Disclosure of Medical Errors: What Factors Influence How Patients Respond?
Mazor, Kathleen M; Reed, George W; Yood, Robert A; Fischer, Melissa A; Baril, Joann; Gurwitz, Jerry H
2006-01-01
BACKGROUND Disclosure of medical errors is encouraged, but research on how patients respond to specific practices is limited. OBJECTIVE This study sought to determine whether full disclosure, an existing positive physician-patient relationship, an offer to waive associated costs, and the severity of the clinical outcome influenced patients' responses to medical errors. PARTICIPANTS Four hundred and seven health plan members participated in a randomized experiment in which they viewed video depictions of medical error and disclosure. DESIGN Subjects were randomly assigned to experimental condition. Conditions varied in type of medication error, level of disclosure, reference to a prior positive physician-patient relationship, an offer to waive costs, and clinical outcome. MEASURES Self-reported likelihood of changing physicians and of seeking legal advice; satisfaction, trust, and emotional response. RESULTS Nondisclosure increased the likelihood of changing physicians, and reduced satisfaction and trust in both error conditions. Nondisclosure increased the likelihood of seeking legal advice and was associated with a more negative emotional response in the missed allergy error condition, but did not have a statistically significant impact on seeking legal advice or emotional response in the monitoring error condition. Neither the existence of a positive relationship nor an offer to waive costs had a statistically significant impact. CONCLUSIONS This study provides evidence that full disclosure is likely to have a positive effect or no effect on how patients respond to medical errors. The clinical outcome also influences patients' responses. The impact of an existing positive physician-patient relationship, or of waiving costs associated with the error remains uncertain. PMID:16808770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina
Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less
An error analysis perspective for patient alignment systems.
Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann
2013-09-01
This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.
Dental Students' Interpretations of Digital Panoramic Radiographs on Completely Edentate Patients.
Kratz, Richard J; Nguyen, Caroline T; Walton, Joanne N; MacDonald, David
2018-03-01
The ability of dental students to interpret digital panoramic radiographs (PANs) of edentulous patients has not been documented. The aim of this retrospective study was to compare the ability of second-year (D2) dental students with that of third- and fourth-year (D3-D4) dental students to interpret and identify positional errors in digital PANs obtained from patients with complete edentulism. A total of 169 digital PANs from edentulous patients were assessed by D2 (n=84) and D3-D4 (n=85) dental students at one Canadian dental school. The correctness of the students' interpretations was determined by comparison to a gold standard established by assessments of the same PANs by two experts (a graduate student in prosthodontics and an oral and maxillofacial radiologist). Data collected were from September 1, 2006, when digital radiography was implemented at the university, to December 31, 2012. Nearly all (95%) of the PANs were acceptable diagnostically despite a high proportion (92%) of positional errors detected. A total of 301 positional errors were identified in the sample. The D2 students identified significantly more (p=0.002) positional errors than the D3-D4 students. There was no significant difference (p=0.059) in the distribution of radiographic interpretation errors between the two student groups when compared to the gold standard. Overall, the category of extragnathic findings had the highest number of false negatives (43) reported. In this study, dental students interpreted digital PANs of edentulous patients satisfactorily, but they were more adept at identifying radiographic findings compared to positional errors. Students should be reminded to examine the entire radiograph thoroughly to ensure extragnathic findings are not missed and to recognize and report patient positional errors.
Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo
2013-01-01
The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Mori, Shinichiro; Shibayama, Kouichi; Tanimoto, Katsuyuki; Kumagai, Motoki; Matsuzaki, Yuka; Furukawa, Takuji; Inaniwa, Taku; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi
2012-09-01
Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of the head and neck, prostate and pelvis receiving carbon ion scanning beam treatment participated. The patient setup process takes orthogonal X-ray flat panel detector (FPD) images and the therapists adjust the patient table position in six degrees of freedom to register the reference position by manual or auto- (or both) registration functions. We calculated residual positional errors with the 2D-3D auto-registration function using the final patient setup orthogonal FPD images and treatment planning CT data. Residual error averaged over all patients in each fraction decreased from the initial to the last treatment fraction [1.09 mm/0.76° (averaged in the 1st and 2nd fractions) to 0.77 mm/0.61° (averaged in the 15th and 16th fractions)]. 2D-3D registration calculation time was 8.0 s on average throughout the treatment course. Residual errors in translation and rotation averaged over all patients as a function of date decreased with the passage of time (1.6 mm/1.2° in May 2011 to 0.4 mm/0.2° in December 2011). This retrospective residual positional error analysis shows that the accuracy of patient setup during the first clinical trials of carbon ion beam scanning therapy was good and improved with increasing therapist experience.
Cossich, Victor; Mallrich, Frédéric; Titonelli, Victor; de Sousa, Eduardo Branco; Velasques, Bruna; Salles, José Inácio
2014-01-01
To ascertain whether the proprioceptive deficit in the sense of joint position continues to be present when patients with a limb presenting a deficient anterior cruciate ligament (ACL) are assessed by testing their active reproduction of joint position, in comparison with the contralateral limb. Twenty patients with unilateral ACL tearing participated in the study. Their active reproduction of joint position in the limb with the deficient ACL and in the healthy contralateral limb was tested. Meta-positions of 20% and 50% of the maximum joint range of motion were used. Proprioceptive performance was determined through the values of the absolute error, variable error and constant error. Significant differences in absolute error were found at both of the positions evaluated, and in constant error at 50% of the maximum joint range of motion. When evaluated in terms of absolute error, the proprioceptive deficit continues to be present even when an active evaluation of the sense of joint position is made. Consequently, this sense involves activity of both intramuscular and tendon receptors.
Patient motion tracking in the presence of measurement errors.
Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter
2009-01-01
The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.
Initial clinical experience with a video-based patient positioning system.
Johnson, L S; Milliken, B D; Hadley, S W; Pelizzari, C A; Haraf, D J; Chen, G T
1999-08-01
To report initial clinical experience with an interactive, video-based patient positioning system that is inexpensive, quick, accurate, and easy to use. System hardware includes two black-and-white CCD cameras, zoom lenses, and a PC equipped with a frame grabber. Custom software is used to acquire and archive video images, as well as to display real-time subtraction images revealing patient misalignment in multiple views. Two studies are described. In the first study, video is used to document the daily setup histories of 5 head and neck patients. Time-lapse cine loops are generated for each patient and used to diagnose and correct common setup errors. In the second study, 6 twice-daily (BID) head and neck patients are positioned according to the following protocol: at AM setups conventional treatment room lasers are used; at PM setups lasers are used initially and then video is used for 1-2 minutes to fine-tune the patient position. Lateral video images and lateral verification films are registered off-line to compare the distribution of setup errors per patient, with and without video assistance. In the first study, video images were used to determine the accuracy of our conventional head and neck setup technique, i.e., alignment of lightcast marks and surface anatomy to treatment room lasers and the light field. For this initial cohort of patients, errors ranged from sigma = 5 to 7 mm and were patient-specific. Time-lapse cine loops of the images revealed sources of the error, and as a result, our localization techniques and immobilization device were modified to improve setup accuracy. After the improvements, conventional setup errors were reduced to sigma = 3 to 5 mm. In the second study, when a stereo pair of live subtraction images were introduced to perform daily "on-line" setup correction, errors were reduced to sigma = 1 to 3 mm. Results depended on patient health and cooperation and the length of time spent fine-tuning the position. An interactive, video-based patient positioning system was shown to reduce setup errors to within 1 to 3 mm in head and neck patients, without a significant increase in overall treatment time or labor-intensive procedures. Unlike retrospective portal image analysis, use of two live-video images provides the therapists with immediate feedback and allows for true 3-D positioning and correction of out-of-plane rotation before radiation is delivered. With significant improvement in head and neck alignment and the elimination of setup errors greater than 3 to 5 mm, margins associated with treatment volumes potentially can be reduced, thereby decreasing normal tissue irradiation.
Assessing Working Memory in Mild Cognitive Impairment with Serial Order Recall.
Emrani, Sheina; Libon, David J; Lamar, Melissa; Price, Catherine C; Jefferson, Angela L; Gifford, Katherine A; Hohman, Timothy J; Nation, Daniel A; Delano-Wood, Lisa; Jak, Amy; Bangen, Katherine J; Bondi, Mark W; Brickman, Adam M; Manly, Jennifer; Swenson, Rodney; Au, Rhoda
2018-01-01
Working memory (WM) is often assessed with serial order tests such as repeating digits backward. In prior dementia research using the Backward Digit Span Test (BDT), only aggregate test performance was examined. The current research tallied primacy/recency effects, out-of-sequence transposition errors, perseverations, and omissions to assess WM deficits in patients with mild cognitive impairment (MCI). Memory clinic patients (n = 66) were classified into three groups: single domain amnestic MCI (aMCI), combined mixed domain/dysexecutive MCI (mixed/dys MCI), and non-MCI where patients did not meet criteria for MCI. Serial order/WM ability was assessed by asking participants to repeat 7 trials of five digits backwards. Serial order position accuracy, transposition errors, perseverations, and omission errors were tallied. A 3 (group)×5 (serial position) repeated measures ANOVA yielded a significant group×trial interaction. Follow-up analyses found attenuation of the recency effect for mixed/dys MCI patients. Mixed/dys MCI patients scored lower than non-MCI patients for serial position 3 (p < 0.003) serial position 4 (p < 0.002); and lower than both group for serial position 5 (recency; p < 0.002). Mixed/dys MCI patients also produced more transposition errors than both groups (p < 0.010); and more omissions (p < 0.020), and perseverations errors (p < 0.018) than non-MCI patients. The attenuation of a recency effect using serial order parameters obtained from the BDT may provide a useful operational definition as well as additional diagnostic information regarding working memory deficits in MCI.
A Noninvasive Body Setup Method for Radiotherapy by Using a Multimodal Image Fusion Technique
Zhang, Jie; Chen, Yunxia; Wang, Chenchen; Chu, Kaiyue; Jin, Jianhua; Huang, Xiaolin; Guan, Yue; Li, Weifeng
2017-01-01
Purpose: To minimize the mismatch error between patient surface and immobilization system for tumor location by a noninvasive patient setup method. Materials and Methods: The method, based on a point set registration, proposes a shift for patient positioning by integrating information of the computed tomography scans and that of optical surface landmarks. An evaluation of the method included 3 areas: (1) a validation on a phantom by estimating 100 known mismatch errors between patient surface and immobilization system. (2) Five patients with pelvic tumors were considered. The tumor location errors of the method were measured using the difference between the proposal shift of cone-beam computed tomography and that of our method. (3) The collected setup data from the evaluation of patients were compared with the published performance data of other 2 similar systems. Results: The phantom verification results showed that the method was capable of estimating mismatch error between patient surface and immobilization system in a precision of <0.22 mm. For the pelvic tumor, the method had an average tumor location error of 1.303, 2.602, and 1.684 mm in left–right, anterior–posterior, and superior–inferior directions, respectively. The performance comparison with other 2 similar systems suggested that the method had a better positioning accuracy for pelvic tumor location. Conclusion: By effectively decreasing an interfraction uncertainty source (mismatch error between patient surface and immobilization system) in radiotherapy, the method can improve patient positioning precision for pelvic tumor. PMID:29333959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imura, K; Fujibuchi, T; Hirata, H
Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobb, Eric, E-mail: eclobb2@gmail.com
2014-04-01
The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less
Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F
2010-06-01
Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuangrod, T; Simpson, J; Greer, P
Purpose: A real-time patient treatment delivery verification system using EPID (Watchdog) has been developed as an advanced patient safety tool. In a pilot study data was acquired for 119 prostate and head and neck (HN) IMRT patient deliveries to generate body-site specific action limits using statistical process control. The purpose of this study is to determine the sensitivity of Watchdog to detect clinically significant errors during treatment delivery. Methods: Watchdog utilizes a physics-based model to generate a series of predicted transit cine EPID images as a reference data set, and compares these in real-time to measured transit cine-EPID images acquiredmore » during treatment using chi comparison (4%, 4mm criteria) after the initial 2s of treatment to allow for dose ramp-up. Four study cases were used; dosimetric (monitor unit) errors in prostate (7 fields) and HN (9 fields) IMRT treatments of (5%, 7%, 10%) and positioning (systematic displacement) errors in the same treatments of (5mm, 7mm, 10mm). These errors were introduced by modifying the patient CT scan and re-calculating the predicted EPID data set. The error embedded predicted EPID data sets were compared to the measured EPID data acquired during patient treatment. The treatment delivery percentage (measured from 2s) where Watchdog detected the error was determined. Results: Watchdog detected all simulated errors for all fields during delivery. The dosimetric errors were detected at average treatment delivery percentage of (4%, 0%, 0%) and (7%, 0%, 0%) for prostate and HN respectively. For patient positional errors, the average treatment delivery percentage was (52%, 43%, 25%) and (39%, 16%, 6%). Conclusion: These results suggest that Watchdog can detect significant dosimetric and positioning errors in prostate and HN IMRT treatments in real-time allowing for treatment interruption. Displacements of the patient require longer to detect however incorrect body site or very large geographic misses will be detected rapidly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frame, C; Ding, G
Purpose: To quantify patient setups errors based on bony anatomy registration rather than 3D tumor alignment for SBRT lung treatments. Method: A retrospective study was performed for patients treated with lung SBRT and imaged with kV cone beam computed tomography (kV-CBCT) image-guidance. Daily CBCT images were registered to treatment planning CTs based on bony anatomy alignment and then inter-fraction tumor movement was evaluated by comparing shift in the tumor center in the medial-lateral, anterior-posterior, and superior-inferior directions. The PTV V100% was evaluated for each patient based on the average daily tumor displacement to assess the impact of the positioning errormore » on the target coverage when the registrations were based on bony anatomy. Of the 35 patients studied, 15 were free-breathing treatments, 10 used abdominal compression with a stereotactic body frame, and the remaining 10 were performed with BodyFIX vacuum bags. Results: For free-breathing treatments, the range of tumor displacement error is between 1–6 mm in the medial-lateral, 1–13 mm in the anterior-posterior, and 1–7 mm in the superior-inferior directions. These positioning errors lead to 6–22% underdose coverage for PTV - V100% . Patients treated with abdominal compression immobilization showed positional errors of 0–4mm mediallaterally, 0–3mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% underdose ranging between 6–17%. For patients immobilized with the vacuum bags, the positional errors were found to be 0–1 mm medial-laterally, 0–1mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% under dose ranging between 5–6% only. Conclusion: It is necessary to align the tumor target by using 3D image guidance to ensure adequate tumor coverage before performing SBRT lung treatments. The BodyFIX vacuum bag immobilization method has the least positioning errors among the three methods studied when bony anatomy is used for registration.« less
Taylor, C; Parker, J; Stratford, J; Warren, M
2018-05-01
Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.
Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf
2011-06-01
To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Ning, Hsiao-Chen; Lin, Chia-Ni; Chiu, Daniel Tsun-Yee; Chang, Yung-Ta; Wen, Chiao-Ni; Peng, Shu-Yu; Chu, Tsung-Lan; Yu, Hsin-Ming; Wu, Tsu-Lan
2016-01-01
Background Accurate patient identification and specimen labeling at the time of collection are crucial steps in the prevention of medical errors, thereby improving patient safety. Methods All patient specimen identification errors that occurred in the outpatient department (OPD), emergency department (ED), and inpatient department (IPD) of a 3,800-bed academic medical center in Taiwan were documented and analyzed retrospectively from 2005 to 2014. To reduce such errors, the following series of strategies were implemented: a restrictive specimen acceptance policy for the ED and IPD in 2006; a computer-assisted barcode positive patient identification system for the ED and IPD in 2007 and 2010, and automated sample labeling combined with electronic identification systems introduced to the OPD in 2009. Results Of the 2000345 specimens collected in 2005, 1023 (0.0511%) were identified as having patient identification errors, compared with 58 errors (0.0015%) among 3761238 specimens collected in 2014, after serial interventions; this represents a 97% relative reduction. The total number (rate) of institutional identification errors contributed from the ED, IPD, and OPD over a 10-year period were 423 (0.1058%), 556 (0.0587%), and 44 (0.0067%) errors before the interventions, and 3 (0.0007%), 52 (0.0045%) and 3 (0.0001%) after interventions, representing relative 99%, 92% and 98% reductions, respectively. Conclusions Accurate patient identification is a challenge of patient safety in different health settings. The data collected in our study indicate that a restrictive specimen acceptance policy, computer-generated positive identification systems, and interdisciplinary cooperation can significantly reduce patient identification errors. PMID:27494020
Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming; Cygler,
The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and themore » current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99{sup th} percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.« less
Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank
2015-01-01
Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no‐action–level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record‐and‐verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact of the skin mobility on the anteroposterior patient setup reproducibility in whole‐breast radiotherapy (WBRT) is unknown. In this study, we therefore investigated the potential of fixed vertical couch position‐based patient setup in WBRT. The possibility to introduce a threshold for correction of the systematic setup errors was also explored. We measured the anteroposterior, mediolateral, and superior–inferior setup errors during fractions 1–12 and weekly thereafter with tangential angled single modality paired imaging. These setup data were used to simulate the residual setup errors of the NAL protocol, the fixed vertical couch position protocol, and the fixed‐action–level protocol with different correction thresholds. Population statistics of the setup errors of 20 breast cancer patients and 20 breast cancer patients with additional regional lymph node (LN) irradiation were calculated to determine the setup margins of each off‐line correction protocol. Our data showed the potential of the fixed vertical couch position protocol to restrict the systematic and random anteroposterior residual setup errors to 1.8 mm and 2.2 mm, respectively. Compared to the NAL protocol, a correction threshold of 2.5 mm reduced the frequency of mediolateral and superior–inferior setup corrections with 40% and 63%, respectively. The implementation of the correction threshold did not deteriorate the accuracy of the off‐line setup correction compared to the NAL protocol. The combination of the fixed vertical couch position protocol, for correction of the anteroposterior setup error, and the fixed‐action–level protocol with 2.5 mm correction threshold, for correction of the mediolateral and the superior–inferior setup errors, was proved to provide adequate and comparable patient setup accuracy in WBRT and WBRT with additional LN irradiation. PACS numbers: 87.53.Kn, 87.57.‐s
Sensitivity and specificity of dosing alerts for dosing errors among hospitalized pediatric patients
Stultz, Jeremy S; Porter, Kyle; Nahata, Milap C
2014-01-01
Objectives To determine the sensitivity and specificity of a dosing alert system for dosing errors and to compare the sensitivity of a proprietary system with and without institutional customization at a pediatric hospital. Methods A retrospective analysis of medication orders, orders causing dosing alerts, reported adverse drug events, and dosing errors during July, 2011 was conducted. Dosing errors with and without alerts were identified and the sensitivity of the system with and without customization was compared. Results There were 47 181 inpatient pediatric orders during the studied period; 257 dosing errors were identified (0.54%). The sensitivity of the system for identifying dosing errors was 54.1% (95% CI 47.8% to 60.3%) if customization had not occurred and increased to 60.3% (CI 54.0% to 66.3%) with customization (p=0.02). The sensitivity of the system for underdoses was 49.6% without customization and 60.3% with customization (p=0.01). Specificity of the customized system for dosing errors was 96.2% (CI 96.0% to 96.3%) with a positive predictive value of 8.0% (CI 6.8% to 9.3). All dosing errors had an alert over-ridden by the prescriber and 40.6% of dosing errors with alerts were administered to the patient. The lack of indication-specific dose ranges was the most common reason why an alert did not occur for a dosing error. Discussion Advances in dosing alert systems should aim to improve the sensitivity and positive predictive value of the system for dosing errors. Conclusions The dosing alert system had a low sensitivity and positive predictive value for dosing errors, but might have prevented dosing errors from reaching patients. Customization increased the sensitivity of the system for dosing errors. PMID:24496386
Walch, Gilles; Vezeridis, Peter S; Boileau, Pascal; Deransart, Pierric; Chaoui, Jean
2015-02-01
Glenoid component positioning is a key factor for success in total shoulder arthroplasty. Three-dimensional (3D) measurements of glenoid retroversion, inclination, and humeral head subluxation are helpful tools for preoperative planning. The purpose of this study was to assess the reliability and precision of a novel surgical method for placing the glenoid component with use of patient-specific templates created by preoperative surgical planning and 3D modeling. A preoperative computed tomography examination of cadaveric scapulae (N = 18) was performed. The glenoid implants were virtually placed, and patient-specific guides were created to direct the guide pin into the desired orientation and position in the glenoid. The 3D orientation and position of the guide pin were evaluated by performing a postoperative computed tomography scan for each scapula. The differences between the preoperative planning and the achieved result were analyzed. The mean error in 3D orientation of the guide pin was 2.39°, the mean entry point position error was 1.05 mm, and the mean inclination angle error was 1.42°. The average error in the version angle was 1.64°. There were no technical difficulties or complications related to use of patient-specific guides for guide pin placement. Quantitative analysis of guide pin positioning demonstrated a good correlation between preoperative planning and the achieved position of the guide pin. This study demonstrates the reliability and precision of preoperative planning software and patient-specific guides for glenoid component placement in total shoulder arthroplasty. Copyright © 2015. Published by Elsevier Inc.
Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience.
