells as well as neuronal cells respond to cultivation temperature through a heat-shock transcription factor that drives newly identified gene expression dynamics. This systemic temperature signaling regulates thermosensory neurons non-cell-autonomously through the estrogen signaling pathway, producing thermotactic behavior. We provide a link between systemic environmental recognition and behavioral plasticity in the nervous system.

  4. Amyotrophic Lateral Sclerosis: A Focus on Disease Progression

    PubMed Central

    Calvo, Ana C.; Manzano, Raquel; Mendonça, Deise M. F.; Muñoz, María J.; Zaragoza, Pilar

    2014-01-01

    Since amyotrophic lateral sclerosis (ALS) was discovered and described in 1869 as a neurodegenerative disease in which motor neuron death is induced, a wide range of biomarkers have been selected to identify therapeutic targets. ALS shares altered molecular pathways with other neurodegenerative diseases, such as Alzheimer's, Huntington's, and Parkinson's diseases. However, the molecular targets that directly influence its aggressive nature remain unknown. What is the first link in the neurodegenerative chain of ALS that makes this disease so peculiar? In this review, we will discuss the progression of the disease from the viewpoint of the potential biomarkers described to date in human and animal model samples. Finally, we will consider potential therapeutic strategies for ALS treatment and future, innovative perspectives. PMID:25157374

  5. The biology and function of exosomes in cancer.

    PubMed

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

  6. Alleviation of acquired stuttering with human centremedian thalamic stimulation.

    PubMed Central

    Bhatnagar, S C; Andy, O J

    1989-01-01

    Despite many investigations, the cerebral mechanism for stuttering remains unknown. Recently, increased attention has been paid to acquired stuttering of adult onset in the hope that the events associated with it might provide clues to the biological mechanism underlying stuttering. This attention has focused exclusively on the cortical substrates. We present our observations of acquired dysfluency, presumably of subcortical origin in a neurosurgical subject with intractable pain. The stuttering was relieved by thalamic electric stimulation. The effect of thalamic stimulation on the stuttering suggests that the pathophysiology of transient asynchronisation in the balancing and sequencing of multiple impulses is amenable to a diffusely orchestrated functional tuning of the thalamic and brainstem implicated subcortical structures and pathways. Images PMID:2795045

  7. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    PubMed

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  8. Notch3 marks clonogenic mammary luminal progenitor cells in vivo

    PubMed Central

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis

    2013-01-01

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive “triple negative” human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2SAT transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells. PMID:24100291

  9. Clinical progression in Parkinson disease and the neurobiology of axons.

    PubMed

    Cheng, Hsiao-Chun; Ulane, Christina M; Burke, Robert E

    2010-06-01

    Despite tremendous growth in recent years in our knowledge of the molecular basis of Parkinson disease (PD) and the molecular pathways of cell injury and death, we remain without therapies that forestall disease progression. Although there are many possible explanations for this lack of success, one is that experimental therapeutics to date have not adequately focused on an important component of the disease process, that of axon degeneration. It remains unknown what neuronal compartment, either the soma or the axon, is involved at disease onset, although some have proposed that it is the axons and their terminals that take the initial brunt of injury. Nevertheless, this concept has not been formally incorporated into many of the current theories of disease pathogenesis, and it has not achieved a wide consensus. More importantly, in view of growing evidence that the molecular mechanisms of axon degeneration are separate and distinct from the canonical pathways of programmed cell death that mediate soma destruction, the possibility of early involvement of axons in PD has not been adequately emphasized as a rationale to explore the neurobiology of axons for novel therapeutic targets. We propose that ongoing degeneration of axons, not cell bodies, is the primary determinant of clinically apparent progression of disease, and that future experimental therapeutics intended to forestall disease progression will benefit from a new focus on the distinct mechanisms of axon degeneration.

  10. Phenformin activates the unfolded protein response in an AMP-activated protein kinase (AMPK)-dependent manner.

    PubMed

    Yang, Liu; Sha, Haibo; Davisson, Robin L; Qi, Ling

    2013-05-10

    The cross-talk between UPR activation and metabolic stress remains largely unclear. Phenformin treatment activates the IRE1α and PERK pathways in an AMPK-dependent manner. AMPK is required for phenformin-mediated IRE1α and PERK activation. Our findings demonstrate the cross-talk between UPR and metabolic signals. Activation of the unfolded protein response (UPR) is associated with the disruption of endoplasmic reticulum (ER) homeostasis and has been implicated in the pathogenesis of many human metabolic diseases, including obesity and type 2 diabetes. However, the nature of the signals activating UPR under these conditions remains largely unknown. Using a method that we recently optimized to directly measure UPR sensor activation, we screened the effect of various metabolic drugs on UPR activation and show that the anti-diabetic drug phenformin activates UPR sensors IRE1α and pancreatic endoplasmic reticulum kinase (PERK) in both an ER-dependent and ER-independent manner. Mechanistically, AMP-activated protein kinase (AMPK) activation is required but not sufficient to initiate phenformin-mediated IRE1α and PERK activation, suggesting the involvement of additional factor(s). Interestingly, activation of the IRE1α (but not PERK) pathway is partially responsible for the cytotoxic effect of phenformin. Together, our data show the existence of a non-canonical UPR whose activation requires the cytosolic kinase AMPK, adding another layer of complexity to UPR activation upon metabolic stress.

  11. Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.

    PubMed

    Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias

    2014-10-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Enzymes Involved in a Novel Anaerobic Cyclohexane Carboxylic Acid Degradation Pathway

    PubMed Central

    Kung, Johannes W.; Meier, Anne-Katrin; Mergelsberg, Mario

    2014-01-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478

  13. Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types.

    PubMed Central

    Satoh, T; Fantl, W J; Escobedo, J A; Williams, L T; Kaziro, Y

    1993-01-01

    A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types. Images PMID:8388543

  14. Four chemical trends will shape the next decade's directions in Perfluoroalkyl and Polyfluoroalkyl substances research

    NASA Astrophysics Data System (ADS)

    Kotthoff, Matthias; Bücking, Mark

    2018-04-01

    Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS.This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS loadindividual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. 1.Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility. 2.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern. 3.Increase in structural diversity of existing PFAS molecules: Introduction of e.g. hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules. 4. Unknown “Dark Matter”: The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix.

  15. Adolescent physical activity and health: a systematic review.

    PubMed

    Hallal, Pedro C; Victora, Cesar G; Azevedo, Mario R; Wells, Jonathan C K

    2006-01-01

    Physical activity in adolescence may contribute to the development of healthy adult lifestyles, helping reduce chronic disease incidence. However, definition of the optimal amount of physical activity in adolescence requires addressing a number of scientific challenges. This article reviews the evidence on short- and long-term health effects of adolescent physical activity. Systematic reviews of the literature were undertaken using a reference period between 2000 and 2004, based primarily on the MEDLINE/PubMed database. Relevant studies were identified by examination of titles, abstracts and full papers, according to inclusion criteria defined a priori. A conceptual framework is proposed to outline how adolescent physical activity may contribute to adult health, including the following pathways: (i) pathway A--tracking of physical activity from adolescence to adulthood; (ii) pathway B--direct influence of adolescent physical activity on adult morbidity; (iii) pathway C--role of physical activity in treating adolescent morbidity; and (iv) pathway D - short-term benefits of physical activity in adolescence on health. The literature reviews showed consistent evidence supporting pathway 'A', although the magnitude of the association appears to be moderate. Thus, there is an indirect effect on all health benefits resulting from adult physical activity. Regarding pathway 'B', adolescent physical activity seems to provide long-term benefits on bone health, breast cancer and sedentary behaviours. In terms of pathway 'C', water physical activities in adolescence are effective in the treatment of asthma, and exercise is recommended in the treatment of cystic fibrosis. Self-esteem is also positively affected by adolescent physical activity. Regarding pathway 'D', adolescent physical activity provides short-term benefits; the strongest evidence refers to bone and mental health. Appreciation of different mechanisms through which adolescent physical activity may influence adult health is essential for drawing recommendations; however, the amount of exercise needed for achieving different benefits may vary. Physical activity promotion must start in early life; although the 'how much' remains unknown and needs further research, the lifelong benefits of adolescent physical activity on adult health are unequivocal.

  16. Best strategies to implement clinical pathways in an emergency department setting: study protocol for a cluster randomized controlled trial

    PubMed Central

    2013-01-01

    Background The clinical pathway is a tool that operationalizes best evidence recommendations and clinical practice guidelines in an accessible format for ‘point of care’ management by multidisciplinary health teams in hospital settings. While high-quality, expert-developed clinical pathways have many potential benefits, their impact has been limited by variable implementation strategies and suboptimal research designs. Best strategies for implementing pathways into hospital settings remain unknown. This study will seek to develop and comprehensively evaluate best strategies for effective local implementation of externally developed expert clinical pathways. Design/methods We will develop a theory-based and knowledge user-informed intervention strategy to implement two pediatric clinical pathways: asthma and gastroenteritis. Using a balanced incomplete block design, we will randomize 16 community emergency departments to receive the intervention for one clinical pathway and serve as control for the alternate clinical pathway, thus conducting two cluster randomized controlled trials to evaluate this implementation intervention. A minimization procedure will be used to randomize sites. Intervention sites will receive a tailored strategy to support full clinical pathway implementation. We will evaluate implementation strategy effectiveness through measurement of relevant process and clinical outcomes. The primary process outcome will be the presence of an appropriately completed clinical pathway on the chart for relevant patients. Primary clinical outcomes for each clinical pathway include the following: Asthma—the proportion of asthmatic patients treated appropriately with corticosteroids in the emergency department and at discharge; and Gastroenteritis—the proportion of relevant patients appropriately treated with oral rehydration therapy. Data sources include chart audits, administrative databases, environmental scans, and qualitative interviews. We will also conduct an overall process evaluation to assess the implementation strategy and an economic analysis to evaluate implementation costs and benefits. Discussion This study will contribute to the body of evidence supporting effective strategies for clinical pathway implementation, and ultimately reducing the research to practice gaps by operationalizing best evidence care recommendations through effective use of clinical pathways. Trial registration ClinicalTrials.gov: NCT01815710 PMID:23692634

  17. Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties

    PubMed Central

    Rivera-Madrid, Renata; Aguilar-Espinosa, Margarita; Cárdenas-Conejo, Yair; Garza-Caligaris, Luz E.

    2016-01-01

    Bixa orellana (family Bixaceae) is a neotropical fast growing perennial tree of great agro-industrial value because its seeds have a high carotenoid content, mainly bixin. It has been used since pre-colonial times as a culinary colorant and spice, and for healing purposes. It is currently used as a natural pigment in the food, in pharmaceutical, and cosmetic industries, and it is commercially known as annatto. Recently, several studies have addressed the biological and medical properties of this natural pigment, both as potential source of new drugs or because its ingestion as a condiment or diet supplement may protect against several diseases. The most documented properties are anti-oxidative; but its anti-cancer, hypoglucemic, antibiotic and anti-inflammatory properties are also being studied. Bixin’s pathway elucidation and its regulation mechanisms are critical to improve the produce of this important carotenoid. Even though the bixin pathway has been established, the regulation of the genes involved in bixin production remains largely unknown. Our laboratory recently published B. orellana’s transcriptome and we have identified most of its MEP (methyl-D-erythritol 4-phosphate) and carotenoid pathway genes. Annatto is a potential source of new drugs and can be a valuable nutraceutical supplement. However, its nutritional and healing properties require further study. PMID:27708658

  18. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes

    PubMed Central

    Tucci, P; Porta, G; Agostini, M; Dinsdale, D; Iavicoli, I; Cain, K; Finazzi-Agró, A; Melino, G; Willis, A

    2013-01-01

    The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response. PMID:23519118

  19. A metabolic pathway for catabolizing levulinic acid in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterizationmore » of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.« less

  20. A metabolic pathway for catabolizing levulinic acid in bacteria

    DOE PAGES

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; ...

    2017-09-25

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterizationmore » of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.« less

  1. The Differential Expression of Immune Genes between Water Buffalo and Yellow Cattle Determines Species-Specific Susceptibility to Schistosoma japonicum Infection

    PubMed Central

    Yang, Jianmei; Fu, Zhiqiang; Hong, Yang; Wu, Haiwei; Jin, Yamei; Zhu, Chuangang; Li, Hao; Lu, Ke; Shi, Yaojun; Yuan, Chunxiu; Cheng, Guofeng; Feng, Xingang; Liu, Jinming; Lin, Jiaojiao

    2015-01-01

    Water buffalo are less susceptible to Schistosoma japonicum infection than yellow cattle. The factors that affect such differences in susceptibility remain unknown. A Bos taurus genome-wide gene chip was used to analyze gene expression profiles in the peripheral blood of water buffalo and yellow cattle pre- and post-infection with S. japonicum. This study showed that most of the identified differentially expressed genes(DEGs) between water buffalo and yellow cattle pre- and post-infection were involved in immune-related processes, and the expression level of immune genes was lower in water buffalo. The unique DEGs (390) in yellow cattle were mainly associated with inflammation pathways, while the unique DEGs (2,114) in water buffalo were mainly associated with immune-related factors. The 83 common DEGs may be the essential response genes during S. japonicum infection, the highest two gene ontology (GO) functions were associated with the regulation of fibrinolysis. The pathway enrichment analysis showed that the DEGs constituted similar immune-related pathways pre- and post-infection between the two hosts. This first analysis of the transcriptional profiles of natural hosts has enabled us to gain new insights into the mechanisms that govern their susceptibility or resistance to S. japonicum infections. PMID:26125181

  2. Physcomitrella patens MAX2 characterization suggests an ancient role for this F-box protein in photomorphogenesis rather than strigolactone signalling.

    PubMed

    Lopez-Obando, Mauricio; de Villiers, Ruan; Hoffmann, Beate; Ma, Linnan; de Saint Germain, Alexandre; Kossmann, Jens; Coudert, Yoan; Harrison, C Jill; Rameau, Catherine; Hills, Paul; Bonhomme, Sandrine

    2018-05-21

    Strigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown. Here we investigate the function of a moss homologue of MAX2, PpMAX2, and characterize its role in SL signalling pathway evolution by genetic analysis. We report that the moss Ppmax2 mutant shows very distinct phenotypes from the moss SL-deficient mutant. In addition, the Ppmax2 mutant remains sensitive to SLs, showing a clear transcriptional SL response in dark conditions, and the response to red light is also altered. These data suggest divergent evolutionary trajectories for SL signalling pathway evolution in mosses and vascular plants. In P. patens, the primary roles for MAX2 are in photomorphogenesis and moss early development rather than in SL response, which may require other, as yet unidentified, factors. © 2018 INRA New Phytologist © 2018 New Phytologist Trust.

  3. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos.

    PubMed

    Zeng, Cheng; Sun, Hong; Xie, Ping; Wang, Jianghua; Zhang, Guirong; Chen, Nan; Yan, Wei; Li, Guangyu

    2014-04-01

    We previously demonstrated that cyanobacteria-derived microcystin-leucine-arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L(-1)) for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L(-1) MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53-Bax-Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Autocrine prostaglandin E2 signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway

    PubMed Central

    Lee, Jaetae; Lee, Young Sup

    2015-01-01

    The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114] PMID:24965577

  5. Transcriptional suppression of microRNA-27a contributes to laryngeal cancer differentiation via GSK-3β-involved Wnt/β-catenin pathway

    PubMed Central

    Chen, Sheng; Sun, Yuan-Yuan; Zhang, Zhao-Xiong; Li, Yun-Hui; Xu, Zhen-Ming; Fu, Wei-Neng

    2017-01-01

    miR-27a regulates cell differentiation in a variety of diseases. However, whether and how miR-27a participates in laryngeal cancer cell differentiation remains unknown. Therefore, we explored role and molecular mechanism of miR-27a in laryngeal cancer differentiation in the study. We found that miR-27a expression was inversely correlated with laryngeal cancer differentiation degree based on the clinical pathological diagnosis of each patient. miR-27 asignificantly rescued differentiation and inhibited β-catenin, LEF1, OCT4 and SOX2 in Wnt/β-catenin pathway in all-trans-retinoic acid (ATRA)-induced laryngeal cancer cells. Bindings of RARα to miR-27a and miR-27a to GSK-3β were confirmed by ChIP and Luciferase reporter assays, respectively. In conclusion, miR-27a is a negative regulator in laryngeal cancer differentiation. RARα-mediated miR-27a transcriptional inactivation releases the inhibition of miR-27a on GSK-3β leading to laryngeal cancer differentiation through GSK-3β-involved Wnt/β-catenin pathway, suggesting that miR-27a is a usefully therapeutic target at least in ATRA-induced laryngeal cancer differentiation. PMID:28122350

  6. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells.

    PubMed

    Liang, Le; Li, Jiang; Li, Qian; Huang, Qing; Shi, Jiye; Yan, Hao; Fan, Chunhai

    2014-07-21

    DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single-particle tracking. We found that the TDNs were rapidly internalized by a caveolin-dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule-dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA-nanostructure-based drug delivery nanocarriers for targeted therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An internal thermal sensor controlling temperature preference in Drosophila.

    PubMed

    Hamada, Fumika N; Rosenzweig, Mark; Kang, Kyeongjin; Pulver, Stefan R; Ghezzi, Alfredo; Jegla, Timothy J; Garrity, Paul A

    2008-07-10

    Animals from flies to humans are able to distinguish subtle gradations in temperature and show strong temperature preferences. Animals move to environments of optimal temperature and some manipulate the temperature of their surroundings, as humans do using clothing and shelter. Despite the ubiquitous influence of environmental temperature on animal behaviour, the neural circuits and strategies through which animals select a preferred temperature remain largely unknown. Here we identify a small set of warmth-activated anterior cell (AC) neurons located in the Drosophila brain, the function of which is critical for preferred temperature selection. AC neuron activation occurs just above the fly's preferred temperature and depends on dTrpA1, an ion channel that functions as a molecular sensor of warmth. Flies that selectively express dTrpA1 in the AC neurons select normal temperatures, whereas flies in which dTrpA1 function is reduced or eliminated choose warmer temperatures. This internal warmth-sensing pathway promotes avoidance of slightly elevated temperatures and acts together with a distinct pathway for cold avoidance to set the fly's preferred temperature. Thus, flies select a preferred temperature by using a thermal sensing pathway tuned to trigger avoidance of temperatures that deviate even slightly from the preferred temperature. This provides a potentially general strategy for robustly selecting a narrow temperature range optimal for survival.

  8. Hypoxia induces hemorrhagic transformation in pituitary adenomas via the HIF-1α signaling pathway.

    PubMed

    Xiao, Zhengzheng; Liu, Qin; Zhao, Boxi; Wu, Jun; Lei, Ting

    2011-12-01

    The hypoxia inducible factor 1 α (HIF-1α) activity has been associated with various hemorrhagic events. The biological role of HIF-1α in the hemorrhagic transformation of pituitary adenomas remains unknown. We hypothesized that fast growing tumor cells tend to predispose themselves to sublethal hypoxia and activate the HIF-1α signaling pathway, leading to hemorrhagic transformation in pituitary adenomas. Here, we used apoplectic and non-apoplectic pituitary adenomas to determine the involvement of HIF-1α signaling in intratumoral hemorrhage. We employed HIF-1α overexpression/knockdown strategies to examine the association between HIF-1α signaling and hemorrhagic presentation in vitro and in vivo. In support of our hypothesis, compared with non-hemorrhagic pituitary adenomas, higher cellular proliferation was observed in hemorrhagic ones and it correlated with increased HIF-1α signaling. HIF-1α overexpression activated its downstream genes, vascular endothelial growth factor and the proapoptotic BNIP3, in MMQ pituitary adenoma cells and this up-regulation was attenuated by HIF-1 siRNA. In vivo studies using MMQ cell xenografts in nude mice showed that HIF-1α overexpression significantly promoted hemorrhagic transformation. Our study indicates that tumor hypoxia, following rapid tumor growth, may promote hemorrhagic transformation in pituitary adenomas via the HIF-1α signaling pathway.

  9. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

    PubMed

    Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-10-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.

  10. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae.

    PubMed

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-10-26

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.

  11. Recurrent V1-V2 interaction in early visual boundary processing.

    PubMed

    Neumann, H; Sepp, W

    1999-11-01

    A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours.

  12. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells

    PubMed Central

    Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2015-01-01

    Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells. PMID:26097873

  13. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL*

    PubMed Central

    Miles, Jennifer A.; Frost, Mark G.; Carroll, Eilis; Rowe, Michelle L.; Howard, Mark J.; Sidhu, Ateesh; Chaugule, Viduth K.; Alpi, Arno F.; Walden, Helen

    2015-01-01

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. PMID:26149689

  14. BCL6 antagonizes NOTCH2 to maintain survival of human follicular lymphoma cells

    PubMed Central

    Valls, Ester; Lobry, Camille; Geng, Huimin; Wang, Ling; Cardenas, Mariano; Rivas, Martín; Cerchietti, Leandro; Oh, Philmo; Yang, Shao Ning; Oswald, Erin; Graham, Camille W.; Jiang, Yanwen; Hatzi, Katerina; Agirre, Xabier; Perkey, Eric; Li, Zhuoning; Tam, Wayne; Bhatt, Kamala; Leonard, John P.; Zweidler-McKay, Patrick A.; Maillard, Ivan; Elemento, Olivier; Ci, Weimin; Aifantis, Iannis; Melnick, Ari

    2017-01-01

    Summary Although the BCL6 transcriptional repressor is frequently expressed in human follicular lymphomas (FL), its biological role in this disease remains unknown. Herein we comprehensively identify the set of gene promoters directly targeted by BCL6 in primary human FLs. We noted that BCL6 binds and represses NOTCH2 and Notch pathway genes. Moreover, BCL6 and NOTCH2 pathway gene expression is inversely correlated in FL. Notably BCL6 up-regulation is associated with repression of Notch2 and its target genes in primary human and murine germinal center cells. Repression of Notch2 is an essential function of BCL6 in FL and GC B-cells since inducible expression of Notch2 abrogated GC formation in mice and kills FL cells. Indeed BCL6-targeting compounds or gene silencing leads to the induction of NOTCH2 activity and compromises survival of FL cells whereas NOTCH2 depletion or pathway antagonists rescue FL cells from such effects. Moreover, BCL6 inhibitors induced NOTCH2 expression and suppressed growth of human FL xenografts in vivo and primary human FL specimens ex vivo. These studies suggest that established FLs are thus dependent on BCL6 through its suppression of NOTCH2. PMID:28232365

  15. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes.

    PubMed

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-03-15

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates that significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells.

    PubMed

    Zhang, Lianshuang; Wei, Jialiu; Ren, Lihua; Zhang, Jin; Yang, Man; Jing, Li; Wang, Ji; Sun, Zhiwei; Zhou, Xianqing

    2017-01-01

    Endosulfan, an organochlorine pesticide, was found in human blood, and its possible cardiovascular toxicity has been suggested. However, the mechanism about endothelial cell injuries induced by endosulfan has remained unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, and 12 μg/mL -1 endosulfan for 24 h, respectively. The results showed that exposure to endosulfan could inhibit the cell viability, increase the release of lactate dehydrogenase (LDH), damage the ultrastructure, and lead to apoptosis and necroptosis in HUVECs. Furthermore, endosulfan upregulated the expressions of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like (MLKL), caspase 8, and caspase 3, which means the activation of RIPK1 pathways. In addition, endosulfan promoted the increases of ROS, IL-1α, and IL-33 levels while antioxidant N-acetyl-L-cysteine (NAC) effectively attenuated the cytotoxicity from endosulfan. Taken together, these results have demonstrated that endosulfan induces the apoptosis and necroptosis of HUVECs, where the RIPK pathway plays a pro-necroptotic role and NAC plays an anti-necroptotic role. Our results may contribute to understanding cellular mechanisms for endosulfan-induced cardiovascular toxicity.

  17. Biophysical Model of Ion Transport across Human Respiratory Epithelia Allows Quantification of Ion Permeabilities

    PubMed Central

    Garcia, Guilherme J.M.; Boucher, Richard C.; Elston, Timothy C.

    2013-01-01

    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration. PMID:23442922

  18. Decrement of miR-199a-5p contributes to the tumorigenesis of bladder urothelial carcinoma by regulating MLK3/NF-κB pathway

    PubMed Central

    Song, Tao; Zhang, Xu; Yang, Guoqiang; Song, Yong; Cai, Wei

    2015-01-01

    Aberrant miRNA expression is implicated in tumorigenesis. However, the role of miRNAs in bladder urothelial carcinoma still remains largely unknown. In this study, miR-199a-5p was validated to be significantly down-regulated in bladder urothelial carcinoma. In addition, restoring expression of miR-199a-5p inhibited the tumorigenesis of bladder urothelial carcinoma in vitro and in vivo by inducing the apoptosis and suppressing the proliferation of bladder cancerous cells. Further investigation reported that MLK3 was a direct target of miR-199a-5p. Moreover, the expression level of miR-199a-5p was conversely correlated with MLK3 in bladder cancerous cells. In addition, reintroduction of MLK3 was identified to promote the proliferation and inhibit the apoptotic rate of cells, which have been altered by miR-199a-5p through activating the NF-κB pathway. All together, decrement of miR-199a-5p contributes to the tumorigenesis of bladder cancer by directly regulating MLK3/NF-κB pathway and miR-199a-5p might be developed as a therapeutic target for treatment of the bladder urothelial carcinoma. PMID:26885275

  19. Arf Suppresses Hepatic Vascular Neoplasia in a Carcinogen-Exposed Murine Model

    PubMed Central

    Busch, Stephanie E; Gurley, Kay E; Moser, Russell D; Kemp, Christopher J

    2013-01-01

    Hepatic haemangiosarcoma is a deadly malignancy whose aetiology remains poorly understood. Inactivation of the CDKN2A locus, which houses the ARF and p16INK4a tumour suppressor genes, is a common event in haemangiosarcoma patients, but the precise role of ARF in vascular tumourigenesis is unknown. To determine the extent to which ARF suppresses vascular neoplasia, we examined the incidence of hepatic vascular lesions in Arf-deficient mice exposed to the carcinogen urethane (i.p. 1 mg/g). Loss of Arf resulted in elevated morbidity and increased the incidence of both haemangiomas and incipient haemangiosarcomas. Suppression of vascular lesion development by ARF was heavily dependent on both Arf gene-dosage and the genetic strain of the mouse. Trp53-deficient mice also developed hepatic vascular lesions after exposure to urethane, suggesting that ARF signals through a p53-dependent pathway to inhibit the development of hepatic haemangiosarcoma. Our findings provide strong evidence that inactivation of Arf is a causative event in vascular neoplasia and suggest that the ARF pathway may be a novel molecular target for therapeutic intervention in haemangiosarcoma patients. PMID:22430984

  20. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1

    PubMed Central

    Blagoveshchenskaya, Anastasia; Cheong, Fei Ying; Rohde, Holger M.; Glover, Greta; Knödler, Andreas; Nicolson, Teresa; Boehmelt, Guido; Mayinger, Peter

    2008-01-01

    When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I–mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor–induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery. PMID:18299350

  1. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma.