Cravo Sá, Ana; Fermento, Ana; Neves, Dalila; Ferreira, Sara; Silva, Teresa; Marques Coelho, Carina; Vaandering, Aude; Roma, Ana; Quaresma, Sérgio; Bonnarens, Emmanuel
2018-01-01
In this study, we intend to compare two different setup procedures for female breast cancer patients. Imaging in radiotherapy provides a precise localization of the tumour, increasing the accuracy of the treatment delivery in breast cancer. Twenty breast cancer patients who underwent whole breast radiotherapy (WBRT) were selected for this study. Patients were divided into two groups of ten. Group one (G1) was positioned by tattoos and then the patient positioning was adjusted with the aid of AlignRT (Vision RT, London, UK). In group two (G2), patients were positioned only by tattoos. For both groups, the first 15 fractions were analyzed, a daily kilovoltage (kV) cone beam computed tomography (CBCT) image was made and then the rotational and translational displacements and, posteriorly, the systematic ( Σ ) and random ( σ ) errors were analyzed. The comparison of CBCT displacements for the two groups showed a statistically significant difference in the translational left-right (LR) direction ( ρ = 0.03), considering that the procedure with AlignRT system has smaller lateral displacements. The results of systematic ( Σ ) and random ( σ ) errors showed that for translational displacements the group positioned only by tattoos (G2) demonstrated higher values of errors when compared with the group positioned with the aid of AlignRT (G1). AlignRT could help the positioning of breast cancer patients; however, it should be used with another imaging method.
Real-time auto-adaptive margin generation for MLC-tracked radiotherapy
NASA Astrophysics Data System (ADS)
Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.
2017-01-01
In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.
ERIC Educational Resources Information Center
Weinzierl, Christiane; Kerkhoff, Georg; van Eimeren, Lucia; Keller, Ingo; Stenneken, Prisca
2012-01-01
Unilateral spatial neglect frequently involves a lateralised reading disorder, neglect dyslexia (ND). Reading of single words in ND is characterised by left-sided omissions and substitutions of letters. However, it is unclear whether the distribution of error types and positions within a word shows a unique pattern of ND when directly compared to…
NASA Astrophysics Data System (ADS)
Kim, Min-Joo; Suh, Tae-Suk; Cho, Woong; Jung, Won-Gyun
2015-07-01
In this study, a potential validation tool for compensating for the patient positioning error was developed by using 2D/3D and 3D/3D image registration. For 2D/3D registration, digitallyreconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR, so we adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and the orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and the two orthogonal images of an anthropomorphic phantom and of the head and neck of a cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT images were applied. After registration, the translation and the rotation factors were calculated to position a couch to be movable in six dimensions. Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23 ° ± 0.40 ° for rotations were acquired by using 2D/3D registration with the anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00 ° ± 0.2 ° for rotations were acquired by using CT image sets. We demonstrated that this validation tool could compensate for patient positioning errors. In addition, this research could be a fundamental step in compensating for patient positioning errors at the Korea Heavy-ion Medical Accelerator Treatment Center.
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
Brain State Before Error Making in Young Patients With Mild Spastic Cerebral Palsy.
Hakkarainen, Elina; Pirilä, Silja; Kaartinen, Jukka; van der Meere, Jaap J
2015-10-01
In the present experiment, children with mild spastic cerebral palsy and a control group carried out a memory recognition task. The key question was if errors of the patient group are foreshadowed by attention lapses, by weak motor preparation, or by both. Reaction times together with event-related potentials associated with motor preparation (frontal late contingent negative variation), attention (parietal P300), and response evaluation (parietal error-preceding positivity) were investigated in instances where 3 subsequent correct trials preceded an error. The findings indicated that error responses of the patient group are foreshadowed by weak motor preparation in correct trials directly preceding an error. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, F
Purpose: Knowing MLC leaf positioning error over the course of treatment would be valuable for treatment planning, QA design, and patient safety. The objective of the current study was to quantify the MLC positioning accuracy for VMAT delivery of head and neck treatment plans. Methods: A total of 837 MLC log files were collected from 14 head and neck cancer patients undergoing full arc VMAT treatment on one Varian Trilogy machine. The actual and planned leaf gaps were extracted from the retrieved MLC log files. For a given patient, the leaf gap error percentage (LGEP), defined as the ratio ofmore » the actual leaf gap over the planned, was evaluated for each leaf pair at all the gantry angles recorded over the course of the treatment. Statistics describing the distribution of the largest LGEP (LLGEP) of the 60 leaf pairs including the maximum, minimum, mean, Kurtosis, and skewness were evaluated. Results: For the 14 studied patients, their PTV located at tonsil, base of tongue, larynx, supraglottis, nasal cavity, and thyroid gland with volume ranging from 72.0 cm{sup 3} to 602.0 cm{sup 3}. The identified LLGEP differed between patients. It ranged from 183.9% to 457.7% with a mean of 368.6%. For the majority of the patients, the LLGEP distributions peaked at non-zero positions and showed no obvious dependence on gantry rotations. Kurtosis and skewness, with minimum/maximum of 66.6/217.9 and 6.5/12.6, respectively, suggested relatively more peaked while right-skewed leaf error distribution pattern. Conclusion: The results indicate pattern of MLC leaf gap error differs between patients of lesion located at similar anatomic site. Understanding the systemic mechanisms underlying these observed error patterns necessitates examining more patient-specific plan parameters in a large patient cohort setting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laaksomaa, Marko, E-mail: marko.laaksomaa@pshp.fi; Kapanen, Mika; Department of Medical Physics, Tampere University Hospital
We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance.more » The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8 mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3 mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1 mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients.« less
Lee, Hoo-Yeon; Hahm, Myung-Il; Lee, Sang Gyu
2018-04-04
The purpose of this study was to examine undergraduate medical students' perceptions and intentions regarding patient safety during clinical clerkships. Cross-sectional study administered in face-to-face interviews using modified the Medical Student Safety Attitudes and Professionalism Survey (MSSAPS) from three colleges of medicine in Korea. We assessed medical students' perceptions of the cultures ('safety', 'teamwork', and 'error disclosure'), 'behavioural intentions' concerning patient safety issues and 'overall patient safety'. Confirmatory factor analysis and Spearman's correlation analyses was performed. In total, 194(91.9%) of the 211 third-year undergraduate students participated. 78% of medical students reported that the quality of care received by patients was impacted by teamwork during clinical rotations. Regarding error disclosure, positive scores ranged from 10% to 74%. Except for one question asking whether the disclosure of medical errors was an important component of patient safety (74%), the percentages of positive scores for all the other questions were below 20%. 41.2% of medical students have intention to disclose it when they saw a medical error committed by another team member. Many students had difficulty speaking up about medical errors. Error disclosure guidelines and educational efforts aimed at developing sophisticated communication skills are needed. This study may serve as a reference for other institutions planning patient safety education in their curricula. Assessing student perceptions of safety culture can provide clerkship directors and clinical service chiefs with information that enhances the educational environment and promotes patient safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W; Dorbu, G
2016-06-15
Purpose: To evaluate clinical usefulness of AlignRT (Vision RT Ltd., London, UK) in reducing patient positioning errors in breast irradiation. Methods: 60 patients undergoing whole breast irradiation were selected for this study. Patients were treated to the left or right breast lying on Qfix Access breast board (Qfix, Avondale, PA) in supine position for 28 fractions using tangential fields. 30 patients were aligned using AlignRT by aligning a breast surface region of interest (ROI) to the same area from a reference surface image extracted from planning CT. When the patient’s surface image deviated from the reference by more than 3mmmore » on one or more translational and rotational directions, a new reference was acquired using AlignRT in-room cameras. The other 30 patients were aligned to the skin marks with room lasers. On-Board MV portal images of medial field were taken daily and matched to the DRRs. The magnitude and frequency of positioning errors were determined from measured translational shifts. Kolmogorov-Smirnov test was used to evaluate statistical differences of positional accuracy and precision between AlignRT and non-AlignRT patients. Results: The percentage of port images with no shift required was 46.5% and 27.0% in vertical, 49.8% and 25.8% in longitudinal, 47.6% and 28.5% in lateral for AlignRT and non-AlignRT patients, respectively. The percentage of port images requiring more than 3mm shifts was 18.1% and 35.1% in vertical, 28.6% and 50.8% in longitudinal, 11.3% and 24.2% in lateral for AlignRT and non-AlignRT patients, respectively. Kolmogorov-Smirnov test showed that there were significant differences between the frequency distributions of AlignRT and non-AlignRT in vertical, longitudinal, and lateral shifts. Conclusion: As confirmed by port images, AlignRT-assisted patient positioning can significantly reduce the frequency and magnitude of patient setup errors in breast irradiation compared to the use of lasers and skin marks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
Hansen, Helle; Nielsen, Berit Kjærside; Boejen, Annette; Vestergaard, Anne
2018-06-01
The aim of this study was to investigate if teaching patients about positioning before radiotherapy treatment would (a) reduce the residual rotational set-up errors, (b) reduce the number of repositionings and (c) improve patients' sense of control by increasing self-efficacy and reducing distress. Patients were randomized to either standard care (control group) or standard care and a teaching session combining visual aids and practical exercises (intervention group). Daily images from the treatment sessions were evaluated off-line. Both groups filled in a questionnaire before and at the end of the treatment course on various aspects of cooperation with the staff regarding positioning. Comparisons of residual rotational set-up errors showed an improvement in the intervention group compared to the control group. No significant differences were found in number of repositionings, self-efficacy or distress. Results show that it is possible to teach patients about positioning and thereby improve precision in positioning. Teaching patients about positioning did not seem to affect self-efficacy or distress scores at baseline and at the end of the treatment course.
Impact of miscommunication in medical dispute cases in Japan.
Aoki, Noriaki; Uda, Kenji; Ohta, Sachiko; Kiuchi, Takahiro; Fukui, Tsuguya
2008-10-01
Medical disputes between physicians and patients can occur in non-negligent circumstances and may even result in compensation. We reviewed medical dispute cases to investigate the impact of miscommunication, especially in non-negligent situations. Systematic review of medical dispute records was done to identify the presence of the adverse events, the type of medical error, preventability, the perception of miscommunication by patients and the amount of compensation. The study was performed in Kyoto, Japan. We analyzed 155 medical dispute cases. We compared (i) frequency of miscommunication cases between negligent and non-negligent cases, and (ii) proportions of positive compensation between non-miscommunication and miscommunication cases stratified according to the existence of negligence. Multivariate logistic analysis was conducted to assess the independent factors related to positive compensation. Approximately 40% of the medical disputes (59/155) did not involve medical error (i.e. non-negligent). In the non-negligent cases, 64.4% (38/59) involved miscommunication, whereas in dispute cases with errors, 21.9% (21/96) involved miscommunications. (P
Kim, Myoung Soo
2012-08-01
The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.
Li, Jie; Fang, Xiangming
2010-01-01
Automated geocoding of patient addresses is an important data assimilation component of many spatial epidemiologic studies. Inevitably, the geocoding process results in positional errors. Positional errors incurred by automated geocoding tend to reduce the power of tests for disease clustering and otherwise affect spatial analytic methods. However, there are reasons to believe that the errors may often be positively spatially correlated and that this may mitigate their deleterious effects on spatial analyses. In this article, we demonstrate explicitly that the positional errors associated with automated geocoding of a dataset of more than 6000 addresses in Carroll County, Iowa are spatially autocorrelated. Furthermore, through two simulation studies of disease processes, including one in which the disease process is overlain upon the Carroll County addresses, we show that spatial autocorrelation among geocoding errors maintains the power of two tests for disease clustering at a level higher than that which would occur if the errors were independent. Implications of these results for cluster detection, privacy protection, and measurement-error modeling of geographic health data are discussed. PMID:20087879
Tsuji, Toshikazu; Nagata, Kenichiro; Kawashiri, Takehiro; Yamada, Takaaki; Irisa, Toshihiro; Murakami, Yuko; Kanaya, Akiko; Egashira, Nobuaki; Masuda, Satohiro
2016-01-01
There are many reports regarding various medical institutions' attempts at the prevention of dispensing errors. However, the relationship between occurrence timing of dispensing errors and subsequent danger to patients has not been studied under the situation according to the classification of drugs by efficacy. Therefore, we analyzed the relationship between position and time regarding the occurrence of dispensing errors. Furthermore, we investigated the relationship between occurrence timing of them and danger to patients. In this study, dispensing errors and incidents in three categories (drug name errors, drug strength errors, drug count errors) were classified into two groups in terms of its drug efficacy (efficacy similarity (-) group, efficacy similarity (+) group), into three classes in terms of the occurrence timing of dispensing errors (initial phase errors, middle phase errors, final phase errors). Then, the rates of damage shifting from "dispensing errors" to "damage to patients" were compared as an index of danger between two groups and among three classes. Consequently, the rate of damage in "efficacy similarity (-) group" was significantly higher than that in "efficacy similarity (+) group". Furthermore, the rate of damage is the highest in "initial phase errors", the lowest in "final phase errors" among three classes. From the results of this study, it became clear that the earlier the timing of dispensing errors occurs, the more severe the damage to patients becomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxim, Peter G.; Loo, Billy W.; Murphy, James D.
2011-11-15
Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less
Flanagan, Emma C; Wong, Stephanie; Dutt, Aparna; Tu, Sicong; Bertoux, Maxime; Irish, Muireann; Piguet, Olivier; Rao, Sulakshana; Hodges, John R; Ghosh, Amitabha; Hornberger, Michael
2016-01-01
Episodic memory recall processes in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) can be similarly impaired, whereas recognition performance is more variable. A potential reason for this variability could be false-positive errors made on recognition trials and whether these errors are due to amnesia per se or a general over-endorsement of recognition items regardless of memory. The current study addressed this issue by analysing recognition performance on the Rey Auditory Verbal Learning Test (RAVLT) in 39 bvFTD, 77 AD and 61 control participants from two centers (India, Australia), as well as disinhibition assessed using the Hayling test. Whereas both AD and bvFTD patients were comparably impaired on delayed recall, bvFTD patients showed intact recognition performance in terms of the number of correct hits. However, both patient groups endorsed significantly more false-positives than controls, and bvFTD and AD patients scored equally poorly on a sensitivity index (correct hits-false-positives). Furthermore, measures of disinhibition were significantly associated with false positives in both groups, with a stronger relationship with false-positives in bvFTD. Voxel-based morphometry analyses revealed similar neural correlates of false positive endorsement across bvFTD and AD, with both patient groups showing involvement of prefrontal and Papez circuitry regions, such as medial temporal and thalamic regions, and a DTI analysis detected an emerging but non-significant trend between false positives and decreased fornix integrity in bvFTD only. These findings suggest that false-positive errors on recognition tests relate to similar mechanisms in bvFTD and AD, reflecting deficits in episodic memory processes and disinhibition. These findings highlight that current memory tests are not sufficient to accurately distinguish between bvFTD and AD patients.
Balter, Peter; Morice, Rodolfo C.; Choi, Bum; Kudchadker, Rajat J.; Bucci, Kara; Chang, Joe Y.; Dong, Lei; Tucker, Susan; Vedam, Sastry; Briere, Tina; Starkschall, George
2008-01-01
This study aimed to validate and implement a methodology in which fiducials implanted in the periphery of lung tumors can be used to reduce uncertainties in tumor location. Alignment software that matches marker positions on two‐dimensional (2D) kilovoltage portal images to positions on three‐dimensional (3D) computed tomography data sets was validated using static and moving phantoms. This software also was used to reduce uncertainties in tumor location in a patient with fiducials implanted in the periphery of a lung tumor. Alignment of fiducial locations in orthogonal projection images with corresponding fiducial locations in 3D data sets can position both static and moving phantoms with an accuracy of 1 mm. In a patient, alignment based on fiducial locations reduced systematic errors in the left–right direction by 3 mm and random errors by 2 mm, and random errors in the superior–inferior direction by 3 mm as measured by anterior–posterior cine images. Software that matches fiducial markers on 2D and 3D images is effective for aligning both static and moving fiducials before treatment and can be implemented to reduce patient setup uncertainties. PACS number: 81.40.Wx
Jani, Shyam S; Low, Daniel A; Lamb, James M
2015-01-01
To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Matsui, Mié; Sumiyoshi, Tomiki; Yuuki, Hiromi; Kato, Kanade; Kurachi, Masayoshi
2006-08-30
The purpose of this study was to examine event schema, the conceptualization of past experience based on script theory, in Japanese patients with schizophrenia. Subjects comprised 25 patients meeting DSM-IV criteria for schizophrenia and 31 normal individuals who gave informed consent. This experiment used three script tasks measuring free recall, frequency judgment, and sequencing of events encountered when shopping at a supermarket. Patients with schizophrenia performed significantly worse than did control subjects on all tasks. In particular, patients committed more errors when judging the events that "occasionally happen" in the frequency judgment task. On the other hand, these patients judged "seldom occurring events" relatively well. Patients with schizophrenia made more errors than normal people in the free recall task. Specifically, patients made more intrusion errors and failed to close scripts. There was a negative correlation between scores the Scale for the Assessment of Positive Symptoms and performance on the free recall task. The results of the present study suggest that event schemas (semantic structure) in patients with schizophrenia are impaired which may be associated with positive symptoms and frontal lobe dysfunction.
Yan, M; Lovelock, D; Hunt, M; Mechalakos, J; Hu, Y; Pham, H; Jackson, A
2013-12-01
To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or -0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1-2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39-16.8) cGy, or 10.1 (0.8-32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%-9.06%) and 10.2% (0.7%-63.6%), respectively. Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%.
Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A.
2013-01-01
Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%. PMID:24320510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamezawa, H; Fujimoto General Hospital, Miyakonojo, Miyazaki; Arimura, H
Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e.,more » averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.« less
Ingram, W Scott; Yang, Jinzhong; Wendt, Richard; Beadle, Beth M; Rao, Arvind; Wang, Xin A; Court, Laurence E
2017-08-01
To assess the influence of non-rigid anatomy and differences in patient positioning between CT acquisition and endoscopic examination on endoscopy-CT image registration in the head and neck. Radiotherapy planning CTs and 31-35 daily treatment-room CTs were acquired for nineteen patients. Diagnostic CTs were acquired for thirteen of the patients. The surfaces of the airways were segmented on all scans and triangular meshes were created to render virtual endoscopic images with a calibrated pinhole model of an endoscope. The virtual images were used to take projective measurements throughout the meshes, with reference measurements defined as those taken on the planning CTs and test measurements defined as those taken on the daily or diagnostic CTs. The influence of non-rigid anatomy was quantified by 3D distance errors between reference and test measurements on the daily CTs, and the influence of patient positioning was quantified by 3D distance errors between reference and test measurements on the diagnostic CTs. The daily CT measurements were also used to investigate the influences of camera-to-surface distance, surface angle, and the interval of time between scans. Average errors in the daily CTs were 0.36 ± 0.61 cm in the nasal cavity, 0.58 ± 0.83 cm in the naso- and oropharynx, and 0.47 ± 0.73 cm in the hypopharynx and larynx. Average errors in the diagnostic CTs in those regions were 0.52 ± 0.69 cm, 0.65 ± 0.84 cm, and 0.69 ± 0.90 cm, respectively. All CTs had errors heavily skewed towards 0, albeit with large outliers. Large camera-to-surface distances were found to increase the errors, but the angle at which the camera viewed the surface had no effect. The errors in the Day 1 and Day 15 CTs were found to be significantly smaller than those in the Day 30 CTs (P < 0.05). Inconsistencies of patient positioning have a larger influence than non-rigid anatomy on projective measurement errors. In general, these errors are largest when the camera is in the superior pharynx, where it sees large distances and a lot of muscle motion. The errors are larger when the interval of time between CT acquisitions is longer, which suggests that the interval of time between the CT acquisition and the endoscopic examination should be kept short. The median errors found in this study are comparable to acceptable levels of uncertainty in deformable CT registration. Large errors are possible even when image alignment is very good, indicating that projective measurements must be made carefully to avoid these outliers. © 2017 American Association of Physicists in Medicine.
Vogel, P; Rüschoff, J; Kümmel, S; Zirngibl, H; Hofstädter, F; Hohenberger, W; Jauch, K W
2000-01-01
We evaluated the incidence and prognostic relevance of microscopic intraperitoneal tumor cell dissemination of colon cancer in comparison with dissemination of gastric cancer as a rational for additive intraperitoneal therapy. Peritoneal washouts of 90 patients with colon and 111 patients with gastric cancer were investigated prospectively. Sixty patients with benign diseases and 8 patients with histologically proven gross visible peritoneal carcinomatosis served as controls. Intraoperatively, 100 ml of warm NaCl 0.9 percent were instilled and 20 ml were reaspirated. In all patients hematoxylin and eosin staining (conventional cytology) was performed. Additionally, in 36 patients with colon cancer and 47 patients with gastric cancer, immunostaining with the HEA-125 antibody (immunocytology) was prepared. The results of cytology were assessed for an association with TNM category and cancer grade, based on all patients, and with patient survival, among the R0 resected patients. In conventional cytology 35.5 percent (32/90) of patients with colon cancer and 42.3 percent (47/111) of patients with gastric cancer had a positive cytology. In immunocytology 47.2 percent (17/36) of patients with colon cancer and 46.8 percent (22/47) of patients with gastric cancer were positive. In colon cancer, positive conventional cytology was associated with pT and M category (P = 0.044 and P = 0.0002), whereas immunocytology was only associated with M category (P = 0.007). No association was found between nodal status and immunocytology in colon cancer and with the grading. There was a statistically significant correlation between pT M category and conventional and immunocytology in gastric cancer (P < 0.0015/P = 0.007 and P < 0.001/P = 0.009, respectively). Positive immunocytology was additionally associated with pN category (P = 0.05). In a univariate analysis of R0 resected patients (no residual tumor), positive immunocytology was significantly related to an unfavorable prognosis in patients with gastric cancer only (n = 30). Mean survival time was significantly increased in patients with gastric cancer with negative cytology compared with positive cytology (1,205 (standard error of the mean, 91) vs. 771 (standard error of the mean, 147) days; P = 0.007) but not in patients with colon cancer (1,215 (standard error of the mean, 95) vs. 1,346 (standard error of the mean, 106) days; P = 0.55). Because microscopic peritoneal dissemination influences survival time after R0 resections only in patients with gastric but not with colon cancer, our results may provide a basis for a decision on additive, prophylactic (intraperitoneal) therapy in gastric but not colon cancer.
Performance monitoring and error significance in patients with obsessive-compulsive disorder.
Endrass, Tanja; Schuermann, Beate; Kaufmann, Christan; Spielberg, Rüdiger; Kniesche, Rainer; Kathmann, Norbert
2010-05-01
Performance monitoring has been consistently found to be overactive in obsessive-compulsive disorder (OCD). The present study examines whether performance monitoring in OCD is adjusted with error significance. Therefore, errors in a flanker task were followed by neutral (standard condition) or punishment feedbacks (punishment condition). In the standard condition patients had significantly larger error-related negativity (ERN) and correct-related negativity (CRN) ampliudes than controls. But, in the punishment condition groups did not differ in ERN and CRN amplitudes. While healthy controls showed an amplitude enhancement between standard and punishment condition, OCD patients showed no variation. In contrast, group differences were not found for the error positivity (Pe): both groups had larger Pe amplitudes in the punishment condition. Results confirm earlier findings of overactive error monitoring in OCD. The absence of a variation with error significance might indicate that OCD patients are unable to down-regulate their monitoring activity according to external requirements. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Suh, T; Cho, W
Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP)more » and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.« less
Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji
2015-08-01
To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.
Schwappach, David L B; Frank, Olga; Davis, Rachel E
2013-10-01
Various authorities recommend the participation of patients in promoting patient safety, but little is known about health care professionals' (HCPs') attitudes towards patients' involvement in safety-related behaviours. To investigate how HCPs evaluate patients' behaviours and HCP responses to patient involvement in the behaviour, relative to different aspects of the patient, the involved HCP and the potential error. Cross-sectional fractional factorial survey with seven factors embedded in two error scenarios (missed hand hygiene, medication error). Each survey included two randomized vignettes that described the potential error, a patient's reaction to that error and the HCP response to the patient. Twelve hospitals in Switzerland. A total of 1141 HCPs (response rate 45%). Approval of patients' behaviour, HCP response to the patient, anticipated effects on the patient-HCP relationship, HCPs' support for being asked the question, affective response to the vignettes. Outcomes were measured on 7-point scales. Approval of patients' safety-related interventions was generally high and largely affected by patients' behaviour and correct identification of error. Anticipated effects on the patient-HCP relationship were much less positive, little correlated with approval of patients' behaviour and were mainly determined by the HCP response to intervening patients. HCPs expressed more favourable attitudes towards patients intervening about a medication error than about hand sanitation. This study provides the first insights into predictors of HCPs' attitudes towards patient engagement in safety. Future research is however required to assess the generalizability of the findings into practice before training can be designed to address critical issues. © 2012 John Wiley & Sons Ltd.
SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Yang, D
2015-06-15
Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briscoe, M; Ploquin, N; Voroney, JP
2015-06-15
Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less
Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo
2008-05-01
Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.
SU-E-J-15: A Patient-Centered Scheme to Mitigate Impacts of Treatment Setup Error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, L; Southern Medical University, Guangzhou; Tian, Z
2014-06-01
Purpose: Current Intensity Modulated Radiation Therapy (IMRT) is plan-centered. At each treatment fraction, we position the patient to match the setup in treatment plan. Inaccurate setup can compromise delivered dose distribution, and hence leading to suboptimal treatments. Moreover, current setup approach via couch shift under image guidance can correct translational errors, while rotational and deformation errors are hard to address. To overcome these problems, we propose in this abstract a patient-centered scheme to mitigate impacts of treatment setup errors. Methods: In the patient-centered scheme, we first position the patient on the couch approximately matching the planned-setup. Our Supercomputing Online Replanningmore » Environment (SCORE) is then employed to design an optimal treatment plan based on the daily patient geometry. It hence mitigates the impacts of treatment setup error and reduces the requirements on setup accuracy. We have conducted simulations studies in 10 head-and-neck (HN) patients to investigate the feasibility of this scheme. Rotational and deformation setup errors were simulated. Specifically, 1, 3, 5, 7 degrees of rotations were put on pitch, roll, and yaw directions; deformation errors were simulated by splitting neck movements into four basic types: rotation, lateral bending, flexion and extension. Setup variation ranges are based on observed numbers in previous studies. Dosimetric impacts of our scheme were evaluated on PTVs and OARs in comparison with original plan dose with original geometry and original plan recalculated dose with new setup geometries. Results: With conventional plan-centered approach, setup error could lead to significant PTV D99 decrease (−0.25∼+32.42%) and contralateral-parotid Dmean increase (−35.09∼+42.90%). The patientcentered approach is effective in mitigating such impacts to 0∼+0.20% and −0.03∼+5.01%, respectively. Computation time is <128 s. Conclusion: Patient-centered scheme is proposed to mitigate setup error impacts using replanning. Its superiority in terms of dosimetric impacts and feasibility has been shown through simulation studies on HN cases.« less
Kubota, Yoshiki; Hayashi, Hayato; Abe, Satoshi; Souda, Saki; Okada, Ryosuke; Ishii, Takayoshi; Tashiro, Mutsumi; Torikoshi, Masami; Kanai, Tatsuaki; Ohno, Tatsuya; Nakano, Takashi
2018-03-01
We developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use. For a preliminary verification, treatment planning and positioning data from eight setup patterns using a head and neck phantom were evaluated. Following this, data from 50 patients with prostate, lung, head and neck, liver, or pancreatic cancer (n = 10 each) were evaluated. Root mean square errors (RMSEs) between the results calculated by our system and the reference positions were assessed. The reference positions were manually determined by two radiological technologists to best-matching positions with orthogonal DRs and DRRs in six axial directions. The ROI size dependence was evaluated by comparing RMSEs for three different ROI sizes. Additionally, dependence on initial position parameters was evaluated by comparing RMSEs for four position patterns. For the phantom study, the average (± standard deviation) translation error was 0.17 ± 0.05, rotation error was 0.17 ± 0.07, and ΔD was 0.14 ± 0.05. Using the optimal ROI size for each patient site, all cases of prostate, lung, and head and neck cancer with initial position parameters of 10 mm or under were acceptable in our tolerance. However, only four liver cancer cases and three pancreatic cancer cases were acceptable, because of low-reproducibility regions in the ROIs. Our system has clinical practicality for prostate, lung, and head and neck cancer cases. Additionally, our findings suggest ROI size dependence in some cases. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
A Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields.
Yu, Amy; Fahimian, Benjamin; Million, Lynn; Hsu, Annie
2017-05-23
Purpose Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and pelvic fields. Due to the large irradiated volume and system limitations, such as field size and couch extension, a combination of couch shifts and sliding of patients are necessary to be correctly executed for accurate delivery of the plan. However, shifting of patients presents a substantial safety issue and has been shown to be prone to errors ranging from minor deviations to geometrical misses warranting a medical event. To address this complex setup and mitigate the safety issues relating to delivery, a practical technique for couch indexing of TLI treatments has been developed and evaluated through a retrospective analysis of couch position. Methods The indexing technique is based on the modification of the commonly available slide board to enable indexing of the patient position. Modifications include notching to enable coupling with indexing bars, and the addition of a headrest used to fixate the head of the patient relative to the slide board. For the clinical setup, a Varian Exact Couch TM (Varian Medical Systems, Inc, Palo Alto, CA) was utilized. Two groups of patients were treated: 20 patients with table indexing and 10 patients without. The standard deviations (SDs) of the couch positions in longitudinal, lateral, and vertical directions through the entire treatment cycle for each patient were calculated and differences in both groups were analyzed with Student's t-test. Results The longitudinal direction showed the largest improvement. In the non-indexed group, the positioning SD ranged from 2.0 to 7.9 cm. With the indexing device, the positioning SD was reduced to a range of 0.4 to 1.3 cm (p < 0.05 with 95% confidence level). The lateral positioning was slightly improved (p < 0.05 with 95% confidence level), while no improvement was observed in the vertical direction. Conclusions The conventional matched field TLI treatment is error-prone to geometrical setup error. The feasibility of full indexing TLI treatments was validated and shown to result in a significant reduction of positioning and shifting errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, P; Guo, K; Alayoubi, N
Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions ofmore » a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for making the Cyberknife dataset available to us. Scholarship funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and CancerCare Manitoba Foundation is acknowledged.« less
False Memories for Affective Information in Schizophrenia.
Fairfield, Beth; Altamura, Mario; Padalino, Flavia A; Balzotti, Angela; Di Domenico, Alberto; Mammarella, Nicola
2016-01-01
Studies have shown a direct link between memory for emotionally salient experiences and false memories. In particular, emotionally arousing material of negative and positive valence enhanced reality monitoring compared to neutral material since emotional stimuli can be encoded with more contextual details and thereby facilitate the distinction between presented and imagined stimuli. Individuals with schizophrenia appear to be impaired in both reality monitoring and memory for emotional experiences. However, the relationship between the emotionality of the to-be-remembered material and false memory occurrence has not yet been studied. In this study, 24 patients and 24 healthy adults completed a false memory task with everyday episodes composed of 12 photographs that depicted positive, negative, or neutral outcomes. Results showed how patients with schizophrenia made a higher number of false memories than normal controls ( p < 0.05) when remembering episodes with positive or negative outcomes. The effect of valence was apparent in the patient group. For example, it did not affect the production causal false memories ( p > 0.05) resulting from erroneous inferences but did interact with plausible, script consistent errors in patients (i.e., neutral episodes yielded a higher degree of errors than positive and negative episodes). Affective information reduces the probability of generating causal errors in healthy adults but not in patients suggesting that emotional memory impairments may contribute to deficits in reality monitoring in schizophrenia when affective information is involved.
False Memories for Affective Information in Schizophrenia
Fairfield, Beth; Altamura, Mario; Padalino, Flavia A.; Balzotti, Angela; Di Domenico, Alberto; Mammarella, Nicola
2016-01-01
Studies have shown a direct link between memory for emotionally salient experiences and false memories. In particular, emotionally arousing material of negative and positive valence enhanced reality monitoring compared to neutral material since emotional stimuli can be encoded with more contextual details and thereby facilitate the distinction between presented and imagined stimuli. Individuals with schizophrenia appear to be impaired in both reality monitoring and memory for emotional experiences. However, the relationship between the emotionality of the to-be-remembered material and false memory occurrence has not yet been studied. In this study, 24 patients and 24 healthy adults completed a false memory task with everyday episodes composed of 12 photographs that depicted positive, negative, or neutral outcomes. Results showed how patients with schizophrenia made a higher number of false memories than normal controls (p < 0.05) when remembering episodes with positive or negative outcomes. The effect of valence was apparent in the patient group. For example, it did not affect the production causal false memories (p > 0.05) resulting from erroneous inferences but did interact with plausible, script consistent errors in patients (i.e., neutral episodes yielded a higher degree of errors than positive and negative episodes). Affective information reduces the probability of generating causal errors in healthy adults but not in patients suggesting that emotional memory impairments may contribute to deficits in reality monitoring in schizophrenia when affective information is involved. PMID:27965600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2014-06-15
Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) weremore » registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0.39,0.35,0.30degree). Conclusion: Statistical analysis was used to calculate cumulative and individual systematic errors from the different hardware and software components of the 6D-ExacTrac-system. Patients were treated with cumulative errors (<1mm,<1degree) with XV image guidance.« less
NASA Astrophysics Data System (ADS)
Hammi, A.; Placidi, L.; Weber, D. C.; Lomax, A. J.
2018-01-01
To exploit the full potential of proton therapy, accurate and on-line methods to verify the patient positioning and the proton range during the treatment are desirable. Here we propose and validate an innovative technique for determining patient misalignment uncertainties through the use of a small number of low dose, carefully selected proton pencil beams (‘range probes’) (RP) with sufficient energy that their residual Bragg peak (BP) position and shape can be measured on exit. Since any change of the patient orientation in relation to these beams will result in changes of the density heterogeneities through which they pass, our hypothesis is that patient misalignments can be deduced from measured changes in Bragg curve (BC) shape and range. As such, a simple and robust methodology has been developed that estimates average proton range and range dilution of the detected residual BC, in order to locate range probe positions with optimal prediction power for detecting misalignments. The validation of this RP based approach has been split into two phases. First we retrospectively investigate its potential to detect translational patient misalignments under real clinical conditions. Second, we test it for determining rotational errors of an anthropomorphic phantom that was systematically rotated using an in-house developed high precision motion stage. Simulations of RPs in these two scenarios show that this approach could potentially predict translational errors to lower than1.5 mm and rotational errors to smaller than 1° using only three or five RPs positions respectively.
"Fragment errors" in deep dysgraphia: further support for a lexical hypothesis.
Bormann, Tobias; Wallesch, Claus-W; Blanken, Gerhard
2008-07-01
In addition to various lexical errors, the writing of patients with deep dysgraphia may include a large number of segmental spelling errors, which increase towards the end of the word. Frequently, these errors involve deletion of two or more letters resulting in so-called "fragment errors". Different positions have been brought forward regarding their origin, including rapid decay of activation in the graphemic buffer and an impairment of more central (i.e., lexical or semantic) processing. We present data from a patient (M.D.) with deep dysgraphia who showed an increase of segmental spelling errors towards the end of the word. Several tasks were carried out to explore M.D.'s underlying functional impairment. Errors affected word-final positions in tasks like backward spelling and fragment completion. In a delayed copying task, length of the delay had no influence. In addition, when asked to recall three serially presented letters, a task which had not been carried out before, M.D. exhibited a preference for the first and the third letter and poor performance for the second letter. M.D.'s performance on these tasks contradicts the rapid decay account and instead supports a lexical-semantic account of segmental errors in deep dysgraphia. In addition, the results fit well with an implemented computational model of deep dysgraphia and segmental spelling errors.
Rajeev, K R; Menon, Smrithy S; Beena, K; Holla, Raghavendra; Kumar, R Rajaneesh; Dinesh, M
2014-01-01
A prospective study was undertaken to evaluate the influence of patient positioning on the set up variations to determine the planning target volume (PTV) margins and to evaluate the clinical relevance volume assessment of the small bowel (SB) within the irradiated volume. During the period of months from December 2011 to April 2012, a computed tomography (CT) scan was done either in supine position or in prone position using a belly board (BB) for 20 consecutive patients. All the patients had histologically proven rectal cancer and received either post- or pre-operative pelvic irradiation. Using a three-dimensional planning system, the dose-volume histogram for SB was defined in each axial CT slice. Total dose was 46-50 Gy (2 Gy/fraction), delivered using the 4-field box technique. The set up variation of the study group was assessed from the data received from the electronic portal imaging device in the linear accelerator. The shift along X, Y, and Z directions were noted. Both systematic and random errors were calculated and using both these values the PTV margin was calculated. The systematic errors of patients treated in the supine position were 0.87 (X-mm), 0.66 (Y-mm), 1.6 (Z-mm) and in the prone position were 1.3 (X-mm), 0.59 (Y-mm), 1.17 (Z-mm). The random errors of patients treated in the supine positions were 1.81 (X-mm), 1.73 (Y-mm), 1.83 (Z-mm) and in prone position were 2.02 (X-mm), 1.21 (Y-mm), 3.05 (Z-mm). The calculated PTV margins in the supine position were 3.45 (X-mm), 2.87 (Y-mm), 5.31 (Z-mm) and in the prone position were 4.91 (X-mm), 2.32 (Y-mm), 5.08 (Z-mm). The mean volume of the peritoneal cavity was 648.65 cm 3 in the prone position and 1197.37 cm 3 in the supine position. The prone position using BB device was more effective in reducing irradiated SB volume in rectal cancer patients. There were no significant variations in the daily set up for patients treated in both supine and prone positions.
Purpora, Christina; Blegen, Mary A; Stotts, Nancy A
2015-01-01
To test hypotheses from a horizontal violence and quality and safety of patient care model: horizontal violence (negative behavior among peers) is inversely related to peer relations, quality of care and it is positively related to errors and adverse events. Additionally, the association between horizontal violence, peer relations, quality of care, errors and adverse events, and nurse and work characteristics were determined. A random sample (n= 175) of hospital staff Registered Nurses working in California. Nurses participated via survey. Bivariate and multivariate analyses tested the study hypotheses. Hypotheses were supported. Horizontal violence was inversely related to peer relations and quality of care, and positively related to errors and adverse events. Including peer relations in the analyses altered the relationship between horizontal violence and quality of care but not between horizontal violence, errors and adverse events. Nurse and hospital characteristics were not related to other variables. Clinical area contributed significantly in predicting the quality of care, errors and adverse events but not peer relationships. Horizontal violence affects peer relationships and the quality and safety of patient care as perceived by participating nurses. Supportive peer relationships are important to mitigate the impact of horizontal violence on quality of care.
Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan
2017-04-01
Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.
Nazione, Samantha; Pace, Kristin
2015-01-01
Medical malpractice lawsuits are a growing problem in the United States, and there is much controversy regarding how to best address this problem. The medical error disclosure framework suggests that apologizing, expressing empathy, engaging in corrective action, and offering compensation after a medical error may improve the provider-patient relationship and ultimately help reduce the number of medical malpractice lawsuits patients bring to medical providers. This study provides an experimental examination of the medical error disclosure framework and its effect on amount of money requested in a lawsuit, negative intentions, attitudes, and anger toward the provider after a medical error. Results suggest empathy may play a large role in providing positive outcomes after a medical error.
St James, Sara; Seco, Joao; Mishra, Pankaj; Lewis, John H
2013-09-01
The purpose of this work is to present a framework to evaluate the accuracy of four-dimensional treatment planning in external beam radiation therapy using measured patient data and digital phantoms. To accomplish this, 4D digital phantoms of two model patients were created using measured patient lung tumor positions. These phantoms were used to simulate a four-dimensional computed tomography image set, which in turn was used to create a 4D Monte Carlo (4DMC) treatment plan. The 4DMC plan was evaluated by simulating the delivery of the treatment plan over approximately 5 min of tumor motion measured from the same patient on a different day. Unique phantoms accounting for the patient position (tumor position and thorax position) at 2 s intervals were used to represent the model patients on the day of treatment delivery and the delivered dose to the tumor was determined using Monte Carlo simulations. For Patient 1, the tumor was adequately covered with 95.2% of the tumor receiving the prescribed dose. For Patient 2, the tumor was not adequately covered and only 74.3% of the tumor received the prescribed dose. This study presents a framework to evaluate 4D treatment planning methods and demonstrates a potential limitation of 4D treatment planning methods. When systematic errors are present, including when the imaging study used for treatment planning does not represent all potential tumor locations during therapy, the treatment planning methods may not adequately predict the dose to the tumor. This is the first example of a simulation study based on patient tumor trajectories where systematic errors that occur due to an inaccurate estimate of tumor motion are evaluated.
3D ultrasound-based patient positioning for radiotherapy
NASA Astrophysics Data System (ADS)
Wang, Michael H.; Rohling, Robert N.; Archip, Neculai; Clark, Brenda G.
2006-03-01
A new 3D ultrasound-based patient positioning system for target localisation during radiotherapy is described. Our system incorporates the use of tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, fully automatic 3D ultrasound-toultrasound registration, and OPTOTRAK IRLEDs for registering simulation CT to ultrasound data. The accuracy of the entire radiotherapy treatment process resulting from the use of our system, from simulation to the delivery of radiation, has been validated on a phantom. The overall positioning error is less than 5mm, which includes errors from estimation of the irradiated region location in the phantom.
Ko, YuKyung; Yu, Soyoung
2017-09-01
This study was undertaken to explore the correlations among nurses' perceptions of patient safety culture, their intention to report errors, and leader coaching behaviors. The participants (N = 289) were nurses from 5 Korean hospitals with approximately 300 to 500 beds each. Sociodemographic variables, patient safety culture, intention to report errors, and coaching behavior were measured using self-report instruments. Data were analyzed using descriptive statistics, Pearson correlation coefficient, the t test, and the Mann-Whitney U test. Nurses' perceptions of patient safety culture and their intention to report errors showed significant differences between groups of nurses who rated their leaders as high-performing or low-performing coaches. Perceived coaching behavior showed a significant, positive correlation with patient safety culture and intention to report errors, i.e., as nurses' perceptions of coaching behaviors increased, so did their ratings of patient safety culture and error reporting. There is a need in health care settings for coaching by nurse managers to provide quality nursing care and thus improve patient safety. Programs that are systematically developed and implemented to enhance the coaching behaviors of nurse managers are crucial to the improvement of patient safety and nursing care. Moreover, a systematic analysis of the causes of malpractice, as opposed to a focus on the punitive consequences of errors, could increase error reporting and therefore promote a culture in which a higher level of patient safety can thrive.