    PubMed

    Zhu, Xingyang; Song, Xiaoling; Xie, Kun; Zhang, Xue; He, Wei; Liu, Fubao

    2017-10-01

    Osthole is a natural coumarin isolated from Umbelliferae plant monomers. Previous research has indicated that osthole exerts a wide variety of biological effects, acting as anti-seizure, anti-osteoporosis and anti-inflammation. However, the regulatory effect and related molecular mechanism of osthole in intrahepatic cholangiocarcinoma (ICC) remain unknown. In the present study, the authors found that osthole inhibited ICC cell lines in a dose- and time-dependent manner. Osthole also significantly induced mitochondrial-dependent apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9, and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, the levels of p-Akt and PI3K were significantly decreased, while total Akt protein levels were unchanged. Following transfection with wild-type-Akt and constitutively active (CA)-Akt plasmids, the effects of osthole were decreased. Osthole was also able to suppress tumor growth in vivo. Together, these data demonstrated that osthole induces mitochondrial-dependent apoptosis via the PI3K/Akt pathway, suggesting that osthole may represent a novel and effective agent for the treatment of ICC.

  2. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway.

    PubMed

    Maejima, Yuko; Sedbazar, Udval; Suyama, Shigetomo; Kohno, Daisuke; Onaka, Tatsushi; Takano, Eisuke; Yoshida, Natsu; Koike, Masato; Uchiyama, Yasuo; Fujiwara, Ken; Yashiro, Takashi; Horvath, Tamas L; Dietrich, Marcelo O; Tanaka, Shigeyasu; Dezaki, Katsuya; Oh-I, Shinsuke; Hashimoto, Koushi; Shimizu, Hiroyuki; Nakata, Masanori; Mori, Masatomo; Yada, Toshihiko

    2009-11-01

    The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.

  3. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    PubMed Central

    Osinski, Adam; Tomchick, Diana R; Brautigam, Chad A

    2017-01-01

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex. PMID:29063833

  4. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling.

    PubMed

    Madji Hounoum, Blandine; Mavel, Sylvie; Coque, Emmanuelle; Patin, Franck; Vourc'h, Patrick; Marouillat, Sylviane; Nadal-Desbarats, Lydie; Emond, Patrick; Corcia, Philippe; Andres, Christian R; Raoul, Cédric; Blasco, Hélène

    2017-04-01

    The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605. © 2017 Wiley Periodicals, Inc.

  5. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases.

    PubMed

    Barrio, Laura; Saez de Guinoa, Julia; Carrasco, Yolanda R

    2013-10-01

    B cells use a plethora of TLR to recognize pathogen-derived ligands. These innate signals have an important function in the B cell adaptive immune response and modify their trafficking and tissue location. The direct role of TLR signaling on B cell dynamics nonetheless remains almost entirely unknown. In this study, we used a state-of-the-art two-dimensional model combined with real-time microscopy to study the effect of TLR4 stimulation on mouse B cell motility in response to chemokines. We show that a minimum stimulation period is necessary for TLR4 modification of B cell behavior. TLR4 stimulation increased B cell polarization, migration, and directionality; these increases were dependent on the MyD88 signaling pathway and did not require ERK or p38 MAPK activity downstream of TLR4. In addition, TLR4 stimulation enhanced Rac GTPase activity and promoted sustained Rac activation in response to chemokines. These results increase our understanding of the regulation of B cell dynamics by innate signals and the underlying molecular mechanisms.

  6. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia.

    PubMed

    Loktev, Alexander V; Jackson, Peter K

    2013-12-12

    Human monogenic obesity syndromes, including Bardet-Biedl syndrome (BBS), implicate neuronal primary cilia in regulation of energy homeostasis. Cilia in hypothalamic neurons have been hypothesized to sense and regulate systemic energy status, but the molecular mechanism of this signaling remains unknown. Here, we report a comprehensive localization screen of 42 G-protein-coupled receptors (GPCR) revealing seven ciliary GPCRs, including the neuropeptide Y (NPY) receptors NPY2R and NPY5R. We show that mice modeling BBS disease or obese tubby mice fail to localize NPY2R to cilia in the hypothalamus and that BBS mutant mice fail to activate c-fos or decrease food intake in response to the NPY2R ligand PYY3-36. We find that cells with ciliary NPY2R show augmented PYY3-36-dependent cAMP signaling. Our data demonstrate that ciliary targeting of NPY receptors is important for controlling energy balance in mammals, revealing a physiologically defined ligand-receptor pathway signaling within neuronal cilia. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Axono-cortical evoked potentials: A proof-of-concept study.

    PubMed

    Mandonnet, E; Dadoun, Y; Poisson, I; Madadaki, C; Froelich, S; Lozeron, P

    2016-04-01

    Awake surgery is currently considered the best method to tailor intraparenchymatous resections according to functional boundaries. However, the exact mechanisms by which electrical stimulation disturbs behavior remain largely unknown. In this case report, we describe a new method to explore the propagation toward cortical sites of a brief pulse applied to an eloquent white matter pathway. We present a patient, operated on in awake condition for removal of a cavernoma of the left ventral premotor cortex. At the end of the resection, the application of 60Hz stimulation in the white matter of the operculum induced anomia. Stimulating the same site at a frequency of 1Hz during 70seconds allowed to record responses on electrodes put over Broca's area and around the inferior part of central sulcus. Axono-cortical evoked potentials were then obtained by averaging unitary responses, time-locked to the stimulus. We then discuss the origin of these evoked axono-cortical potentials and the likely pathway connecting the stimulation site to the recorded cortical sites. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Sung Jun; Ni, Lisheng; Osinski, Adam

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1more » directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.« less

  9. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success.

    PubMed

    Wang, Haibin; Xie, Huirong; Sun, Xiaofei; Tranguch, Susanne; Zhang, Hao; Jia, Xiangxu; Wang, Dingzhi; Das, Sanjoy K; Desvergne, Béatrice; Wahli, Walter; DuBois, Raymond N; Dey, Sudhansu K

    2007-12-28

    Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.

  10. Long non-coding RNA CASC2 regulates cell biological behaviour through the MAPK signalling pathway in hepatocellular carcinoma.

    PubMed

    Gan, Yuanyuan; Han, Nana; He, Xiaoqin; Yu, Jiajun; Zhang, Meixia; Zhou, Yujie; Liang, Huiling; Deng, Junjian; Zheng, Yongfa; Ge, Wei; Long, Zhixiong; Xu, Ximing

    2017-06-01

    Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, especially cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in hepatocellular carcinoma have not been extensively studied. The long non-coding RNA CASC2 (cancer susceptibility candidate 2) has been characterised as a tumour suppressor in endometrial cancer and gliomas. However, the role and function of CASC2 in hepatocellular carcinoma remain unknown. In this study, using quantitative real-time polymerase chain reaction, we confirmed that CASC2 expression was downregulated in 50 hepatocellular carcinoma cases (62%) and in hepatocellular carcinoma cell lines compared with the paired adjacent tissues and normal liver cells. In vitro experiments further demonstrated that overexpressed CASC2 decreased hepatocellular carcinoma cell proliferation, migration and invasion as well as promoted apoptosis via inactivating the mitogen-activated protein kinase signalling pathway. Our findings demonstrate that CASC2 could be a useful tumour suppressor factor and a promising therapeutic target for hepatocellular carcinoma.

  11. Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions.

    PubMed

    Abrash, Emily B; Davies, Kelli A; Bergmann, Dominique C

    2011-08-01

    Core signaling pathways function in multiple programs during multicellular development. The mechanisms that compartmentalize pathway function or confer process specificity, however, remain largely unknown. In Arabidopsis thaliana, ERECTA (ER) family receptors have major roles in many growth and cell fate decisions. The ER family acts with receptor TOO MANY MOUTHS (TMM) and several ligands of the EPIDERMAL PATTERNING FACTOR LIKE (EPFL) family, which play distinct yet overlapping roles in patterning of epidermal stomata. Here, our examination of EPFL genes EPFL6/CHALLAH (CHAL), EPFL5/CHALLAH-LIKE1, and EPFL4/CHALLAH-LIKE2 (CLL2) reveals that this family may mediate additional ER-dependent processes. chal cll2 mutants display growth phenotypes characteristic of er mutants, and genetic interactions are consistent with CHAL family molecules acting as ER family ligands. We propose that different classes of EPFL genes regulate different aspects of ER family function and introduce a TMM-based discriminatory mechanism that permits simultaneous, yet compartmentalized and distinct, function of the ER family receptors in growth and epidermal patterning.

  12. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia-Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling.

    PubMed

    Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min

    2017-05-01

    Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.

  13. Activity-Dependent IGF-1 Exocytosis is Controlled by the Ca2+-Sensor Synaptotagmin-10

    PubMed Central

    Cao, Peng; Maximov, Anton; Südhof, Thomas C.

    2011-01-01

    Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca2+-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca2+-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 co-localized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca2+-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca2+-dependent exocytosis that is spatially and temporally distinct from Ca2+-dependent synaptic vesicle exocytosis controlled by Syt1 in the same neurons, and two different synaptotagmins regulate distinct Ca2+-dependent membrane fusion reactions during exocytosis in the same neuron. PMID:21496647

  14. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  15. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.

    PubMed

    Zhang, Shulin; Liang, Meiling; Naqvi, Naweed I; Lin, Chaoxiang; Qian, Wanqiang; Zhang, Lian-Hui; Deng, Yi Zhen

    2017-08-03

    Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.

  16. Lysine acetyltransferase NuA4 and acetyl-CoA regulate glucose-deprived stress granule formation in Saccharomyces cerevisiae

    PubMed Central

    Huard, Sylvain; Morettin, Alan; Fullerton, Morgan D.; Côté, Jocelyn

    2017-01-01

    Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules. PMID:28231279

  17. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    PubMed

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  18. Craniofacial divergence and ongoing adaptation via the hedgehog pathway.

    PubMed

    Roberts, Reade B; Hu, Yinan; Albertson, R Craig; Kocher, Thomas D

    2011-08-09

    Adaptive variation in craniofacial structure contributes to resource specialization and speciation, but the genetic loci that underlie craniofacial adaptation remain unknown. Here we show that alleles of the hedgehog pathway receptor Patched1 (Ptch1) gene are responsible for adaptive variation in the shape of the lower jaw both within and among genera of Lake Malawi cichlid fish. The evolutionarily derived allele of Ptch1 reduces the length of the retroarticular (RA) process of the lower jaw, a change predicted to increase speed of jaw rotation for improved suction-feeding. The alternate allele is associated with a longer RA and a more robustly mineralized jaw, typical of species that use a biting mode of feeding. Genera with the most divergent feeding morphologies are nearly fixed for different Ptch1 alleles, whereas species with intermediate morphologies still segregate variation at Ptch1. Thus, the same alleles that help to define macroevolutionary divergence among genera also contribute to microevolutionary fine-tuning of adaptive traits within some species. Variability of craniofacial morphology mediated by Ptch1 polymorphism has likely contributed to niche partitioning and ecological speciation of these fishes.

  19. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    PubMed Central

    2007-01-01

    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use. PMID:17903277

  20. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation.

    PubMed

    Liu, Dong-Xu; He, Xia; Wu, Dan; Zhang, Qun; Yang, Chao; Liang, Feng-Yin; He, Xiao-Fei; Dai, Guang-Yan; Pei, Zhong; Lan, Yue; Xu, Guang-Qing

    2017-07-13

    Sleep deprivation (SD) is a common condition associated with a variety of nervous system diseases, and has a negative impact on emotional and cognitive function. Continuous theta burst stimulation (cTBS) is known to improve cognition and emotion function in normal situations as well as in various types of dysfunction, but the mechanism remains unknown. We used two-photon in vivo imaging to explore the effect of cTBS on glymphatic pathway clearance in normal and SD C57BL/6J mice. Aquaporin-4 (AQP4) polarization was detected by immunofluorescence. Anxiety-like behaviors was measured using open field tests. We found that SD reduced influx efficiency along the peri-vascular space (PVS), disturbed AQP4 polarization and induced anxiety-like behaviors. CTBS significantly attenuated the decrease in efficiency of solute clearance usually incurred with SD, restored the loss of AQP4 polarization and improved anxiety-like behavior in SD animals. Our results implied that cTBS had the potential to protect against neuronal dysfunction induced by sleep disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor β/δ (FABP5-PPARβ/δ) Signaling Pathway*

    PubMed Central

    Armstrong, Eric H.; Goswami, Devrishi; Griffin, Patrick R.; Noy, Noa; Ortlund, Eric A.

    2014-01-01

    Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain “activating” fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling. PMID:24692551

  2. Clathrin-mediated endocytosis and transcytosis of enterotoxigenic Escherichia coli F4 fimbriae in porcine intestinal epithelial cells.

    PubMed

    Rasschaert, Kristien; Devriendt, Bert; Favoreel, Herman; Goddeeris, Bruno M; Cox, Eric

    2010-10-15

    Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in neonatal and recently weaned piglets. Previously, we demonstrated that oral immunization of F4 receptor positive piglets with purified F4 fimbriae induces a protective F4-specific intestinal immune response. However, in F4 receptor negative animals no F4-specific immune response can be elicited, indicating that the induction of an F4-specific mucosal immune response upon oral immunisation is receptor-dependent. Although F4 fimbriae undergo transcytosis across the intestinal epithelium in vivo, the endocytosis pathways used remain unknown. In the present study, we characterized the internalization of F4 fimbriae in the porcine intestinal epithelial cell line IPEC-J2. The results in the present study demonstrate that F4 fimbriae are internalized through a clathrin-dependent pathway. Furthermore, our results suggest that F4 fimbriae are transcytosed across differentiated IPEC-J2 cells. This receptor-dependent transcytosis of F4 fimbriae may explain the immunogenicity of these fimbriae upon oral administration in vivo. (c) 2010 Elsevier B.V. All rights reserved.

  3. Partially overlapping distribution of epsin1 and HIP1 at the synapse: analysis by immunoelectron microscopy.

    PubMed

    Yao, Pamela J; Bushlin, Ittai; Petralia, Ronald S

    2006-01-10

    Synapses of neurons use clathrin-mediated endocytic pathways for recycling of synaptic vesicles and trafficking of neurotransmitter receptors. Epsin 1 and huntingtin-interacting protein 1 (HIP1) are endocytic accessory proteins. Both proteins interact with clathrin and the AP2 adaptor complex and also bind to the phosphoinositide-containing plasma membrane via an epsin/AP180 N-terminal homology (ENTH/ANTH) domain. Epsin1 and HIP1 are found in neurons; however, their precise roles in synapses remain largely unknown. Using immunogold electron microscopy, we examine and compare the synaptic distribution of epsin1 and HIP1 in rat CA1 hippocampal synapse. We find that epsin1 is located across both sides of the synapse, whereas HIP1 displays a preference for the postsynaptic compartment. Within the synaptic compartments, espin1 is distributed similarly throughout, whereas postsynaptic HIP1 is concentrated near the plasma membrane. Our results suggest a dual role for epsin1 and HIP1 in the synapse: as broadly required factors for promoting clathrin assembly and as adaptors for specific endocytic pathways.

  4. HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of Sonic hedgehog

    PubMed Central

    Katagiri, Tomohiro; Kobayashi, Minoru; Yoshimura, Michio; Morinibu, Akiyo; Itasaka, Satoshi; Hiraoka, Masahiro; Harada, Hiroshi

    2018-01-01

    Hypoxic and stroma-rich microenvironments, characteristic features of pancreatic cancers, are strongly associated with a poor prognosis. However, whether and how hypoxia increases stromal compartments remain largely unknown. Here, we investigated the potential importance of a master regulator of the cellular adaptive response to hypoxia, hypoxia-inducible factor-1 (HIF-1), in the formation of stroma-rich microenvironments of pancreatic tumors. We found that pancreatic cancer cells secreted more Sonic hedgehog protein (SHH) under hypoxia by upregulating its expression and efficiency of secretion in a HIF-1-dependent manner. Recombinant SHH, which was confirmed to activate the hedgehog signaling pathway, accelerated the growth of fibroblasts in a dose-dependent manner. The SHH protein secreted from pancreatic cancer cells under hypoxic conditions promoted the growth of fibroblasts by stimulating their Sonic hedgehog signaling pathway. These results suggest that the increased secretion of SHH by HIF-1 is potentially responsible for the formation of detrimental and stroma-rich microenvironments in pancreatic cancers, therefore providing a rational basis to target it in cancer therapy. PMID:29535824

  5. Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin–proteasome and the caspase-dependent apoptotic pathways

    PubMed Central

    Magne, Hugues; Savary-Auzeloux, Isabelle; Vazeille, Emilie; Claustre, Agnès; Attaix, Didier; Anne, Listrat; Véronique, Santé-Lhoutellier; Philippe, Gatellier; Dardevet, Dominique; Combaret, Lydie

    2011-01-01

    Immobilization periods increase with age because of decreased mobility and/or increased pathological episodes that require bed-rest. Sarcopaenia might be partially explained by an impaired recovery of skeletal muscle mass after a catabolic state due to an imbalance of muscle protein metabolism, apoptosis and cellular regeneration. Mechanisms involved in muscle recovery have been poorly investigated, and remain almost unknown in the elderly. This study aimed at studying the regulation of the capsase-dependent apoptotic and the ubiquitin–proteasome-dependent proteolytic pathways during immobilization and subsequent recovery during ageing. Old rats (22–24-months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10 to 40 days (R10 to R40). Immobilized gastrocnemius muscles atrophied by 21%, and did not recover even at R40. Apoptotic index, amount of polyubiquitinated conjugates, proteasome chymotrypsin- and trypsin-like, apoptosome-linked caspase-9, -3, and -8 activities increased at I8. Conversely, the amount of the myogenic factor myf-5 decreased at I8. These changes paralleled the increase of intramuscular inflammation and oxidative stress. All these parameters normalized as soon as R10. The XIAP/Smac-DIABLO protein ratio decreased by half in immobilized muscles and remained low during recovery. Surprisingly, the non-immobilized leg also atrophied from R20, concomitantly with a decreased XIAP/Smac-DIABLO protein ratio. Altogether, this suggests that the impaired recovery following immobilization in ageing does not result from a lack of normalization of the caspase-dependent apoptotic and the ubiquitin–proteasome-dependent pathways, and also that immobilization could induce a general muscle loss and then contribute to the development of sarcopaenia in elderly. PMID:21115641

  6. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive).

    PubMed

    Rossi, Lorenzo; Borghi, Monica; Francini, Alessandra; Lin, Xiuli; Xie, De-Yu; Sebastiani, Luca

    2016-10-01

    Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na + exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    PubMed

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  8. High affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling

    PubMed Central

    Fernandes, Herman B.; Catches, Justin S.; Petralia, Ronald S.; Copits, Bryan A.; Xu, Jian; Russell, Theron A.; Swanson, Geoffrey T.; Contractor, Anis

    2009-01-01

    Summary Kainate receptors are atypical members of the glutamate receptor family which are able to signal through both ionotropic and metabotropic pathways. Of the five individual kainate receptor subunits the high-affinity subunits, GluK4 (KA1) and GluK5 (KA2), are unique in that they do not form functional homomeric receptors in recombinant expression systems, but combine with the primary subunits GluK1-3 (GluR5-7) to form heteromeric assemblies. Here we generated a GluK4 mutant mouse by disrupting the Grik4 gene locus. We found that loss of the GluK4 subunit leads to a significant reduction in synaptic kainate receptor currents. Moreover, ablation of both high-affinity subunits in GluK4/GluK5 double knockout mice leads to a complete loss of pre- and postsynaptic ionotropic function of synaptic kainate receptors. The principal subunits remain at the synaptic plasma membrane, but are distributed away from postsynaptic densities and presynaptic active zones. There is also an alteration in the properties of the remaining kainate receptors, as kainic acid application fails to elicit responses in GluK4/GluK5 knockout neurons. Despite the lack of detectable ionotropic synaptic receptors, the kainate receptor-mediated inhibition of the slow afterhyperpolarization current (IsAHP), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown critical role for the high-affinity kainate receptor subunits as obligatory components of ionotropic kainate receptor function, and further, demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels. PMID:19778510

  9. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  10. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  11. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  12. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone.

    PubMed

    Oberhofer, Georg; Grossmann, Daniela; Siemanowski, Janna L; Beissbarth, Tim; Bucher, Gregor

    2014-12-01

    Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function. © 2014. Published by The Company of Biologists Ltd.

  13. miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Libing, E-mail: lb.song1@gmail.com; Huang, Quan; Chen, Kun

    2010-11-05

    Research highlights: {yields} miR-218 is markedly downregulated in glioma cell lines and in primary glioma tissues. {yields} Upregulation of miR-218 dramatically reduces the invasive ability of glioma cells. {yields} Ectopic expression of miR-218 inactivates IKK-{beta}/NF-{kappa}B signaling pathway. {yields} miR-218 directly targets the 3'-untranslated region (3'-UTR) of IKK-{beta}. -- Abstract: Aberrant activation of nuclear factor-kappa B (NF-{kappa}B) pathway has been proven to play important roles in the development and progression of cancers. Activation of NF-{kappa}B via the classical pathway is modulated by I{kappa}Bs kinase (IKK-{beta}). However, the mechanism underlying the epigenetic regulation of IKK-{beta}/NF-{kappa}B pathway remains largely unknown. In this study,more » we found that the expression level of miR-218 was markedly downregulated in glioma cell lines and in human primary glioma tissues. Upregulation of miR-218 dramatically reduced the migratory speed and invasive ability of glioma cells. Furthermore, we showed that ectopically expressing miR-218 in glioma cells resulted in downregulation of matrix metalloproteinase-9 (MMP-9) and reduction in NF-{kappa}B transactivity at a transcriptional level, but inhibition of miR-218 enhanced the expression of MMP-9 and transcriptional activity of NF-{kappa}B. Moreover, we showed that miR-218 inactivated the NF-{kappa}B pathway through downregulating IKK-{beta} expression by directly targeting the 3'-untranslated region (3'-UTR) of IKK-{beta}. Taken together, our results suggest that miR-218 plays an important role in preventing the invasiveness of glioma cells, and our results present a novel mechanism of miRNA-mediated direct suppression of IKK-{beta}/NF-{kappa}B pathway in gliomas.« less

  14. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone

    PubMed Central

    Oberhofer, Georg; Grossmann, Daniela; Siemanowski, Janna L.; Beissbarth, Tim; Bucher, Gregor

    2014-01-01

    Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function. PMID:25395458

  15. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    PubMed

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  16. Transcriptomic analyses of tributyltin-induced sexual dimorphisms in rare minnow (Gobiocypris rarus) brains.

    PubMed

    Zhang, Ji-Liang; Liu, Min; Zhang, Chun-Nuan; Li, Er-Chao; Fan, Ming-Zhen; Huang, Mao-Xian

    2018-07-30

    The brain of fish displays sexual dimorphisms and exhibits remarkable sexual plasticity throughout their life span. Although reproductive toxicity of tributyltin (TBT) in fish is well documented in fish, it remains unknown whether TBT interrupts sexual dimorphisms of fish brains. In this work, brain transcriptomic profiles of rare minnow (Gobiocypris rarus) was characterized and sex-biased genes were identified using RNA sequencing. Functional annotation and enrichment analysis were performed to reveal differences of gene products and pathways between the brains of male and female fish. Furthermore, transcriptomic responses of male and female brains to TBT at 10 ng/L were also investigated to understand effects of TBT on brain sexual dimorphisms. Only 345 male-biased and 273 female-biased genes were found in the brains. However, significant female-biased pathways of circadian rhythm and phototransduction were identified in the brains by enrichment analysis. Interestingly, following TBT exposure in the female fish, the circadian rhythm pathway was significantly disrupted based on enrichment analysis, while in the male fish, the phototransduction pathway was significantly disrupted. In the female fish, expression of genes (Per, Cry, Rev-Erb α, Ror, Dec and CK1δ/ε) in the circadian rhythm pathway was down-regulated after TBT exposure; while in the male fish, expression of genes (Rec, GNAT1_2, GNGT1, Rh/opsin, PDE and Arr) in the phototransduction pathway was up-regulated after TBT exposure. Overall, our results not only provide key data on the molecular basis of brain sexual dimorphisms in fish, but also offer valuable resources for investigating molecular mechanisms by which environmental chemicals might influence brain sexual plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7.