Rozenberg, P; Porcher, R; Salomon, L J; Boirot, F; Morin, C; Ville, Y
2008-03-01
To evaluate the learning curve of transabdominal sonography for the determination of fetal head position in labor and to compare it with that of digital vaginal examination. A student midwife who had never performed digital vaginal examination or ultrasound examination was recruited for this study. Instructions on how to perform digital vaginal examination and ultrasound examination were given before and after completing the first vaginal and ultrasound examinations, and repeated for each subsequent examination for as long as necessary. Digital and ultrasound diagnoses of the fetal head position were always performed first by the student midwife, and repeated by an experienced midwife or physician. The learning curve for identification of the fetal head position by either one of the two methods was analyzed using the cumulative sums (CUSUM) method for measurement errors. One hundred patients underwent digital vaginal examination and 99 had transabdominal sonography for the determination of fetal head position. An error rate of around 50% for vaginal examination was nearly constant during the first 50 examinations. It decreased subsequently, to stabilize at a low level from the 82(nd) patient. Errors of +/- 180 degrees were the most frequent. The learning curve for ultrasound imaging stabilized earlier than that of vaginal examination, after the 32(nd) patient. The most frequent errors with ultrasound examination were the inability to conclude on a diagnosis, particularly at the beginning of training, followed by errors of +/- 45 degrees. Based on our findings for the student tested, learning and accuracy of the determination of fetal head position in labor were easier and higher, respectively, with transabdominal sonography than with digital examination. This should encourage physicians to introduce clinical ultrasound examination into their practice. CUSUM charts provide a reliable representation of the learning curve, by accumulating evidence of performance. Copyright (c) 2008 ISUOG. Published by John Wiley & Sons, Ltd.
Patient safety awareness among Undergraduate Medical Students in Pakistani Medical School.
Kamran, Rizwana; Bari, Attia; Khan, Rehan Ahmed; Al-Eraky, Mohamed
2018-01-01
To measure the level of awareness of patient safety among undergraduate medical students in Pakistani Medical School and to find the difference with respect to gender and prior experience with medical error. This cross-sectional study was conducted at the University of Lahore (UOL), Pakistan from January to March 2017, and comprised final year medical students. Data was collected using a questionnaire 'APSQ- III' on 7 point Likert scale. Eight questions were reverse coded. Survey was anonymous. SPSS package 20 was used for statistical analysis. Questionnaire was filled by 122 students, with 81% response rate. The best score 6.17 was given for the 'team functioning', followed by 6.04 for 'long working hours as a cause of medical error'. The domains regarding involvement of patient, confidence to report medical errors and role of training and learning on patient safety scored high in the agreed range of >5. Reverse coded questions about 'professional incompetence as an error cause' and 'disclosure of errors' showed negative perception. No significant differences of perceptions were found with respect to gender and prior experience with medical error (p= >0.05). Undergraduate medical students at UOL had a positive attitude towards patient safety. However, there were misconceptions about causes of medical errors and error disclosure among students and patient safety education needs to be incorporated in medical curriculum of Pakistan.
Organizational safety culture and medical error reporting by Israeli nurses.
Kagan, Ilya; Barnoy, Sivia
2013-09-01
To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, S; Low, D; Lamb, J
2015-06-15
Purpose: To develop a system that can automatically detect patient identification and positioning errors using 3D computed tomography (CT) setup images and kilovoltage CT (kVCT) planning images. Methods: Planning kVCT images were collected for head-and-neck (H&N), pelvis, and spine treatments with corresponding 3D cone-beam CT (CBCT) and megavoltage CT (MVCT) setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. Positioning errors were simulated by misaligning the setup image by 1cm to 5cm in the six anatomical directions for H&N and pelvis patients. Misalignments for spine treatments weremore » simulated by registering the setup image to adjacent vertebral bodies on the planning kVCT. A body contour of the setup image was used as an initial mask for image comparison. Images were pre-processed by image filtering and air voxel thresholding, and image pairs were assessed using commonly-used image similarity metrics as well as custom -designed metrics. A linear discriminant analysis classifier was trained and tested on the datasets, and misclassification error (MCE), sensitivity, and specificity estimates were generated using 10-fold cross validation. Results: Our workflow produced MCE estimates of 0.7%, 1.7%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivities and specificities ranged from 98.0% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 96.2% and 98.4%. MCEs for 1cm H&N/pelvis misalignments were 1.3/5.1% and 9.1/8.6% for TomoTherapy and TrueBeam images, respectively. 2cm MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. Vertebral misalignment MCEs were 4.8% and 4.9% for TomoTherapy and TrueBeam images, respectively. Conclusion: Patient identification and gross misalignment errors can be robustly and automatically detected using 3D setup images of two imaging modalities across three commonly-treated anatomical sites.« less
Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.
Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G
2013-11-04
Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.
WE-H-BRC-05: Catastrophic Error Metrics for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, S; Molloy, J
Purpose: Intuitive evaluation of complex radiotherapy treatments is impractical, while data transfer anomalies create the potential for catastrophic treatment delivery errors. Contrary to prevailing wisdom, logical scrutiny can be applied to patient-specific machine settings. Such tests can be automated, applied at the point of treatment delivery and can be dissociated from prior states of the treatment plan, potentially revealing errors introduced early in the process. Methods: Analytical metrics were formulated for conventional and intensity modulated RT (IMRT) treatments. These were designed to assess consistency between monitor unit settings, wedge values, prescription dose and leaf positioning (IMRT). Institutional metric averages formore » 218 clinical plans were stratified over multiple anatomical sites. Treatment delivery errors were simulated using a commercial treatment planning system and metric behavior assessed via receiver-operator-characteristic (ROC) analysis. A positive result was returned if the erred plan metric value exceeded a given number of standard deviations, e.g. 2. The finding was declared true positive if the dosimetric impact exceeded 25%. ROC curves were generated over a range of metric standard deviations. Results: Data for the conventional treatment metric indicated standard deviations of 3%, 12%, 11%, 8%, and 5 % for brain, pelvis, abdomen, lung and breast sites, respectively. Optimum error declaration thresholds yielded true positive rates (TPR) between 0.7 and 1, and false positive rates (FPR) between 0 and 0.2. Two proposed IMRT metrics possessed standard deviations of 23% and 37%. The superior metric returned TPR and FPR of 0.7 and 0.2, respectively, when both leaf position and MUs were modelled. Isolation to only leaf position errors yielded TPR and FPR values of 0.9 and 0.1. Conclusion: Logical tests can reveal treatment delivery errors and prevent large, catastrophic errors. Analytical metrics are able to identify errors in monitor units, wedging and leaf positions with favorable sensitivity and specificity. In part by Varian.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun
2014-08-15
Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, B; GLA University, Mathura, UP; Manikandan, A
2016-06-15
Purpose: Six dimensional positional shifts (translational and rotational) determined by a volumetric imaging system were mathematically combined and incorporated as simple translational shifts and the resultant impact on dose characteristics was studied. Methods: Thirty patients who underwent either single fraction (12 Gy) or five fractions (5 Gy per fraction) stereotactic treatments were included in this study. They were immobilized using a double layered thermoplastic mask from BrainLAB. Isocenter matching was done using infrared marker of ExacTrac. An initial cone beam CT (CBCT) gave positional shifts in 6-dimensions that were applied through 6-D motion enabled couch. A verification CBCT was donemore » following corrections before treatment. These 6-D positional shifts determined at each imaging session from the first CBCT were mathematically combined to give three simple translational shifts. Doses were recalculated in the patient matrix with these positional errors present by moving the whole image dataset. Doses were also recalculated after second CBCT with only residual errors present. PTV dose statistics were compared. Results: For the approved plans V100%(PTV), V100%(GTV), D95%(PTV), D95%(GTV), D1%(PTV) and D1%(GTV) were 96.2±3.0%, 98.2±1.4%, 102%±1.7%, 103±1.2%, 107.9±8.9% and 109.3±7.5% of prescription dose respectively. With the positional errors present (after 1st CBCT) the corresponding values were 86.7±4.9%, 91.3±2.9%, 89.6±4.2%, 95.9±3.7%, 108.3±9.9% and 108.6±4.5%. Post-correction (after 2nd CBCT) with only residual errors present, values were 94.5±5.7%, 97.3±2.9%, 99.3%±3.2%, 102%±2.1%, 107.6±8.5% and 109.0±7.6% respectively. Significant and nominal OAR dose variation was observed between pre- and post-table corrections. Conclusion: Positional errors significantly affect PTV dose statistics. They need to be corrected before delivery of stereotactic treatments although the magnitude of dose changes can vary from patient-to-patient depending on the tumor location. As expected after the table corrections, residual errors result in insignificant dose deviations. For frameless stereotactic treatments having a six-dimensional motion enabled couch is highly recommended to reduce quantum of dose deviations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N; DiCostanzo, D; Fullenkamp, M
2015-06-15
Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, M; Court, L
Purpose: Despite daily image guidance setup uncertainties can be high when treating large areas of the body. The aim of this study was to measure local uncertainties inside the PTV for patients receiving IMRT to the mediastinum region. Methods: Eleven lymphoma patients that received radiotherapy (breath-hold) to the mediastinum were included in this study. The treated region could range all the way from the neck to the diaphragm. Each patient had a CT scan with a CT-on-rails system prior to every treatment. The entire PTV region was matched to the planning CT using automatic rigid registration. The PTV was thenmore » split into 5 regions: neck, supraclavicular, superior mediastinum, upper heart, lower heart. Additional auto-registrations for each of the 5 local PTV regions were performed. The residual local setup errors were calculated as the difference between the final global PTV position and the individual final local PTV positions for the AP, SI and RL directions. For each patient 4 CT scans were analyzed (1 per week of treatment). Results: The residual mean group error (M) and standard deviation of the inter-patient (or systematic) error (Σ) were lowest in the RL direction of the superior mediastinum (0.0mm and 0.5mm) and highest in the RL direction of the lower heart (3.5mm and 2.9mm). The standard deviation of the inter-fraction (or random) error (σ) was lowest in the RL direction of the superior mediastinum (0.5mm) and highest in the SI direction of the lower heart (3.9mm) The directionality of local uncertainties is important; a superior residual error in the lower heart for example keeps it in the global PTV. Conclusion: There is a complex relationship between breath-holding and positioning uncertainties that needs further investigation. Residual setup uncertainties can be significant even under daily CT image guidance when treating large regions of the body.« less
Patient positioning in radiotherapy based on surface imaging using time of flight cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilles, M., E-mail: marlene.gilles@univ-brest.fr
2016-08-15
Purpose: To evaluate the patient positioning accuracy in radiotherapy using a stereo-time of flight (ToF)-camera system. Methods: A system using two ToF cameras was used to scan the surface of the patients in order to position them daily on the treatment couch. The obtained point clouds were registered to (a) detect translations applied to the table (intrafraction motion) and (b) predict the displacement to be applied in order to place the patient in its reference position (interfraction motion). The measures provided by this system were compared to the effectively applied translations. The authors analyzed 150 fractions including lung, pelvis/prostate, andmore » head and neck cancer patients. Results: The authors obtained small absolute errors for displacement detection: 0.8 ± 0.7, 0.8 ± 0.7, and 0.7 ± 0.6 mm along the vertical, longitudinal, and lateral axes, respectively, and 0.8 ± 0.7 mm for the total norm displacement. Lung cancer patients presented the largest errors with a respective mean of 1.1 ± 0.9, 0.9 ± 0.9, and 0.8 ± 0.7 mm. Conclusions: The proposed stereo-ToF system allows for sufficient accuracy and faster patient repositioning in radiotherapy. Its capability to track the complete patient surface in real time could allow, in the future, not only for an accurate positioning but also a real time tracking of any patient intrafraction motion (translation, involuntary, and breathing).« less
Patient positioning in radiotherapy based on surface imaging using time of flight cameras.
Gilles, M; Fayad, H; Miglierini, P; Clement, J F; Scheib, S; Cozzi, L; Bert, J; Boussion, N; Schick, U; Pradier, O; Visvikis, D
2016-08-01
To evaluate the patient positioning accuracy in radiotherapy using a stereo-time of flight (ToF)-camera system. A system using two ToF cameras was used to scan the surface of the patients in order to position them daily on the treatment couch. The obtained point clouds were registered to (a) detect translations applied to the table (intrafraction motion) and (b) predict the displacement to be applied in order to place the patient in its reference position (interfraction motion). The measures provided by this system were compared to the effectively applied translations. The authors analyzed 150 fractions including lung, pelvis/prostate, and head and neck cancer patients. The authors obtained small absolute errors for displacement detection: 0.8 ± 0.7, 0.8 ± 0.7, and 0.7 ± 0.6 mm along the vertical, longitudinal, and lateral axes, respectively, and 0.8 ± 0.7 mm for the total norm displacement. Lung cancer patients presented the largest errors with a respective mean of 1.1 ± 0.9, 0.9 ± 0.9, and 0.8 ± 0.7 mm. The proposed stereo-ToF system allows for sufficient accuracy and faster patient repositioning in radiotherapy. Its capability to track the complete patient surface in real time could allow, in the future, not only for an accurate positioning but also a real time tracking of any patient intrafraction motion (translation, involuntary, and breathing).
Pillay, Sara B.; Humphries, Colin J.; Gross, William L.; Graves, William W.; Book, Diane S.
2016-01-01
Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval. Patients with this deficit also make characteristic ‘regularization’ errors, in which an irregularly spelled word is mispronounced by incorrect application of regular spelling-sound correspondences (e.g. reading plaid as ‘played’), indicating over-reliance on sublexical grapheme–phoneme correspondences. We examined the neuroanatomical correlates of this specific error type in 45 patients with left hemisphere chronic stroke. Voxel-based lesion–symptom mapping showed a strong positive relationship between the rate of regularization errors and damage to the posterior half of the left middle temporal gyrus. Semantic deficits on tests of single-word comprehension were generally mild, and these deficits were not correlated with the rate of regularization errors. Furthermore, the deep occipital-temporal white matter locus associated with these mild semantic deficits was distinct from the lesion site associated with regularization errors. Thus, in contrast to patients with surface dyslexia and semantic impairment from anterior temporal lobe degeneration, surface errors in our patients were not related to a semantic deficit. We propose that these patients have an inability to link intact semantic representations with phonological representations. The data provide novel evidence for a post-semantic mechanism mediating the production of surface errors, and suggest that the posterior middle temporal gyrus may compute an intermediate representation linking semantics with phonology. PMID:26966139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.
Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lilie L., E-mail: lin@uphs.upenn.edu; Hertan, Lauren; Rengan, Ramesh
2012-06-01
Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed.more » To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Ali, I
2014-06-01
Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin,more » Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion: The initial BrainLAB IR system based on rigidity of the mask-frame setup is not sufficient for accurate stereotactic positioning; however, with X-ray imageguidance sub-millimeter accuracy is achieved with negligible deviations in dose coverage. The angular corrections (mean angle summation=1.84°) are important and cause considerable deviations in dose coverage.« less
Emotion perception and overconfidence in errors under stress in psychosis.
Köther, Ulf; Lincoln, Tania M; Moritz, Steffen
2018-03-21
Vulnerability stress models are well-accepted in psychosis research, but the mechanisms that link stress to psychotic symptoms remain vague. Little is known about how social cognition and overconfidence in errors, two putative mechanisms for the pathogenesis of delusions, relate to stress. Using a repeated measures design, we tested four groups (N=120) with different liability to psychosis (schizophrenia patients [n=35], first-degree relatives [n=24], participants with attenuated positive symptoms [n=19] and healthy controls [n=28]) and depression patients (n=14) as a clinical control group under three randomized experimental conditions (no stress, noise and social stress). Parallel versions of the Emotion Perception and Confidence Task, which taps both emotion perception and confidence, were used in each condition. We recorded subjective stress, heart rate, skin conductance level and salivary cortisol to assess the stress response across different dimensions. Independent of the stress condition, patients with schizophrenia showed poorer emotion perception performance and higher confidence in emotion perception errors than participants with attenuated positive symptoms and healthy controls. However, they did not differ from patients with depression or first-degree relatives. Stress did not influence emotion perception or the extent of high-confident errors, but patients with schizophrenia showed an increase in high-confident emotion perception errors conditional on higher arousal. A possible clinical implication of our findings is the necessity to provide stress management programs that aim to reduce arousal. Moreover, patients with schizophrenia might benefit from interventions that help them to reduce overconfidence in their social cognition judgements in times in which they feel being under pressure. Copyright © 2018 Elsevier B.V. All rights reserved.
Blood specimen labelling errors: Implications for nephrology nursing practice.
Duteau, Jennifer
2014-01-01
Patient safety is the foundation of high-quality health care, as recognized both nationally and worldwide. Patient blood specimen identification is critical in ensuring the delivery of safe and appropriate care. The practice of nephrology nursing involves frequent patient blood specimen withdrawals to treat and monitor kidney disease. A critical review of the literature reveals that incorrect patient identification is one of the major causes of blood specimen labelling errors. Misidentified samples create a serious risk to patient safety leading to multiple specimen withdrawals, delay in diagnosis, misdiagnosis, incorrect treatment, transfusion reactions, increased length of stay and other negative patient outcomes. Barcode technology has been identified as a preferred method for positive patient identification leading to a definitive decrease in blood specimen labelling errors by as much as 83% (Askeland, et al., 2008). The use of a root cause analysis followed by an action plan is one approach to decreasing the occurrence of blood specimen labelling errors. This article will present a review of the evidence-based literature surrounding blood specimen labelling errors, followed by author recommendations for completing a root cause analysis and action plan. A failure modes and effects analysis (FMEA) will be presented as one method to determine root cause, followed by the Ottawa Model of Research Use (OMRU) as a framework for implementation of strategies to reduce blood specimen labelling errors.
In vivo dose verification method in catheter based high dose rate brachytherapy.
Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas
2017-12-01
In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.
2015-01-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722
Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Jeff D.; Wong, Raimond; Swaminath, Anand
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less
An investigation into false-negative transthoracic fine needle aspiration and core biopsy specimens.
Minot, Douglas M; Gilman, Elizabeth A; Aubry, Marie-Christine; Voss, Jesse S; Van Epps, Sarah G; Tuve, Delores J; Sciallis, Andrew P; Henry, Michael R; Salomao, Diva R; Lee, Peter; Carlson, Stephanie K; Clayton, Amy C
2014-12-01
Transthoracic fine needle aspiration (TFNA)/core needle biopsy (CNB) under computed tomography (CT) guidance has proved useful in the assessment of pulmonary nodules. We sought to determine the TFNA false-negative (FN) rate at our institution and identify potential causes of FN diagnoses. Medical records were reviewed from 1,043 consecutive patients who underwent CT-guided TFNA with or without CNB of lung nodules over a 5-year time period (2003-2007). Thirty-seven FN cases of "negative" TFNA/CNB with malignant outcome were identified with 36 cases available for review, of which 35 had a corresponding CNB. Cases were reviewed independently (blinded to original diagnosis) by three pathologists with 15 age- and sex-matched positive and negative controls. Diagnosis (i.e., nondiagnostic, negative or positive for malignancy, atypical or suspicious) and qualitative assessments were recorded. Consensus diagnosis was suspicious or positive in 10 (28%) of 36 TFNA cases and suspicious in 1 (3%) of 35 CNB cases, indicating potential interpretive errors. Of the 11 interpretive errors (including both suspicious and positive cases), 8 were adenocarcinomas, 1 squamous cell carcinoma, 1 metastatic renal cell carcinoma, and 1 lymphoma. The remaining 25 FN cases (69.4%) were considered sampling errors and consisted of 7 adenocarcinomas, 3 nonsmall cell carcinomas, 3 lymphomas, 2 squamous cell carcinomas, and 2 renal cell carcinomas. Interpretive and sampling error cases were more likely to abut the pleura, while histopathologically, they tended to be necrotic and air-dried. The overall FN rate in this patient cohort is 3.5% (1.1% interpretive and 2.4% sampling errors). © 2014 Wiley Periodicals, Inc.
Pan, Hong-Wei; Li, Wei; Li, Rong-Guo; Li, Yong; Zhang, Yi; Sun, En-Hua
2018-01-01
Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.
Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per
2017-06-01
Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.
Effect of patient positions on measurement errors of the knee-joint space on radiographs
NASA Astrophysics Data System (ADS)
Gilewska, Grazyna
2001-08-01
Osteoarthritis (OA) is one of the most important health problems these days. It is one of the most frequent causes of pain and disability of middle-aged and old people. Nowadays the radiograph is the most economic and available tool to evaluate changes in OA. Error of performance of radiographs of knee joint is the basic problem of their evaluation for clinical research. The purpose of evaluation of such radiographs in my study was measuring the knee-joint space on several radiographs performed at defined intervals. Attempt at evaluating errors caused by a radiologist of a patient was presented in this study. These errors resulted mainly from either incorrect conditions of performance or from a patient's fault. Once we have information about size of the errors, we will be able to assess which of these elements have the greatest influence on accuracy and repeatability of measurements of knee-joint space. And consequently we will be able to minimize their sources.