    PubMed

    Li, Xiaomin; Wang, Jianjun; Zhang, Chao; Lin, Chun; Zhang, Jianming; Zhang, Wei; Zhang, Wenjuan; Lu, Yanxia; Zheng, Lin; Li, Xuenong

    2018-06-26

    Circular RNAs (circRNAs) are significantly dysregulated in various cancer types. However, the roles and mechanisms of circRNAs in cancer remain largely unknown. In this study, we demonstrated that a novel circRNA (circITGA7) and its linear host gene ITGA7 are both significantly downregulated in colorectal cancer (CRC) tissues and cell lines. These decreased expression levels correlated with CRC progression. Functional assays demonstrated that ectopic circITGA7 expression suppressed the growth and metastasis of CRC cell in vitro and in vivo. Knockdown of circITGA7 or ITGA7 promoted the proliferation and migration of CRC cells in vitro and enhanced CRC growth in vivo. Mechanistically, we found that circITGA7 is a negative regulator of the Ras signalling pathway and ITGA7 is associated with cytokine-related signalling pathways through RNA-seq and KEGG enrichment analysis. In addition, circITGA7 binds to miR-370-3p to antagonize its suppression of NF1, which is a well-known negative regulator of the Ras pathway. Finally, circITGA7 upregulates the transcription of ITGA7 by suppressing RREB1 via the Ras pathway. In conclusion, our findings indicate a suppressor role of circITGA7 and ITGA7 in CRC and reveal that circITGA7 inhibits proliferation and metastasis of CRC cells by suppressing the Ras signalling pathway and promoting the transcription of ITGA7, suggesting that circITGA7 is a potential target for CRC treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy

    PubMed Central

    Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen

    2016-01-01

    Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007

  19. IL-6 pathway-driven investigation of response to IL-6 receptor inhibition in rheumatoid arthritis

    PubMed Central

    Wang, Jianmei; Platt, Adam; Upmanyu, Ruchi; Germer, Søren; Lei, Guiyuan; Rabe, Christina; Benayed, Ryma; Kenwright, Andrew; Hemmings, Andrew; Martin, Mitchell; Harari, Olivier

    2013-01-01

    Objectives To determine whether heterogeneity in interleukin-6 (IL-6), IL-6 receptor and other components of the IL-6 signalling pathway/network, at the gene, transcript and protein levels, correlate with disease activity in patients with rheumatoid arthritis (RA) and with clinical response to tocilizumab. Design Biomarker samples and clinical data for five phase 3 trials of tocilizumab were analysed using serum (3751 samples), genotype (927 samples) and transcript (217 samples) analyses. Linear regression was then used to assess the association between these markers and either baseline disease activity or treatment response. Results Higher baseline serum IL-6 levels were significantly associated (p<0.0001) with higher baseline DAS28, erythrocyte sedimentation rate, C reactive protein and Health Assessment Questionnaire in patients whose responses to disease-modifying antirheumatic drugs (DMARD-IR) and to antitumour necrosis factor (aTNF-IR) were inadequate and patients who were naive/responders to methotrexate (MTX). Higher baseline serum IL-6 levels were also significantly associated with better clinical response to tocilizumab (versus placebo) measured by cDAS28 in the pooled DMARD-IR (p<0.0001) and MTX-naive populations (p=0.04). However, the association with treatment response was weak. A threefold difference in baseline IL-6 level corresponded to only a 0.17-unit difference in DAS28 at week 16. IL-6 pathway single nucleotide polymorphisms and RNA levels also were not strongly associated with treatment response. Conclusions Our analyses illustrate that the biological activity of a disease-associated molecular pathway may impact the benefit of a therapy targeting that pathway. However, the variation in pathway activity, as measured in blood, may not be a strong predictor. These data suggest that the major contribution to variability in clinical responsiveness to therapeutics in RA remains unknown. PMID:23959753

  20. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells.

    PubMed

    Wang, Guansong; Qian, Pin; Jackson, Fannie R; Qian, Guisheng; Wu, Guangyu

    2008-01-01

    Xanthine dehydrogenase/oxidase (XDH/XO) is associated with various pathological conditions related to the endothelial injury. However, the molecular mechanism underlying the activation of XDH/XO by hypoxia remains largely unknown. In this report, we determined whether the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway is involved in hypoxia-induced activation of XDH/XO in primary cultures of lung microvascular endothelial cells (LMVEC). We found that hypoxia significantly increased interleukin 6 (IL6) production in a time-dependent manner in LMVEC. Hypoxia also markedly augmented phosphorylation/activation of JAKs (JAK1, JAK2 and JAK3) and the JAK downstream effectors STATs (STAT3 and STAT5). Hypoxia-induced activation of STAT3 was blocked by IL6 antibodies, the JAK inhibitor AG490 and the suppressor of cytokine signaling 3 (SOCS3), implying that hypoxia-promoted IL6 secretion activates the JAK/STAT pathway in LMVEC. Phosphorylation and DNA-binding activity of STAT3 were also inhibited by the p38 MAPK inhibitor SB203580 and the phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that multiple signaling pathways involved in STAT activation by hypoxia. Importantly, hypoxia promoted XDH/XO activation in LMVEC, which was markedly reversed by inhibiting the JAK-STAT pathway using IL6 antibodies, AG490 and SOCS3. These data demonstrated that JAKs, STATs and XDH/XO were sequentially activated by hypoxia. These data provide the first evidence indicating that the JAK-STAT pathway is involved in hypoxia-mediated XDH/XO activation in LMVEC.

  1. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

    PubMed

    Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard

    2016-12-15

    The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.

  2. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria.

    PubMed

    Palovaara, Joakim; Akram, Neelam; Baltar, Federico; Bunse, Carina; Forsberg, Jeremy; Pedrós-Alió, Carlos; González, José M; Pinhassi, Jarone

    2014-09-02

    Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.

  3. Uncoupling of transcription and translation of Fanconi anemia (FANC) complex proteins during spermatogenesis

    PubMed Central

    Jamsai, Duangporn; O’Connor, Anne E; O’Donnell, Liza; Lo, Jennifer Chi Yi; O’Bryan, Moira K

    2015-01-01

    Male germ cell genome integrity is critical for spermatogenesis, fertility and normal development of the offspring. Several DNA repair pathways exist in male germ cells. One such important pathway is the Fanconi anemia (FANC) pathway. Unlike in somatic cells, expression profiles and the role of the FANC pathway in germ cells remain largely unknown. In this study, we undertook an extensive expression analyses at both mRNA and protein levels of key components of the FANC pathway during spermatogenesis in the mouse. Herein we show that Fanc mRNAs and proteins displayed developmental enrichment within particular male germ cell types. Spermatogonia and pre-leptotene spermatocytes contained the majority of the FANC components examined i.e. complex I members FANCB, FANCG and FANCM, complex II members FANCD2 and FANCI, and complex III member FANCJ. Leptotene, zygotene and early pachytene spermatocytes contained FANCB, FANCG, FANCM and FANCD2. With the exception of FANCL, all FANC proteins examined were not detected in round spermatids. Elongating and elongated spermatids contained FANCB, FANCG, FANCL and FANCJ. qPCR analysis on isolated spermatocytes and round spermatids showed that Fancg, Fancl, Fancm, Fancd2, Fanci and Fancj mRNAs were expressed in both of these germ cell types, indicating that some degree of translational repression of these FANC proteins occurs during the transition from meiosis to spermiogenesis. Taken together, our findings raise the possibility that the assembly of FANC protein complexes in each of the male germ cell type is unique and may be distinct from the proposed model in mitotic cells. PMID:26413409

  4. Permanent draft genome of Thermithiobacillus tepidarius DSM 3134 T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia

    DOE PAGES

    Boden, Rich; Hutt, Lee P.; Huntemann, Marcel; ...

    2016-09-26

    Thermithiobacillus tepidarius DSM 3134 T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome cmore » oxidase (cbb 3 , EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia - by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function. As the Kelly-Friedrich pathway of thiosulfate oxidation (encoded by sox) is not used in Thermithiobacillus spp., the role of the operon (if any) in this species remains unknown. We speculate that DUF302 and sox genes may have a role in periplasmic trithionate oxidation.« less

  5. Permanent draft genome of Thermithiobacillus tepidarius DSM 3134 T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boden, Rich; Hutt, Lee P.; Huntemann, Marcel

    Thermithiobacillus tepidarius DSM 3134 T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome cmore » oxidase (cbb 3 , EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia - by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function. As the Kelly-Friedrich pathway of thiosulfate oxidation (encoded by sox) is not used in Thermithiobacillus spp., the role of the operon (if any) in this species remains unknown. We speculate that DUF302 and sox genes may have a role in periplasmic trithionate oxidation.« less

  6. S-Nitrosylation of Cofilin-1 Mediates Estradiol-17β-Stimulated Endothelial Cytoskeleton Remodeling

    PubMed Central

    Zhang, Hong-hai; Lechuga, Thomas J.; Tith, Tevy; Wang, Wen; Wing, Deborah A.

    2015-01-01

    Rapid nitric oxide (NO) production via endothelial NO synthase (eNOS) activation represents a major signaling pathway for the cardiovascular protective effects of estrogens; however, the pathways after NO biosynthesis that estrogens use to function remain largely unknown. Covalent adduction of a NO moiety to cysteines, termed S-nitrosylation (SNO), has emerged as a key route for NO to directly regulate protein function. Cofilin-1 (CFL1) is a small actin-binding protein essential for actin dynamics and cytoskeleton remodeling. Despite being identified as a major SNO protein in endothelial cells, whether SNO regulates CFL-1 function is unknown. We hypothesized that estradiol-17β (E2β) stimulates SNO of CFL1 via eNOS-derived NO and that E2β-induced SNO-CFL1 mediates cytoskeleton remodeling in endothelial cells. Point mutation studies determined Cys80 as the primary SNO site among the 4 cysteines (Cys39/80/139/147) in CFL1. Substitutions of Cys80 with Ala or Ser were used to prepare the SNO-mimetic/deficient (C80A/S) CFL1 mutants. Recombinant wild-type (wt) and mutant CFL1 proteins were prepared; their actin-severing activity was determined by real-time fluorescence imaging analysis. The activity of C80A CFL1 was enhanced to that of the constitutively active S3/A CFL1, whereas the other mutants had no effects. C80A/S mutations lowered Ser3 phosphorylation. Treatment with E2β increased filamentous (F)-actin and filopodium formation in endothelial cells, which were significantly reduced in cells overexpressing wt-CFL. Overexpression of C80A, but not C80S, CFL1 decreased basal F-actin and further suppressed E2β-induced F-actin and filopodium formation compared with wt-CFL1 overexpression. Thus, SNOCys80 of cofilin-1 via eNOS-derived NO provides a novel pathway for mediating estrogen-induced endothelial cell cytoskeleton remodeling. PMID:25635941

  7. Decrease of miR-195 Promotes Chondrocytes Proliferation and Maintenance of Chondrogenic Phenotype via Targeting FGF-18 Pathway

    PubMed Central

    Wang, Yong; Yang, Tao; Liu, Yadong; Zhao, Wei; Zhang, Zhen; Lu, Ming; Zhang, Weiguo

    2017-01-01

    Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage homeostasis; whether miR-195 could regulate FGF-18 and its downstream signal pathway in chondrocyte proliferation and maintenance of chondrogenic phenotypes still remains unclear. The present research shows elevated miR-195 but depressed FGF-18 expressed in joint fluid specimens of 20 patients with chronic cartilage lesions and in CH1M and CH3M chondrocytes when compared with that in joint fluid specimens without cartilage lesions and in CH1W and CH2W chondrocytes, respectively. The following loss of function test revealed that downregulation of miR-195 by transfection of miR-195 inhibitors promoted chondrocyte proliferation and expression of a type II collagen α I chain (Col2a1)/aggrecan. Through the online informatics analysis we theoretically predicted that miR-195 could bind to a FGF-18 3′ untranslated region (3′UTR), also, we verified that a miR-195 could regulate the FGF-18 and its downstream pathway. The constructed dual luciferase assay further confirmed that FGF-18 was a direct target of miR-195. The executed anti-sense experiment displayed that miR-195 could regulate chondrocyte proliferation and Col2a1/aggrecan expression via the FGF-18 pathway. Finally, through an in vivo anterior cruciate ligament transection (ACLT) model, downregulation of miR-195 presented a significantly protective effect on chronic cartilage lesions. Evaluating all of the outcomes of the current research revealed that a decrease of miR-195 protected chronic cartilage lesions by promoting chondrocyte proliferation and maintenance of chondrogenic phenotypes via the targeting of the FGF-18 pathway and that the miR-195/FGF-18 axis could be a potential target in the treatment of cartilage lesions. PMID:28471382

  8. Decrease of miR-195 Promotes Chondrocytes Proliferation and Maintenance of Chondrogenic Phenotype via Targeting FGF-18 Pathway.

    PubMed

    Wang, Yong; Yang, Tao; Liu, Yadong; Zhao, Wei; Zhang, Zhen; Lu, Ming; Zhang, Weiguo

    2017-05-04

    Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage homeostasis; whether miR-195 could regulate FGF-18 and its downstream signal pathway in chondrocyte proliferation and maintenance of chondrogenic phenotypes still remains unclear. The present research shows elevated miR-195 but depressed FGF-18 expressed in joint fluid specimens of 20 patients with chronic cartilage lesions and in CH1M and CH3M chondrocytes when compared with that in joint fluid specimens without cartilage lesions and in CH1W and CH2W chondrocytes, respectively. The following loss of function test revealed that downregulation of miR-195 by transfection of miR-195 inhibitors promoted chondrocyte proliferation and expression of a type II collagen α I chain (Col2a1)/aggrecan. Through the online informatics analysis we theoretically predicted that miR-195 could bind to a FGF-18 3' untranslated region (3'UTR), also, we verified that a miR-195 could regulate the FGF-18 and its downstream pathway. The constructed dual luciferase assay further confirmed that FGF-18 was a direct target of miR-195. The executed anti-sense experiment displayed that miR-195 could regulate chondrocyte proliferation and Col2a1/aggrecan expression via the FGF-18 pathway. Finally, through an in vivo anterior cruciate ligament transection (ACLT) model, downregulation of miR-195 presented a significantly protective effect on chronic cartilage lesions. Evaluating all of the outcomes of the current research revealed that a decrease of miR-195 protected chronic cartilage lesions by promoting chondrocyte proliferation and maintenance of chondrogenic phenotypes via the targeting of the FGF-18 pathway and that the miR-195/FGF-18 axis could be a potential target in the treatment of cartilage lesions.

  9. Hydrophobicity as a driver of MHC class I antigen processing

    PubMed Central

    Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C

    2011-01-01

    The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design. PMID:21378750

  10. Hydrophobicity as a driver of MHC class I antigen processing.

    PubMed

    Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C

    2011-04-20

    The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design.

  11. Purification, crystallization and preliminary X-ray analysis of uracil-DNA glycosylase from Sulfolobus tokodaii strain 7

    PubMed Central

    Kawai, Akito; Higuchi, Shigesada; Tsunoda, Masaru; Nakamura, Kazuo T.; Miyamoto, Shuichi

    2012-01-01

    Uracil-DNA glycosylase (UDG) specifically removes uracil from DNA by catalyzing hydrolysis of the N-glycosidic bond, thereby initiating the base-excision repair pathway. Although a number of UDG structures have been determined, the structure of archaeal UDG remains unknown. In this study, a deletion mutant of UDG isolated from Sulfolobus tokodaii strain 7 (stoUDGΔ) and stoUDGΔ complexed with uracil were crystallized and analyzed by X-ray crystallography. The crystals were found to belong to the orthorhombic space group P212121, with unit-cell parameters a = 52.2, b = 52.3, c = 74.7 Å and a = 52.1, b = 52.2, c = 74.1 Å for apo stoUDGΔ and stoUDGΔ complexed with uracil, respectively. PMID:22949205

  12. Green genes: bioinformatics and systems-biology innovations drive algal biotechnology.

    PubMed

    Reijnders, Maarten J M F; van Heck, Ruben G A; Lam, Carolyn M C; Scaife, Mark A; dos Santos, Vitor A P Martins; Smith, Alison G; Schaap, Peter J

    2014-12-01

    Many species of microalgae produce hydrocarbons, polysaccharides, and other valuable products in significant amounts. However, large-scale production of algal products is not yet competitive against non-renewable alternatives from fossil fuel. Metabolic engineering approaches will help to improve productivity, but the exact metabolic pathways and the identities of the majority of the genes involved remain unknown. Recent advances in bioinformatics and systems-biology modeling coupled with increasing numbers of algal genome-sequencing projects are providing the means to address this. A multidisciplinary integration of methods will provide synergy for a systems-level understanding of microalgae, and thereby accelerate the improvement of industrially valuable strains. In this review we highlight recent advances and challenges to microalgal research and discuss future potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor

    PubMed Central

    Everts, Bart; Hussaarts, Leonie; Driessen, Nicole N.; Meevissen, Moniek H.J.; Schramm, Gabriele; van der Ham, Alwin J.; van der Hoeven, Barbara; Scholzen, Thomas; Burgdorf, Sven; Mohrs, Markus; Pearce, Edward J.; Hokke, Cornelis H.; Haas, Helmut; Smits, Hermelijn H.

    2012-01-01

    Omega-1, a glycosylated T2 ribonuclease (RNase) secreted by Schistosoma mansoni eggs and abundantly present in soluble egg antigen, has recently been shown to condition dendritic cells (DCs) to prime Th2 responses. However, the molecular mechanisms underlying this effect remain unknown. We show in this study by site-directed mutagenesis of omega-1 that both the glycosylation and the RNase activity are essential to condition DCs for Th2 polarization. Mechanistically, we demonstrate that omega-1 is bound and internalized via its glycans by the mannose receptor (MR) and subsequently impairs protein synthesis by degrading both ribosomal and messenger RNA. These experiments reveal an unrecognized pathway involving MR and interference with protein synthesis that conditions DCs for Th2 priming. PMID:22966004

  14. An update on the use of massive transfusion protocols in obstetrics.

    PubMed

    Pacheco, Luis D; Saade, George R; Costantine, Maged M; Clark, Steven L; Hankins, Gary D V

    2016-03-01

    Obstetrical hemorrhage remains a leading cause of maternal mortality worldwide. New concepts involving the pathophysiology of hemorrhage have been described and include early activation of both the protein C and fibrinolytic pathways. New strategies in hemorrhage treatment include the use of hemostatic resuscitation, although the optimal ratio to administer the various blood products is still unknown. Massive transfusion protocols involve the early utilization of blood products and limit the traditional approach of early massive crystalloid-based resuscitation. The evidence behind hemostatic resuscitation has changed in the last few years, and debate is ongoing regarding optimal transfusion strategies. The use of tranexamic acid, fibrinogen concentrates, and prothrombin complex concentrates has emerged as new potential alternative treatment strategies with improved safety profiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The biology and function of exosomes in cancer

    PubMed Central

    Kalluri, Raghu

    2016-01-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40–150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients. PMID:27035812

  16. A critical role for PDGFRα signaling in medial nasal process development.

    PubMed

    He, Fenglei; Soriano, Philippe

    2013-01-01

    The primitive face is composed of neural crest cell (NCC) derived prominences. The medial nasal processes (MNP) give rise to the upper lip and vomeronasal organ, and are essential for normal craniofacial development, but the mechanism of MNP development remains largely unknown. PDGFRα signaling is known to be critical for NCC development and craniofacial morphogenesis. In this study, we show that PDGFRα is required for MNP development by maintaining the migration of progenitor neural crest cells (NCCs) and the proliferation of MNP cells. Further investigations reveal that PI3K/Akt and Rac1 signaling mediate PDGFRα function during MNP development. We thus establish PDGFRα as a novel regulator of MNP development and elucidate the roles of its downstream signaling pathways at cellular and molecular levels.

  17. Convergence between biological, behavioural and genetic determinants of obesity.

    PubMed

    Ghosh, Sujoy; Bouchard, Claude

    2017-12-01

    Multiple biological, behavioural and genetic determinants or correlates of obesity have been identified to date. Genome-wide association studies (GWAS) have contributed to the identification of more than 100 obesity-associated genetic variants, but their roles in causal processes leading to obesity remain largely unknown. Most variants are likely to have tissue-specific regulatory roles through joint contributions to biological pathways and networks, through changes in gene expression that influence quantitative traits, or through the regulation of the epigenome. The recent availability of large-scale functional genomics resources provides an opportunity to re-examine obesity GWAS data to begin elucidating the function of genetic variants. Interrogation of knockout mouse phenotype resources provides a further avenue to test for evidence of convergence between genetic variation and biological or behavioural determinants of obesity.

  18. Aortic Disease in the Young: Genetic Aneurysm Syndromes, Connective Tissue Disorders, and Familial Aortic Aneurysms and Dissections

    PubMed Central

    Cury, Marcelo; Zeidan, Fernanda; Lobato, Armando C.

    2013-01-01

    There are many genetic syndromes associated with the aortic aneurysmal disease which include Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), Loeys-Dietz syndrome (LDS), familial thoracic aortic aneurysms and dissections (TAAD), bicuspid aortic valve disease (BAV), and autosomal dominant polycystic kidney disease (ADPKD). In the absence of familial history and other clinical findings, the proportion of thoracic and abdominal aortic aneurysms and dissections resulting from a genetic predisposition is still unknown. In this study, we propose the review of the current genetic knowledge in the aortic disease, observing, in the results that the causative genes and molecular pathways involved in the pathophysiology of aortic aneurysm disease remain undiscovered and continue to be an area of intensive research. PMID:23401778

  19. EFEMP1 promotes the migration and invasion of osteosarcoma via MMP-2 with induction by AEG-1 via NF-κB signaling pathway

    PubMed Central

    Ke, Zun-Fu; Luo, Can-Jiao; Lin, Zhong-Wei; Wang, Fen; Zhang, Yuan-Qi; Wang, Lian-Tang

    2015-01-01

    The role of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in osteosarcoma remains unknown. Then applying EFEMP1 siRNA, plasmids transfection and adding purified EFEMP1 protein in human osteosarcoma cell lines, and using immunohistochemistry on 113 osteosarcoma tissues, demonstrated that EFEMP1 was a poor prognostic indicator of osteosarcoma; EFEMP1 was specifically upregulated in osteosarcoma and associated with invasion and metastasis in vitro and in vivo. At the same time, we found a direct regulatory effect of EFEMP1 on MMP-2. Moreover, we firstly found the marked induction of EFEMP1 by oncogenic AEG-1. And EFEMP1 expression was inhibited by the selective inhibitor of NF-κB (PDTC) in osteosarcoma cells. Then we thought that NF-κB pathways might be one of the effective ways which EFEMP1 was induced by AEG-1. Thus, we suggested that EFEMP1 played a part as the mediator between AEG-1 and MMP-2. And NF-κB signaling pathway played an important role in this process. In summary, EFEMP1 was associated with invasion, metastasis and poor prognosis of osteosarcoma patients. EFEMP1 might indirectly enhance the expression of MMP-2, providing a potential explanation for the role of AEG-1 in metastasis. NF-κB pathways might be one of the effective ways which EFEMP1 was induced by AEG-1. PMID:25987128

  20. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    PubMed

    Lin, Lianzhu; Deng, Wuguo; Tian, Yun; Chen, Wangbing; Wang, Jingshu; Fu, Lingyi; Shi, Dingbo; Zhao, Mouming; Luo, Wei

    2014-01-01

    Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  1. Roles for miR-375 in Neuroendocrine Differentiation and Tumor Suppression via Notch Pathway Suppression in Merkel Cell Carcinoma.

    PubMed

    Abraham, Karan J; Zhang, Xiao; Vidal, Ricardo; Paré, Geneviève C; Feilotter, Harriet E; Tron, Victor A

    2016-04-01

    Dysfunction of key miRNA pathways regulating basic cellular processes is a common driver of many cancers. However, the biological roles and/or clinical applications of such pathways in Merkel cell carcinoma (MCC), a rare but lethal cutaneous neuroendocrine (NE) malignancy, have yet to be determined. Previous work has established that miR-375 is highly expressed in MCC tumors, but its biological role in MCC remains unknown. Herein, we show that elevated miR-375 expression is a specific feature of well-differentiated MCC cell lines that express NE markers. In contrast, miR-375 is strikingly down-regulated in highly aggressive, undifferentiated MCC cell lines. Enforced miR-375 expression in these cells induced NE differentiation, and opposed cancer cell viability, migration, invasion, and survival, pointing to tumor-suppressive roles for miR-375. Mechanistically, miR-375-driven phenotypes were caused by the direct post-transcriptional repression of multiple Notch pathway proteins (Notch2 and RBPJ) linked to cancer and regulation of cell fate. Thus, we detail a novel molecular axis linking tumor-suppressive miR-375 and Notch with NE differentiation and cancer cell behavior in MCC. Our findings identify miR-375 as a putative regulator of NE differentiation, provide insight into the cell of origin of MCC, and suggest that miR-375 silencing may promote aggressive cancer cell behavior through Notch disinhibition. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. PXR-Mediated Upregulation of CYP3A Expression by Herb Compound Praeruptorin C from Peucedanum praeruptorum Dunn

    PubMed Central

    Huang, Ling; Wu, Qian; Li, Yu-Hua; Wang, Yi-Tao; Bi, Hui-Chang

    2013-01-01

    We recently reported that Praeruptorin C effectively transactivated the mRNA, protein expression, and catalytic activity of CYP3A4 via the CAR-mediated pathway, but whether and how PC could affect the expression and catalytic activity of CYP3A4 via PXR pathway remains unknown. Therefore, in this study, the effect of PC on the CYP3A gene expression was investigated in mice primary hepatocytes after knockdown of PXR by transient transfection of PXR siRNA, and the gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells with PXR overexpression were determined by real-time PCR, western blot analysis, and LC-MS/MS-based CYP3A4 substrate assay, respectively. We found that the level of CYP3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin C, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. In PXR-overexpressed LS174T cells, PC significantly enhanced CYP3A4 mRNA, protein expression, and functional activity through PXR-mediated pathway; conversely, no such increase was found in the untransfected cells. These findings suggest that PC can significantly upregulate CYP3A level via the PXR-mediated pathway, and this should be taken into consideration to predict any potential herb-drug interactions between PC, Qianhu, and the other coadministered drugs. PMID:24379885

  3. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses.

    PubMed

    Jiang, Lin; Campagne, Cécile; Sundström, Elisabeth; Sousa, Pedro; Imran, Saima; Seltenhammer, Monika; Pielberg, Gerli; Olsson, Mats J; Egidy, Giorgia; Andersson, Leif; Golovko, Anna

    2014-11-21

    Constitutive activation of the ERK pathway, occurring in the vast majority of melanocytic neoplasms, has a pivotal role in melanoma development. Different mechanisms underlie this activation in different tumour settings. The Grey phenotype in horses, caused by a 4.6 kb duplication in intron 6 of Syntaxin 17 (STX17), is associated with a very high incidence of cutaneous melanoma, but the molecular mechanism behind the melanomagenesis remains unknown. Here, we investigated the involvement of the ERK pathway in melanoma development in Grey horses. Grey horse melanoma tumours, cell lines and normal skin melanocytes were analyzed with help of indirect immunofluorescence and immunoblotting for the expression of phospho-ERK1/2 in comparison to that in non-grey horse and human counterparts. The mutational status of BRAF, RAS, GNAQ, GNA11 and KIT genes in Grey horse melanomas was determined by direct sequencing. The effect of RAS, RAF and PI3K/AKT pathways on the activation of the ERK signaling in Grey horse melanoma cells was investigated with help of specific inhibitors and immunoblotting. Individual roles of RAF and RAS kinases on the ERK activation were examined using si-RNA based approach and immunoblotting. We found that the ERK pathway is constitutively activated in Grey horse melanoma tumours and cell lines in the absence of somatic activating mutations in BRAF, RAS, GNAQ, GNA11 and KIT genes or alterations in the expression of the main components of the pathway. The pathway is mitogenic and is mediated by BRAF, CRAF and KRAS kinases. Importantly, we found high activation of the ERK pathway also in epidermal melanocytes, suggesting a general predisposition to melanomagenesis in these horses. These findings demonstrate that the presence of the intronic 4.6 kb duplication in STX17 is strongly associated with constitutive activation of the ERK pathway in melanocytic cells in Grey horses in the absence of somatic mutations commonly linked to the activation of this pathway during melanomagenesis. These findings are consistent with the universal importance of the ERK pathway in melanomagenesis and may have valuable implications for human melanoma research.