Graff, L; Russell, J; Seashore, J; Tate, J; Elwell, A; Prete, M; Werdmann, M; Maag, R; Krivenko, C; Radford, M
2000-11-01
To test the hypothesis that physician errors (failure to diagnose appendicitis at initial evaluation) correlate with adverse outcome. The authors also postulated that physician errors would correlate with delays in surgery, delays in surgery would correlate with adverse outcomes, and physician errors would occur on patients with atypical presentations. This was a retrospective two-arm observational cohort study at 12 acute care hospitals: 1) consecutive patients who had an appendectomy for appendicitis and 2) consecutive emergency department abdominal pain patients. Outcome measures were adverse events (perforation, abscess) and physician diagnostic performance (false-positive decisions, false-negative decisions). The appendectomy arm of the study included 1, 026 patients with 110 (10.5%) false-positive decisions (range by hospital 4.7% to 19.5%). Of the 916 patients with appendicitis, 170 (18.6%) false-negative decisions were made (range by hospital 10.6% to 27.8%). Patients who had false-negative decisions had increased risks of perforation (r = 0.59, p = 0.058) and of abscess formation (r = 0.81, p = 0.002). For admitted patients, when the inhospital delay before surgery was >20 hours, the risk of perforation was increased [2.9 odds ratio (OR) 95% CI = 1.8 to 4.8]. The amount of delay from initial physician evaluation until surgery varied with physician diagnostic performance: 7.0 hours (95% CI = 6.7 to 7.4) if the initial physician made the diagnosis, 72.4 hours (95% CI = 51.2 to 93.7) if the initial office physician missed the diagnosis, and 63.1 hours (95% CI = 47.9 to 78.4) if the initial emergency physician missed the diagnosis. Patients whose diagnosis was initially missed by the physician had fewer signs and symptoms of appendicitis than patients whose diagnosis was made initially [appendicitis score 2.0 (95% CI = 1.6 to 2.3) vs 6.5 (95% CI = 6.4 to 6.7)]. Older patients (>41 years old) had more false-negative decisions and a higher risk of perforation or abscess (3.5 OR 95% CI = 2.4 to 5.1). False-positive decisions were made for patients who had signs and symptoms similar to those of appendicitis patients [appendicitis score 5.7 (95% CI = 5.2 to 6.1) vs 6.5 (95% CI = 6.4 to 6.7)]. Female patients had an increased risk of false-positive surgery (2.3 OR 95% CI = 1.5 to 3.4). The abdominal pain arm of the study included 1,118 consecutive patients submitted by eight hospitals, with 44 patients having appendicitis. Hospitals with observation units compared with hospitals without observation units had a higher "rule out appendicitis" evaluation rate [33.7% (95% CI = 27 to 38) vs 24.7% (95% CI = 23 to 27)] and a similar hospital admission rate (27.6% vs 24.7%, p = NS). There was a lower miss-diagnosis rate (15.1% vs 19.4%, p = NS power 0.02), lower perforation rate (19.0% vs 20.6%, p = NS power 0.05), and lower abscess rate (5.6% vs 6.9%, p = NS power 0.06), but these did not reach statistical significance. Errors in physician diagnostic decisions correlated with patient clinical findings, i.e., the missed diagnoses were on appendicitis patients with few clinical findings and unnecessary surgeries were on non-appendicitis patients with clinical findings similar to those of patients with appendicitis. Adverse events (perforation, abscess formation) correlated with physician false-negative decisions.
An automatic markerless registration method for neurosurgical robotics based on an optical camera.
Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi
2018-02-01
Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.
Baert, Isabel A C; Lluch, Enrique; Struyf, Thomas; Peeters, Greta; Van Oosterwijck, Sophie; Tuynman, Joanna; Rufai, Salim; Struyf, Filip
2018-06-01
The therapeutic value of proprioceptive-based exercises in knee osteoarthritis (KOA) management warrants investigation of proprioceptive testing methods easily accessible in clinical practice. To estimate inter- and intrarater reliability of the knee joint position sense (KJPS) test and knee force sense (KFS) test in subjects with and without KOA. Cross-sectional test-retest design. Two blinded raters performed independently repeated measures of the KJPS and KFS test, using an analogue inclinometer and handheld dynamometer, respectively, in eight KOA patients (12 symptomatic knees) and 26 healthy controls (52 asymptomatic knees). Intraclass correlation coefficients (ICCs; model 2,1), standard error of measurement (SEM) and minimal detectable change with 95% confidence bounds (MDC 95 ) were calculated. For KJPS, results showed good to excellent test-retest agreement (ICCs 0.70-0.95 in KOA patients; ICCs 0.65-0.85 in healthy controls). A 2° measurement error (SEM 1°) was reported when measuring KJPS in multiple test positions and calculating mean repositioning error. Testing KOA patients pre and post therapy a repositioning error larger than 4° (MDC 95 ) is needed to consider true change. Measuring KFS using handheld dynamometry showed poor to fair interrater and poor to excellent intrarater reliability in subjects with and without KOA. Measuring KJPS in multiple test positions using an analogue inclinometer and calculating mean repositioning error is reliable and can be used in clinical practice. We do not recommend the use of the KFS test to clinicians. Further research is required to establish diagnostic accuracy and validity of our KJPS test in larger knee pain populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patient safety awareness among Undergraduate Medical Students in Pakistani Medical School
Kamran, Rizwana; Bari, Attia; Khan, Rehan Ahmed; Al-Eraky, Mohamed
2018-01-01
Objective: To measure the level of awareness of patient safety among undergraduate medical students in Pakistani Medical School and to find the difference with respect to gender and prior experience with medical error. Methods: This cross-sectional study was conducted at the University of Lahore (UOL), Pakistan from January to March 2017, and comprised final year medical students. Data was collected using a questionnaire ‘APSQ- III’ on 7 point Likert scale. Eight questions were reverse coded. Survey was anonymous. SPSS package 20 was used for statistical analysis. Results: Questionnaire was filled by 122 students, with 81% response rate. The best score 6.17 was given for the ‘team functioning’, followed by 6.04 for ‘long working hours as a cause of medical error’. The domains regarding involvement of patient, confidence to report medical errors and role of training and learning on patient safety scored high in the agreed range of >5. Reverse coded questions about ‘professional incompetence as an error cause’ and ‘disclosure of errors’ showed negative perception. No significant differences of perceptions were found with respect to gender and prior experience with medical error (p= >0.05). Conclusion: Undergraduate medical students at UOL had a positive attitude towards patient safety. However, there were misconceptions about causes of medical errors and error disclosure among students and patient safety education needs to be incorporated in medical curriculum of Pakistan. PMID:29805398
Siemianowski, Laura A; Sen, Sanchita; George, Jomy M
2013-08-01
This study aimed to examine the role of a pharmacy technician-centered medication reconciliation (PTMR) program in optimization of medication therapy in hospitalized patients with HIV/AIDS. A chart review was conducted for all inpatients that had a medication reconciliation performed by the PTMR program. Adult patients with HIV and antiretroviral therapy (ART) and/or the opportunistic infection (OI) prophylaxis listed on the medication reconciliation form were included. The primary objective is to describe the (1) number and types of medication errors and (2) the percentage of patients who received appropriate ART. The secondary objective is a comparison of the number of medication errors between standard mediation reconciliation and a pharmacy-led program. In the PTMR period, 55 admissions were evaluated. In all, 50% of the patients received appropriate ART. In 27of the 55 admissions, there were 49 combined ART and OI-related errors. The most common ART-related errors were drug-drug interactions. The incidence of ART-related medication errors that included drug-drug interactions and renal dosing adjustments were similar between the pre-PTMR and PTMR groups (P = .0868). Of the 49 errors in the PTMR group, 18 were intervened by a medication reconciliation pharmacist. A PTMR program has a positive impact on optimizing ART and OI prophylaxis in patients with HIV/AIDS.
NASA Astrophysics Data System (ADS)
Jones, Bernard L.; Gan, Gregory; Kavanagh, Brian; Miften, Moyed
2013-11-01
An inflatable endorectal balloon (ERB) is often used during stereotactic body radiation therapy (SBRT) for treatment of prostate cancer in order to reduce both intrafraction motion of the target and risk of rectal toxicity. However, the ERB can exert significant force on the prostate, and this work assessed the impact of ERB position errors on deformation of the prostate and treatment dose metrics. Seventy-one cone-beam computed tomography (CBCT) image datasets of nine patients with clinical stage T1cN0M0 prostate cancer were studied. An ERB (Flexi-Cuff, EZ-EM, Westbury, NY) inflated with 60 cm3 of air was used during simulation and treatment, and daily kilovoltage (kV) CBCT imaging was performed to localize the prostate. The shape of the ERB in each CBCT was analyzed to determine errors in position, size, and shape. A deformable registration algorithm was used to track the dose received by (and deformation of) the prostate, and dosimetric values such as D95, PTV coverage, and Dice coefficient for the prostate were calculated. The average balloon position error was 0.5 cm in the inferior direction, with errors ranging from 2 cm inferiorly to 1 cm superiorly. The prostate was deformed primarily in the AP direction, and tilted primarily in the anterior-posterior/superior-inferior plane. A significant correlation was seen between errors in depth of ERB insertion (DOI) and mean voxel-wise deformation, prostate tilt, Dice coefficient, and planning-to-treatment prostate inter-surface distance (p < 0.001). Dosimetrically, DOI is negatively correlated with prostate D95 and PTV coverage (p < 0.001). For the model of ERB studied, error in ERB position can cause deformations in the prostate that negatively affect treatment, and this additional aspect of setup error should be considered when ERBs are used for prostate SBRT. Before treatment, the ERB position should be verified, and the ERB should be adjusted if the error is observed to exceed tolerable values.
Kim, Myoungsoo
2010-04-01
The purpose of this study was to examine the impact of strategies to promote reporting of errors on nurses' attitude to reporting errors, organizational culture related to patient safety, intention to report and reporting rate in hospital nurses. A nonequivalent control group non-synchronized design was used for this study. The program was developed and then administered to the experimental group for 12 weeks. Data were analyzed using descriptive analysis, X(2)-test, t-test, and ANCOVA with the SPSS 12.0 program. After the intervention, the experimental group showed significantly higher scores for nurses' attitude to reporting errors (experimental: 20.73 vs control: 20.52, F=5.483, p=.021) and reporting rate (experimental: 3.40 vs control: 1.33, F=1998.083, p<.001). There was no significant difference in some categories for organizational culture and intention to report. The study findings indicate that strategies that promote reporting of errors play an important role in producing positive attitudes to reporting errors and improving behavior of reporting. Further advanced strategies for reporting errors that can lead to improved patient safety should be developed and applied in a broad range of hospitals.
NASA Astrophysics Data System (ADS)
Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.
2015-01-01
Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.
Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2017-03-01
Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.
Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2017-01-01
PURPOSE: The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. SETTING/VENUE: Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. PATIENTS AND METHODS: Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. RESULTS: Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant (P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° (P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° (P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. CONCLUSIONS: Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag. PMID:28757694
Making Residents Part of the Safety Culture: Improving Error Reporting and Reducing Harms.
Fox, Michael D; Bump, Gregory M; Butler, Gabriella A; Chen, Ling-Wan; Buchert, Andrew R
2017-01-30
Reporting medical errors is a focus of the patient safety movement. As frontline physicians, residents are optimally positioned to recognize errors and flaws in systems of care. Previous work highlights the difficulty of engaging residents in identification and/or reduction of medical errors and in integrating these trainees into their institutions' cultures of safety. The authors describe the implementation of a longitudinal, discipline-based, multifaceted curriculum to enhance the reporting of errors by pediatric residents at Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center. The key elements of this curriculum included providing the necessary education to identify medical errors with an emphasis on systems-based causes, modeling of error reporting by faculty, and integrating error reporting and discussion into the residents' daily activities. The authors tracked monthly error reporting rates by residents and other health care professionals, in addition to serious harm event rates at the institution. The interventions resulted in significant increases in error reports filed by residents, from 3.6 to 37.8 per month over 4 years (P < 0.0001). This increase in resident error reporting correlated with a decline in serious harm events, from 15.0 to 8.1 per month over 4 years (P = 0.01). Integrating patient safety into the everyday resident responsibilities encourages frequent reporting and discussion of medical errors and leads to improvements in patient care. Multiple simultaneous interventions are essential to making residents part of the safety culture of their training hospitals.
Accuracy and Precision of a Veterinary Neuronavigation System for Radiation Oncology Positioning
Ballegeer, Elizabeth A.; Frey, Stephen; Sieffert, Rob
2018-01-01
Conformal radiation treatment plans such as IMRT and other radiosurgery techniques require very precise patient positioning, typically within a millimeter of error for best results. CT cone beam, real-time navigation, and infrared position sensors are potential options for success but rarely present in veterinary radiation centers. A neuronavigation system (Brainsight Vet, Rogue Research) was tested 22 times on a skull for positioning accuracy and precision analysis. The first 6 manipulations allowed the authors to become familiar with the system but were still included in the analyses. Overall, the targeting mean error in 3D was 1.437 mm with SD 1.242 mm. This system could be used for positioning for radiation therapy or radiosurgery. PMID:29666822
Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing
2015-04-26
To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.
Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, Kathleen T.; Fischell Department of Bioengineering, University of Maryland, College Park, MD; McAvoy, Thomas J.
2012-04-01
Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precisionmore » in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.« less
Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba
Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less
Online patient safety education programme for junior doctors: is it worthwhile?
McCarthy, S E; O'Boyle, C A; O'Shaughnessy, A; Walsh, G
2016-02-01
Increasing demand exists for blended approaches to the development of professionalism. Trainees of the Royal College of Physicians of Ireland participated in an online patient safety programme. Study aims were: (1) to determine whether the programme improved junior doctors' knowledge, attitudes and skills relating to error reporting, open communication and care for the second victim and (2) to establish whether the methodology facilitated participants' learning. 208 junior doctors who completed the programme completed a pre-online questionnaire. Measures were "patient safety knowledge and attitudes", "medical safety climate" and "experience of learning". Sixty-two completed the post-questionnaire, representing a 30 % matched response rate. Participating in the programme resulted in immediate (p < 0.01) improvement in skills such as knowing when and how to complete incident forms and disclosing errors to patients, in self-rated knowledge (p < 0.01) and attitudes towards error reporting (p < 0.01). Sixty-three per cent disagreed that doctors routinely report medical errors and 42 % disagreed that doctors routinely share information about medical errors and what caused them. Participants rated interactive features as the most positive elements of the programme. An online training programme on medical error improved self-rated knowledge, attitudes and skills in junior doctors and was deemed an effective learning tool. Perceptions of work issues such as a poor culture of error reporting among doctors may prevent improved attitudes being realised in practice. Online patient safety education has a role in practice-based initiatives aimed at developing professionalism and improving safety.
A systematic review of clinical pharmacist interventions in paediatric hospital patients.
Drovandi, Aaron; Robertson, Kelvin; Tucker, Matthew; Robinson, Niechole; Perks, Stephen; Kairuz, Therése
2018-06-19
Clinical pharmacists provide beneficial services to adult patients, though their benefits for paediatric hospital patients are less defined. Five databases were searched using the MeSH terms 'clinical pharmacist', 'paediatric/paediatric', 'hospital', and 'intervention' for studies with paediatric patients conducted in hospital settings, and described pharmacist-initiated interventions, published between January 2000 and October 2017. The search strategy after full-text review identified 12 articles matching the eligibility criteria. Quality appraisal checklists from the Joanna Briggs Institute were used to appraise the eligible articles. Clinical pharmacist services had a positive impact on paediatric patient care. Medication errors intercepted by pharmacists included over- and under-dosing, missed doses, medication history gaps, allergies, and near-misses. Interventions to address these errors were positively received, and implemented by physicians, with an average acceptance rate of over 95%. Clinical pharmacist-initiated education resulted in improved medication understanding and adherence, improved patient satisfaction, and control of chronic medical conditions. This review found that clinical pharmacists in paediatric wards may reduce drug-related problems and improve patient outcomes. The benefits of pharmacist involvement appear greatest when directly involved in ward rounds, due to being able to more rapidly identify medication errors during the prescribing phase, and provide real-time advice and recommendations to prescribers. What is Known: • Complex paediatric conditions can require multiple pharmaceutical treatments, utilised in a safe manner to ensure good patient outcomes • The benefits of pharmacist interventions when using these treatments are well-documented in adult patients, though less so in paediatric patients What is New: • Pharmacists are adept at identifying and managing medication errors for paediatric patients, including incorrect doses, missed doses, and gaps in medication history • Interventions recommended by pharmacists are generally well-accepted by prescribing physicians, especially when recommendations can be made during the prescribing phase of treatment.
Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2017-01-01
The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant ( P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° ( P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° ( P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapanen, Mika; Department of Medical Physics, Tampere University Hospital; Laaksomaa, Marko, E-mail: Marko.Laaksomaa@pshp.fi
2016-04-01
Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors andmore » setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.« less
Nurses' attitudes and perceived barriers to the reporting of medication administration errors.
Yung, Hai-Peng; Yu, Shu; Chu, Chi; Hou, I-Ching; Tang, Fu-In
2016-07-01
(1) To explore the attitudes and perceived barriers to reporting medication administration errors and (2) to understand the characteristics of - and nurses' feelings - about error reports. Under-reporting of medication administration errors is a global concern related to the safety of patient care. Understanding nurses' attitudes and perceived barriers to error reporting is the initial step to increasing the reporting rate. A cross-sectional, descriptive survey with a self-administered questionnaire was completed by the nurses of a medical centre hospital in Taiwan. A total of 306 nurses participated in the study. Nurses' attitudes towards medication administration error reporting were inclined towards positive. The major perceived barrier was fear of the consequences after reporting. The results demonstrated that 88.9% of medication administration errors were reported orally, whereas 19.0% were reported through the hospital internet system. Self-recrimination was the common feeling of nurses after the commission of an medication administration error. Even if hospital management encourages errors to be reported without recrimination, nurses' attitudes toward medication administration error reporting are not very positive and fear is the most prominent barrier contributing to underreporting. Nursing managers should establish anonymous reporting systems and counselling classes to create a secure atmosphere to reduce nurses' fear and provide incentives to encourage reporting. © 2016 John Wiley & Sons Ltd.
Utility of PCR in diagnosing pulmonary tuberculosis.