  4. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    PubMed

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  5. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    EPA Science Inventory

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  6. Do ray cells provide a pathway for radial water movement in the stems of conifer trees?

    Treesearch

    David M. Barnard; Barbara Lachenbruch; Katherine A. McCulloh; Peter Kitin; Frederick C. Meinzer

    2013-01-01

    The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray...

  7. Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Ohnishi, Makoto

    2017-09-15

    In Vibrio cholerae , the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR , encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR :: lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIA glc ) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIA glc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIA glc Furthermore, the regulation of tfoR and chb expression by EIIA glc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIA glc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status. IMPORTANCE The EIIA glc protein of the PTS coordinates a wide variety of physiological functions with carbon availability. In this report, we describe an unexpected association of chitin-activated signaling pathways in V. cholerae with EIIA glc The signaling pathways are governed by the chitin-responsive TCS sensor kinase ChiS and lead to the induction of chitin utilization and natural competence. We show that dephosphorylated EIIA glc inhibits both signaling pathways in a ChiS-dependent manner. This inhibition is different from classical catabolite repression that is caused by lowered levels of cyclic AMP. This work represents a newly identified connection between the PTS and chitin signaling pathways in V. cholerae and suggests a strategy whereby this bacterium can physiologically adapt to the existing nutrient status. Copyright © 2017 American Society for Microbiology.

  8. Development of sensors for monitoring oxygen and free radicals in plant physiology

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  9. Mesoamerican Nephropathy or Global Warming Nephropathy?

    PubMed

    Roncal-Jimenez, Carlos A; García-Trabanino, Ramon; Wesseling, Catharina; Johnson, Richard J

    2016-01-01

    An epidemic of chronic kidney disease (CKD) of unknown cause has emerged along the Pacific Coast of Central America. The disease primarily affects men working manually outdoors, and the major group affected is sugarcane workers. The disease presents with an asymptomatic rise in serum creatinine that progresses to end-stage renal disease over several years. Renal biopsies show chronic tubulointerstitial disease. While the cause remains unknown, recent studies suggest that it is driven by recurrent dehydration in the hot climate. Potential mechanisms include the development of hyperosmolarity with the activation of the aldose reductase-fructokinase pathway in the proximal tubule leading to local injury and inflammation, and the possibility that renal injury may be the consequence of repeated uricosuria and urate crystal formation as a consequence of both increased generation and urinary concentration, similar to a chronic tumor lysis syndrome. The epidemic is postulated to be increasing due to the effects of global warming. An epidemic of CKD has led to the death of more than 20,000 lives in Central America. The cause is unknown, but appears to be due to recurrent dehydration. Potential mechanisms for injury are renal damage as a consequence of recurrent hyperosmolarity and/or injury to the tubules from repeated episodes of uricosuria. The epidemic of CKD in Mesoamerica may be due to chronic recurrent dehydration as a consequence of global warming and working conditions. This entity may be one of the first major diseases attributed to climate change and the greenhouse effect. © 2016 S. Karger AG, Basel.

  10. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A.

    PubMed

    Moravek, Molly B; Yin, Ping; Coon, John S; Ono, Masanori; Druschitz, Stacy A; Malpani, Saurabh S; Dyson, Matthew T; Rademaker, Alfred W; Robins, Jared C; Wei, Jian-Jun; Kim, J Julie; Bulun, Serdar E

    2017-05-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. To define differential gene expression and signaling pathways in leiomyoma cell populations. Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b-, and CD34-/CD49b-. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2'-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Research laboratory. Eight African American women. None. Gene expression patterns, cell proliferation, and differentiation. A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b- intermediary cells, which then terminally differentiate to CD34-/CD49b- cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b- vs CD34-/CD49b- cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34-/CD49b- cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. Copyright © 2017 by the Endocrine Society

  11. In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid

    PubMed Central

    Westman, Gunnar; Eriksson, Leif A.; Mapelli, Valeria

    2018-01-01

    The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them. PMID:29474495

  12. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.

    PubMed

    Baltazar, Carla S A; Teixeira, Vitor H; Soares, Cláudio M

    2012-04-01

    Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways. © SBIC 2012

  13. The Characteristic of S100A7 Induction by the Hippo-YAP Pathway in Cervical and Glossopharyngeal Squamous Cell Carcinoma.

    PubMed

    Kong, Fei; Li, Yunguang; Hu, Enze; Wang, Rui; Wang, Junhao; Liu, Jin; Zhang, Jinsan; He, Dacheng; Xiao, Xueyuan

    2016-01-01

    S100A7 is expressed in many squamous cell carcinomas (SCCs). Our previous study revealed that S100A7 was dramatically induced in several SCC cells and activation of the Hippo pathway significantly promoted S100A7 in epidermoid carcinoma cells. However, whether the Hippo pathway regulates S100A7 expression in SCCs remains largely unknown. Here, we uncover that S100A7 induction by the Hippo-YAP pathway displays different characteristic in cervical and glossopharyngeal SCC. In well differentiated HCC94 cervical cells and FaDu pharyngeal cells, S100A7 is easily induced by both suspension and dense culture, which is accompanied by an increase in YAP phosphorylation and a decrease in nuclear YAP. Strikingly, these correlations of S100A7 and YAP reverse after recovery of cell attachment or relief from dense culture. Further examination finds that S100A7 induction is significantly repressed by nuclear YAP, which is validated by activation or inhibition of the Hippo pathway via loss- and/or gain-of- LATS1 and MST1 function. Subsequently, we prove that TEAD1 is required for YAP transcriptional repression of S100A7. However, S100A7 is hardly induced in poorly differentiated SiHa cervical cells and NCI-H226 pulmonary cells even in suspension or activation of the Hippo pathway. More importantly, cervical and lingual SCC tissues array analyses show that S100A7 expression displays the positive correlation with pYAP-S127 and the negative correlation with nuclear YAP in the majority of well differentiated but not in poorly differentiated tissues. Collectively, our findings demonstrate that the different induction of S100A7 toward activation of the Hippo pathway mainly depends on the degree of cell differentiation in cervical and glossopharyngeal SCC.

  14. Identification of Differentially Expressed Genes and Pathways for Myofiber Characteristics in Soleus Muscles between Chicken Breeds Differing in Meat Quality.

    PubMed

    Du, Y F; Ding, Q L; Li, Y M; Fang, W R

    2017-04-03

    In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P < 0.05, FDR <0.05, FC ≥ 2) in SOL muscles of QY and CB chickens. Differentially expressed genes (DEGs) related to muscle development, energy metabolism or lipid metabolism processes were examined further in each breed based on Gene Ontology (GO) analysis, and 11 genes involved in these processes were selected for further validation studies by qRT-PCR. In addition, based on KEGG pathway analysis of DEGs in both QY and CB chickens, it was found that in addition to pathways affecting myogenic fibre-type development and differentiation (pathways for Hedgehog & Calcium signaling), energy metabolism (Phosphatidylinositol signaling system, VEGF signaling pathway, Purine metabolism, Pyrimidine metabolism) were also enriched and might form a network with pathways related to muscle metabolism to influence the development of myofibers. This study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be used for selection or to optimize rearing practices.

  15. A review of soft-tissue sarcomas: translation of biological advances into treatment measures

    PubMed Central

    Mann, Michael J; Tolani, Bhairavi

    2018-01-01

    Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas – liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing’s sarcoma, and synovial sarcoma – with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease. PMID:29785138

  16. The α-Secretase-derived N-terminal Product of Cellular Prion, N1, Displays Neuroprotective Function in Vitro and in Vivo*

    PubMed Central

    Guillot-Sestier, Marie-Victoire; Sunyach, Claire; Druon, Charlotte; Scarzello, Sabine; Checler, Frédéric

    2009-01-01

    Cellular prion protein (PrPc) undergoes a disintegrin-mediated physiological cleavage, generating a soluble amino-terminal fragment (N1), the function of which remained unknown. Recombinant N1 inhibits staurosporine-induced caspase-3 activation by modulating p53 transcription and activity, whereas the PrPc-derived pathological fragment (N2) remains biologically inert. Furthermore, N1 protects retinal ganglion cells from hypoxia-induced apoptosis, reduces the number of terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling-positive and p53-immunoreactive neurons in a pressure-induced ischemia model of the rat retina and triggers a partial recovery of b-waves but not a-waves of rat electroretinograms. Our work is the first demonstration that the α-secretase-derived PrPc fragment N1, but not N2, displays in vivo and in vitro neuroprotective function by modulating p53 pathway. It further demonstrates that distinct N-terminal cleavage products of PrPc harbor different biological activities underlying the various phenotypes linking PrPc to cell survival. PMID:19850936

  17. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways.

    PubMed

    Mladenov, Emil; Iliakis, George

    2011-06-03

    A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis. 2011 Elsevier B.V. All rights reserved.

  18. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis

    PubMed Central

    Kato, Yasuko; Alavattam, Kris G.; Sin, Ho-Su; Meetei, Amom Ruhikanta; Pang, Qishen; Andreassen, Paul R.; Namekawa, Satoshi H.

    2015-01-01

    Fanconi anemia (FA) is a recessive X-linked and autosomal genetic disease associated with bone marrow failure and increased cancer, as well as severe germline defects such as hypogonadism and germ cell depletion. Although deficiencies in FA factors are commonly associated with germ cell defects, it remains unknown whether the FA pathway is involved in unique epigenetic events in germ cells. In this study, we generated Fancb mutant mice, the first mouse model of X-linked FA, and identified a novel function of the FA pathway in epigenetic regulation during mammalian gametogenesis. Fancb mutant mice were infertile and exhibited primordial germ cell (PGC) defects during embryogenesis. Further, Fancb mutation resulted in the reduction of undifferentiated spermatogonia in spermatogenesis, suggesting that FANCB regulates the maintenance of undifferentiated spermatogonia. Additionally, based on functional studies, we dissected the pathway in which FANCB functions during meiosis. The localization of FANCB on sex chromosomes is dependent on MDC1, a binding partner of H2AX phosphorylated at serine 139 (γH2AX), which initiates chromosome-wide silencing. Also, FANCB is required for FANCD2 localization during meiosis, suggesting that the role of FANCB in the activation of the FA pathway is common to both meiosis and somatic DNA damage responses. H3K9me2, a silent epigenetic mark, was decreased on sex chromosomes, whereas H3K9me3 was increased on sex chromosomes in Fancb mutant spermatocytes. Taken together, these results indicate that FANCB functions at critical stages of germ cell development and reveal a novel function of the FA pathway in the regulation of H3K9 methylation in the germline. PMID:26123487

  19. Transcriptome profiling indicating canine parvovirus type 2a as a potential immune activator.

    PubMed

    Fan, Xu-Xu; Gao, Yuan; Shu, Long; Wei, Yan-Quan; Yao, Xue-Ping; Cao, Sui-Zhong; Peng, Guang-Neng; Liu, Xiang-Tao; Sun, Shi-Qi

    2016-12-01

    Canine parvovirus type 2a (CPV-2a) is a variant of CPV-2, which is a highly contagious pathogen causing severe gastroenteritis and death in young dogs. However, how CPV-2 participates in cell regulation and immune response remains unknown. In this study, persistently infected MDCK cells were generated through culture passage of the CPV-2a-infected cells for ten generations. Our study showed that CPV-2a induces cell proliferation arrest and cell morphology alternation before the fourth generation, whereas, the cell morphology returns to normal after five times of passages. PCR detection of viral VP2 gene demonstrated that CPV-2a proliferate with cell passage. An immunofluorescence assay revealed that CPV-2a particles were mainly located in the cell nuclei of MDCK cell. Then transcriptome microarray revealed that gene expression pattern of MDCK with CPV-2a persistent infection is distinct compared with normal cells. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genome pathway analysis demonstrated that CPV-2a infection induces a series of membrane-associated genes expression, including many MHC protein or MHC-related complexes. These genes are closely related to signaling pathways of virus-host interaction, including antigen processing and presentation pathway, intestinal immune network, graft-versus-host disease, and RIG-I-like helicases signaling pathway. In contrast, the suppressed genes mediated by CPV-2a showed low enrichment in any category, and were only involved in pathways linking to synthesis and metabolism of amino acids, which was confirmed by qPCR analysis. Our studies indicated that CPV-2a is a natural immune activator and has the capacity to activate host immune responses, which could be used for the development of antiviral strategy and biomaterial for medicine.

  20. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    PubMed

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    PubMed

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  2. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    PubMed

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA

    DOE PAGES

    Qian, Chen; Johs, Alexander; Chen, Hongmei; ...

    2016-07-27

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutantsmore » and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the hgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the Wood Ljungdahl pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. In conclusion, this observation supports the hypothesis that the function of HgcA and HgcB may be linked to one carbon metabolism through the folate branch of the Wood-Ljungdahl pathway by providing methyl groups required for Hg methylation.« less

  4. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

    PubMed

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A

    2015-03-01

    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Chen; Johs, Alexander; Chen, Hongmei

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutantsmore » and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the hgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the Wood Ljungdahl pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. In conclusion, this observation supports the hypothesis that the function of HgcA and HgcB may be linked to one carbon metabolism through the folate branch of the Wood-Ljungdahl pathway by providing methyl groups required for Hg methylation.« less

  6. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  7. Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway

    PubMed Central

    Noël, Jean-François; Larose, Stéphanie; Abou Elela, Sherif; Wellinger, Raymund J.

    2012-01-01

    The RNA component of budding yeast telomerase (Tlc1) occurs in two forms, a non-polyadenylated form found in functional telomerase and a rare polyadenylated version with unknown function. Previous work suggested that the functional Tlc1 polyA− RNA is processed from the polyA+ form, but the mechanisms regulating its transcription termination and 3′-end formation remained unclear. Here we examined transcription termination of Tlc1 RNA in the sequences 3′ of the TLC1 gene and relate it to telomere maintenance. Strikingly, disruption of all probable or cryptic polyadenylation signals near the 3′-end blocked the accumulation of the previously reported polyA+ RNA without affecting the level, function or specific 3′ nucleotide of the mature polyA− form. A genetic approach analysing TLC1 3′-end sequences revealed that transcription terminates upstream of the polyadenylation sites. Furthermore, the results also demonstrate that the function of this Tlc1 terminator depends on the Nrd1/Nab3 transcription termination pathway. The data thus show that transcription termination of the budding yeast telomerase RNA occurs as that of snRNAs and Tlc1 functions in telomere maintenance are not strictly dependent on a polyadenylated precursor, even if the polyA+ form can serve as intermediate in a redundant termination/maturation pathway. PMID:22379137

  8. MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals

    PubMed Central

    Yuan, Jia; Zhang, Ying; Sheng, Yue; Fu, Xiazhou; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    Oogenesis is essential for female gamete production in mammals. The total number of ovarian follicles is determined early in life and production of ovarian oocytes is thought to stop during the lifetime. However, the molecular mechanisms underling oogenesis, particularly autophagy regulation in the ovary, remain largely unknown. Here, we reveal an important MYBL2-VDAC2-BECN1-BCL2L1 pathway linking autophagy suppression in the developing ovary. The transcription factors GATA1 and MYBL2 can bind to and activate the Vdac2 promoter. MYBL2 regulates the spatiotemporal expression of VDAC2 in the developing ovary. Strikingly, in the VDAC2 transgenic pigs (Sus scrofa/Ss), VDAC2 exerts its function by inhibiting autophagy in the ovary. In contrast, Vdac2 knockout promotes autophagy. Moreover, VDAC2-mediated autophagy suppression is dependent on its interactions with both BECN1 and BCL2L1 to stabilize the BECN1 and BCL2L1 complex, suggesting VDAC2 as an autophagy suppressor in the pathway. Our findings provide a functional connection among the VDAC2, MYBL2, the BECN1-BCL2L1 pathway and autophagy suppression in the developing ovary, which is implicated in improving female fecundity. PMID:26060891

  9. IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway.

    PubMed

    Huang, Guizhen; Yuan, Miao; Zhang, Jie; Li, Jun; Gong, Di; Li, Yanyan; Zhang, Jie; Lin, Ping; Huang, Lugang

    2016-06-22

    Zfp637 is a recently identified zinc finger protein, and its functions remain largely unknown. Here, we innovatively demonstrate the effects of Zfp637 on the differentiation of mouse spermatogonia and on its downstream target gene SOX2 in vitro. Obesity has been recognized as a chronic inflammatory disease that leads to decreased sexual function and sexual development disorders. We observed higher levels of IL-6 in serum and testis homogenates from obese mice compared with control mice. We also demonstrated that high levels of IL-6 inhibited Zfp637 expression, and we elucidated the underlying mechanisms. SOCS3 overexpression and STAT3 phosphorylation inhibitor (AG490) were used to investigate the function of the SOCS3/STAT3 pathway during this process. Our results showed that exposure of mouse spermatogonial cells to high levels of IL-6 inhibited Zfp637 expression by increasing SOCS3 expression and inhibiting the phosphorylation of STAT3, further reducing cellular differentiation. Consistent with the in vitro results, we observed increasing expression levels of SOCS3 and SOX2, but a reduction of Zfp637 expression, in obese mouse testes. In conclusion, Zfp637 plays a crucial role in spermatogenesis by downregulating SOX2 expression, and IL-6 can decrease the expression of Zfp637 through the SOCS3/STAT3 signaling pathway.

  10. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay.

    PubMed

    Lordkipanidzé, Marie; Lowe, Gillian C; Kirkby, Nicholas S; Chan, Melissa V; Lundberg, Martina H; Morgan, Neil V; Bem, Danai; Nisar, Shaista P; Leo, Vincenzo C; Jones, Matthew L; Mundell, Stuart J; Daly, Martina E; Mumford, Andrew D; Warner, Timothy D; Watson, Steve P

    2014-02-20

    Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167.

  11. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    PubMed

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway

    PubMed Central

    Movert, Elin; Lienard, Julia; Valfridsson, Christine; Johansson-Lindbom, Bengt

    2018-01-01

    From an evolutionary point of view a pathogen might benefit from regulating the inflammatory response, both in order to facilitate establishment of colonization and to avoid life-threatening host manifestations, such as septic shock. In agreement with this notion Streptococcus pyogenes exploits type I IFN-signaling to limit detrimental inflammation in infected mice, but the host-pathogen interactions and mechanisms responsible for induction of the type I IFN response have remained unknown. Here we used a macrophage infection model and report that S. pyogenes induces anti-inflammatory IL-10 in an M protein-dependent manner, a function that was mapped to the B- and C-repeat regions of the M5 protein. Intriguingly, IL-10 was produced downstream of type I IFN-signaling, and production of type I IFN occurred via M protein-dependent activation of the STING signaling pathway. Activation of STING was independent of the cytosolic double stranded DNA sensor cGAS, and infection did not induce detectable release into the cytosol of either mitochondrial, nuclear or bacterial DNA–indicating DNA-independent activation of the STING pathway in S. pyogenes infected macrophages. These findings provide mechanistic insight concerning how S. pyogenes induces the type I IFN response and identify a previously unrecognized macrophage-modulating role for the streptococcal M protein that may contribute to curb the inflammatory response to infection. PMID:29579113

  13. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism

    PubMed Central

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-01-01

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively. PMID:26898409

  14. Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells.

    PubMed

    Fujiwara, Daichiro; Tsubaki, Masanobu; Takeda, Tomoya; Tomonari, Yoshika; Koumoto, Yu-Ichi; Sakaguchi, Katsuhiko; Nishida, Shozo

    2017-10-01

    Recently, statins have been demonstrated to improve cancer-related mortality or prognosis in patients of various cancers. However, the details of the apoptosis-inducing mechanisms remain unknown. This study showed that the induction of apoptosis by statins in hematopoietic tumor cells is mediated by mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate biosynthesis. In addition, statins decreased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin through suppressing Ras prenylation. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin by statins induced Bim expression via inhibition of Bim phosphorylation and ubiquitination and cell-cycle arrest at G1 phase via enhancement of p27 expression. Moreover, combined treatment of U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, and rapamycin, a mammalian target of rapamycin inhibitor, induced Bim and p27 expressions. The present results suggested that statins induce apoptosis by decreasing the mitochondrial transmembrane potential, increasing the activation of caspase-9 and caspase-3, enhancing Bim expression, and inducing cell-cycle arrest at G1 phase through inhibition of Ras/extracellular signal-regulated kinase and Ras/mammalian target of rapamycin pathways. Therefore, our findings support the use of statins as potential anticancer agents or concomitant drugs of adjuvant therapy.

  15. Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities.

    PubMed

    Garcia, Guilherme J M; Boucher, Richard C; Elston, Timothy C

    2013-02-05

    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The role of cyclooxygenase-2, interleukin-1β and fibroblast growth factor-2 in the activation of matrix metalloproteinase-1 in sheared-chondrocytes and articular cartilage.

    PubMed

    Guan, Pei-Pei; Guo, Jing-Wen; Yu, Xin; Wang, Yue; Wang, Tao; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-05-20

    MMP-1 expression is detected in fluid shear stress (20 dyn/cm(2))-activated and osteoarthritic human chondrocytes, however, the precise mechanisms underlying shear-induced MMP-1 synthesis remain unknown. Using primary chondrocytes and T/C-28a2 chondrocytic cells as model systems, we report that prolonged application of high fluid shear to human chondrocytes induced the synthesis of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β) and fibroblast growth factor-2 (FGF-2), which led to a marked increase in MMP-1 expression. IL-1β, COX-2-dependent PGE2 activated the PI3-K/AKT and p38 signaling pathways, which were in turn responsible for MMP-1 synthesis via NF-κB- and c-Jun-transactivating pathways. Prolonged shear stress exposure (>12 h) induced 15-Deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) synthesis. Although 15d-PGJ2 suppressed PI3-K/AKT and p38 signaling pathways, it stimulated MMP-1 expression via activating heme oxygenase 1 (HO-1). The critical role of COX-2 in regulating MMP-1 expression in articular cartilage in vivo was demonstrated using COX-2(+/-) transgenic mice in the absence or presence of rofecoxib oral administration. These findings provide novel insights for developing therapeutic strategies to combat OA.

  17. The Role of Cyclooxygenase-2, Interleukin-1β and Fibroblast Growth Factor-2 in the Activation of Matrix Metalloproteinase-1 in Sheared-Chondrocytes and Articular Cartilage

    PubMed Central

    Guan, Pei-Pei; Guo, Jing-Wen; Yu, Xin; Wang, Yue; Wang, Tao; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-01-01

    MMP-1 expression is detected in fluid shear stress (20 dyn/cm2)-activated and osteoarthritic human chondrocytes, however, the precise mechanisms underlying shear-induced MMP-1 synthesis remain unknown. Using primary chondrocytes and T/C-28a2 chondrocytic cells as model systems, we report that prolonged application of high fluid shear to human chondrocytes induced the synthesis of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β) and fibroblast growth factor-2 (FGF-2), which led to a marked increase in MMP-1 expression. IL-1β, COX-2-dependent PGE2 activated the PI3-K/AKT and p38 signaling pathways, which were in turn responsible for MMP-1 synthesis via NF-κB- and c-Jun-transactivating pathways. Prolonged shear stress exposure (>12 h) induced 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) synthesis. Although 15d-PGJ2 suppressed PI3-K/AKT and p38 signaling pathways, it stimulated MMP-1 expression via activating heme oxygenase 1 (HO-1). The critical role of COX-2 in regulating MMP-1 expression in articular cartilage in vivo was demonstrated using COX-2+/− transgenic mice in the absence or presence of rofecoxib oral administration. These findings provide novel insights for developing therapeutic strategies to combat OA. PMID:25992485

  18. Structural basis of kynurenine 3-monooxygenase inhibition.

    PubMed

    Amaral, Marta; Levy, Colin; Heyes, Derren J; Lafite, Pierre; Outeiro, Tiago F; Giorgini, Flaviano; Leys, David; Scrutton, Nigel S

    2013-04-18

    Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.

  19. Increased circulating cell signalling phosphoproteins in sera are useful for the detection of pancreatic cancer

    PubMed Central

    Takano, S; Sogawa, K; Yoshitomi, H; Shida, T; Mogushi, K; Kimura, F; Shimizu, H; Yoshidome, H; Ohtsuka, M; Kato, A; Ishihara, T; Tanaka, H; Yokosuka, O; Nomura, F; Miyazaki, M

    2010-01-01

    Background: Intracellular phosphoprotein activation significantly regulates cancer progression. However, the significance of circulating phosphoproteins in the blood remains unknown. We investigated the serum phosphoprotein profile involved in pancreatic cancer (PaCa) by a novel approach that comprehensively measured serum phosphoproteins levels, and clinically applied this method to the detection of PaCa. Methods: We analysed the serum phosphoproteins that comprised cancer cellular signal pathways by comparing sera from PaCa patients and benign controls including healthy volunteers (HVs) and pancreatitis patients. Results: Hierarchical clustering analysis between PaCa patients and HVs revealed differential pathway-specific profiles. In particular, the components of the extracellular signal-regulated kinase (ERK) signalling pathway were significantly increased in the sera of PaCa patients compared with HVs. The positive rate of p-ERK1/2 (82%) was found to be superior to that of CA19-9 (53%) for early stage PaCa. For the combination of these serum levels, the area under the receiver-operator characteristics curves was showing significant ability to distinguish between the two populations in independent validation set, and between cancer and non-cancer populations in another validation set. Conclusion: The comprehensive measurement of serum cell signal phosphoproteins is useful for the detection of PaCa. Further investigations will lead to the implementation of tailor-made molecular-targeted therapeutics. PMID:20551957

  20. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway

    PubMed Central

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-01-01

    Abstract Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. PMID:20477906

  1. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  2. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.

    PubMed

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-02-22

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.

  3. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer.

    PubMed

    Cheng, Li; Zang, Jin; Dai, Han-Jue; Li, Feng; Guo, Feng

    2018-07-01

    Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.

  4. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens.