Bennedsen, J; Thomsen, V O; Pfyffer, G E; Funke, G; Feldmann, K; Beneke, A; Jenkins, P A; Hegginbothom, M; Fahr, A; Hengstler, M; Cleator, G; Klapper, P; Wilkins, E G
1996-06-01
At present, the rapid diagnosis of pulmonary tuberculosis rests with microscopy. However, this technique is insensitive and many cases of pulmonary tuberculosis cannot be initially confirmed. Nucleic acid amplification techniques are extremely sensitive, but when they are applied to tuberculosis diagnosis, they have given variable results. Investigators at six centers in Europe compared a standardized PCR system (Amplicor; Roche) against conventional culture methods. Defined clinical information was collected. Discrepant samples were retested, and inhibition assays and backup amplification with a separate primer pair were performed. Mycobacterium tuberculosis complex organisms were recovered from 654 (9.1%) of 7,194 samples and 293 (7.8%) of 3,738 patients. Four hundred fifty-two of the M. tuberculosis isolates from 204 patients were smear positive and culture positive. Among the culture-positive specimens, PCR had a sensitivity of 91.4% for smear-positive specimens and 60.9% for smear-negative specimens, with a specificity of 96.1%. Analysis of 254 PCR-positive, culture-negative specimens with discrepant results revealed that 130 were from patients with recently diagnosed tuberculosis and 94 represented a presumed laboratory error. Similar analysis of 118 PCR-negative, culture-positive specimens demonstrated that 27 discrepancies were due to presumed uneven aliquot distribution and 11 were due to presumed laboratory error; PCR inhibitors were detected in 8 specimens. Amplicor enables laboratories with little previous experience with nucleic acid amplification to perform PCR. Disease in more than 60% of the patients with tuberculosis with smear-negative, culture-positive specimens can be diagnosed at the time of admission, and potentially all patients with smear-positive specimens can immediately be confirmed as being infected with M. tuberculosis, leading to improved clinical management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chengqiang, L; Yin, Y; Chen, L
Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans.more » Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.« less
WE-G-BRD-08: End-To-End Targeting Accuracy of the Gamma Knife for Trigeminal Neuralgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brezovich, I; Wu, X; Duan, J
2014-06-15
Purpose: Current QA procedures verify accuracy of individual equipment parameters, but may not include CT and MRI localizers. This study uses an end-to-end approach to measure the overall targeting errors in individual patients previously treated for trigeminal neuralgia. Methods: The trigeminal nerve is simulated by a 3 mm long, 3.175 mm (1/8 inch) diameter MRI contrast-filled cavity embedded within a PMMA plastic capsule. The capsule is positioned within the head frame such that the cavity position matches the Gamma Knife coordinates of 10 previously treated patients. Gafchromic EBT2 film is placed at the center of the cavity in coronal andmore » sagittal orientations. The films are marked with a pin prick to identify the cavity center. Treatments are planned for delivery with 4 mm collimators using MRI and CT scans acquired with the clinical localizer boxes and acquisition protocols. Coordinates of shots are chosen so that the cavity is centered within the 50% isodose volume. Following irradiation, the films are scanned and analyzed. Targeting errors are defined as the distance between the pin prick and the centroid of the 50% isodose line. Results: Averaged over 10 patient simulations, targeting errors along the x, y and z coordinates (patient left-to-right, posterior-anterior, head-to-foot) were, respectively, −0.060 +/− 0.363, −0.350 +/− 0.253, and 0.364 +/− 0.191 mm when MRI was used for treatment planning. Planning according to CT exhibited generally smaller errors, namely 0.109 +/− 0.167, −0.191 +/− 0.144, and 0.211 +/− 0.94 mm. The largest errors in MRI and CT planned treatments were, respectively, y = −0.761 and x = 0.428 mm. Conclusion: Unless patient motion or stronger MRI image distortion in actual treatments caused additional errors, all patients received the prescribed dose, i.e., the targeted section of the trig±eminal nerve was contained within the 50% isodose surface in all cases.« less
Detector system dose verification comparisons for arc therapy: couch vs. gantry mount
Manikandan, Arjunan; Nandy, Maitreyee; Sureka, Chandra Sekaran; Gossman, Michael S.; Sujatha, Nadendla; Rajendran, Vivek Thirupathur
2014-01-01
The aim of this study was to assess the performance of a gantry‐mounted detector system and a couch set detector system using a systematic multileaf collimator positional error manually introduced for volumetric‐modulated arc therapy. Four head and neck and esophagus VMAT plans were evaluated by measurement using an electronic portal imaging device and an ion chamber array. Each plan was copied and duplicated with a 1 mm systematic MLC positional error in the left leaf bank. Direct comparison of measurements for plans with and without the error permitted observational characteristics for quality assurance performance between detectors. A total of 48 different plans were evaluated for this testing. The mean percentage planar dose differences required to satisfy a 95% match between plans with and without the MLCPE were 5.2% ± 0.5% for the chamber array with gantry motion, 8.12% ± 1.04% for the chamber array with a static gantry at 0°, and 10.9% ± 1.4% for the EPID with gantry motion. It was observed that the EPID was less accurate due to overresponse of the MLCPE in the left leaf bank. The EPID always images bank‐A on the ipsilateral side of the detector, whereas for a chamber array or for a patient, that bank changes as it crosses the ‐90° or +90° position. A couch set detector system can reproduce the TPS calculated values most consistently. We recommend it as the most reliable patient specific QA system for MLC position error testing. This research is highlighted by the finding of up to 12.7% dose variation for H/N and esophagus cases for VMAT delivery, where the mere source of error was the stated clinically acceptability of 1 mm MLC position deviation of TG‐142. PACS numbers: 87.56.‐v, 87.55.‐x, 07.57.KP, 29.40.‐n, 85.25.Pb PMID:24892330
Levesque, Eric; Hoti, Emir; de La Serna, Sofia; Habouchi, Houssam; Ichai, Philippe; Saliba, Faouzi; Samuel, Didier; Azoulay, Daniel
2013-03-01
In the French healthcare system, the intensive care budget allocated is directly dependent on the activity level of the center. To evaluate this activity level, it is necessary to code the medical diagnoses and procedures performed on Intensive Care Unit (ICU) patients. The aim of this study was to evaluate the effects of using an Intensive Care Information System (ICIS) on the incidence of coding errors and its impact on the ICU budget allocated. Since 2005, the documentation on and monitoring of every patient admitted to our ICU has been carried out using an ICIS. However, the coding process was performed manually until 2008. This study focused on two periods: the period of manual coding (year 2007) and the period of computerized coding (year 2008) which covered a total of 1403 ICU patients. The time spent on the coding process, the rate of coding errors (defined as patients missed/not coded or wrongly identified as undergoing major procedure/s) and the financial impact were evaluated for these two periods. With computerized coding, the time per admission decreased significantly (from 6.8 ± 2.8 min in 2007 to 3.6 ± 1.9 min in 2008, p<0.001). Similarly, a reduction in coding errors was observed (7.9% vs. 2.2%, p<0.001). This decrease in coding errors resulted in a reduced difference between the potential and real ICU financial supplements obtained in the respective years (€194,139 loss in 2007 vs. a €1628 loss in 2008). Using specific computer programs improves the intensive process of manual coding by shortening the time required as well as reducing errors, which in turn positively impacts the ICU budget allocation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Teamwork and clinical error reporting among nurses in Korean hospitals.
Hwang, Jee-In; Ahn, Jeonghoon
2015-03-01
To examine levels of teamwork and its relationships with clinical error reporting among Korean hospital nurses. The study employed a cross-sectional survey design. We distributed a questionnaire to 674 nurses in two teaching hospitals in Korea. The questionnaire included items on teamwork and the reporting of clinical errors. We measured teamwork using the Teamwork Perceptions Questionnaire, which has five subscales including team structure, leadership, situation monitoring, mutual support, and communication. Using logistic regression analysis, we determined the relationships between teamwork and error reporting. The response rate was 85.5%. The mean score of teamwork was 3.5 out of 5. At the subscale level, mutual support was rated highest, while leadership was rated lowest. Of the participating nurses, 522 responded that they had experienced at least one clinical error in the last 6 months. Among those, only 53.0% responded that they always or usually reported clinical errors to their managers and/or the patient safety department. Teamwork was significantly associated with better error reporting. Specifically, nurses with a higher team communication score were more likely to report clinical errors to their managers and the patient safety department (odds ratio = 1.82, 95% confidence intervals [1.05, 3.14]). Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety. Copyright © 2015. Published by Elsevier B.V.
Hyde, Derek; Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C Shun; Ma, Lijun; Sahgal, Arjun
2012-03-01
To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1° tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1° degree after the first 10 patients. Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1°. In analyzing the impact of the time interval for verification imaging (10 ± 3 min) and subsequent image acquisitions (17 ± 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis (± SD) were 0.7 ± 0.5 mm and 0.5 ± 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1° correction threshold, the target was localized to within 1.2 mm and 0.9° with 95% confidence. Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion allowing for safe spine SBRT delivery. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X; Lin, J; Diwanji, T
2014-06-01
Purpose: Recently, template matching has been shown to be able to track tumor motion on cine-MRI images. However, artifacts such as deformation, rotation, and/or out-of-plane movement could seriously degrade the performance of this technique. In this work, we demonstrate the utility of multiple templates derived from different phases of tumor motion in reducing the negative effects of artifacts and improving the accuracy of template matching methods. Methods: Data from 2 patients with large tumors and significant tumor deformation were analyzed from a group of 12 patients from an earlier study. Cine-MRI (200 frames) imaging was performed while the patients weremore » instructed to breathe normally. Ground truth tumor position was established on each frame manually by a radiation oncologist. Tumor positions were also automatically determined using template matching with either single or multiple (5) templates. The tracking errors, defined as the absolute differences in tumor positions determined by the manual and automated methods, when using either single or multiple templates were compared in both the AP and SI directions, respectively. Results: Using multiple templates reduced the tracking error of template matching. In the SI direction where the tumor movement and deformation were significant, the mean tracking error decreased from 1.94 mm to 0.91 mm (Patient 1) and from 6.61 mm to 2.06 mm (Patient 2). In the AP direction where the tumor movement was small, the reduction of the mean tracking error was significant in Patient 1 (from 3.36 mm to 1.04 mm), but not in Patient 2 ( from 3.86 mm to 3.80 mm). Conclusion: This study shows the effectiveness of using multiple templates in improving the performance of template matching when artifacts like large tumor deformation or out-of-plane motion exists. Accurate tumor tracking capabilities can be integrated with MRI guided radiation therapy systems. This work was supported in part by grants from NIH/NCI CA 124766 and Varian Medical Systems, Palo Alto, CA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S; Fahimian, B; Kenyon, M
2014-06-15
Purpose: Total lymphoid irradiation (TLI) is conventionally delivered through the dosimetric matching of mantle, spleen, and pelvis fields, necessitating multiple isocenters delivered through a combination of couch shifts and sliding of patients relative to the couch rendering the technique susceptible to shifting errors. To address this challenge, a novel technique for the couch indexing of TLI treatments is developed and evaluated through a multi-patient pilot trial. Methods: An immobilization device was designed consisting of a movable indexed slide board with an Exact Lok-Bar drilled into it. A Timo headrests were used fixate the head of the patient relative to themore » slide board. For the Varian Exact Couch™, the immobilization board was connected to the H3 notch to avoid the metal infrastructure of the couch for the delivery of the mantle and spleen fields. For tall patients the required shift for the pelvis isocenter reaches the shifting limit and the board was slid from H3 to H4 (a fixed distance of 14 cm). A total 22 patients were stratified in two groups of 11, one consisting of the conventional setup, and one group with the proposed immobilization technique. Results: The standard deviations (SD) of the couch positions in lateral, longitudinal, and vertical directions for 10 fractions for each patient in both groups were calculated. In the non-indexed group, the positioning SD ranged from 0.9 to 4.7 cm. Using our device, the positioning SD was reduced to a range of 0.2 to 0.9 cm, with the longitudinal direction showing the largest improvement. Conclusion: Matched field TLI remains error prone to geometrical misses. The feasibility of full indexing TLI treatments was validated and shown to result in a significant reduction of positioning errors.« less
Giugliani, Camila; Gault, Nathalie; Fares, Valia; Jegu, Jérémie; Trolli, Sergio Eleni dit; Biga, Julie; Vidal-Trecan, Gwenaelle
2009-01-01
Background Legislative measures have been identified as one effective way of changing attitude or behaviour towards health care. The aim of this study was to describe trends in patients' complaints for medical issues; to evaluate the contribution of a law regarding patients' rights, and to identify factors associated to patients' perception of a medical error. Methods Patients with a complaint letter for medical issues in a French university hospital were included. Trends in complaint rates were analysed. Comparisons were made between a first (1998–2000) and a second (2001–2004) time period, before and after the diffusion of the law, and according to the perception of a medical error. Results Complaints for medical issues increased from 1998 to 2004. Of 164 complaints analysed, 66% were motivated by the perception of a medical error (47% during the first time period vs. 73% during the second time period; p = 0.001). Error or delay in diagnosis/treatment and surgical/medical complication were the main reasons for complaints. Surgical departments had the higher number of complaints. Second time period, substandard care, disability, and adverse effect of a health product were independently associated with the perception of a medical error, positively for the formers, and negatively for the latter. Conclusion This study revealed an increase with time in the number of complaints for medical issues in a university hospital, as well as an increase in the perception of a medical error after the passing of a law regarding patients' rights in France. PMID:19660131
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunmolu, O; Gans, N; Jiang, S
Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance ofmore » the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control will be pursued.« less
Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.
Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D
2015-12-01
A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
The effect of hip positioning on the projected femoral neck-shaft angle: a modeling study.
Bhashyam, Abhiram R; Rodriguez, Edward K; Appleton, Paul; Wixted, John J
2018-04-03
The femoral neck-shaft angle (NSA) is used to restore normal hip geometry during hip fracture repair. Femoral rotation is known to affect NSA measurement, but the effect of hip flexion-extension is unknown. The goals of this study were to determine and test mathematical models of the relationship between hip flexion-extension, femoral rotation and NSA. We hypothesized that hip flexion-extension and femoral rotation would result in NSA measurement error. Two mathematical models were developed to predict NSA in varying degrees of hip flexion-extension and femoral rotation. The predictions of the equations were tested in vitro using a model that varied hip flexion-extension while keeping rotation constant, and vice versa. The NSA was measured from an AP radiograph obtained with a C-arm. Attributable measurement error based on hip positioning was calculated from the models. The predictions of the model correlated well with the experimental data (correlation coefficient = 0.82 - 0.90). A wide range of patient positioning was found to result in less than 5-10 degree error in the measurement of NSA. Hip flexion-extension and femoral rotation had a synergistic effect in measurement error of the NSA. Measurement error was minimized when hip flexion-extension was within 10 degrees of neutral. This study demonstrates that hip flexion-extension and femoral rotation significantly affect the measurement of the NSA. To avoid inadvertently fixing the proximal femur in varus or valgus, the hip should be positioned within 10 degrees of neutral flexion-extension with respect to the C-arm to minimize positional measurement error. N/A, basic science study.
Correction of electrode modelling errors in multi-frequency EIT imaging.
Jehl, Markus; Holder, David
2016-06-01
The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.
SU-F-T-638: Is There A Need For Immobilization in SRS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masterova, K; Sethi, A; Anderson, D
2016-06-15
Purpose: Frameless Stereotactic radiosurgery (SRS) is increasingly used in the clinic. Cone-Beam CT (CBCT) to simulation-CT match has replaced the 3-dimensional coordinate based set up using a stereotactic localizing frame. The SRS frame however served as both a localizing and immobilizing device. We seek to measure the quality of frameless (mask based) and frame based immobilization and evaluate its impact on target dose. Methods: Each SRS patient was set up by kV on-board imaging (OBI) and then fine-tuned with CBCT. A second CBCT was done at treatment-end to ascertain intrafraction motion. We compared pre- vs post-treatment CBCT shifts for bothmore » frameless and frame based SRS patients. CBCT to sim-CT fusion was repeated for each patient off-line to assess systematic residual image registration error. Each patient was re-planned with measured shifts to assess effects on target dose. Results: We analyzed 11 patients (12 lesions) treated with frameless SRS and 6 patients (11 lesions) with a fixed frame system. Average intra-fraction iso-center positioning errors for frameless and frame-based treatments were 1.24 ± 0.57 mm and 0.28 ± 0.08 mm (mean ± s.d.) respectively. Residual error in CBCT registration was 0.24 mm. The frameless positioning uncertainties led to target dose errors in Dmin and D95 of 15.5 ± 18.4% and 6.6 ± 9.1% respectively. The corresponding errors in fixed frame SRS were much lower with Dmin and D95 reduced by 4.2 ± 6.5% and D95 2.5 ± 3.8% respectively. Conclusion: Frameless mask provides good immobilization with average patient motion of 1.2 mm during treatment. This exceeds MRI voxel dimensions (∼0.43mm) used for target delineation. Frame-based SRS provides superior patient immobilization with measureable movement no greater than the background noise of the CBCT registration. Small lesions requiring submm precision are better served with a frame based SRS.« less
SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A; Yue, N
2016-06-15
Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on themore » range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.« less
Patient safety culture in China: a case study in an outpatient setting in Beijing
Liu, Chaojie; Liu, Weiwei; Wang, Yuanyuan; Zhang, Zhihong; Wang, Peng
2014-01-01
Objectives To investigate the patient safety culture in an outpatient setting in Beijing and explore the meaning and implications of the safety culture from the perspective of health workers and patients. Methods A mixed methods approach involving a questionnaire survey and in-depth interviews was adopted. Among the 410 invited staff members, 318 completed the Hospital Survey of Patient Safety Culture (HSOPC). Patient safety culture was described using 12 subscale scores. Inter-subscale correlation analysis, ANOVA and stepwise multivariate regression analyses were performed to identify the determinants of the patient safety culture scores. Interviewees included 22 patients selected through opportunity sampling and 27 staff members selected through purposive sampling. The interview data were analysed thematically. Results The survey respondents perceived high levels of unsafe care but had personally reported few events. Lack of ‘communication openness’ was identified as a major safety culture problem, and a perception of ‘penalty’ was the greatest barrier to the encouragement of error reporting. Cohesive ‘teamwork within units’, while found to be an area of strength, conversely served as a protective and defensive mechanism for medical practice. Low levels of trust between providers and consumers and lack of management support constituted an obstacle to building a positive patient safety culture. Conclusions This study in China demonstrates that a punitive approach to error is still widespread despite increasing awareness of unsafe care, and managers have been slow in acknowledging the importance of building a positive patient safety culture. Strong ‘teamwork within units’, a common area of strength, could fuel the concealment of errors. PMID:24351971
Alahmari, Khalid A; Reddy, Ravi Shankar; Silvian, Paul; Ahmad, Irshad; Nagaraj, Venkat; Mahtab, Mohammad
2017-11-06
Evaluation of cervical joint position sense in subjects with chronic neck pain has gained importance in recent times. Different authors have established increased joint position error (JPE) in subjects with acute neck pain. However, there is a paucity of studies to establish the influence of chronic neck pain on cervical JPE. The objective of the study was to understand the influence of chronic neck pain on cervical JPE, and to examine the differences in cervical JPE between young and elderly subjects with chronic neck pain. Forty-two chronic neck pain patients (mean age 47.4) were compared for cervical JPE with 42 age-matched healthy subjects (mean age 47.8), using a digital inclinometer. The cervical JPE were measured in flexion, extension, and rotation in right and left movement directions. The comparison of JPE showed significantly larger errors in subjects with chronic neck pain when compared to healthy subjects (p< 0.001). The errors were larger in all of the movement directions tested. Comparison between young and older subjects with chronic neck pain revealed no significant differences (P> 0.05) in cervical JPE. Cervical joint position sense is impaired in subjects with chronic neck pain.
NASA Astrophysics Data System (ADS)
Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake
2007-08-01
This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.
Dawdy, M R; Munter, D W; Gilmore, R A
1997-03-01
This study was designed to examine the relationship between patient entry rates (a measure of physician work load) and documentation errors/omissions in both handwritten and dictated emergency treatment records. The study was carried out in two phases. Phase I examined handwritten records and Phase II examined dictated and transcribed records. A total of 838 charts for three common chief complaints (chest pain, abdominal pain, asthma/chronic obstructive pulmonary disease) were retrospectively reviewed and scored for the presence or absence of 11 predetermined criteria. Patient entry rates were determined by reviewing the emergency department patient registration logs. The data were analyzed using simple correlation and linear regression analysis. A positive correlation was found between patient entry rates and documentation errors in handwritten charts. No such correlation was found in the dictated charts. We conclude that work load may negatively affect documentation accuracy when charts are handwritten. However, the use of dictation services may minimize or eliminate this effect.
SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathuria, K; Siebers, J
2014-06-01
Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, G.M.; Sfakianakis, G.N.; Lobe, T.E.
1981-06-01
The ability of external imaging to demonstrate intestinal infarction in neonatal necrotizing enterocolitis (NEC) was prospectively evaluated. The radiopharmaceutical technetium--99m diphosphonate was injected intravenously and the patients subsequently underwent abdominal scanning. Clinical patient care and interpretation of the images were entirely independent throughout the study. Of 33 studies, 7 were positive, 4 were suspicious, and 22 were negative. One false positive study detected ischemia without transmural infarction. The second false positive scan occurred postoperatively and was due to misinterpretation of the hyperactivity along the surgical incision. None of the suspicious cases had damaged bowel. The two false negative studies clearlymore » failed to demonstrate frank intestinal necrosis. The presence of very small areas of infarction, errors in technical settings, subjective interpretation of scans and delayed clearance of the radionuclide in a critically ill neonate may all limit the accuracy of external abdominal scanning. However, in spite of an error rate of 12%, it is likely that this technique will enhance the present clinical, laboratory, and radiologic parameters of patient management in NEC.« less
Effects of extended work shifts and shift work on patient safety, productivity, and employee health.
Keller, Simone M
2009-12-01
It is estimated 1.3 million health care errors occur each year and of those errors 48,000 to 98,000 result in the deaths of patients (Barger et al., 2006). Errors occur for a variety of reasons, including the effects of extended work hours and shift work. The need for around-the-clock staff coverage has resulted in creative ways to maintain quality patient care, keep health care errors or adverse events to a minimum, and still meet the needs of the organization. One way organizations have attempted to alleviate staff shortages is to create extended work shifts. Instead of the standard 8-hour shift, workers are now working 10, 12, 16, or more hours to provide continuous patient care. Although literature does support these staffing patterns, it cannot be denied that shifts beyond the traditional 8 hours increase staff fatigue, health care errors, and adverse events and outcomes and decrease alertness and productivity. This article includes a review of current literature on shift work, the definition of shift work, error rates and adverse outcomes related to shift work, health effects on shift workers, shift work effects on older workers, recommended optimal shift length, positive and negative effects of shift work on the shift worker, hazards associated with driving after extended shifts, and implications for occupational health nurses. Copyright 2009, SLACK Incorporated.
Burillo, Almudena; Rodríguez-Sánchez, Belén; Ramiro, Ana; Cercenado, Emilia; Rodríguez-Créixems, Marta; Bouza, Emilio
2014-01-01
Microbiological confirmation of a urinary tract infection (UTI) takes 24-48 h. In the meantime, patients are usually given empirical antibiotics, sometimes inappropriately. We assessed the feasibility of sequentially performing a Gram stain and MALDI-TOF MS mass spectrometry (MS) on urine samples to anticipate clinically useful information. In May-June 2012, we randomly selected 1000 urine samples from patients with suspected UTI. All were Gram stained and those yielding bacteria of a single morphotype were processed for MALDI-TOF MS. Our sequential algorithm was correlated with the standard semiquantitative urine culture result as follows: Match, the information provided was anticipative of culture result; Minor error, the information provided was partially anticipative of culture result; Major error, the information provided was incorrect, potentially leading to inappropriate changes in antimicrobial therapy. A positive culture was obtained in 242/1000 samples. The Gram stain revealed a single morphotype in 207 samples, which were subjected to MALDI-TOF MS. The diagnostic performance of the Gram stain was: sensitivity (Se) 81.3%, specificity (Sp) 93.2%, positive predictive value (PPV) 81.3%, negative predictive value (NPV) 93.2%, positive likelihood ratio (+LR) 11.91, negative likelihood ratio (-LR) 0.20 and accuracy 90.0% while that of MALDI-TOF MS was: Se 79.2%, Sp 73.5, +LR 2.99, -LR 0.28 and accuracy 78.3%. The use of both techniques provided information anticipative of the culture result in 82.7% of cases, information with minor errors in 13.4% and information with major errors in 3.9%. Results were available within 1 h. Our serial algorithm provided information that was consistent or showed minor errors for 96.1% of urine samples from patients with suspected UTI. The clinical impacts of this rapid UTI diagnosis strategy need to be assessed through indicators of adequacy of treatment such as a reduced time to appropriate empirical treatment or earlier withdrawal of unnecessary antibiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K
2014-06-01
Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less
Behera, B; Mathur, P; Gupta, B
2010-01-01
The purpose of this study was to ascertain if the simple practice of Gram stain, acridine orange stain and direct sensitivity determination of positive blood culture bottles could be used to guide early and appropriate treatment in trauma patients with clinical suspicion of sepsis. The study also aimed to evaluate the error in interpreting antimicrobial sensitivity by direct method when compared to standard method and find out if specific antibiotic-organism combination had more discrepancies. Findings from consecutive episodes of blood stream infection at an Apex Trauma centre over a 12-month period are summarized. A total of 509 consecutive positive blood cultures were subjected to Gram staining. AO staining was done in BacT/ALERT-positive Gram-stain negative blood cultures. Direct sensitivity was performed from 369 blood culture broths, showing single type of growth in Gram and acridine orange staining. Results of direct sensitivity were compared to conventional sensitivity for errors. No 'very major' discrepancy was found in this study. About 5.2 and 1.8% minor error rates were noted in gram-positive and gram-negative bacteria, respectively, while comparing the two methods. Most of the discrepancies in gram-negative bacteria were noted in beta lactam - beta lactamase inhibitor combinations. Direct sensitivity testing was not reliable for reporting of methicillin and vancomycin resistance in Staphylococci. Gram stain result together with direct sensitivity testing is required for optimizing initial antimicrobial therapy in trauma patients with clinical suspicion of sepsis. Gram staining and AO staining proved particularly helpful in the early detection of candidaemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Docef, A.; Fix, M.