    PubMed

    Zhang, Jin; Luo, Ting; Wang, Wanwan; Cao, Tiantian; Li, Ran; Lou, Yonggen

    2017-10-01

    DELLA proteins, negative regulators of the gibberellin (GA) pathway, play important roles in plant growth, development and pathogen resistance by regulating multiple phytohormone signals. Yet, whether and how they regulate plant herbivore resistance remain unknown. We found that the expression of the rice DELLA gene OsSLR1 was down-regulated by an infestation of female adults of the brown planthopper (BPH) Nilaparvata lugens. On one hand, OsSLR1 positively regulated BPH-induced levels of two mitogen-activated protein kinase and four WRKY transcripts, and of jasmonic acid, ethylene and H 2 O 2 . On the other hand, silencing OsSLR1 enhanced constitutive levels of defence-related compounds, phenolic acids, lignin and cellulose, as well as the resistance of rice to BPH in the laboratory and in the field. The increased resistance in rice with silencing of OsSLR1 is probably due to impaired JA and ethylene pathways, and, at least in part, to the increased lignin level and mechanical hardness of rice leaf sheaths. Our findings illustrate that OsSLR1, acting as an early negative regulator, plays an important role in regulating the resistance of rice to BPH by activating appropriate defence-related signalling pathways and compounds. Moreover, our data also provide new insights into relationships between plant growth and defence. © 2017 John Wiley & Sons Ltd.

  5. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2017-10-01

    Alzheimer's disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis.

    PubMed

    Eroshkin, Fedor M; Nesterenko, Alexey M; Borodulin, Alexander V; Martynova, Natalia Yu; Ermakova, Galina V; Gyoeva, Fatima K; Orlov, Eugeny E; Belogurov, Alexey A; Lukyanov, Konstantin A; Bayramov, Andrey V; Zaraisky, Andrey G

    2016-03-14

    Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins. Using the Fluorescence Recovery After Photobleaching (FRAP) assay and mathematical modelling, we directly estimated the affinity of Noggin4 for Wnt8 in living embryos and determined that Noggin4 fine-tune the Wnt8 posterior-to-anterior gradient. Our results suggest a role for Noggin4 as a unique, freely diffusing, long-range inhibitor of canonical Wnt signalling, thus explaining its ability to promote head development.

  7. A Visual-Cue-Dependent Memory Circuit for Place Navigation.

    PubMed

    Qin, Han; Fu, Ling; Hu, Bo; Liao, Xiang; Lu, Jian; He, Wenjing; Liang, Shanshan; Zhang, Kuan; Li, Ruijie; Yao, Jiwei; Yan, Junan; Chen, Hao; Jia, Hongbo; Zott, Benedikt; Konnerth, Arthur; Chen, Xiaowei

    2018-06-05

    The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Head tilt produced by hemilabyrinthectomy does not depend on the direct vestibulospinal tracts.

    PubMed

    Fukushima, K; Fukushima, J; Kato, M

    1988-01-01

    Head tilt is one of the most characteristic and enduring symptoms produced by hemilabyrinthectomy and is compensated by the central nervous system with time. In order to study the central mechanisms of compensation of the head tilt, it is first necessary to understand how it is produced. However, its mechanism remains unknown. Experiments were performed in cats to examine whether the direct vestibulocollic pathways are responsible for the head tilt, as suggested by some authors. Hemilabyrinthectomies produced a characteristic head tilt in cats in which the medial and/or one lateral vestibulospinal tracts (VSTs) had been interrupted. The lesions of the medial VST did not influence the preexisting head tilt produced by hemilabyrinthectomies. These results suggest that the head tilt produced by hemilabyrinthectomies does not depend on the activity of the VSTs.

  9. Pubertal testosterone influences threat-related amygdala–orbitofrontal cortex coupling

    PubMed Central

    Forbes, Erika E.; Ladouceur, Cecile D.; Worthman, Carol M.; Olino, Thomas M.; Ryan, Neal D.; Dahl, Ronald E.

    2015-01-01

    Growing evidence indicates that normative pubertal maturation is associated with increased threat reactivity, and this developmental shift has been implicated in the increased rates of adolescent affective disorders. However, the neural mechanisms involved in this pubertal increase in threat reactivity remain unknown. Research in adults indicates that testosterone transiently decreases amygdala–orbitofrontal cortex (OFC) coupling. Consequently, we hypothesized that increased pubertal testosterone disrupts amygdala–OFC coupling, which may contribute to developmental increases in threat reactivity in some adolescents. Hypotheses were tested in a longitudinal study by examining the impact of testosterone on functional connectivity. Findings were consistent with hypotheses and advance our understanding of normative pubertal changes in neural systems instantiating affect/motivation. Finally, potential novel insights into the neurodevelopmental pathways that may contribute to adolescent vulnerability to behavioral and emotional problems are discussed. PMID:24795438

  10. Extraintestinal roles of bombesin-like peptides and their receptors: lung.

    PubMed

    Qin, Xiao-Qun; Qu, Xiangping

    2013-02-01

    Description of the recent findings of the biological roles of bombesin-like peptides and their receptors in lungs. Gastrin-releasing peptide (GRP) was involved in the airway inflammation in murine models of airway hyperreactivity. The circulating proGRP could serve as a valuable tumor marker for small-cell lung cancers, and the plasma level of proGRP is more stable compared with that of serum proGRP. Recent studies also shed light on the intracellular signaling pathways of bombesin receptor subtype-3 (BRS-3) activation in cultured human lung cancer cells. The relevant biology of BLPs and their receptors in lung cancers and other lung diseases still remains largely unknown. With the development of several highly specific BRS-3 agonists, recent studies provided some insights into the biological effects of BRS-3 in lungs.

  11. A Bayesian method for inferring transmission chains in a partially observed epidemic.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef M.; Ray, Jaideep

    2008-10-01

    We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less

  12. Induction of Tca8113 tumor cell apoptosis by icotinib is associated with reactive oxygen species mediated p38-MAPK activation.

    PubMed

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-08-01

    Icotinib, a selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has been shown to exhibit anti-tumor activity against several tumor cell lines. However, the exact molecular mechanism of icotinib's anti-tumor effect remains unknown. This study aims to examine the zytotoxic effect of icotinib on Tca8113 cells and its potential molecular mechanism. Icotinib significantly resulted in dose-dependent cell death as determined by MTT assay, accompanied by increased levels of Bax and DNA fragmentation. Icotinib could also induce Reactive Oxygen Species (ROS) generation. Further studies confirmed that scavenging of reactive oxygen species by N-acetyl-L-cysteine (NAC), and pharmacological inhibition of MAPK reversed icotinib-induced apoptosis in Tca8113 cells. Our data provide evidence that icotinib induces apoptosis, possibly via ROS-mediated MAPK pathway in Tca8113 cells.

  13. Theoretical evaluation of two plausible routes for bioactivation of S-(1,1-difluoro-2,2-dihaloethyl)-L-cysteine conjugates: thiirane vs thionoacyl fluoride pathway.

    PubMed

    Shim, J Y; Richard, A M

    1997-01-01

    The selective nephrotoxicity of halogenated alkenes has been attributed to a glutathione (GSH) S-conjugate pathway involving enzymatic hydrolysis to the cysteine S-conjugate and beta-lyase bioactivation to thiolates, which are presumed to give rise to the ultimate mutagenic or cytotoxic reactive species. Studies have shown that the brominated S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteine conjugates are mutagenic in the Ames test, whereas the nonbrominated analogues are nonmutagenic. While careful experimentation has contributed much to current understanding, the ultimate reactive species responsible for the differing mutagenic effects remain unknown. Computational methods were applied to the investigation of two proposed metabolic pathways leading from the thiolate to either a thiirane or thionoacyl fluoride intermediate, both electrophilic species presumed capable of binding to proteins or DNA. Studied were six F-, Cl-, and Br-substituted 2,2-dihalo-1,1-difluoroethane-1-thiolates (2,2-dihalo-DFETs). Pathway preference was determined for each thiolate by comparison of reaction energy profiles and activation energies. At all but the lowest level of ab initio theory, a thionoacyl fluoride pathway was predicted for 2,2-difluoro-DFET, while a thiirane pathway was energetically preferred for the brominated 2,2-dihalo-DFETs. These results offer a clear mechanism-based rationale for distinguishing 2,2-difluoro-DFET from the brominated 2,2-dihalo-DFETs, while the results are less clear for the 2,2-dichloro and 2-chloro-2-fluoro-DFETs, which at the highest level of ab initio treatment had a relatively small energy preference (2.4 kcal/mol) for the thiirane pathway. The predicted clear preference for a thiirane pathway for the brominated 2,2-dihalo-DFETs is not consistent with a recently proposed pathway involving alpha-thiolactone formation through a thionoacyl fluoride intermediate [Finkelstein, M. B., et al. (1995) J. Am. Chem. Soc. 117, 9590-9591], but is supported by results of a recent study providing experimental evidence for thiirane formation from the brominated 2,2-dihalo-DFETs [Finkelstein, M. B., et al. (1996) Chem. Res. Toxicol. 9, 227-231].

  14. The BMP pathway acts to directly regulate Tbx20 in the developing heart

    PubMed Central

    Mandel, Elizabeth M.; Kaltenbrun, Erin; Callis, Thomas E.; Zeng, Xin-Xin I.; Marques, Sara R.; Yelon, Deborah; Wang, Da-Zhi; Conlon, Frank L.

    2010-01-01

    TBX20 has been shown to be essential for vertebrate heart development. Mutations within the TBX20 coding region are associated with human congenital heart disease, and the loss of Tbx20 in a wide variety of model systems leads to cardiac defects and eventually heart failure. Despite the crucial role of TBX20 in a range of cardiac cellular processes, the signal transduction pathways that act upstream of Tbx20 remain unknown. Here, we have identified and characterized a conserved 334 bp Tbx20 cardiac regulatory element that is directly activated by the BMP/SMAD1 signaling pathway. We demonstrate that this element is both necessary and sufficient to drive cardiac-specific expression of Tbx20 in Xenopus, and that blocking SMAD1 signaling in vivo specifically abolishes transcription of Tbx20, but not that of other cardiac factors, such as Tbx5 and MHC, in the developing heart. We further demonstrate that activation of Tbx20 by SMAD1 is mediated by a set of novel, non-canonical, high-affinity SMAD-binding sites located within this regulatory element and that phospho-SMAD1 directly binds a non-canonical SMAD1 site in vivo. Finally, we show that these non-canonical sites are necessary and sufficient for Tbx20 expression in Xenopus, and that reporter constructs containing these sites are expressed in a cardiac-specific manner in zebrafish and mouse. Collectively, our findings define Tbx20 as a direct transcriptional target of the BMP/SMAD1 signaling pathway during cardiac maturation. PMID:20460370

  15. Cynaropicrin attenuates UVB-induced oxidative stress via the AhR-Nrf2-Nqo1 pathway.

    PubMed

    Takei, Kenjiro; Hashimoto-Hachiya, Akiko; Takahara, Masakazu; Tsuji, Gaku; Nakahara, Takeshi; Furue, Masutaka

    2015-04-16

    Due to its antioxidant and anti-inflammatory activities, artichoke (Cynara scolymus) has been used as folk medicine to treat various diseases. Cynaropicrin (Cyn), a sesquiterpene lactone, is the major bioactive phytochemical in the artichoke; however, its pharmacological mechanism remains unknown. Because some phytochemicals exert their antioxidant activity by activating aryl hydrocarbon receptor (AhR), leading to subsequent induction of the antioxidant pathway including nuclear factor E2-related factor 2 (Nrf2) and quinone oxidoreductase 1 (Nqo1), we investigated whether Cyn also activates the AhR-Nrf2-Nqo1 pathway. Cyn indeed induced the activation (nuclear translocation) of AhR, leading to nuclear translocation of Nrf2 and dose-dependent upregulation of Nrf2 and Nqo1 mRNAs in human keratinocytes. The Cyn-induced AhR-Nrf2-Nqo1 activation was AhR- and Nrf2-dependent, as demonstrated by the observation that it was absent in keratinocytes transfected by siRNA against either AhR or Nrf2. In accordance with these findings, Cyn actively inhibited generation of reactive oxygen species from keratinocytes irradiated with ultraviolet B (UVB) in a Nrf2-dependent manner. Cyn also inhibited the production of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor-α from UVB-treated keratinocytes. Our findings demonstrate that Cyn is a potent activator of the AhR-Nrf2-Nqo1 pathway, and could therefore be applied to prevention of UVB-induced photo aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Phase mapping of radionuclide gated biventriculograms in patients with sustained ventricular tachycardia or Wolff-Parkinson-White syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Guludec, D.; Bourguignon, M.; Sebag, C.

    1987-01-01

    Accuracy of Fourier phase mapping of radionuclide gated biventriculograms in detecting the origin of abnormal ventricular activation was studied during ventricular tachycardia or preexcitation. Group I included six patients suffering from clinical recurrent VT; 3 gated blood pool studies were acquired for each patient: during sinus rhythm, right ventricular pacing, and induced sustained VT-Group II included seven patients with Wolff-Parkinson-White syndrome and recurrent paroxysmal tachycardia; 3 gated blood pool studies were acquired for each patient: during sinus rhythm, right atrial pacing and orthodromic reciprocating tachycardia. Each acquisition lasted 5 min, in 30 degrees-40 degrees left anterior oblique projection. In Groupmore » I, the Fourier phase mapping was consistent with QRS morphology and axis during VT (5/6), except in one patient with LV aneurysm and LBBB electrical pattern during VT. Origin of VT on phase mapping was located in the right ventricle (n = 2) or in left ventricle (n = 4), at the border of wall motion abnormalities each time they existed (5/6). In Group II, the phase advance correlated with the location of the accessory pathway determined by ECG and endocardial mapping (n = 6) and per-operative epicardial mapping (n = 1). Discrimination between anterior and posterior localization of paraseptal pathways and location of intermittent preexcitation was not possible. We conclude that Fourier phase mapping is an accurate method for locating the origin of VT and determining its etiology. It can help locate the site of ventricular preexcitation in patients with only one accessory pathway; its accuracy in locating multiple accessory pathways remains unknown.« less

  17. CoCl2 , a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway.

    PubMed

    Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing

    2018-06-16

    Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.

  18. Drinking to cope mediates the relationship between depression and alcohol risk: Different pathways for college and non-college young adults.

    PubMed

    Kenney, Shannon R; Anderson, Bradley J; Stein, Michael D

    2018-05-01

    It is well-established that drinking to cope with negative affective states mediates the relationship between depressed mood and alcohol risk outcomes among college students. Whether non-college emerging adults exhibit a similar pathway remains unknown. In the current study, we compared the mediating role of coping motives in the relationship between depressive symptoms and drinking risk outcomes (heavy episodic drinking and alcohol problems) in college and non-college emerging adult subgroups. Participants were three hundred forty-one community-recruited 18-25year olds reporting past month alcohol use. We used a structural equation modeling (SEM) for our primary mediation analysis and bias-corrected bootstrap resampling for testing the statistical significance of mediation. Participants averaged 20.8 (±1.97) years of age, 49% were female, 67.7% were White, 34.6% were college students, and 65.4% were non-college emerging adults. College and non-college emerging adults reported similar levels of drinking, alcohol problems, and drinking to cope with negative affect, and drinking to cope was associated with alcohol-related problems in both samples. However, while drinking to cope mediated the relationship between depressed mood and alcohol problems among students, it did not mediate the pathway among non-college emerging adults. These findings caution against extending college-based findings to non-college populations and underscore the need to better understand the role of coping motives and other intervening factors in pathways linking depressed mood and alcohol-related risk in non-college emerging adults. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia

    PubMed Central

    Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato

    2015-01-01

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104

  20. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia.

    PubMed

    Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato

    2015-08-04

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.

  1. The effect of surgical and psychological stress on learning and memory function in aged C57BL/6 mice.

    PubMed

    Zhang, C; Li, C; Xu, Z; Zhao, S; Li, P; Cao, J; Mi, W

    2016-04-21

    Postoperative cognitive dysfunction (POCD) is an important complication following major surgery and general anesthesia in older patients. However, the etiology of POCD remains largely to be determined. It is unknown how surgical stress and psychological stress affect the postoperative learning and memory function in geriatric patients. We therefore established a pre-clinical model in aged C57BL/6 mice and aimed to investigate the effects of surgical stress and psychological stress on learning and memory function and the possible roles of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway. The surgical stress was induced by abdominal surgery under local anesthesia, and the psychological stress was induced by a communication box. Cognitive functions and markers of the AKT/mTOR pathway were assessed at 1, 3 and 7 days following the stress. The impairments of learning and memory function existed for up to 7 days following surgical stress and surgical stress plus psychological stress, whereas the psychological stress did not affect the cognitive function alone or combined with surgical stress. Analysis of brain tissue revealed a significant involvement of the AKT/mTOR pathway in the impairment of cognition. These data suggested that surgical stress could induce cognitive impairment in aged mice and perioperative psychological stress is not a constitutive factor of POCD. The AKT/mTOR pathway is likely involved as one of the underlying mechanisms of the development of POCD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration.

    PubMed

    Décaillot, Fabien M; Kazmi, Manija A; Lin, Ying; Ray-Saha, Sarmistha; Sakmar, Thomas P; Sachdev, Pallavi

    2011-09-16

    G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of G(i)-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7.

  3. CXCR7/CXCR4 Heterodimer Constitutively Recruits β-Arrestin to Enhance Cell Migration*

    PubMed Central

    Décaillot, Fabien M.; Kazmi, Manija A.; Lin, Ying; Ray-Saha, Sarmistha; Sakmar, Thomas P.; Sachdev, Pallavi

    2011-01-01

    G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of Gi-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7. PMID:21730065

  4. Amyloid-β Peptide Exacerbates the Memory Deficit Caused by Amyloid Precursor Protein Loss-of-Function in Drosophila

    PubMed Central

    Bourdet, Isabelle; Lampin-Saint-Amaux, Aurélie; Preat, Thomas; Goguel, Valérie

    2015-01-01

    The amyloid precursor protein (APP) plays a central role in Alzheimer’s disease (AD). APP can undergo two exclusive proteolytic pathways: cleavage by the α-secretase initiates the non-amyloidogenic pathway while cleavage by the β-secretase initiates the amyloidogenic pathway that leads, after a second cleavage by the γ-secretase, to amyloid-β (Aβ) peptides that can form toxic extracellular deposits, a hallmark of AD. The initial events leading to AD are still unknown. Importantly, aside from Aβ toxicity whose molecular mechanisms remain elusive, several studies have shown that APP plays a positive role in memory, raising the possibility that APP loss-of-function may participate to AD. We previously showed that APPL, the Drosophila APP ortholog, is required for associative memory in young flies. In the present report, we provide the first analysis of the amyloidogenic pathway’s influence on memory in the adult. We show that transient overexpression of the β-secretase in the mushroom bodies, the center for olfactory memory, did not alter memory. In sharp contrast, β-secretase overexpression affected memory when associated with APPL partial loss-of-function. Interestingly, similar results were observed with Drosophila Aβ peptide. Because Aβ overexpression impaired memory only when combined to APPL partial loss-of-function, the data suggest that Aβ affects memory through the APPL pathway. Thus, memory is altered by two connected mechanisms—APPL loss-of-function and amyloid peptide toxicity—revealing in Drosophila a functional interaction between APPL and amyloid peptide. PMID:26274614

  5. APPL1 Mediates Adiponectin-Induced LKB1 Cytosolic Localization Through the PP2A-PKCζ Signaling Pathway

    PubMed Central

    Deepa, Sathyaseelan S.; Zhou, Lijun; Ryu, Jiyoon; Wang, Changhua; Mao, Xuming; Li, Cai; Zhang, Ning; Musi, Nicolas; DeFronzo, Ralph A.; Liu, Feng

    2011-01-01

    We recently found that the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL)1 is essential for mediating adiponectin signal to induce liver kinase B (LKB)1 cytosloic translocation, an essential step for activation of AMP-activated protein kinase (AMPK) in cells. However, the underlying molecular mechanisms remain unknown. Here, we demonstrate that treating C2C12 myotubes with adiponectin promoted APPL1 interaction with protein phosphatase 2A (PP2A) and protein kinase Cζ (PKCζ), leading to the activation of PP2A and subsequent dephosphorylation and inactivation of PKCζ. The adiponectin-induced inactivation of PKCζ results in dephosphorylation of LKB1 at Ser307 and its subsequent translocation to the cytosol, where it stimulates AMPK activity. Interestingly, we found that metformin also induces LKB1 cytosolic translocation, but the stimulation is independent of APPL1 and the PP2A-PKCζ pathway. Together, our study uncovers a new mechanism underlying adiponectin-stimulated AMPK activation in muscle cells and shed light on potential targets for prevention and treatment of insulin resistance and its associated diseases. PMID:21835890

  6. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway.

    PubMed

    Wu, Jinsheng; Han, Jingli; Hou, Benxin; Deng, Chengwei; Wu, Huanliang; Shen, Liangfang

    2016-05-01

    Sulforaphane is recognized as a safe antitumor agent derived from various cruciferous vegetables, including broccoli. It has been demonstrated that sulforaphase is a potent antitumor agent in diverse cancers. However, its effect on hepatocellular carcinoma remains largely unknown. Here, we show that sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cell via the reactive oxygen species-dependent pathway. We found sulforaphane inhibited hepatocellular carcinoma cell proliferation in a dose- and time-dependent manner. Sulforaphane induced G0/G1 phase cell cycle arrest and promoted cell apoptosis. A set of experiments showed that sulforaphase inhibited hepatocellular carcinoma cell migration and invasion, inhibited the formation of fibroblast like mesenchymal cells and the expression of Vimentin, but increased the expression of E-cadherin, suggesting sulforaphane suppresses epithelial-mesenchymal transition (EMT) process. Cotreatment with N-acetyl-L-cysteine inhibited sulforaphane-inhibited invasion and upregulation of E-cadherin and almost completely abolished the sulforaphane-induced expression of Vimentin. The effect of sulforaphane on the growth of hepatocellular carcinoma cells was confirmed by a xenograft tumor growth model. All our finding indicated that sulforaphane is a promising and safe strategy for treating hepatocellular carcinoma.

  7. AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in Arabidopsis[W

    PubMed Central

    Paque, Sébastien; Mouille, Grégory; Grandont, Laurie; Alabadí, David; Gaertner, Cyril; Goyallon, Arnaud; Muller, Philippe; Primard-Brisset, Catherine; Sormani, Rodnay; Blázquez, Miguel A.; Perrot-Rechenmann, Catherine

    2014-01-01

    Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall–related genes, especially cell wall remodeling genes, mainly via an SCFTIR/AFB-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion. PMID:24424095

  8. AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chenlin; Song, Guangyuan; Xiang, Jue

    AURKA (aurora kinase A) has been confirmed as an oncogene in cancer development; however, its role and underlying mechanisms in the metastasis of hepatocellular carcinoma (HCC) remain unknown. In this study, We found that AURKA was up-regulated in HCC tissues and correlated with pathological stage and distant metastasis. Further found that AURKA was involved in the cancer metastases after radiation in HCC. While overexpression of AURKA induced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) behaviors though PI3K/AKT pathway, silencing AURKA suppressed radiation-enhanced cell invasiveness of HCC. Taken together, our results suggested that AURKA contributed in metastasis of irradiated residulmore » HCC though facilitating EMT and CSC properties, suggesting the potential clinical application of AURKA inhibitors in radiotherapy for patients with HCC. - Highlights: • First reported overexpression of AURKA in HCC and correlation with poor OS. • AURKA was involved in the cancer metastases after radiation in HCC. • Further found AURKA promoted EMT and CSC behaviors though PI3K/AKT pathway. • Silencing AURKA suppressed radiation-enhanced cell invasiveness of HCC. • AURKA may be potential therapeutic target of HCC.« less

  9. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    PubMed

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  10. Victimization Mediates the Longitudinal Association Between Depressive Symptoms and Violent Behaviors in Adolescence.

    PubMed

    Yu, Rongqin; Branje, Susan; Meeus, Wim; Koot, Hans M; van Lier, Pol; Fazel, Seena

    2018-05-01

    Despite evidence of a positive link between depressive symptoms and violent behaviors, the pathways underlying this longitudinal association remain unknown. Depressive symptoms might drive and reinforce victimization which in turn could increase risk of individuals becoming violent towards others. Thus, we tested whether victimization mediated the link between depressive symptoms and violent behaviors using a 6-year longitudinal study of a community sample of adolescents. The sample included 682 Dutch adolescents (54% boys) from an ongoing longitudinal study RADAR (Research on Adolescent Development and Relationships). From ages 13 to 18 years, depressive symptoms, victimization experiences, and violent behaviors were annually assessed. We conducted longitudinal mediation analyses to test pathways to violence in adolescents with depressive symptoms. Longitudinal analyses revealed that victimization mediated the association between depressive symptoms and violent behaviors from early to late adolescence. As part of this, we found that adolescents' depressive symptoms predicted victimization, and this victimization increased risk of subsequent violent behaviors. In conclusion, links between depressive symptoms and violent behaviors are potentially important to understand adolescent development. Decreasing the occurence of victimization is likely to be an important target for the prevention of violent behaviors in adolescents with depressive symptoms.

  11. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis.

    PubMed

    Yang, Jun; An, Dong; Zhang, Peng

    2011-03-01

    Mechanisms related to the development of cassava storage roots and starch accumulation remain largely unknown. To evaluate genome-wide expression patterns during tuberization, a 60 mer oligonucleotide microarray representing 20 840 cassava genes was designed to identify differentially expressed transcripts in fibrous roots, developing storage roots and mature storage roots. Using a random variance model and the traditional twofold change method for statistical analysis, 912 and 3 386 upregulated and downregulated genes related to the three developmental phases were identified. Among 25 significantly changed pathways identified, glycolysis/gluconeogenesis was the most evident one. Rate-limiting enzymes were identified from each individual pathway, for example, enolase, L-lactate dehydrogenase and aldehyde dehydrogenase for glycolysis/gluconeogenesis, and ADP-glucose pyrophosphorylase, starch branching enzyme and glucan phosphorylase for sucrose and starch metabolism. This study revealed that dynamic changes in at least 16% of the total transcripts, including transcription factors, oxidoreductases/transferases/hydrolases, hormone-related genes, and effectors of homeostasis. The reliability of these differentially expressed genes was verified by quantitative real-time reverse transcription-polymerase chain reaction. These studies should facilitate our understanding of the storage root formation and cassava improvement. © 2011 Institute of Botany, Chinese Academy of Sciences.

  12. Glycogen Synthase Kinase 3 Inhibition Promotes Lysosomal Biogenesis and Autophagic Degradation of the Amyloid-β Precursor Protein

    PubMed Central

    Parr, Callum; Carzaniga, Raffaela; Gentleman, Steve M.; Van Leuven, Fred; Walter, Jochen

    2012-01-01

    Alzheimer's disease (AD) has been associated with altered activity of glycogen synthase kinase 3 (GSK3) isozymes, which are proposed to contribute to both neurofibrillary tangles and amyloid plaque formation. However, the molecular basis by which GSK3 affects the formation of Aβ remains unknown. Our aim was to identify the underlying mechanisms of GSK3-dependent effects on the processing of amyloid precursor protein (APP). For this purpose, N2a cells stably expressing APP carrying the Swedish mutation were treated with specific GSK3 inhibitors or transfected with GSK3α/β short interfering RNA. We show that inhibition of GSK3 leads to decreased expression of APP by enhancing its degradation via an increase in the number of lysosomes. This induction of the lysosomal/autophagy pathway was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Our data indicate that GSK3 inhibition reduces Aβ through an increase of the degradation of APP and its carboxy-terminal fragment (CTF) by activation of the lysosomal/autophagy pathway. These results suggest that an increased propensity toward autophagic/lysosomal alterations in AD patients could have consequences for neuronal function. PMID:22927642

  13. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Lu-Ying; Deng, Jun; Xiang, Xiao-Jun

    2015-02-06

    Highlights: • miR-320 plays a significant role in chemoresistance. • This role might be attribute to targeting FOXM1. • The Wnt/β-catenin pathway also involves in this chemotherapy sensitivity. - Abstract: miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. Inmore » addition, miR-320 could inactive the activity of Wnt/β-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320–FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer.« less

  14. Trophic groups and modules: two levels of group detection in food webs

    PubMed Central

    Gauzens, Benoit; Thébault, Elisa; Lacroix, Gérard; Legendre, Stéphane

    2015-01-01

    Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom–top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss. PMID:25878127

  15. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway.

    PubMed

    Armstrong, Eric H; Goswami, Devrishi; Griffin, Patrick R; Noy, Noa; Ortlund, Eric A

    2014-05-23

    Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain "activating" fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    PubMed

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  17. Quality Tuberculosis Care in Indonesia: Using Patient Pathway Analysis to Optimize Public–Private Collaboration

    PubMed Central

    Surya, Asik; Setyaningsih, Budiarti; Suryani Nasution, Helmi; Gita Parwati, Cicilia; Yuzwar, Yullita E; Osberg, Mike; Hanson, Christy L; Hymoff, Aaron; Mingkwan, Pia; Makayova, Julia; Gebhard, Agnes; Waworuntu, Wiendra

    2017-01-01

    Abstract Background Tuberculosis (TB) is the fourth leading cause of death in Indonesia. In 2015, the World Health Organization estimated that nearly two-thirds of the TB patients in Indonesia had not been notified, and the status of their care remained unknown. As such, Indonesia is home to nearly 20% of the world’s “missing” TB patients. Understanding where patients go for care may enable strategic planning of services to better reach them. Methods A patient pathway analysis (PPA) was conducted to assess the alignment between patient care seeking and the availability of TB diagnostic and treatment services at the national and subnational level in Indonesia. Results The PPA results revealed that only 20% of patients encountered diagnostic capacity at the location where they first sought care. Most initial care seeking occurred in the private sector and case notification lagged behind diagnostic confirmation in the public sector. Conclusions The PPA results emphasize the role that the private sector plays in TB patient care seeking and suggested a need for differentiated approaches, by province, to respond to variances in care-seeking patterns and the capacities of public and private providers. PMID:29117347

  18. Influencing Mechanism of Ocean Acidification on Byssus Performance in the Pearl Oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Liu, Chuang; Zhan, Aibin; Xie, Liping; Zhang, Rongqing

    2017-07-05

    The byssus is an important adhesive structure by which bivalves robustly adhere to underwater substrates. It is susceptible to carbon dioxide-driven ocean acidification (OA). Previous investigations have documented significant adverse effects of OA on the performance of byssal threads, but the mechanisms remain largely unknown. In this study, multiple approaches were employed to reveal the underlying mechanisms for the effects of OA on byssus production and mechanical properties in the pearl oyster Pinctada fucata. The results showed that OA altered the abundance and secondary structure of byssal proteins and affected the contents of metal ions in distal threads, which together reduced the byssus diameter and amplified byssus nanocavity, causing reductions in mechanical properties (strength and extensibility). Expression analysis of key foot protein genes further confirmed changes in byssal protein abundance. Moreover, comparative transcriptome analysis revealed enrichment of ion transportation- and apoptosis-related categories, up-regulation of apoptosis-related pathways, and down-regulation of the "extracellular matrix-receptor interaction" pathway, which may influence foot locomotion physiology, leading to a decrease in byssus production. This study provides mechanistic insight into the effects of OA on pearl oyster byssus, which should broaden our overall understanding of the impacts of OA on marine ecosystem.

  19. SoyNet: a database of co-functional networks for soybean Glycine max.

    PubMed

    Kim, Eiru; Hwang, Sohyun; Lee, Insuk

    2017-01-04

    Soybean (Glycine max) is a legume crop with substantial economic value, providing a source of oil and protein for humans and livestock. More than 50% of edible oils consumed globally are derived from this crop. Soybean plants are also important for soil fertility, as they fix atmospheric nitrogen by symbiosis with microorganisms. The latest soybean genome annotation (version 2.0) lists 56 044 coding genes, yet their functional contributions to crop traits remain mostly unknown. Co-functional networks have proven useful for identifying genes that are involved in a particular pathway or phenotype with various network algorithms. Here, we present SoyNet (available at www.inetbio.org/soynet), a database of co-functional networks for G. max and a companion web server for network-based functional predictions. SoyNet maps 1 940 284 co-functional links between 40 812 soybean genes (72.8% of the coding genome), which were inferred from 21 distinct types of genomics data including 734 microarrays and 290 RNA-seq samples from soybean. SoyNet provides a new route to functional investigation of the soybean genome, elucidating genes and pathways of agricultural importance. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans

    PubMed Central

    Lin, Yen-Hung; Chen, Yi-Chun; Kao, Tzu-Yu; Lin, Yi-Chun; Hsu, Tzu-En; Wu, Yi-Chun; Ja, William W; Brummel, Theodore J; Kapahi, Pankaj; Yuh, Chiou-Hwa; Yu, Lin-Kwei; Lin, Zhi-Han; You, Ru-Jing; Jhong, Yi-Ting; Wang, Horng-Dar

    2014-01-01

    Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging. PMID:24889782

  1. Proteasome Failure Promotes Positioning of Lysosomes around the Aggresome via Local Block of Microtubule-Dependent Transport

    PubMed Central

    Zaarur, Nava; Meriin, Anatoli B.; Bejarano, Eloy; Xu, Xiaobin; Gabai, Vladimir L.; Cuervo, Ana Maria

    2014-01-01

    Ubiquitinated proteins aggregate upon proteasome failure, and the aggregates are transported to the aggresome. In aggresomes, protein aggregates are actively degraded by the autophagy-lysosome pathway, but why targeting the aggresome promotes degradation of aggregated species is currently unknown. Here we report that the important factor in this process is clustering of lysosomes around the aggresome via a novel mechanism. Proteasome inhibition causes formation of a zone around the centrosome where microtubular transport of lysosomes is suppressed, resulting in their entrapment and accumulation. Microtubule-dependent transport of other organelles, including autophagosomes, mitochondria, and endosomes, is also blocked in this entrapment zone (E-zone), while movement of organelles at the cell periphery remains unaffected. Following the whole-genome small interfering RNA (siRNA) screen for proteins involved in aggresome formation, we defined the pathway that regulates formation of the E-zone, including the Stk11 protein kinase, the Usp9x deubiquitinating enzyme, and their substrate kinase MARK4. Therefore, upon proteasome failure, targeting of aggregated proteins of the aggresome is coordinated with lysosome positioning around this body to facilitate degradation of the abnormal species. PMID:24469403

  2. Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker.

    PubMed

    Anwar, Tarique; Sen, Bijoya; Aggarwal, Savera; Nath, Rhisita; Pathak, Niteen; Katoch, Ajay; Aiyaz, Mohamed; Trehanpati, Nirupma; Khosla, Sanjeev; Ramakrishna, Gayatri

    2018-05-01

    In multicellular organisms majority of the cells remain in a non-dividing states of either quiescence (reversible) or senescence (irreversible). In the present study, gene expression signatures unique to quiescence and senescence were identified using microarray in osteosarcoma cell line, U2OS. It was noted that certain genes and pathways like NOD pathway was shared by both the growth arrest conditions. A major highlight of the present study was increased expression of number of chemokines and cytokines in both quiescence and senescence. While senescence-associated secretory phenotype (SASP) is well known, the quiescence-associated secretory phenotype (QASP) is relatively unknown and appeared novel in this study. ARID5A, a subunit of SWI/SNF complex was identified as a quiescence associated gene. The endogenous expression of ARID5A increased during serum starved condition of quiescence. Overexpression of ARID5A resulted in more number of cells in G0/G1 phase of cell cycle. Further ARID5A overexpressing cells when subjected to serum starvation showed a pronounced secretory phenotype. Overall, the present work has identified gene expression signatures which can distinguish quiescence from senescence. © 2017 Wiley Periodicals, Inc.

  3. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome

    PubMed Central

    Ou, Xiang; Liu, Meilian; Luo, Hairong; Dong, Lily Q.; Liu, Feng

    2014-01-01

    Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function. PMID:24740400

  4. Activation of mitochondria-mediated apoptotic pathway in tri-ortho-cresyl phosphate-induced delayed neuropathy.

    PubMed

    Zou, Chaoshuang; Kou, Ruirui; Gao, Yuan; Xie, Keqin; Song, Fuyong

    2013-06-01

    Previous studies suggest that abnormal neurons death has been implicated in organophosphate-induced delayed neuropathy (OPIDN). However, the precise mechanism of neuronal death in OPIDN remains largely unknown. In this study, adult hens were treated with a dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP) by gavage, and then sacrificed on the time-points of 1, 5, 10, and 21 days after dosing TOCP, respectively. The apoptotic change of spinal cord neurons induced by TOCP was examined, and the role of mitochondria-mediated apoptosis of neurons during OPIDN was investigated. TUNEL assays showed that apoptotic neurons in hen spinal cords began to appear on day 5 following TOCP exposure. Immunohistochemistry and western blot analysis revealed a translocation of cytochrome C from mitochondria to cytoplasm after dosing TOCP. Moreover, the level of Bcl-2, Bcl-xl, Pro-caspase3 and Pro-caspase9 in hen spinal cord was significantly decreased, whereas that of Bax and cleaved-PARP was significantly elevated. Taken together, these findings indicate that the administration of TOCP can induce neuron apoptosis in hen spinal cords, which might be mediated by the activation of mitochondrial apoptotic pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Quality Tuberculosis Care in Indonesia: Using Patient Pathway Analysis to Optimize Public-Private Collaboration.

    PubMed

    Surya, Asik; Setyaningsih, Budiarti; Suryani Nasution, Helmi; Gita Parwati, Cicilia; Yuzwar, Yullita E; Osberg, Mike; Hanson, Christy L; Hymoff, Aaron; Mingkwan, Pia; Makayova, Julia; Gebhard, Agnes; Waworuntu, Wiendra

    2017-11-06

    Tuberculosis (TB) is the fourth leading cause of death in Indonesia. In 2015, the World Health Organization estimated that nearly two-thirds of the TB patients in Indonesia had not been notified, and the status of their care remained unknown. As such, Indonesia is home to nearly 20% of the world's "missing" TB patients. Understanding where patients go for care may enable strategic planning of services to better reach them. A patient pathway analysis (PPA) was conducted to assess the alignment between patient care seeking and the availability of TB diagnostic and treatment services at the national and subnational level in Indonesia. The PPA results revealed that only 20% of patients encountered diagnostic capacity at the location where they first sought care. Most initial care seeking occurred in the private sector and case notification lagged behind diagnostic confirmation in the public sector. The PPA results emphasize the role that the private sector plays in TB patient care seeking and suggested a need for differentiated approaches, by province, to respond to variances in care-seeking patterns and the capacities of public and private providers. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  6. TAK1 regulates skeletal muscle mass and mitochondrial function

    PubMed Central

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  7. An effector Peptide family required for Drosophila toll-mediated immunity.

    PubMed

    Clemmons, Alexa W; Lindsay, Scott A; Wasserman, Steven A

    2015-04-01

    In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire.

  8. How nitrogen sources influence Mortierella alpina aging: From the lipid droplet proteome to the whole-cell proteome and metabolome.

    PubMed

    Yu, Yadong; Zhang, Lei; Li, Tao; Wu, Na; Jiang, Ling; Ji, Xiaojun; Huang, He

    2018-05-15

    Arachidonic acid (ARA) is a valuable polyunsaturated fatty acid produced by Mortierella alpina. Although some strategies such as nitrogen supplementation have shown the potential to affect the aging of M. alpina in ways which enable it to produce more ARA, the underlying mechanism remains elusive. Herein, we conducted a systematical analysis of the lipid droplet proteome, as well as the whole-cell proteome and metabolome, in order to elucidate how and why two different nitrogen sources (KNO 3 and urea) affect the aging of M. alpina and the corresponding ARA concentration. We found that KNO 3 promoted the ARA concentration, while urea accelerated lipid consumption and stimulated the decomposition of mycelia. Although both KNO 3 and urea activated carbohydrate metabolic pathways, KNO 3 exerted a stronger promoting effect on the pentose phosphate pathway and induced the lipid droplets to participate in the citrate-pyruvate cycle. The activities of malic enzyme and isocitrate dehydrogenase were also promoted more by KNO 3 . These pathways provided additional substrates and reducing power for ARA synthesis and ROS elimination. Accordingly, since urea showed a weaker promotion of the related pathways, it caused a depression of the antioxidant system and a consequent increase of ROS. These findings facilitate the design of nitrogen supplementation strategies to achieve higher ARA concentrations, and provide guidance for deciphering the mechanisms of similar aging phenomena in other oleaginous microorganisms. Polyunsaturated fatty acids such as arachidonic acid (ARA) are valuable nutrients, which play important roles in preventing numerous diseases and facilitating development. Although it has been found for years that ARA production will be increased in the aging process of Mortierella alpina (M. alpina) and nitrogen sources are involved in this process, the underlying mechanism for this phenomenon remains unknown. In this work, we used the subcellular proteomics, whole-cell proteomics and metabolomics methods to explore the mechanisms by which two different nitrogen (KNO 3 and urea) affected the aging process of M. alpina. Finally, we gave some new insights for the mechanisms mentioned above. This finding will fuel the technology developments for the ARA production using microbes. Copyright © 2018. Published by Elsevier B.V.

  9. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    PubMed Central

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway. PMID:24785692

  10. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis.

    PubMed

    Ling, JunJun; Yang, Shengyou; Huang, Yi; Wei, Dongfeng; Cheng, Weidong

    2018-06-01

    Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be critical for Mn neurotoxicity prevention and Mn-induced AD treatment.

  11. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways.

    PubMed

    Suarez, Andrea N; Hsu, Ted M; Liu, Clarissa M; Noble, Emily E; Cortella, Alyssa M; Nakamoto, Emily M; Hahn, Joel D; de Lartigue, Guillaume; Kanoski, Scott E

    2018-06-05

    The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.

  12. The anti-spasticity drug baclofen alleviates collagen-induced arthritis and regulates dendritic cells.

    PubMed

    Huang, Shichao; Mao, Jianxin; Wei, Bin; Pei, Gang

    2015-07-01

    Baclofen is used clinically as a drug that treats spasticity, which is a syndrome characterized by excessive contraction of the muscles and hyperflexia in the central nervous system (CNS), by activating GABA(B) receptors (GABA(B)Rs). Baclofen was recently reported to desensitize chemokine receptors and to suppress inflammation through the activation of GABA(B)Rs. GABA(B)Rs are expressed in various immune cells, but the functions of these receptors in autoimmune diseases remain largely unknown. In this study, we investigated the effects of baclofen in murine collagen-induced arthritis (CIA). Oral administration of baclofen alleviated the clinical development of CIA, with a reduced number of IL-17-producing T helper 17 (T(H)17) cells. In addition, baclofen treatment suppressed dendritic cell (DC)-primed T(H)17 cell differentiation by reducing the production of IL-6 by DCs in vitro. Furthermore, the pharmacological and genetic blockade of GABA(B)Rs in DCs weakened the effects of baclofen, indicating that GABA(B)Rs are the molecular targets of baclofen on DCs. Thus, our findings revealed a potential role for baclofen in the treatment of CIA, as well as a previously unknown signaling pathway that regulates DC function. © 2014 Wiley Periodicals, Inc.

  13. Confronting the catalytic dark matter encoded by sequenced genomes

    PubMed Central

    Ellens, Kenneth W.; Christian, Nils; Singh, Charandeep; Satagopam, Venkata P.

    2017-01-01

    Abstract The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research. PMID:29059321

  14. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zijian; Huang, Shanzhou; Wang, Huanyu

    Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT andmore » Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.« less

  15. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues.more » Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.« less

  16. A longitudinal twin and sibling study of the hopelessness theory of depression in adolescence and young adulthood.

    PubMed

    Waszczuk, M A; Coulson, A E; Gregory, A M; Eley, T C

    2016-07-01

    Maladaptive cognitive biases such as negative attributional style and hopelessness have been implicated in the development and maintenance of depression. According to the hopelessness theory of depression, hopelessness mediates the association between attributional style and depression. The aetiological processes underpinning this influential theory remain unknown. The current study investigated genetic and environmental influences on hopelessness and its concurrent and longitudinal associations with attributional style and depression across adolescence and emerging adulthood. Furthermore, given high co-morbidity between depression and anxiety, the study investigated whether these maladaptive cognitions constitute transdiagnostic cognitive content common to both internalizing symptoms. A total of 2619 twins/siblings reported attributional style (mean age 15 and 17 years), hopelessness (mean age 17 years), and depression and anxiety symptoms (mean age 17 and 20 years). Partial correlations revealed that attributional style and hopelessness were uniquely associated with depression but not anxiety symptoms. Hopelessness partially mediated the relationship between attributional style and depression. Hopelessness was moderately heritable (A = 0.37, 95% confidence interval 0.28-0.47), with remaining variance accounted for by non-shared environmental influences. Independent pathway models indicated that a set of common genetic influences largely accounted for the association between attributional style, hopelessness and depression symptoms, both concurrently and across development. The results provide novel evidence that associations between attributional style, hopelessness and depression symptoms are largely due to shared genetic liability, suggesting developmentally stable biological pathways underpinning the hopelessness theory of depression. Both attributional style and hopelessness constituted unique cognitive content in depression. The results inform molecular genetics research and cognitive treatment approaches.

  17. Control of Spine Maturation and Pruning through ProBDNF Synthesized and Released in Dendrites

    PubMed Central

    Orefice, Lauren L.; Shih, Chien-Cheng; Xu, Haifei; Waterhouse, Emily G.; Xu, Baoji

    2015-01-01

    Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75NTR receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways. PMID:26705735

  18. The endothelin pathway: a protective or detrimental target of bardoxolone methyl on cardiac function in patients with advanced chronic kidney disease?

    PubMed

    Camer, Danielle; Huang, Xu-Feng

    2014-01-01

    Bardoxolone methyl has been reported to cause detrimental cardiovascular events in the terminated BEACON Phase III human clinical trial via modulation of the renal endothelin pathway. However, the effects of bardoxolone methyl administration on the endothelin pathway in the heart are unknown. Our purpose in this perspective is to highlight the distinctive opposing roles of the renal and heart endothelin pathway in cardiac function. Furthermore, we address the need for further investigation in order to determine if bardoxolone methyl has a protective role in cardiac function through the suppression of the endothelin pathway in the heart. © 2014 S. Karger AG, Basel.

  19. Toll-like receptors 3, 7, and 9 in Juvenile nasopharyngeal angiofibroma.

    PubMed

    Renkonen, Suvi; Cardell, Lars-Olaf; Mattila, Petri; Lundberg, Marie; Haglund, Caj; Hagström, Jaana; Mäkitie, Antti A

    2015-05-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a rare, benign tumor affecting adolescent males. The etiology of JNA as well as the causes determining the variable growth patterns of individual tumors remains unknown. Toll-like receptors (TLRs) are part of the innate immune response to microbes; by recognition of distinct features, they link to induction of pro-inflammatory signaling pathways. We immunostained TLR 3, 7, and 9 in 27 JNA specimens of patients treated at the Helsinki University Central Hospital, Helsinki, Finland, during the years 1970-2009. TLR 3, 7, and 9 expressions were found in stromal and endothelial cells of JNA, and their expression levels varied from negative to very strong positive. TLR 3 expression was found to have a significant correlation with the clinical stage of JNA. The present results propose a putative role of TLRs in the growth process of JNA. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  20. Invisible partners: the Royal Australian Army Nursing Corps pathway to the Malayan Emergency.

    PubMed

    McLeod, Margaret; Francis, Karen

    2007-12-01

    This paper highlights the role of women from the Royal Australian Army Nursing Corps who served in the Malayan Emergency. The British administrators of Malaya declared an Emergency in 1948 in response to threats posed by Chinese Communist Terrorists. Australia was slow to support Britain, but in 1955 Australian ground troops, accompanied by six Army nurses were deployed to Malaya. The nurses worked in British Military Hospitals, continuing the traditions of their antecedents; yet their contributions remain hidden from view. The exact number of Australian nurses who served in the Emergency is unknown, because of the poor record-keeping of the Southeast Asian conflicts. However, it is estimated that 33 Australian Army nurses served in Malaya from 1955, with some continuing their service into the early 1960s. The experiences of four of these nurses are revealed in this paper: they are no longer invisible partners.

  1. Emotion improves and impairs early vision.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2009-06-01

    Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.

  2. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

    PubMed Central

    Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond

    2016-01-01

    Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119

  3. Networks of global bird invasion altered by regional trade ban

    PubMed Central

    Reino, Luís; Figueira, Rui; Beja, Pedro; Araújo, Miguel B.; Capinha, César; Strubbe, Diederik

    2017-01-01

    Wildlife trade is a major pathway for introduction of invasive species worldwide. However, how exactly wildlife trade influences invasion risk, beyond the transportation of individuals to novel areas, remains unknown. We analyze the global trade network of wild-caught birds from 1995 to 2011 as reported by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). We found that before the European Union ban on imports of wild-caught birds, declared in 2005, invasion risk was closely associated with numbers of imported birds, diversity of import sources, and degree of network centrality of importer countries. After the ban, fluxes of global bird trade declined sharply. However, new trade routes emerged, primarily toward the Nearctic, Afrotropical, and Indo-Malay regions. Although regional bans can curtail invasion risk globally, to be fully effective and prevent rerouting of trade flows, bans should be global. PMID:29181443

  4. Networks of global bird invasion altered by regional trade ban.

    PubMed

    Reino, Luís; Figueira, Rui; Beja, Pedro; Araújo, Miguel B; Capinha, César; Strubbe, Diederik

    2017-11-01

    Wildlife trade is a major pathway for introduction of invasive species worldwide. However, how exactly wildlife trade influences invasion risk, beyond the transportation of individuals to novel areas, remains unknown. We analyze the global trade network of wild-caught birds from 1995 to 2011 as reported by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). We found that before the European Union ban on imports of wild-caught birds, declared in 2005, invasion risk was closely associated with numbers of imported birds, diversity of import sources, and degree of network centrality of importer countries. After the ban, fluxes of global bird trade declined sharply. However, new trade routes emerged, primarily toward the Nearctic, Afrotropical, and Indo-Malay regions. Although regional bans can curtail invasion risk globally, to be fully effective and prevent rerouting of trade flows, bans should be global.

  5. ZIP4 silencing improves bone loss in pancreatic cancer

    PubMed Central

    Yang, Jingxuan; Ding, Hao; LeBrun, Drake; Ding, Kai; Houchen, Courtney W.; Postier, Russell G.; Ambrose, Catherine G.; Li, Zhaoshen; Bi, Xiaohong; Li, Min

    2015-01-01

    Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders. PMID:26305676

  6. Pubertal testosterone influences threat-related amygdala-orbitofrontal cortex coupling.

    PubMed

    Spielberg, Jeffrey M; Forbes, Erika E; Ladouceur, Cecile D; Worthman, Carol M; Olino, Thomas M; Ryan, Neal D; Dahl, Ronald E

    2015-03-01

    Growing evidence indicates that normative pubertal maturation is associated with increased threat reactivity, and this developmental shift has been implicated in the increased rates of adolescent affective disorders. However, the neural mechanisms involved in this pubertal increase in threat reactivity remain unknown. Research in adults indicates that testosterone transiently decreases amygdala-orbitofrontal cortex (OFC) coupling. Consequently, we hypothesized that increased pubertal testosterone disrupts amygdala-OFC coupling, which may contribute to developmental increases in threat reactivity in some adolescents. Hypotheses were tested in a longitudinal study by examining the impact of testosterone on functional connectivity. Findings were consistent with hypotheses and advance our understanding of normative pubertal changes in neural systems instantiating affect/motivation. Finally, potential novel insights into the neurodevelopmental pathways that may contribute to adolescent vulnerability to behavioral and emotional problems are discussed. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. The Drosophila homolog of Down's syndrome critical region 1 gene regulates learning: Implications for mental retardation

    PubMed Central

    Chang, Karen T.; Shi, Yi-Jun; Min, Kyung-Tai

    2003-01-01

    Mental retardation is the most common phenotypic abnormality seen in Down's syndrome (DS) patients, yet the underlying mechanism remains mysterious. DS critical region 1 (DSCR1), located on chromosome 21, is overexpressed in the brain of DS fetus and encodes an inhibitor of calcineurin, but its physiological significance is unknown. To study its functional importance and role in mental retardation in DS, we generated Drosophila mutants of nebula, an ortholog of human DSCR1. Here, we report that both nebula loss-of-function and overexpression mutants exhibit severe learning defects that are attributed by biochemical perturbations rather than maldevelopment of the brain. These results, combined with our data showing that the same biochemical signaling pathway is altered in human DS fetal brain tissue overexpressing DSCR1, suggest that alteration of DSCR1 expression could contribute to mental retardation in DS. PMID:14668437

  8. Phenotypic and evolutionary implications of modulating the ERK-MAPK cascade using the dentition as a model

    NASA Astrophysics Data System (ADS)

    Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent

    2015-06-01

    The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.