2005-06-15
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less
NASA Astrophysics Data System (ADS)
Zou, Yunpeng; Xu, Ying; Hu, Lei; Guo, Na; Wang, Lifeng
2017-01-01
Aiming the high failure rate, the high radiation quantity and the poor positioning accuracy of femoral neck traditional surgery, this article develops a set of new positioning robot system of femoral neck hollow screw implants based on X-rays error correction, which bases on the study of x-rays perspective principle and the Motion Principle of 6 DOF(degree of freedom) series robot UR(Universal Robots). Compared with Computer Assisted Navigation System, this system owns better positioning accuracy and more simple operation. In addition, without extra Equipment of Visual Tracking, this system can reduce a lot of cost. During the surgery, Doctor can plan the operation path and the pose of mark needle according to the positive and lateral X-rays images of patients. Then they can calculate the pixel ratio according to the ratio of the actual length of mark line and the length on image. After that, they can calculate the amount of exercise of UR Robot according to the relative position between operation path and guide pin and the fixed relationship between guide pin and UR robot. Then, they can control UR to drive the positioning guide pin to the operation path. At this point, check the positioning guide pin and the planning path is coincident, if not, repeat the previous steps, until the positioning guide pin and the planning path coincide which will eventually complete the positioning operation. Moreover, to verify the positioning accuracy, this paper make an errors analysis aiming to thirty cases of the experimental model of bone. The result shows that the motion accuracy of the UR Robot is 0.15mm and the Integral error precision is within 0.8mm. To verify the clinical feasibility of this system, this article analysis on three cases of the clinical experiment. In the whole process of positioning, the X-rays irradiation time is 2-3s, the number of perspective is 3-5 and the whole positioning time is 7-10min. The result shows that this system can complete accurately femoral neck positioning surgery. Meanwhile, it can greatly reduce the X-rays radiation of medical staff and patients. To summarize, it has a significant value in clinical application.
Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P
2012-01-01
Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellamonica, D.; Luo, G.; Ding, G.
Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were createdmore » for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.« less
Kermani, Bahram G
2016-07-01
Crystal Genetics, Inc. is an early-stage genetic test company, focused on achieving the highest possible clinical-grade accuracy and comprehensiveness for detecting germline (e.g., in hereditary cancer) and somatic (e.g., in early cancer detection) mutations. Crystal's mission is to significantly improve the health status of the population, by providing high accuracy, comprehensive, flexible and affordable genetic tests, primarily in cancer. Crystal's philosophy is that when it comes to detecting mutations that are strongly correlated with life-threatening diseases, the detection accuracy of every single mutation counts: a single false-positive error could cause severe anxiety for the patient. And, more importantly, a single false-negative error could potentially cost the patient's life. Crystal's objective is to eliminate both of these error types.
SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voros, L; Cohen, G; Zaider, M
Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan imagemore » study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While limited to a handful of patients, our experience shows navigation and fluoroscopy guided placement yield similar results.« less
Motion correction for radiation therapy of prostate using B-mode ultrasound
NASA Astrophysics Data System (ADS)
Hummel, Johann; Figl, Michael; Schmidbauer, Jörg; Tinzl, Martina; Bergmann, Helmar; Birkfellner, Wolfgang
2007-03-01
The use of intensity modulated radiation therapy promises to spare organs at risk by applying better dose distribution on the tumor. The specific challenge of this methods is the exact positioning of the patient and the localization of the exposured organ. With respect to the filling of rectum and bladder the prostate can move several millimeters up to centimeters. Therefore, the position of the prostate should be determinated and corrected daily before irradiation. We used a B-mode US machine (Ultramark 9, advanced Technology Laboratories, USA) which was calibrated using an optical tracking system (Polaris, NDI, Can). After correct positioning of the patient in the simulation room three anatomical markers (apex prostate, prostate lateral sinister/dexter) were identified and their positions calculated with respect to the coordinate system of the simulator. The same situation is given in the treatment room. Both, simulator and accelerator are registered by a simple point-to-point registration using a block with five drilled holes with known coordinates in the block coordinate system. The block is aligned by means of laser markers. When the patient is placed on the treatment table, the three anatomical landmarks are located on the US images and their positions are calculated with respect to the coordinate system of the treatment room. Applying a point-to-point registration results in a rotation matrix and a translation vector in the desired coordinate system which can be used for repositioning by translating and rotating the patient table. Additionally, a fiducial registration error (FRE) is calculated which gives a dimension of the accuracy the three points were identified. We found an fiducial registration error (FRE) of 2.4 mm +/- 1.2 mm for the point-to-point registration of the anatomical landmarks. The FRE for the point-to-point registration between the block and the optical tracking system was 0.5 mm +/- 0.2 mm. According to the US calibration we found an error of 0.8 mm +/- 0.2 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja
2013-02-01
Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging systemmore » concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.« less
Articulation in schoolchildren and adults with neurofibromatosis type 1.
Cosyns, Marjan; Mortier, Geert; Janssens, Sandra; Bogaert, Famke; D'Hondt, Stephanie; Van Borsel, John
2012-01-01
Several authors mentioned the occurrence of articulation problems in the neurofibromatosis type 1 (NF1) population. However, few studies have undertaken a detailed analysis of the articulation skills of NF1 patients, especially in schoolchildren and adults. Therefore, the aim of the present study was to examine in depth the articulation skills of NF1 schoolchildren and adults, both phonetically and phonologically. Speech samples were collected from 43 Flemish NF1 patients (14 children and 29 adults), ranging in age between 7 and 53 years, using a standardized speech test in which all Flemish single speech sounds and most clusters occur in all their permissible syllable positions. Analyses concentrated on consonants only and included a phonetic inventory, a phonetic, and a phonological analysis. It was shown that phonetic inventories were incomplete in 16.28% (7/43) of participants, in which totally correct realizations of the sibilants /ʃ/ and/or /ʒ/ were missing. Phonetic analysis revealed that distortions were the predominant phonetic error type. Sigmatismus stridens, multiple ad- or interdentality, and, in children, rhotacismus non vibrans were frequently observed. From a phonological perspective, the most common error types were substitution and syllable structure errors. Particularly, devoicing, cluster simplification, and, in children, deletion of the final consonant of words were perceived. Further, it was demonstrated that significantly more men than women presented with an incomplete phonetic inventory, and that girls tended to display more articulation errors than boys. Additionally, children exhibited significantly more articulation errors than adults, suggesting that although the articulation skills of NF1 patients evolve positively with age, articulation problems do not resolve completely from childhood to adulthood. As such, the articulation errors made by NF1 adults may be regarded as residual articulation disorders. It can be concluded that the speech of NF1 patients is characterized by mild articulation disorders at an age where this is no longer expected. Readers will be able to describe neurofibromatosis type 1 (NF1) and explain the articulation errors displayed by schoolchildren and adults with this genetic syndrome. © 2011 Elsevier Inc. All rights reserved.
Construction of a patient observation system using KINECTTM
NASA Astrophysics Data System (ADS)
Miyaura, Kazunori; Kumazaki, Yu; Fukushima, Chika; Kato, Shingo; Saitoh, Hidetoshi
2014-03-01
Improvement in the positional accuracy of irradiation is expected by capturing patient motion (intra-fractional error) during irradiation. The present study reports the construction of a patient observation system using Microsoft® KINECTTM. By tracking movement, we made it possible to add a depth component to the acquired position coordinates and to display three-axis (X, Y, and Z) movement. Moreover, the developed system can be displayed in a graph which is constructed from the coordinate position at each time interval. Using the developed system, an observer can easily visualize patient movement. When the body phantom was moved a known distance in the X, Y, and Z directions, good coincidence was shown with each axis. We built a patient observation system which captures a patient's motion using KINECTTM.
Clinical Implications of Hip Flexion in the Measurement of Spinal Bone Mineral Density.
Ikegami, Shota; Kamimura, Mikio; Uchiyama, Shigeharu; Nakamura, Yukio; Mukaiyama, Keijiro; Kato, Hiroyuki
2016-01-01
The aim of this study was to investigate if differences in leg positioning affect spinal bone mineral density (BMD) measurements and the detection of low bone mass. Subjects included 1039 Japanese patients, 878 women and 161 men (mean ages: 67 and 71 years, respectively). Spinal BMD (L1-4) was measured using dual-energy X-ray absorptiometry (DXA) with patients lying in 2 different positions: (1) supine on the scanning table with hips flexed and knees flexed over a 90° support pad (the standard position) and (2) simply supine (the supine position). Predictive indices were calculated for spinal DXA acquired with patients in the supine position. A BMD T-score of -2.5 or lower was set as the threshold for low bone mass. For the standard and the supine positions during scanning in women, BMDs were 0.911 and 0.915 g/cm(2), respectively; in men, they were 1.117 and 1.124 g/cm(2), respectively. The estimated systematic bias in BMD between the positions was 0.42% (95% confidence interval: 0.24, 0.59; p = 0.009). Random errors in the densitometry measurements for the standard and supine positions were 0.66% and 0.84%, respectively. There was no significant difference between the errors (p= 0.164). The likelihood ratios of a positive and negative test for the detection of low bone mass following supine DXA were 121.0 and 0.066, respectively, compared with results acquired using the standard position. In conclusion, DXA measurements acquired with patients in the supine position slightly overestimated BMD vs the standard position. However, the clinical equivalency between the positioning methods for DXA is preserved to the extent that low bone mass can be reliably detected in the supine position. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Sulaiman, Che Fatehah Che; Henn, Patrick; Smith, Simon; O'Tuathaigh, Colm M P
2017-10-01
Intensive workload and limited training opportunities for Irish non-consultant hospital doctors (NCHDs) has a negative effect on their health and well-being, and can result in burnout. Burnout affects physician performance and can lead to medical errors. This study examined the prevalence of burnout syndrome among Irish NCHDs and its association with self-reported medical error and poor quality of patient care. A cross-sectional quantitative survey-based design. All teaching hospitals affiliated with University College Cork. NCHDs of all grades and specialties. The following instruments were completed by all participants: Maslach Burnout Inventory-Human Service Survey (MBI-HSS), assessing three categories of burnout syndrome: Emotional exhaustion (EE), Personal Achievement (PA) and Depersonalization (DP); questions related to self-reported medical errors/poor patient care quality and socio-demographic information. Self-reported measures of burnout and poor quality of patient care. Prevalence of burnout among physicians (n = 265) was 26.4%. There was a significant gender difference for EE and DP, but none for PA. A positive weak correlation was observed between EE and DP with medical error or poor patient care. A negative association was reported between PA and medical error and reduced quality of patient care. Burnout is prevalent among NCHDs in Ireland. Burnout syndrome is associated with self-reported medical error and quality of care in this sample population. Measures need to be taken to address this issue, with a view to protecting health of NCHDs and maintaining quality of patient care. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Total error shift patterns for daily CT on rails image-guided radiotherapy to the prostate bed
2011-01-01
Background To evaluate the daily total error shift patterns on post-prostatectomy patients undergoing image guided radiotherapy (IGRT) with a diagnostic quality computer tomography (CT) on rails system. Methods A total of 17 consecutive post-prostatectomy patients receiving adjuvant or salvage IMRT using CT-on-rails IGRT were analyzed. The prostate bed's daily total error shifts were evaluated for a total of 661 CT scans. Results In the right-left, cranial-caudal, and posterior-anterior directions, 11.5%, 9.2%, and 6.5% of the 661 scans required no position adjustments; 75.3%, 66.1%, and 56.8% required a shift of 1 - 5 mm; 11.5%, 20.9%, and 31.2% required a shift of 6 - 10 mm; and 1.7%, 3.8%, and 5.5% required a shift of more than 10 mm, respectively. There was evidence of correlation between the x and y, x and z, and y and z axes in 3, 3, and 3 of 17 patients, respectively. Univariate (ANOVA) analysis showed that the total error pattern was random in the x, y, and z axis for 10, 5, and 2 of 17 patients, respectively, and systematic for the rest. Multivariate (MANOVA) analysis showed that the (x,y), (x,z), (y,z), and (x, y, z) total error pattern was random in 5, 1, 1, and 1 of 17 patients, respectively, and systematic for the rest. Conclusions The overall daily total error shift pattern for these 17 patients simulated with an empty bladder, and treated with CT on rails IGRT was predominantly systematic. Despite this, the temporal vector trends showed complex behaviors and unpredictable changes in magnitude and direction. These findings highlight the importance of using daily IGRT in post-prostatectomy patients. PMID:22024279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sick, J; Rancilio, N; Fulkerson, C
Purpose: Ultrasound (US) is a noninvasive, nonradiographic imaging technique with high spatial and temporal resolution that can be used for localizing soft-tissue structures and tumors in real-time during radiotherapy (inter- and intra-fraction). A detailed methodology integrating 3D-US within RT is presented. This method is easier to adopt into current treatment protocol than current US based systems and reduces user variability for image acquisition, thus eliminating transducer induced changes that limit CT planning system. Methods: We designed an in-house integrated US manipulator and platform to relate CT, 3D-US and linear accelerator coordinate systems. To validate the platform, an agar-based phantom withmore » measured densities and speed-of-sound consistent with tissues surrounding the bladder, was rotated (0–45°) resulting in translations (up to 55mm) relative to the CT and US coordinate systems. After acquiring and integrating CT and US images into the treatment planning system, US-to-US and US-to-CT images were co-registered to re-align the phantom relative to the linear accelerator. Errors in the transformation matrix components were calculate to determine precision of this method under different patient positions. Results: Statistical errors from US-US registrations for different patient orientations ranged from 0.06–1.66mm for x, y, and z translational components, and 0.00–1.05° for rotational components. Statistical errors from US-CT registrations were 0.23–1.18mm for the x, y and z translational components, and 0.08–2.52° for the rotational components. Conclusion: Based on our result, this is consistent with currently used techniques for positioning prostate patients if couch re-positioning is less than a 5 degree rotation. We are now testing this on a dog patient to obtain both inter and intra-fractional positional errors. Additional design considerations include the future use of ultrasound-based functionality (photoacoustics, radioacoustics, Doppler) to monitor blood flow and hypoxia and/or in-vivo dosimetry for applications in other therapeutic techniques, such as hyperthermia, anti-angiogenesis, and particle therapy.« less
Barriers and facilitators to recovering from e-prescribing errors in community pharmacies.
Odukoya, Olufunmilola K; Stone, Jamie A; Chui, Michelle A
2015-01-01
To explore barriers and facilitators to recovery from e-prescribing errors in community pharmacies and to explore practical solutions for work system redesign to ensure successful recovery from errors. Cross-sectional qualitative design using direct observations, interviews, and focus groups. Five community pharmacies in Wisconsin. 13 pharmacists and 14 pharmacy technicians. Observational field notes and transcribed interviews and focus groups were subjected to thematic analysis guided by the Systems Engineering Initiative for Patient Safety (SEIPS) work system and patient safety model. Barriers and facilitators to recovering from e-prescription errors in community pharmacies. Organizational factors, such as communication, training, teamwork, and staffing levels, play an important role in recovering from e-prescription errors. Other factors that could positively or negatively affect recovery of e-prescription errors include level of experience, knowledge of the pharmacy personnel, availability or usability of tools and technology, interruptions and time pressure when performing tasks, and noise in the physical environment. The SEIPS model sheds light on key factors that may influence recovery from e-prescribing errors in pharmacies, including the environment, teamwork, communication, technology, tasks, and other organizational variables. To be successful in recovering from e-prescribing errors, pharmacies must provide the appropriate working conditions that support recovery from errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Sankar; Xing Aitang; Jameson, Michael G.
2013-03-15
Purpose: Image guided radiotherapy (IGRT) using cone beam computed tomography (CBCT) images greatly reduces interfractional patient positional uncertainties. An understanding of uncertainties in the IGRT process itself is essential to ensure appropriate use of this technology. The purpose of this study was to develop a phantom capable of assessing the accuracy of IGRT hardware and software including a 6 degrees of freedom patient positioning system and to investigate the accuracy of the Elekta XVI system in combination with the HexaPOD robotic treatment couch top. Methods: The constructed phantom enabled verification of the three automatic rigid body registrations (gray value, bone,more » seed) available in the Elekta XVI software and includes an adjustable mount that introduces known rotational offsets to the phantom from its reference position. Repeated positioning of the phantom was undertaken to assess phantom rotational accuracy. Using this phantom the accuracy of the XVI registration algorithms was assessed considering CBCT hardware factors and image resolution together with the residual error in the overall image guidance process when positional corrections were performed through the HexaPOD couch system. Results: The phantom positioning was found to be within 0.04 ({sigma}= 0.12) Degree-Sign , 0.02 ({sigma}= 0.13) Degree-Sign , and -0.03 ({sigma}= 0.06) Degree-Sign in X, Y, and Z directions, respectively, enabling assessment of IGRT with a 6 degrees of freedom patient positioning system. The gray value registration algorithm showed the least error in calculated offsets with maximum mean difference of -0.2({sigma}= 0.4) mm in translational and -0.1({sigma}= 0.1) Degree-Sign in rotational directions for all image resolutions. Bone and seed registration were found to be sensitive to CBCT image resolution. Seed registration was found to be most sensitive demonstrating a maximum mean error of -0.3({sigma}= 0.9) mm and -1.4({sigma}= 1.7) Degree-Sign in translational and rotational directions over low resolution images, and this is reduced to -0.1({sigma}= 0.2) mm and -0.1({sigma}= 0.79) Degree-Sign using high resolution images. Conclusions: The phantom, capable of rotating independently about three orthogonal axes was successfully used to assess the accuracy of an IGRT system considering 6 degrees of freedom. The overall residual error in the image guidance process of XVI in combination with the HexaPOD couch was demonstrated to be less than 0.3 mm and 0.3 Degree-Sign in translational and rotational directions when using the gray value registration with high resolution CBCT images. However, the residual error, especially in rotational directions, may increase when the seed registration is used with low resolution images.« less
Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari
2009-11-01
The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.
Wisdom in Medicine: What Helps Physicians After a Medical Error?
Plews-Ogan, Margaret; May, Natalie; Owens, Justine; Ardelt, Monika; Shapiro, Jo; Bell, Sigall K
2016-02-01
Confronting medical error openly is critical to organizational learning, but less is known about what helps individual clinicians learn and adapt positively after making a harmful mistake. Understanding what factors help doctors gain wisdom can inform educational and peer support programs, and may facilitate the development of specific tools to assist doctors after harmful errors occur. Using "posttraumatic growth" as a model, the authors conducted semistructured interviews (2009-2011) with 61 physicians who had made a serious medical error. Interviews were recorded, professionally transcribed, and coded by two study team members (kappa 0.8) using principles of grounded theory and NVivo software. Coders also scored interviewees as wisdom exemplars or nonexemplars based on Ardelt's three-dimensional wisdom model. Of the 61 physicians interviewed, 33 (54%) were male, and on average, eight years had elapsed since the error. Wisdom exemplars were more likely to report disclosing the error to the patient/family (69%) than nonexemplars (38%); P < .03. Fewer than 10% of all participants reported receiving disclosure training. Investigators identified eight themes reflecting what helped physician wisdom exemplars cope positively: talking about it, disclosure and apology, forgiveness, a moral context, dealing with imperfection, learning/becoming an expert, preventing recurrences/improving teamwork, and helping others/teaching. The path forged by doctors who coped well with medical error highlights specific ways to help clinicians move through this difficult experience so that they avoid devastating professional outcomes and have the best chance of not just recovery but positive growth.