  9. Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala

    PubMed Central

    Han, Wenfei; Tellez, Luis A; Rangel, Miguel; Motta, Simone C; Zhang, Xiaobing; Perez, Isaac O; Canteras, Newton S; Shammah-Lagnado, Sarah J; van den Pol, Anthony N; de Araujo, Ivan E

    2017-01-01

    Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules, and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates. PMID:28086095

  10. Computing Prediction and Functional Analysis of Prokaryotic Propionylation.

    PubMed

    Wang, Li-Na; Shi, Shao-Ping; Wen, Ping-Ping; Zhou, Zhi-You; Qiu, Jian-Ding

    2017-11-27

    Identification and systematic analysis of candidates for protein propionylation are crucial steps for understanding its molecular mechanisms and biological functions. Although several proteome-scale methods have been performed to delineate potential propionylated proteins, the majority of lysine-propionylated substrates and their role in pathological physiology still remain largely unknown. By gathering various databases and literatures, experimental prokaryotic propionylation data were collated to be trained in a support vector machine with various features via a three-step feature selection method. A novel online tool for seeking potential lysine-propionylated sites (PropSeek) ( http://bioinfo.ncu.edu.cn/PropSeek.aspx ) was built. Independent test results of leave-one-out and n-fold cross-validation were similar to each other, showing that PropSeek is a stable and robust predictor with satisfying performance. Meanwhile, analyses of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathways, and protein-protein interactions implied a potential role of prokaryotic propionylation in protein synthesis and metabolism.

  11. PGK1 Drives Hepatocellular Carcinoma Metastasis by Enhancing Metabolic Process.

    PubMed

    Xie, Huijun; Tong, Guihui; Zhang, Yupei; Liang, Shu; Tang, Kairui; Yang, Qinhe

    2017-07-27

    During the proliferation and metastasis, the tumor cells prefer glycolysis (Warburg effect), but its exact mechanism remains largely unknown. In this study, we demonstrated that phosphoglycerate kinase 1 (PGK1) is an important enzyme in the pathway of metabolic glycolysis. We observed a significant overexpression of PGK1 in hepatocellular carcinoma tissues, and a correlation between PGK1 expression and poor survival of hepatocellular carcinoma patients. Also, the depletion of PGK1 dramatically reduced cancer cell proliferation and metastasis, indicating an oncogenic role of PGK1 in liver cancer progression. Further experiments showed that PGK1 played an important role in MYC -induced metabolic reprogramming, which led to an enhanced Warburg effect. Our results revealed a new effect of PGK1, which can provide a new treatment strategy for hepatocellular carcinoma, as PGK1 is used to indicate the prognosis of hepatocellular carcinoma (HCC).

  12. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    PubMed Central

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  13. The tumor suppressor PTEN has a critical role in antiviral innate immunity.

    PubMed

    Li, Shun; Zhu, Mingzhu; Pan, Ruangang; Fang, Ting; Cao, Yuan-Yuan; Chen, Shuliang; Zhao, Xiaolu; Lei, Cao-Qi; Guo, Lin; Chen, Yu; Li, Chun-Mei; Jokitalo, Eija; Yin, Yuxin; Shu, Hong-Bing; Guo, Deyin

    2016-03-01

    The gene encoding PTEN is one of the most frequently mutated tumor suppressor-encoding genes in human cancer. While PTEN's function in tumor suppression is well established, its relationship to anti-microbial immunity remains unknown. Here we found a pivotal role for PTEN in the induction of type I interferon, the hallmark of antiviral innate immunity, that was independent of the pathway of the kinases PI(3)K and Akt. PTEN controlled the import of IRF3, a master transcription factor responsible for IFN-β production, into the nucleus. We further identified a PTEN-controlled negative phosphorylation site at Ser97 of IRF3 and found that release from this negative regulation via the phosphatase activity of PTEN was essential for the activation of IRF3 and its import into the nucleus. Our study identifies crosstalk between PTEN and IRF3 in tumor suppression and innate immunity.

  14. Orexin modulates behavioral fear expression through the locus coeruleus.

    PubMed

    Soya, Shingo; Takahashi, Tohru M; McHugh, Thomas J; Maejima, Takashi; Herlitze, Stefan; Abe, Manabu; Sakimura, Kenji; Sakurai, Takeshi

    2017-11-20

    Emotionally salient information activates orexin neurons in the lateral hypothalamus, leading to increase in sympathetic outflow and vigilance level. How this circuit alters animals' behavior remains unknown. Here we report that noradrenergic neurons in the locus coeruleus (NA LC neurons) projecting to the lateral amygdala (LA) receive synaptic input from orexin neurons. Pharmacogenetic/optogenetic silencing of this circuit as well as acute blockade of the orexin receptor-1 (OX1R) decreases conditioned fear responses. In contrast, optogenetic stimulation of this circuit potentiates freezing behavior against a similar but distinct context or cue. Increase of orexinergic tone by fasting also potentiates freezing behavior and LA activity, which are blocked by pharmacological blockade of OX1R in the LC. These findings demonstrate the circuit involving orexin, NA LC and LA neurons mediates fear-related behavior and suggests inappropriate excitation of this pathway may cause fear generalization sometimes seen in psychiatric disorders, such as PTSD.

  15. Suppression of PTEN transcription by UVA

    PubMed Central

    Zhao, Baozhong; Ming, Mei; He, Yu-Ying

    2012-01-01

    Although UVA has different physical and biological targets than UVB, the contribution of UVA to skin cancer susceptibility and its molecular basis remain largely unknown. Here we show that chronic UVA radiation suppresses PTEN expression at the mRNA level. Subchronic and acute UVA radiation also down-regulated PTEN in normal human epidermal keratinocytes, skin culture and mouse skin. At the molecular level, chronic UVA radiation decreased the transcriptional activity of the PTEN promoter in a methylation-independent manner, while it had no effect on the protein stability or mRNA stability of PTEN. In contrast, we found that UVA-induced activation of the Ras/ERK/AKT and NF-κB pathways plays an important role in UV-induced PTEN down-regulation. Inhibiting ERK or AKT increases PTEN expression. Our findings may provide unique insights into PTEN down-regulation as a critical component of UVA’s molecular impact during keratinocyte transformation. PMID:23129115

  16. Efficacy of ATR inhibitors as single agents in Ewing sarcoma

    PubMed Central

    Lecona, Emilio; Murga, Matilde; Callen, Elsa; Azorin, Daniel; Alonso, Javier; Lopez, Andres J.; Nussenzweig, Andre; Fernandez-Capetillo, Oscar

    2016-01-01

    Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas. PMID:27577084

  17. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  18. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  19. Immunohistochemical Evaluation of AKT Protein Activation in Canine Mast Cell Tumours

    PubMed Central

    Rodriguez, S.; Fadlalla, K.; Graham, T.; Tameru, B.; Fermin, C. D.; Samuel, T.

    2011-01-01

    Summary The pathogenesis of canine mast cell tumour (MCT) remains unknown. Moreover, therapeutic options are limited and resistance to targeted drugs and recurrences are common, necessitating the identification of additional cellular targets for therapy. In this study we investigated the expression of phosphorylated AKT protein in 25 archival canine MCT samples by immunohistochemistry and examined the correlation between the immunohistochemical scores and histopathological tumour grades. AKT protein was detected in all of the samples and 24 of the 25 samples expressed the phosphorylated form of the protein, albeit with variable intensity. However, when the immunohistochemical scores of weak, intermediate and strong labelling were compared with the histopathological grades of I to III, there was no strong correlation. This study suggests that canine MCT cells have activated AKT and indicates the need for further research on the role of the AKT protein and the possibility of targeting the AKT signalling pathway in MCTs. PMID:22289273

  20. Exploring Genetic Susceptibility to Fibromyalgia

    PubMed Central

    Park, Dong-Jin; Kang, Ji-Hyoun; Yim, Yi-Rang; Kim, Ji-Eun; Lee, Jeong-Won; Lee, Kyung-Eun; Wen, Lihui; Kim, Tae-Jong; Park, Yong-Wook

    2015-01-01

    Fibromyalgia (FM) affects 1% to 5% of the population, and approximately 90% of the affected individuals are women. FM patients experience impaired quality of life and the disorder places a considerable economic burden on the medical care system. With the recognition of FM as a major health problem, many recent studies have evaluated the pathophysiology of FM. Although the etiology of FM remains unknown, it is thought to involve some combination of genetic susceptibility and environmental exposure that triggers further alterations in gene expression. Because FM shows marked familial aggregation, most previous research has focused on genetic predisposition to FM and has revealed associations between genetic factors and the development of FM, including specific gene polymorphisms involved in the serotonergic, dopaminergic, and catecholaminergic pathways. The aim of this review was to discuss the current evidence regarding genetic factors that may play a role in the development and symptom severity of FM. PMID:26306300

  1. Structural insight into TPX2-stimulated microtubule assembly

    PubMed Central

    2017-01-01

    During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation. PMID:29120325

  2. An Enzyme-Catalyzed Multistep DNA Refolding Mechanism in Hairpin Telomere Formation

    PubMed Central

    Shi, Ke; Huang, Wai Mun; Aihara, Hideki

    2013-01-01

    Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. PMID:23382649

  3. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    PubMed

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of antipyretic analgesics on immune responses to vaccination.

    PubMed

    Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B

    2016-09-01

    While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses.

  5. Effect of antipyretic analgesics on immune responses to vaccination

    PubMed Central

    Saleh, Ezzeldin; Moody, M. Anthony; Walter, Emmanuel B.

    2016-01-01

    ABSTRACT While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296

  6. Extracellular Hsp90 and TGFβ regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model.

    PubMed

    de la Mare, Jo-Anne; Jurgens, Tamarin; Edkins, Adrienne L

    2017-03-16

    Tumour metastasis remains the major cause of death in cancer patients and, to date, the mechanism and signalling pathways governing this process are not completely understood. The TGF-β pathway is the most commonly mutated pathway in cancer, however its role in cancer progression is controversial as it can function as both a promoter and a suppressor of metastasis. Although previous studies have suggested a role for the molecular chaperone Hsp90 in regulating the TGF-β pathway, the level at which this occurs as well as the consequences in terms of colon cancer metastasis are unknown. The paired SW480 and SW620 colon cancer cell lines, derived from a primary tumour and its lymph node metastasis, respectively, were used as an in vitro model to study key cellular processes required for metastasis. The status of the TGF-β pathway was examined in these cells using ELISA, flow cytometry, western blot analysis and confocal microscopy. Furthermore, the effect of addition or inhibition of the TGF-β pathway and Hsp90 on adhesion, migration and anchorage-independent growth, was determined in the cell lines. When comparing the canonical TGF-β1 pathway in the genetically paired cell lines our data suggests that this pathway may be constitutively active in the SW620 metastasis-derived cell line and not the SW480 primary tumour-derived line. In addition, we report that, when present in combination, TGF-β1 and Hsp90β stimulate anchorage-independent growth, reduce adhesion and stimulate migration. This effect is potentiated by inhibition of the TGF-β1 receptor and occurs via an alternate TGF-β1 pathway, mediated by αvβ6 integrin. Interestingly, in the SW620 cells, activation of this alternate TGF-β1 signalling machinery does not appear to require inhibition of the canonical TGF-β1 receptor, which would allow them to respond more effectively to the pro-metastasis stimulus of a combination of Hsp90β and TGF-β1 and this could account for the increased migratory capacity of these cells. In this study we report an apparent synergy between TGF-β1 and Hsp90β in stimulating migratory behaviour of colon cancer cells when signalling occurs via αvβ6 integrin as opposed to the canonical TGF-β1 pathway.

  7. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems.

    PubMed

    Rousk, Kathrin; Jones, Davey L; Deluca, Thomas H

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  8. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    PubMed Central

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  9. Assessment of copy number variations in 120 patients with Poland syndrome.

    PubMed

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS in a multifactorial mode of inheritance.

  10. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae

    DOE PAGES

    Sato, Trey K.; Tremaine, Mary; Parreiras, Lucas S.; ...

    2016-10-14

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactionsmore » among genes encoding a xylose reductase ( GRE3), a component of MAP Kinase (MAPK) signaling ( HOG1), a regulator of Protein Kinase A (PKA) signaling ( IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis ( ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Lastly, our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.« less

  11. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    PubMed

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  12. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    PubMed Central

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  13. The CCDC55 couples cannabinoid receptor CNR1 to a putative DISC1 schizophrenia pathway.

    PubMed

    Xie, J; Gizatullin, R; Vukojevic, V; Leopardi, R

    2015-12-03

    Our previous study suggested that the coiled coil domain-containing 55 gene (CCDC55), also named as NSRP1 (nuclear speckle splicing regulatory protein 1 (NSRP1)), was encompassed in a haplotype block spanning over the serotonin transporter (5-HTT) gene in patients with schizophrenia (SCZ). However, the neurobiological function of CCDC55 gene remains unknown. This study aims to uncover the potential role of CCDC55 in SCZ-associated molecular pathways. Using molecular cloning, sequencing and immune blotting to identify basic properties, yeast two-hybrid screening and glutathione S-transferase (GST) pull-down assay to test protein-protein interaction, and confocal laser scanning microscopy (CSLM) to show intracellular interaction of proteins. (i) CCDC55 is expressed as a nuclear protein in human neuronal cells; (ii) Protein-protein interaction analyses showed CCDC55 physically interacted with Ran binding protein 9 (RanBP9) and disrupted in schizophrenia 1 (DISC1); (iii) CCDC55 and RanBP9 co-localized in the nucleus of human neuronal cells; (iv) CCDC55 also interacted with the cannabinoid receptor 1 (CNR1), and with the brain cannabinoid receptor-interacting protein 1a (CNRIP1a); (v) CNR1 activation in differentiated human neuronal cells resulted in an altered RanBP9 localization. CCDC55 may be involved in a functional bridging between the CNR1 activation and the DISC1/RanBP9-associated pathways. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways

    PubMed Central

    Wu, Yiru; Wang, Liyan; Deng, Dai; Zhang, Qidong; Liu, Wenhu

    2017-01-01

    Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression. PMID:28448446

  15. Effects of Methyl Jasmonate on the Composition of Volatile Compounds in Pyropia yezoensis

    NASA Astrophysics Data System (ADS)

    He, Lihong; Wang, Liang; Wang, Linfang; Shen, Songdong

    2018-04-01

    Volatile organic compounds in marine algae have been reported to comprise characteristic flavor of algae and play an important role in their growth, development and defensive response. Yet their biogeneration remain largely unknown. Here we studied the composition of volatile compouds in Pyropia yezoensis and their variations in response to methyl jasmonate (MeJA) and diethyldithiocarbamic acid (DIECA) treatment using gas chromatography-mass spectrometry (GC-MS). A total of 44 compounds belonging to the following chemical classes (n) were identified, including aldehydes (11), alcohols (8), acids and esters (6), alkanes (5), ketones (5), alkenes (3), and S- or N-containing miscellaneous compounds (6). External treatment with plant hormone MeJA increased the content of 1-dodecanol, 4-heptenal, and 2-propenoic acid-2-methyl dodecylester, but decreased the content of phytol, 3-heptadecene, 2-pentadecanone, and isophytol. When pretreated with DIECA, an inhibitor of the octadecanoid pathway leading to the biosynthesis of endogeneous jasmonates and some secondary metabolites, phytol and isophytol were increased, while 4-heptenal, 1-dodecanol, and 2-propenoic acid-2-methyl dodecylester were decreased, both of which were negatively correlated with their variations under MeJA treatment. Collectively, these results suggest that MeJA does affect the volatile composition of P. yezoensis, and the octadecanoid pathway together with endogenous jasmonate pathway may be involved in the biosynthesis of volatile compounds, thereby providing some preliminary envision on the composition and biogeneration of volatile compounds in P. yezoensis.

  16. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-07

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

  17. Effects of Hybridization and Evolutionary Constraints on Secondary Metabolites: The Genetic Architecture of Phenylpropanoids in European Populus Species

    PubMed Central

    Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian

    2015-01-01

    The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the ‘model forest tree’ Populus. PMID:26010156

  18. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    PubMed

    Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian

    2015-01-01

    The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  19. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  20. The DUF59 Family Gene AE7 Acts in the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Maintain Nuclear Genome Integrity in Arabidopsis[C][W][OA

    PubMed Central

    Luo, Dexian; Bernard, Delphine G.; Balk, Janneke; Hai, Huang; Cui, Xiaofeng

    2012-01-01

    Eukaryotic organisms have evolved a set of strategies to safeguard genome integrity, but the underlying mechanisms remain poorly understood. Here, we report that ASYMMETRIC LEAVES1/2 ENHANCER7 (AE7), an Arabidopsis thaliana gene encoding a protein in the evolutionarily conserved Domain of Unknown Function 59 family, participates in the cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway to maintain genome integrity. The severe ae7-2 allele is embryo lethal, whereas plants with the weak ae7 (ae7-1) allele are viable but exhibit highly accumulated DNA damage that activates the DNA damage response to arrest the cell cycle. AE7 is part of a protein complex with CIA1, NAR1, and MET18, which are highly conserved in eukaryotes and are involved in the biogenesis of cytosolic and nuclear Fe-S proteins. ae7-1 plants have lower activities of the cytosolic [4Fe-4S] enzyme aconitase and the nuclear [4Fe-4S] enzyme DNA glycosylase ROS1. Additionally, mutations in the gene encoding the mitochondrial ATP binding cassette transporter ATM3/ABCB25, which is required for the activity of cytosolic Fe-S enzymes in Arabidopsis, also result in defective genome integrity similar to that of ae7-1. These results indicate that AE7 is a central member of the CIA pathway, linking plant mitochondria to nuclear genome integrity through assembly of Fe-S proteins. PMID:23104832

  1. Sphingosine 1-Phosphate (S1P) Signaling in Glioblastoma Multiforme—A Systematic Review

    PubMed Central

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry

    2017-01-01

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis. PMID:29149079

  2. An integrative systems biology approach to understanding pulmonary diseases.

    PubMed

    Auffray, Charles; Adcock, Ian M; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J

    2010-06-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain to a large extent unknown, preventing the development of more efficient diagnosis and treatment. We propose to overcome these limitations through an integrative systems biology research strategy designed to identify the functional and regulatory pathways that play central roles in respiratory pathophysiology, starting with severe asthma. This approach relies on global genome, transcriptome, proteome, and metabolome data sets collected in cross-sectional patient cohorts with high-throughput measurement platforms and integrated with biologic and clinical data to inform predictive multiscale models ranging from the molecular to the organ levels. Working hypotheses formulated on the mechanisms and pathways involved in various disease states are tested through perturbation experiments using model simulation combined with targeted and global technologies in cellular and animal models. The responses observed are compared with those predicted by the initial models, which are refined to account better for the results. Novel perturbation experiments are designed and tested both computationally and experimentally to arbitrate between competing hypotheses. The process is iterated until the derived knowledge allows a better classification and subphenotyping of severe asthma using complex biomarkers, which will facilitate the development of novel diagnostic and therapeutic interventions targeting multiple components of the molecular and cellular pathways involved. This can be tested and validated in prospective clinical trials.

  3. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61.

    PubMed

    Huang, Kuan-Chun; Chen, Zhihong; Jiang, Yimin; Akare, Sandeep; Kolber-Simonds, Donna; Condon, Krista; Agoulnik, Sergei; Tendyke, Karen; Shen, Yongchun; Wu, Kuo-Ming; Mathieu, Steven; Choi, Hyeong-Wook; Zhu, Xiaojie; Shimizu, Hajime; Kotake, Yoshihiko; Gerwick, William H; Uenaka, Toshimitsu; Woodall-Jappe, Mary; Nomoto, Kenichi

    2016-06-01

    Apratoxin A is a natural product with potent antiproliferative activity against many human cancer cell lines. However, we and other investigators observed that it has a narrow therapeutic window in vivo Previous mechanistic studies have suggested its involvement in the secretory pathway as well as the process of chaperone-mediated autophagy. Still the link between the biologic activities of apratoxin A and its in vivo toxicity has remained largely unknown. A better understanding of this relationship is critically important for any further development of apratoxin A as an anticancer drug. Here, we describe a detailed pathologic analysis that revealed a specific pancreas-targeting activity of apratoxin A, such that severe pancreatic atrophy was observed in apratoxin A-treated animals. Follow-up tissue distribution studies further uncovered a unique drug distribution profile for apratoxin A, showing high drug exposure in pancreas and salivary gland. It has been shown previously that apratoxin A inhibits the protein secretory pathway by preventing cotranslational translocation. However, the molecule targeted by apratoxin A in this pathway has not been well defined. By using a (3)H-labeled apratoxin A probe and specific Sec 61α/β antibodies, we identified that the Sec 61 complex is the molecular target of apratoxin A. We conclude that apratoxin A in vivo toxicity is likely caused by pancreas atrophy due to high apratoxin A exposure. Mol Cancer Ther; 15(6); 1208-16. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis

    DOE PAGES

    Sparks, J. Alan; Kwon, Taegun; Renna, Luciana; ...

    2016-03-03

    The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. For this study, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was foundmore » to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of a hlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.« less

  5. Structural basis of kynurenine 3-monooxygenase inhibition

    PubMed Central

    Amaral, Marta; Levy, Colin; Heyes, Derren J.; Lafite, Pierre; Outeiro, Tiago F.; Giorgini, Flaviano; Leys, David; Scrutton, Nigel S.

    2013-01-01

    Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (i.e. kynurenine pathway), leads to amelioration of Huntington’s disease-relevant phenotypes in yeast, fruit fly, and mouse models1–5, as well as a mouse model of Alzheimer’s disease3. KMO is a FAD-dependent monooxygenase, and is located in the outer mitochondrial membrane where it converts L-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders6, as well as cancer7,8, and several peripheral inflammatory conditions9. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained hitherto unknown. Here we report the first crystal structure of KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active site structure, preventing productive binding of the substrate kynurenine. Functional assays and targeted mutagenesis revealed that the active site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO:UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington’s, Alzheimer’s, and Parkinson’s diseases. PMID:23575632

  6. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway.

    PubMed

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-07-01

    Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho–ROCK–myosin II signaling pathway to ensure formation of a basal constriction

    PubMed Central

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie

    2017-01-01

    Background: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto‐ and endodermal epithelia is unknown. Results: Histological sections and staining of F‐actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F‐actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Conclusions: Our data suggest an essential role of FGFR and a Rho‐ROCK‐myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502–516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28411398

  8. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho-ROCK-myosin II signaling pathway to ensure formation of a basal constriction.

    PubMed

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie; Hassel, Monika

    2017-07-01

    Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  9. Francisella tularensis alters human neutrophil gene expression: insights into the molecular basis of delayed neutrophil apoptosis

    PubMed Central

    Schwartz, Justin T.; Bandyopadhyay, Sarmistha; Kobayashi, Scott D.; McCracken, Jenna; Whitney, Adeline R.; DeLeo, Frank R.; Allen, Lee-Ann H.

    2013-01-01

    We demonstrated recently that Francisella tularensis profoundly impairs human neutrophil apoptosis, but how this is achieved is largely unknown. Herein we used human oligonucleotide microarrays to test the hypothesis that changes in neutrophil gene expression contribute to this phenotype, and now demonstrate that F. tularensis live vaccine strain (LVS) caused significant changes in neutrophil gene expression over a 24 h time period relative to the uninfected controls. Of ~47,000 genes analyzed, 3,435 were significantly up- or down-regulated by LVS, including 365 unique genes associated with apoptosis and cell survival. Specific targets in this category included genes associated with the intrinsic and extrinsic apoptotic pathways (CFLAR, TNFAIP3, TNFRSF10D, SOD2, BCL2A1, BIRC4, PIM2, TNFSF10, TNFRSF10C, CASP2, and CASP8) and genes that act via the NF B pathway and other mechanisms to prolong cell viability (NFKB1, NFKB2, and RELA, IL1B, CAST, CDK2, GADD45B, BCL3, BIRC3, CDK2, IL1A, PBEF1, IL6, CXCL1, CCL4 and VEGF). The microarray data were confirmed by qPCR and pathway analysis. Moreover, we demonstrate that X-linked inhibitor of apoptosis (XIAP) protein remained abundant in PMNs over 48 h of LVS infection, whereas BAX mRNA and protein were progressively down-regulated. These data strongly suggest that antiapoptotic and pro-survival mechanisms collaborate to sustain the viability of F. tularensis infected neutrophils. PMID:22986450

  10. A nuclear factor-κB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells

    PubMed Central

    Masaki, Tomoyuki; Kojima, Takashi; Okabayashi, Tamaki; Ogasawara, Noriko; Ohkuni, Tsuyoshi; Obata, Kazufumi; Takasawa, Akira; Murata, Masaki; Tanaka, Satoshi; Hirakawa, Satoshi; Fuchimoto, Jun; Ninomiya, Takafumi; Fujii, Nobuhiro; Tsutsumi, Hiroyuki; Himi, Tetsuo; Sawada, Norimasa

    2011-01-01

    Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma, and severe lower respiratory tract disease in infants and young children. The airway epithelium, which has a well-developed barrier regulated by tight junctions, is the first line of defense during respiratory virus infection. In upper airway human nasal epithelial cells (HNECs), however, the primary site of RSV infection, the mechanisms of replication and budding of RSV, and the epithelial cell responses, including the tight junctional barrier, remain unknown. To investigate the detailed mechanisms of replication and budding of RSV in HNECs and the epithelial cell responses, we established an RSV-infected model using human telomerase reverse transcriptase–-transfected HNECs. We first found that the expression and barrier function of tight junction molecules claudin-4 and occludin were markedly induced together with production of proinflammatory cytokines interleukin 8 and tumor necrosis factor-α in HNECs after RSV infection, and the induction of tight junction molecules possibly contributed to budding of RSV. Furthermore, the replication and budding of RSV and the epithelial cell responses in HNECs were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κB pathway. The control of this pathway in HNECs may be useful not only for prevention of replication and budding of RSV, but also in therapy for RSV-induced respiratory pathogenesis. PMID:21562222

  11. Low molecular weight hyaluronan induces migration of human choriocarcinoma JEG-3 cells mediated by RHAMM as well as by PI3K and MAPK pathways.

    PubMed

    Mascaró, Marilina; Pibuel, Matías A; Lompardía, Silvina L; Díaz, Mariangeles; Zotta, Elsa; Bianconi, Maria I; Lago, Néstor; Otero, Silvina; Jankilevich, Gustavo; Alvarez, Elida; Hajos, Silvia E

    2017-08-01

    Hyaluronan (HA) is the major glycosaminoglycan present in the extracellular matrix. It is produced by some tumours and promotes proliferation, differentiation and migration among others cellular processes. Gestational trophoblastic disease (GTD) is composed by non-tumour entities, such as hydatidiform mole (HM), which is the most common type of GTD and also malignant entities such as choriocarcinoma (CC) and placental site trophoblastic tumour (PSTT), being CC the most aggressive tumour. Although there is a growing understanding of GTD biology, the role of HA in the pathogenesis of this group of diseases remains largely unknown. The aim of this work was to study the role of HA in the pathogenesis of GTD by defining the expression pattern of HA and its receptors CD44 and RHAMM, as well as to determine if HA can modulate proliferation, differentiation and migration of CC cells. Receptors and signalling pathways involved were also analyzed. We demonstrated that HA and RHAMM are differently expressed among GTD entities and even among trophoblast subtypes. We also showed that HA is able to enhance the expression of extravillous trophoblast markers and also to induce migration of JEG-3 cells, the latter mediated by RHAMM as well as PI3K and MAPK pathways. These findings indicate a novel regulatory mechanism for CC cell biology and also contribute to the understanding of GTD pathophysiology.

  12. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma.

    PubMed

    Lin, Chongxiang; Tu, Chengwei; Ma, Yike; Ye, Pengcheng; Shao, Xia; Yang, Zhaoan; Fang, Yiming

    2017-10-01

    Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Diphenyldifluoroketone (EF24) is a curcumin analog that has been demonstrated to improve anticancer activity; however, its therapeutic potential and mechanisms in oral cancer remain unknown. In the present study, the effect of EF24 on apoptosis induction and its potential underlying mechanism in the CAL‑27 human OSCC cell line was investigated. To achieve this, various concentrations of cisplatin or EF24 were administrated to CAL‑27 cells for 24 h, and cell viability, apoptotic DNA fragmentation, and cleaved caspase 3 and 9 levels were evaluated. To investigate the potential underlying mechanism, the levels of mitogen‑activated protein kinase kinase 1 (MEK1) and extracellular signal‑regulated kinase (ERK), two key proteins in the mitogen‑activated protein kinase/ERK signaling pathway, were additionally examined. The results indicated that EF24 and cisplatin treatment decreased cell viability. EF24 treatment increased the levels of activated caspase 3 and 9, and decreased the phosphorylated forms of MEK1 and ERK. Sequential treatments of EF24 and 12‑phorbol‑13‑myristate acetate, a MAPK/ERK activator, resulted in a significant increase of activated MEK1 and ERK, and reversed cell viability. These results suggested that EF24 has potent anti‑tumor activity in OSCC via deactivation of the MAPK/ERK signaling pathway. Further analyses using animal models are required to confirm these findings in vivo.

  13. CCL19/CCR7 contributes to the pathogenesis of endometriosis via PI3K/Akt pathway by regulating the proliferation and invasion of ESCs.

    PubMed

    Diao, Ruiying; Wei, Weixia; Zhao, Jinghui; Tian, Fuying; Cai, Xueyong; Duan, Yong-Gang

    2017-11-01

    The level of CCL19 increased in the peritoneal fluid of women with endometriosis, but the precise mechanism of CCL19/CCR7 in the pathogenesis of endometriosis remains unknown. ELISA and immunohistochemistry were performed to analyze CCL19/CCR7 expressions in peritoneal fluid and endometrium from women with endometriosis (n = 38) and controls (n = 32). Cell proliferation and transwell invasion assays were applied to detect proliferation and invasion of human endometrial stromal cells (ESCs). Expressions of Bcl2, MMP2, MMP9, and p-AKT/AKT were analyzed by Western blot. Peritoneal fluid concentration of CCL19 in patients with endometriosis was higher than that in controls. Those patients with moderate/severe endometriosis had significantly higher peritoneal fluid concentrations of CCL19 compared to those with minimal/mild endometriosis. Higher CCL19 and CCR7 were found in the endometrium with endometriosis compared to control. CCL19 significantly enhanced ESC proliferation and invasion through CCR7 via activating PI3K/Akt signal pathways. CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, Bcl2, MMP2, and MMP9 in ESCs. These data indicate CCL19/CCR7 contributes to proliferation and invasion of ESCs, which are conducive to the pathogenesis of endometriosis through activating PI3K/Akt pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.

    PubMed

    Orange, Jordan S; Roy-Ghanta, Sumita; Mace, Emily M; Maru, Saumya; Rak, Gregory D; Sanborn, Keri B; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P; Pandey, Rahul

    2011-04-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

  15. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

    PubMed Central

    Orange, Jordan S.; Roy-Ghanta, Sumita; Mace, Emily M.; Maru, Saumya; Rak, Gregory D.; Sanborn, Keri B.; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P.; Pandey, Rahul

    2011-01-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function. PMID:21383498

  16. Chronic cannabis promotes pro-hallucinogenic signaling of 5-HT2A receptors through Akt/mTOR pathway.

    PubMed

    Ibarra-Lecue, Inés; Mollinedo-Gajate, Irene; Meana, J Javier; Callado, Luis F; Diez-Alarcia, Rebeca; Urigüen, Leyre

    2018-04-27

    Long-term use of potent cannabis during adolescence increases the risk of developing schizophrenia later in life, but to date, the mechanisms involved remain unknown. Several findings suggest that the functional selectivity of serotonin 2A receptor (5-HT2AR) through inhibitory G-proteins is involved in the molecular mechanisms responsible for psychotic symptoms. Moreover, this receptor is dysregulated in the frontal cortex of schizophrenia patients. In this context, studies involving cannabis exposure and 5-HT2AR are scarce. Here, we tested in mice the effect of an early chronic Δ 9 -tetrahydrocannabinol (THC) exposure on cortical 5-HT2AR expression, as well as on its in vivo and in vitro functionality. Long-term exposure to THC induced a pro-hallucinogenic molecular conformation of the 5-HT2AR and exacerbated schizophrenia-like responses, such as prepulse inhibition disruption. Supersensitive coupling of 5-HT2AR toward inhibitory Gαi1-, Gαi3-, Gαo-, and Gαz-proteins after chronic THC exposure was observed, without changes in the canonical Gαq/11-protein pathway. In addition, we found that inhibition of Akt/mTOR pathway by rapamycin blocks the changes in 5-HT2AR signaling pattern and the supersensitivity to schizophrenia-like effects induced by chronic THC. The present study provides the first evidence of a mechanistic explanation for the relationship between chronic cannabis exposure in early life and increased risk of developing psychosis-like behaviors in adulthood.

  17. Novel mechanisms and signaling pathways of esophageal ulcer healing: the role of prostaglandin EP2 receptors, cAMP, and pCREB

    PubMed Central

    Ahluwalia, Amrita; Baatar, Dolgor; Jones, Michael K.

    2014-01-01

    Clinical studies indicate that prostaglandins of E class (PGEs) may promote healing of tissue injury e.g., gastroduodenal and dermal ulcers. However, the precise roles of PGEs, their E-prostanoid (EP) receptors, signaling pathways including cAMP and cAMP response element-binding protein (CREB), and their relation to VEGF and angiogenesis in the tissue injury healing process remain unknown, forming the rationale for this study. Using an esophageal ulcer model in rats, we demonstrated that esophageal mucosa expresses predominantly EP2 receptors and that esophageal ulceration triggers an increase in expression of the EP2 receptor, activation of CREB (the downstream target of the cAMP signaling), and enhanced VEGF gene expression. Treatment of rats with misoprostol, a PGE1 analog capable of activating EP receptors, enhanced phosphorylation of CREB, stimulated VEGF expression and angiogenesis, and accelerated esophageal ulcer healing. In cultured human esophageal epithelial (HET-1A) cells, misoprostol increased intracellular cAMP levels (by 163-fold), induced phosphorylation of CREB, and stimulated VEGF expression. A cAMP analog (Sp-cAMP) mimicked, whereas an inhibitor of cAMP-dependent protein kinase A (Rp-cAMP) blocked, these effects of misoprostol. These results indicate that the EP2/cAMP/protein kinase A pathway mediates the stimulatory effect of PGEs on angiogenesis essential for tissue injury healing via the induction of CREB activity and VEGF expression. PMID:25059824

  18. The structure of the cyanobactin domain of unknown function from PatG in the patellamide gene cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Greg; Koehnke, Jesko; Bent, Andrew F.

    The highly conserved domain of unknown function in the cyanobactin superfamily has a novel fold. The protein does not appear to bind the most plausible substrates, leaving questions as to its role. Patellamides are members of the cyanobactin family of ribosomally synthesized and post-translationally modified cyclic peptide natural products, many of which, including some patellamides, are biologically active. A detailed mechanistic understanding of the biosynthetic pathway would enable the construction of a biotechnological ‘toolkit’ to make novel analogues of patellamides that are not found in nature. All but two of the protein domains involved in patellamide biosynthesis have been characterized.more » The two domains of unknown function (DUFs) are homologous to each other and are found at the C-termini of the multi-domain proteins PatA and PatG. The domain sequence is found in all cyanobactin-biosynthetic pathways characterized to date, implying a functional role in cyanobactin biosynthesis. Here, the crystal structure of the PatG DUF domain is reported and its binding interactions with plausible substrates are investigated.« less

  19. Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions

    PubMed Central

    Zakirova, Zuchra; Fanutza, Tomas; Bonet, Justine; Readhead, Ben; Zhang, Weijia; Yi, Zhengzi; Beauvais, Genevieve; Zwaka, Thomas P.; Ozelius, Laurie J.; Blitzer, Robert D.; Gonzalez-Alegre, Pedro

    2018-01-01

    Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. PMID:29364887

  20. Automated genomic context analysis and experimental validation platform for discovery of prokaryote transcriptional regulator functions

    DOE PAGES

    Martí-Arbona, Ricardo; Mu, Fangping; Nowak-Lovato, Kristy L.; ...

    2014-12-18

    In this study, the clustering of genes in a pathway and the co-location of functionally related genes is widely recognized in prokaryotes. We used these characteristics to predict the metabolic involvement for a Transcriptional Regulator (TR) of unknown function, identified and confirmed its biological activity. software tool that identifies the genes encoded within a defined genomic neighborhood for the subject TR and its homologs was developed. The output lists of genes in the genetic neighborhoods, their annotated functions, the reactants/products, and identifies the metabolic pathway in which the encoded-proteins function. When a set of TRs of known function was analyzed,more » we observed that their homologs frequently had conserved genomic neighborhoods that co-located the metabolically related genes regulated by the subject TR. We postulate that TR effectors are metabolites in the identified pathways; indeed the known effectors were present. We analyzed Bxe_B3018 from Burkholderia xenovorans, a TR of unknown function and predicted that this TR was related to the glycine, threonine and serine degradation. We tested the binding of metabolites in these pathways and for those that bound, their ability to modulate TR binding to its specific DNA operator sequence. Using rtPCR, we confirmed that methylglyoxal was an effector of Bxe_3018. These studies provide the proof of concept and validation of a systematic approach to the discovery of the biological activity for proteins of unknown function, in this case a TR. Bxe_B3018 is a methylglyoxal responsive TR that controls the expression of an operon composed of a putative efflux system.« less

  1. Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synthesis through two pathways in Phaffia rhodozyma.

    PubMed

    Chi, Shuang; He, Yanfeng; Ren, Jie; Su, Qian; Liu, Xingchao; Chen, Zhi; Wang, Mingan; Li, Ying; Li, Jilun

    2015-06-18

    A moderate-temperature, astaxanthin-overproducing mutant strain (termed MK19) of Phaffia rhodozyma was generated in our laboratory. The intracellular astaxanthin content of MK19 was 17-fold higher than that of wild-type. The TLC profile of MK19 showed a band for an unknown carotenoid pigment between those of β-carotene and astaxanthin. In the present study, we attempted to identify the unknown pigment and to enhance astaxanthin synthesis in MK19 by overexpression of the crtS gene that encodes astaxanthin synthase (CrtS). A crtS-overexpressing strain was constructed without antibiotic marker. A recombinant plasmid with lower copy numbers was shown to be stable in MK19. In the positive recombinant strain (termed CSR19), maximal astaxanthin yield was 33.5% higher than MK19, and the proportion of astaxanthin as a percentage of total carotenoids was 84%. The unknown carotenoid was identified as 3-hydroxy-3',4'-didehydro-β,Ψ-carotene-4-one (HDCO) by HPLC, mass spectrometry, and NMR spectroscopy. CrtS was found to be a bifunctional enzyme that helped convert HDCO to astaxanthin. Enhancement of crtS transcriptional level increased transcription levels of related genes (crtE, crtYB, crtI) in the astaxanthin synthesis pathway. A scheme of carotenoid biosynthesis in P. rhodozyma involving alternative bicyclic and monocyclic pathways is proposed. CrtS overexpression leads to up-regulation of synthesis-related genes and increased astaxanthin production. The transformant CSR19 is a stable, secure strain suitable for feed additive production. The present findings help clarify the regulatory mechanisms that underlie metabolic fluxes in P. rhodozyma carotenoid biosynthesis pathways.

  2. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality.

    PubMed

    Wu, Jian; Tian, Linjie; Yu, Xiao; Pattaradilokrat, Sittiporn; Li, Jian; Wang, Mingjun; Yu, Weishi; Qi, Yanwei; Zeituni, Amir E; Nair, Sethu C; Crampton, Steve P; Orandle, Marlene S; Bolland, Silvia M; Qi, Chen-Feng; Long, Carole A; Myers, Timothy G; Coligan, John E; Wang, Rongfu; Su, Xin-zhuan

    2014-01-28

    Malaria infection triggers vigorous host immune responses; however, the parasite ligands, host receptors, and the signaling pathways responsible for these reactions remain unknown or controversial. Malaria parasites primarily reside within RBCs, thereby hiding themselves from direct contact and recognition by host immune cells. Host responses to malaria infection are very different from those elicited by bacterial and viral infections and the host receptors recognizing parasite ligands have been elusive. Here we investigated mouse genome-wide transcriptional responses to infections with two strains of Plasmodium yoelii (N67 and N67C) and discovered differences in innate response pathways corresponding to strain-specific disease phenotypes. Using in vitro RNAi-based gene knockdown and KO mice, we demonstrated that a strong type I IFN (IFN-I) response triggered by RNA polymerase III and melanoma differentiation-associated protein 5, not Toll-like receptors (TLRs), binding of parasite DNA/RNA contributed to a decline of parasitemia in N67-infected mice. We showed that conventional dendritic cells were the major sources of early IFN-I, and that surface expression of phosphatidylserine on infected RBCs might promote their phagocytic uptake, leading to the release of parasite ligands and the IFN-I response in N67 infection. In contrast, an elevated inflammatory response mediated by CD14/TLR and p38 signaling played a role in disease severity and early host death in N67C-infected mice. In addition to identifying cytosolic DNA/RNA sensors and signaling pathways previously unrecognized in malaria infection, our study demonstrates the importance of parasite genetic backgrounds in malaria pathology and provides important information for studying human malaria pathogenesis.

  3. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Ke-Wu; Li, Jun; Dong, Xin

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators.more » Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.« less

  4. Large-Scale Comparative Phenotypic and Genomic Analyses Reveal Ecological Preferences of Shewanella Species and Identify Metabolic Pathways Conserved at the Genus Level ▿ †

    PubMed Central

    Rodrigues, Jorge L. M.; Serres, Margrethe H.; Tiedje, James M.

    2011-01-01

    The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects. PMID:21642407

  5. S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model.

    PubMed

    Santos, Ana Isabel; Carreira, Bruno Pereira; Izquierdo-Álvarez, Alicia; Ramos, Elena; Lourenço, Ana Sofia; Filipa Santos, Daniela; Morte, Maria Inês; Ribeiro, Luís Filipe; Marreiros, Ana; Sánchez-López, Nuria; Marina, Anabel; Carvalho, Caetana Monteiro; Martínez-Ruiz, Antonio; Araújo, Inês Maria

    2018-01-01

    Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.

  6. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas.

    PubMed

    Formosa, R; Borg, J; Vassallo, J

    2017-08-01

    Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G 0 /G 1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. © 2017 The authors.

  7. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas

    PubMed Central

    Formosa, R; Borg, J

    2017-01-01

    Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. PMID:28649092

  8. MiR-592 Promotes Gastric Cancer Proliferation, Migration, and Invasion Through the PI3K/AKT and MAPK/ERK Signaling Pathways by Targeting Spry2.

    PubMed

    He, Yu; Ge, Yugang; Jiang, Mingkun; Zhou, Jundong; Luo, Dakui; Fan, Hao; Shi, Liang; Lin, Linling; Yang, Li

    2018-06-21

    Gastric cancer (GC) is one of the most prevalent digestive malignancies. MicroRNAs (miRNAs) are involved in multiple cellular processes, including oncogenesis, and miR-592 itself participates in many malignancies; however, its role in GC remains unknown. In this study, we investigated the expression and molecular mechanisms of miR-592 in GC. Quantitative real-time PCR and immunohistochemistry were performed to determine the expression of miR-592 and its putative targets in human tissues and cell lines. Proliferation, migration, and invasion were evaluated by Cell Counting Kit-8, population doubling time, colony formation, Transwell, and wound-healing assays in transfected GC cells in vitro. A dual-luciferase reporter assay was used to determine whether miR-592 could directly bind its target. A tumorigenesis assay was used to study whether miR-592 affected GC growth in vivo. Proteins involved in signaling pathways and the epithelial-mesenchymal transition (EMT) were detected with western blot. The ectopic expression of miR-592 promoted GC proliferation, migration, and invasion in vitro and facilitated tumorigenesis in vivo. Spry2 was a direct target of miR-592 and Spry2 overexpression partially counteracted the effects of miR-592. miR-592 induced the EMT and promoted its progression in GC via the PI3K/AKT and MAPK/ERK signaling pathways by inhibiting Spry2. Overexpression of miR-592 promotes GC proliferation, migration, and invasion and induces the EMT via the PI3K/AKT and MAPK/ERK signaling pathways by inhibiting Spry2, suggesting a potential therapeutic target for GC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Bone Morphogenetic Protein 15 (BMP15) Acts as a BMP and Wnt Inhibitor during Early Embryogenesis*

    PubMed Central

    Di Pasquale, Elisa; Brivanlou, Ali H.

    2009-01-01

    Bone morphogenetic protein 15 (BMP15) belongs to an unusual subgroup of the transforming growth factor β (TGFβ) superfamily of signaling ligands as it lacks a key cysteine residue in the mature region required for proper intermolecular dimerization. Naturally occurring BMP15 mutation leads to early ovarian failure in humans, and BMP15 has been shown to activate the Smad1/5/8 pathway in that context. Despite its important role in germ cell specification, the embryological function of BMP15 remains unknown. Surprisingly, we find that during early Xenopus embryogenesis BMP15 acts solely as an inhibitor of the Smad1/5/8 pathway and the Wnt pathway. BMP15 gain-of-function leads to embryos with secondary ectopic heads and to direct neural induction in intact explants. BMP15 inhibits BMP4-mediated epidermal induction in dissociated explants. BMP15 strongly inhibits BRE response induced by BMP4 and blocks phosphorylation and activation of Smad1/5/8 MH2-domain. Mechanistically, BMP15 protein specifically interacts with BMP4 protein, suggesting inhibition upstream of receptor binding. Loss-of-function experiments using morpholinos or a naturally occurring human BMP15 dominant-negative mutant (BMP15-Y235C) leads to embryos lacking head. BMP15-Y235C also eliminates the inhibitory activity of BMP15 on BRE (BMP-responsive element). Finally, we show that BMP15 inhibits the canonical branch of the Wnt pathway, upstream of β-catenin. We, thus, demonstrate that BMP15 is necessary and sufficient for the specification of dorso-anterior structures and highlight novel mechanisms of BMP15 function that strongly suggest a reinterpretation of its function in ovaries specially for ovarian failure. PMID:19553676

  10. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    PubMed

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration.

    PubMed

    Luo, Xiaoying; Dan Wang; Luo, Xuan; Zhu, Xintao; Wang, Guozhen; Ning, Zuowei; Li, Yang; Ma, Xiaoxin; Yang, Renqiang; Jin, Siyi; Huang, Yun; Meng, Ying; Li, Xu

    2017-10-01

    Aldosterone, with pro-oxidation and pro-autophagy capabilities, plays a key role in liver fibrosis. However, the mechanisms underlying aldosterone-promoted liver sinusoidal endothelial cells (LSECs) defenestration remain unknown. Caveolin 1 (Cav1) displays close links with autophagy and fenestration. Hence, we aim to investigate the role of Cav1-related autophagy in LSECs defenestration. We found the increase of aldosterone/MR (mineralocorticoid receptor) level, oxidation, autophagy, and defenestration in LSECs in the human fibrotic liver, BDL or hyperaldosteronism models; while antagonizing aldosterone or inhibiting autophagy relieved LSECs defenestration in BDL-induced fibrosis or hyperaldosteronism models. In vitro, fenestrae of primary LSECs gradually shrank, along with the down-regulation of the NO-dependent pathway and the augment of the AMPK-dependent autophagy; these effects were aggravated by rapamycin (an autophagy activator) or aldosterone treatment. Additionally, aldosterone increased oxidation mediated by Cav1, reduced ATP generation, and subsequently induced the AMPK-dependent autophagy, leading to the down-regulation of the NO-dependent pathway and LSECs defenestration. These effects were reversed by MR antagonist spironolactone, antioxidants or autophagy inhibitors. Besides, aldosterone enhanced the co-immunoprecipitation of Cav1 with p62 and ubiquitin, and induced Cav1 co-immunofluorescence staining with LC3, ubiquitin, and F-actin in the perinuclear area of LSECs. Furthermore, aldosterone treatment increased the membrane protein level of Cav1, whereas decrease the cytoplasmic protein level of Cav1, indicating that aldosterone induced Cav1-related selective autophagy and F-actin remodeling to promote defenestration. Consequently, Cav1-related selective autophagy initiated by aldosterone-induced oxidation promotes LSECs defenestration via activating the AMPK-ULK1 pathway and inhibiting the NO-dependent pathway. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. 2,5-hexanedione induces bone marrow mesenchymal stem cell apoptosis via inhibition of Akt/Bad signal pathway.

    PubMed

    Sun, Jingsong; Shi, Xiaoxia; Li, Shuangyue; Piao, Fengyuan

    2018-04-01

    2,5-Hexanedione (HD) is an important bioactive metabolite of n-hexane and mediates the neurotoxicity of parent compound. Studies show that HD induces apoptotic death of neural progenitor cells. However, its underlying mechanism remains unknown. Mesenchymal stem cells (MSCs) are multipotential stem cells with the ability to differentiate into various cell types and have been used as cell model for studying the toxic effects of chemicals on stem cells. In this study, we exposed rat bone marrow MSCs to 0, 10, 20, and 40 mM HD in vitro. Apoptosis and disruption of mitochondrial transmembrane potential were estimated by immunochemistry staining. The expression of Akt, Bad, phosphorylated Akt (p-Akt), and Bad (p-Bad) as well as cytochrome c in mitochondria and cytosol were examined by Western blot. Moreover, caspase 3 activity, viability, and death of cells were measured by spectrophotometry. Our results showed that HD induced cell apoptosis and increased caspase 3 activity. HD down-regulated the expression levels of p-Akt, p-Bad and induced MMP depolarization, followed by cytochrome c release. Moreover, HD led to a concentration-dependent increase in the MSCs death, which was relative to MSCs apoptosis. However, these toxic effects of HD on the MSCs were significantly mitigated in the presence of IGF, which could activate PI3 K/Akt pathway. These results indicated that HD induced mitochondria-mediated apoptosis in the MSCs via inhibiting Akt/Bad signaling pathway and apoptotic death of MSCs via the signaling pathway. These results might provide some clues for studying further the mechanisms of HD-induced stem cell apoptosis and adverse effect on neurogenesis. © 2017 Wiley Periodicals, Inc.

  13. Induction of neurite extension and survival in pheochromocytoma cells by the Rit GTPase.

    PubMed

    Spencer, Michael L; Shao, Haipeng; Andres, Douglas A

    2002-06-07

    The Rit, Rin, and Ric proteins comprise a distinct and evolutionarily conserved subfamily of the Ras-like small G-proteins. Although these proteins share the majority of core effector domain residues with Ras, recent studies suggest that Rit uses novel effector pathways to regulate NIH3T3 cell proliferation and transformation, while the functions of Rin and Ric remain largely unknown. Since we demonstrate that Rit is expressed in neurons, we investigated the role of Rit signaling in promoting the differentiation and survival of pheochromocytoma cells. In this study, we show that expression of constitutively active Rit (RitL79) in PC6 cells results in neuronal differentiation, characterized by the elaboration of an extensive network of neurite-like processes that are morphologically distinct from those mediated by the expression of oncogenic Ras. Although activated Rit fails to stimulate mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) signaling pathways in COS cells, RitL79 induced the phosphorylation of ERK1/2 in PC6 cells. We also find that Rit-mediated effects on neurite outgrowth can be blocked by co-expression of dominant-negative mutants of C-Raf1 or mitogen-activated protein kinase kinase 1 (MEK1). Moreover, expression of dominant-negative Rit is sufficient to inhibit NGF-induced neurite outgrowth. Expression of active Rit inhibits growth factor-withdrawal mediated apoptosis of PC6 cells, but does not induce phosphorylation of Akt/protein kinase B, suggesting that survival does not utilize the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Instead, pharmacological inhibitors of MEK block Rit-stimulated cell survival. Taken together, these studies suggest that Rit represents a distinct regulatory protein, capable of mediating differentiation and cell survival in PC6 cells using a MEK-dependent signaling pathway to achieve its effects.

  14. The influence of a short-term gluten-free diet on the human gut microbiome.

    PubMed

    Bonder, Marc Jan; Tigchelaar, Ettje F; Cai, Xianghang; Trynka, Gosia; Cenit, Maria C; Hrdlickova, Barbara; Zhong, Huanzi; Vatanen, Tommi; Gevers, Dirk; Wijmenga, Cisca; Wang, Yang; Zhernakova, Alexandra

    2016-04-21

    A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome. We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured. Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10(-05)). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements. A GFD changes the gut microbiome composition and alters the activity of microbial pathways.

  15. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less

  16. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko, E-mail: hirota@dent.tokushima-u.ac.jp

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellularmore » calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.« less

  17. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and 
EML4-ALK-positive Lung Cancer Tissues].

    PubMed

    Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun

    2016-09-20

    The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.

  18. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    PubMed Central

    Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella. PMID:26579096

  19. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways

    PubMed Central

    Al-Maqtari, Tareq; Cao, Pengxiao; Keith, Matthew C. L.; Wysoczynski, Marcin; Zhao, John; Moore IV, Joseph B.; Bolli, Roberto

    2015-01-01

    A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit. PMID:26474484

  20. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. Copyright © 2012 Wiley Periodicals, Inc.

Top