Kim, ChungYun; Mazan, Jennifer L; Quiñones-Boex, Ana C
To determine pharmacists' attitudes and behaviors on medication errors and their disclosure and to compare community and hospital pharmacists on such views. An online questionnaire was developed from previous studies on physicians' disclosure of errors. Questionnaire items included demographics, environment, personal experiences, and attitudes on medication errors and the disclosure process. An invitation to participate along with the link to the questionnaire was electronically distributed to members of two Illinois pharmacy associations. A follow-up reminder was sent 4 weeks after the original message. Data were collected for 3 months, and statistical analyses were performed with the use of IBM SPSS version 22.0. The overall response rate was 23.3% (n = 422). The average employed respondent was a 51-year-old white woman with a BS Pharmacy degree working in a hospital pharmacy as a clinical staff member. Regardless of practice settings, pharmacist respondents agreed that medication errors were inevitable and that a disclosure process is necessary. Respondents from community and hospital settings were further analyzed to assess any differences. Community pharmacist respondents were more likely to agree that medication errors were inevitable and that pharmacists should address the patient's emotions when disclosing an error. Community pharmacist respondents were also more likely to agree that the health care professional most closely involved with the error should disclose the error to the patient and thought that it was the pharmacists' responsibility to disclose the error. Hospital pharmacist respondents were more likely to agree that it was important to include all details in a disclosure process and more likely to disagree on putting a "positive spin" on the event. Regardless of practice setting, responding pharmacists generally agreed that errors should be disclosed to patients. There were, however, significant differences in their attitudes and behaviors depending on their particular practice setting. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Patient safety culture in China: a case study in an outpatient setting in Beijing.
Liu, Chaojie; Liu, Weiwei; Wang, Yuanyuan; Zhang, Zhihong; Wang, Peng
2014-07-01
To investigate the patient safety culture in an outpatient setting in Beijing and explore the meaning and implications of the safety culture from the perspective of health workers and patients. A mixed methods approach involving a questionnaire survey and in-depth interviews was adopted. Among the 410 invited staff members, 318 completed the Hospital Survey of Patient Safety Culture (HSOPC). Patient safety culture was described using 12 subscale scores. Inter-subscale correlation analysis, ANOVA and stepwise multivariate regression analyses were performed to identify the determinants of the patient safety culture scores. Interviewees included 22 patients selected through opportunity sampling and 27 staff members selected through purposive sampling. The interview data were analysed thematically. The survey respondents perceived high levels of unsafe care but had personally reported few events. Lack of 'communication openness' was identified as a major safety culture problem, and a perception of 'penalty' was the greatest barrier to the encouragement of error reporting. Cohesive 'teamwork within units', while found to be an area of strength, conversely served as a protective and defensive mechanism for medical practice. Low levels of trust between providers and consumers and lack of management support constituted an obstacle to building a positive patient safety culture. This study in China demonstrates that a punitive approach to error is still widespread despite increasing awareness of unsafe care, and managers have been slow in acknowledging the importance of building a positive patient safety culture. Strong 'teamwork within units', a common area of strength, could fuel the concealment of errors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gierga, David P., E-mail: dgierga@partners.org; Harvard Medical School, Boston, Massachusetts; Turcotte, Julie C.
2012-12-01
Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference wasmore » greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.« less
Weights and measures: a new look at bisection behaviour in neglect.
McIntosh, Robert D; Schindler, Igor; Birchall, Daniel; Milner, A David
2005-12-01
Horizontal line bisection is a ubiquitous task in the investigation of visual neglect. Patients with left neglect typically make rightward errors that increase with line length and for lines at more leftward positions. For short lines, or for lines presented in right space, these errors may 'cross over' to become leftward. We have taken a new approach to these phenomena by employing a different set of dependent and independent variables for their description. Rather than recording bisection error, we record the lateral position of the response within the workspace. We have studied how this varies when the locations of the left and right endpoints are manipulated independently. Across 30 patients with left neglect, we have observed a characteristic asymmetry between the 'weightings' accorded to the two endpoints, such that responses are less affected by changes in the location of the left endpoint than by changes in the location of the right. We show that a simple endpoint weightings analysis accounts readily for the effects of line length and spatial position, including cross-over effects, and leads to an index of neglect that is more sensitive than the standard measure. We argue that this novel approach is more parsimonious than the standard model and yields fresh insights into the nature of neglect impairment.
Hasegawa, Mitsuhiro; Nouri, Mohsen; Fujisawa, Hironori; Hayashi, Yutaka; Inamasu, Joji; Hirose, Yuichi; Yamashita, Junkoh
2015-01-01
There are many reports on position-related complications in neurosurgical literature but so far, continuous quantification of the patient's position during the surgery has not been reported. This study aims to explore the utility of a new surgical table system and its software in displaying the patient's body positions during surgery on real-time basis. More than 200 neurosurgical cases were monitored for their positions intra-operatively. The position was digitally recorded and could be seen by all the members in the operating team. It also displayed the three-dimensional relationship between the head and the heart positions. No position-related complications were observed during the study. The system was able to serve as an excellent indicator for monitoring the patient's position. The recordings were analyzed and even used to reproduce or improve the position in the subsequent operations. The novel technique of monitoring the position of the head and the heart of the patients and the operating table planes are considered to be useful during delicate neurosurgical procedures thereby, preventing inadvertent procedural errors. This can be used to quantify various surgical positions in the future and define safety measures accordingly.
Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga
2017-11-01
Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P < 0.001] and complete (median, 34.0 s [range, 26-66 s] vs. 47.5 s [range, 32-90]; P = 0.001] image fusion. Registration error of Positioning auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.
Shirazi, Zahra Rojhani; Shafaee, Razieh; Abbasi, Leila
2014-10-01
To study the effects of transcutaneous electrical nerve stimulation (TENS) on joint position sense (JPS) in knee osteoarthritis (OA) subjects. Thirty subjects with knee OA (40-60 years old) using non-random sampling participated in this study. In order to evaluate the absolute error of repositioning of the knee joint, Qualysis Track Manager system was used and sensory electrical stimulation was applied through the TENS device. The mean errors in repositioning of the joint, in two position of the knee joint with 20 and 60 degree angle, after applying the TENS was significantly decreased (p < 0.05). Application of TENS in subjects with knee OA could improve JPS in these subjects.
Quality and strength of patient safety climate on medical-surgical units.
Hughes, Linda C; Chang, Yunkyung; Mark, Barbara A
2009-01-01
Describing the safety climate in hospitals is an important first step in creating work environments where safety is a priority. Yet, little is known about the patient safety climate on medical-surgical units. Study purposes were to describe quality and strength of the patient safety climate on medical-surgical units and explore hospital and unit characteristics associated with this climate. Data came from a larger organizational study to investigate hospital and unit characteristics associated with organizational, nurse, and patient outcomes. The sample for this study was 3,689 RNs on 286 medical-surgical units in 146 hospitals. Nursing workgroup and managerial commitment to safety were the two most strongly positive attributes of the patient safety climate. However, issues surrounding the balance between job duties and safety compliance and nurses' reluctance to reveal errors continue to be problematic. Nurses in Magnet hospitals were more likely to communicate about errors and participate in error-related problem solving. Nurses on smaller units and units with lower work complexity reported greater safety compliance and were more likely to communicate about and reveal errors. Nurses on smaller units also reported greater commitment to patient safety and participation in error-related problem solving. Nursing workgroup commitment to safety is a valuable resource that can be leveraged to promote a sense of personal responsibility for and shared ownership of patient safety. Managers can capitalize on this commitment by promoting a work environment in which control over nursing practice and active participation in unit decisions are encouraged and by developing channels of communication that increase staff nurse involvement in identifying patient safety issues, prioritizing unit-level safety goals, and resolving day-to-day operational problems the have the potential to jeopardize patient safety.
On the use of biomathematical models in patient-specific IMRT dose QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen Heming; Nelms, Benjamin E.; Tome, Wolfgang A.
2013-07-15
Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids,more » spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.« less
Donn, Steven M; McDonnell, William M
2012-01-01
The Institute of Medicine has recommended a change in culture from "name and blame" to patient safety. This will require system redesign to identify and address errors, establish performance standards, and set safety expectations. This approach, however, is at odds with the present medical malpractice (tort) system. The current system is outcomes-based, meaning that health care providers and institutions are often sued despite providing appropriate care. Nevertheless, the focus should remain to provide the safest patient care. Effective peer review may be hindered by the present tort system. Reporting of medical errors is a key piece of peer review and education, and both anonymous reporting and confidential reporting of errors have potential disadvantages. Diagnostic and treatment errors continue to be the leading sources of allegations of malpractice in pediatrics, and the neonatal intensive care unit is uniquely vulnerable. Most errors result from systems failures rather than human error. Risk management can be an effective process to identify, evaluate, and address problems that may injure patients, lead to malpractice claims, and result in financial losses. Risk management identifies risk or potential risk, calculates the probability of an adverse event arising from a risk, estimates the impact of the adverse event, and attempts to control the risk. Implementation of a successful risk management program requires a positive attitude, sufficient knowledge base, and a commitment to improvement. Transparency in the disclosure of medical errors and a strategy of prospective risk management in dealing with medical errors may result in a substantial reduction in medical malpractice lawsuits, lower litigation costs, and a more safety-conscious environment. Thieme Medical Publishers, Inc.
Utility of a Newly Designed Film Holder for Premolar Bitewing Radiography.
Safi, Yaser; Esmaeelinejad, Mohammad; Vasegh, Zahra; Valizadeh, Solmaz; Aghdasi, Mohammad Mehdi; Sarani, Omid; Afsahi, Mahmoud
2015-11-01
Bitewing radiography is a valuable technique for assessment of proximal caries, alveolar crest and periodontal status. Technical errors during radiography result in erroneous radiographic interpretation, misdiagnosis, possible mistreatment or unnecessary exposure of patient for taking a repeat radiograph. In this study, we aimed to evaluate the efficacy of a film holder modified from the conventional one and compared it with that of conventional film holder. Our study population comprised of 70 patients who were referred to the Radiology Department for bilateral premolar bitewing radiographs as requested by their attending clinician. Bitewing radiographs in each patient were taken using the newly designed holder in one side and the conventional holder in the other side. The acceptability of the two holders from the perspectives of the technician and patients was determined using a 0-20 point scale. The frequency of overlap and film positioning errors was calculated for each method. The conventional holder had greater acceptability among patients compared to the newly designed holder (mean score of 16.59 versus 13.37). From the technicians' point of view, the newly designed holder was superior to the conventional holder (mean score of 17.33 versus 16.44). The frequency of overlap was lower using the newly designed holder (p<0.001) and it allowed more accurate film positioning (p=0.005). The newly designed holder may facilitate the process of radiography for technicians and may be associated with less frequency of radiographic errors compared to the conventional holder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S; Chao, C; Columbia University, NY, NY
2014-06-01
Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less
Altered motor control patterns in whiplash and chronic neck pain.
Woodhouse, Astrid; Vasseljen, Ottar
2008-06-20
Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9 degrees (95% CI; 12.2-15.6) for the WAD group, 17.9 degrees (95% CI; 16.1-19.6) for the chronic neck pain group and 25.9 degrees (95% CI; 23.7-28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor to current pain, but more likely due to long-lasting pain. No group differences were found for kinaesthetic sense.
Altered motor control patterns in whiplash and chronic neck pain
Woodhouse, Astrid; Vasseljen, Ottar
2008-01-01
Background Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6) for the WAD group, 17.9° (95% CI; 16.1–19.6) for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor to current pain, but more likely due to long-lasting pain. No group differences were found for kinaesthetic sense. PMID:18570647
Soft tissue deformation for surgical simulation: a position-based dynamics approach.
Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip
2016-06-01
To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.
Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong, E-mail: zsu@floridaproton.org; Zhang Lisha; Murphy, Martin
Purpose: To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. Methods and Materials: A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data:more » the deviation threshold and period. The related planning target volume margins, time costs, and prostate position 'fluctuation' were presented. Results: The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for {>=}91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. Conclusions: The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the treatment time and the in-fraction position fluctuation.« less
Analyzing temozolomide medication errors: potentially fatal.
Letarte, Nathalie; Gabay, Michael P; Bressler, Linda R; Long, Katie E; Stachnik, Joan M; Villano, J Lee
2014-10-01
The EORTC-NCIC regimen for glioblastoma requires different dosing of temozolomide (TMZ) during radiation and maintenance therapy. This complexity is exacerbated by the availability of multiple TMZ capsule strengths. TMZ is an alkylating agent and the major toxicity of this class is dose-related myelosuppression. Inadvertent overdose can be fatal. The websites of the Institute for Safe Medication Practices (ISMP), and the Food and Drug Administration (FDA) MedWatch database were reviewed. We searched the MedWatch database for adverse events associated with TMZ and obtained all reports including hematologic toxicity submitted from 1st November 1997 to 30th May 2012. The ISMP describes errors with TMZ resulting from the positioning of information on the label of the commercial product. The strength and quantity of capsules on the label were in close proximity to each other, and this has been changed by the manufacturer. MedWatch identified 45 medication errors. Patient errors were the most common, accounting for 21 or 47% of errors, followed by dispensing errors, which accounted for 13 or 29%. Seven reports or 16% were errors in the prescribing of TMZ. Reported outcomes ranged from reversible hematological adverse events (13%), to hospitalization for other adverse events (13%) or death (18%). Four error reports lacked detail and could not be categorized. Although the FDA issued a warning in 2003 regarding fatal medication errors and the product label warns of overdosing, errors in TMZ dosing occur for various reasons and involve both healthcare professionals and patients. Overdosing errors can be fatal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasahara, M; Arimura, H; Hirose, T
Purpose: Current image-guided radiotherapy (IGRT) procedure is bonebased patient positioning, followed by subjective manual correction using cone beam computed tomography (CBCT). This procedure might cause the misalignment of the patient positioning. Automatic target-based patient positioning systems achieve the better reproducibility of patient setup. Our aim of this study was to develop an automatic target-based patient positioning framework for IGRT with CBCT images in prostate cancer treatment. Methods: Seventy-three CBCT images of 10 patients and 24 planning CT images with digital imaging and communications in medicine for radiotherapy (DICOM-RT) structures were used for this study. Our proposed framework started from themore » generation of probabilistic atlases of bone and prostate from 24 planning CT images and prostate contours, which were made in the treatment planning. Next, the gray-scale histograms of CBCT values within CTV regions in the planning CT images were obtained as the occurrence probability of the CBCT values. Then, CBCT images were registered to the atlases using a rigid registration with mutual information. Finally, prostate regions were estimated by applying the Bayesian inference to CBCT images with the probabilistic atlases and CBCT value occurrence probability. The proposed framework was evaluated by calculating the Euclidean distance of errors between two centroids of prostate regions determined by our method and ground truths of manual delineations by a radiation oncologist and a medical physicist on CBCT images for 10 patients. Results: The average Euclidean distance between the centroids of extracted prostate regions determined by our proposed method and ground truths was 4.4 mm. The average errors for each direction were 1.8 mm in anteroposterior direction, 0.6 mm in lateral direction and 2.1 mm in craniocaudal direction. Conclusion: Our proposed framework based on probabilistic atlases and Bayesian inference might be feasible to automatically determine prostate regions on CBCT images.« less
Cooperstein, Robert; Young, Morgan
2014-01-01
Upright examination procedures like radiology, thermography, manual muscle testing, and spinal motion palpation may lead to spinal interventions with the patient prone. The reliability and accuracy of mapping upright examination findings to the prone position is unknown. This study had 2 primary goals: (1) investigate how erroneous spine-scapular landmark associations may lead to errors in treating and charting spine levels; and (2) study the interexaminer reliability of a novel method for mapping upright spinal sites to the prone position. Experiment 1 was a thought experiment exploring the consequences of depending on the erroneous landmark association of the inferior scapular tip with the T7 spinous process upright and T6 spinous process prone (relatively recent studies suggest these levels are T8 and T9, respectively). This allowed deduction of targeting and charting errors. In experiment 2, 10 examiners (2 experienced, 8 novice) used an index finger to maintain contact with a mid-thoracic spinous process as each of 2 participants slowly moved from the upright to the prone position. Interexaminer reliability was assessed by computing Intraclass Correlation Coefficient, standard error of the mean, root mean squared error, and the absolute value of the mean difference for each examiner from the 10 examiner mean for each of the 2 participants. The thought experiment suggesting that using the (inaccurate) scapular tip landmark rule would result in a 3 level targeting and charting error when radiological findings are mapped to the prone position. Physical upright exam procedures like motion palpation would result in a 2 level targeting error for intervention, and a 3 level error for charting. The reliability experiment showed examiners accurately maintained contact with the same thoracic spinous process as the participant went from upright to prone, ICC (2,1) = 0.83. As manual therapists, the authors have emphasized how targeting errors may impact upon manual care of the spine. Practitioners in other fields that need to accurately locate spinal levels, such as acupuncture and anesthesiology, would also be expected to draw important conclusions from these findings.
2014-01-01
Background Upright examination procedures like radiology, thermography, manual muscle testing, and spinal motion palpation may lead to spinal interventions with the patient prone. The reliability and accuracy of mapping upright examination findings to the prone position is unknown. This study had 2 primary goals: (1) investigate how erroneous spine-scapular landmark associations may lead to errors in treating and charting spine levels; and (2) study the interexaminer reliability of a novel method for mapping upright spinal sites to the prone position. Methods Experiment 1 was a thought experiment exploring the consequences of depending on the erroneous landmark association of the inferior scapular tip with the T7 spinous process upright and T6 spinous process prone (relatively recent studies suggest these levels are T8 and T9, respectively). This allowed deduction of targeting and charting errors. In experiment 2, 10 examiners (2 experienced, 8 novice) used an index finger to maintain contact with a mid-thoracic spinous process as each of 2 participants slowly moved from the upright to the prone position. Interexaminer reliability was assessed by computing Intraclass Correlation Coefficient, standard error of the mean, root mean squared error, and the absolute value of the mean difference for each examiner from the 10 examiner mean for each of the 2 participants. Results The thought experiment suggesting that using the (inaccurate) scapular tip landmark rule would result in a 3 level targeting and charting error when radiological findings are mapped to the prone position. Physical upright exam procedures like motion palpation would result in a 2 level targeting error for intervention, and a 3 level error for charting. The reliability experiment showed examiners accurately maintained contact with the same thoracic spinous process as the participant went from upright to prone, ICC (2,1) = 0.83. Conclusions As manual therapists, the authors have emphasized how targeting errors may impact upon manual care of the spine. Practitioners in other fields that need to accurately locate spinal levels, such as acupuncture and anesthesiology, would also be expected to draw important conclusions from these findings. PMID:24904747
Vargas, Carlos; Falchook, Aaron; Indelicato, Daniel; Yeung, Anamaria; Henderson, Randall; Olivier, Kenneth; Keole, Sameer; Williams, Christopher; Li, Zuofeng; Palta, Jatinder
2009-04-01
The ability to determine the accuracy of the final prostate position within a determined action level threshold for image-guided proton therapy is unclear. Three thousand one hundred ten images for 20 consecutive patients treated in 1 of our 3 proton prostate protocols from February to May of 2007 were analyzed. Daily kV images and patient repositioning were performed employing an action-level threshold (ALT) of > or = 2.5 mm for each beam. Isocentric orthogonal x-rays were obtained, and prostate position was defined via 3 gold markers for each patient in the 3 axes. To achieve and confirm our action level threshold, an average of 2 x-rays sets (median 2; range, 0-4) was taken daily for each patient. Based on our ALT, we made no corrections in 8.7% (range, 0%-54%), 1 correction in 82% (41%-98%), and 2 to 3 corrections in 9% (0-27%). No patient needed 4 or more corrections. All patients were treated with a confirmed error of < 2.5 mm for every beam delivered. After all corrections, the mean and standard deviations were: anterior-posterior (z): 0.003 +/- 0.094 cm; superior-inferior (y): 0.028 +/- 0.073 cm; and right-left (x) -0.013 +/- 0.08 cm. It is feasible to limit all final prostate positions to less than 2.5 mm employing an action level image-guided radiation therapy (IGRT) process. The residual errors after corrections were very small.
2012-01-01
Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins. PMID:22531060
Self-calibration method without joint iteration for distributed small satellite SAR systems
NASA Astrophysics Data System (ADS)
Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan
2013-12-01
The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.
Impaired limb position sense after stroke: a quantitative test for clinical use.
Carey, L M; Oke, L E; Matyas, T A
1996-12-01
A quantitative measure of wrist position sense was developed to advance clinical measurement of proprioceptive limb sensibility after stroke. Test-retest reliability, normative standards, and ability to discriminate impaired and unimpaired performance were investigated. Retest reliability was assessed over three sessions, and a matched-pairs study compared stroke and unimpaired subjects. Both wrists were tested, in counterbalanced order. Patients were tested in hospital-based rehabilitation units. Reliability was investigated on a consecutive sample of 35 adult stroke patients with a range of proprioceptive discrimination abilities and no evidence of neglect. A consecutive sample of 50 stroke patients and convenience sample of 50 healthy volunteers, matched for age, sex, and hand dominance, were tested in the normative-discriminative study. Age and sex were representative of the adult stroke population. The test required matching of imposed wrist positions using a pointer aligned with the axis of movement and a protractor scale. The test was reliable (r = .88 and .92) and observed changes of 8 degrees can be interpreted, with 95% confidence, as genuine. Scores of healthy volunteers ranged from 3.1 degrees to 10.9 degrees average error. The criterion of impairment was conservatively defined as 11 degrees (+/-4.8 degrees) average error. Impaired and unimpaired performance were well differentiated. Clinicians can confidently and quantitatively sample one aspect of proprioceptive sensibility in stroke patients using the wrist position sense test. Development of tests on other joints using the present approach is supported by our findings.
Tsai, Chen-An; Lee, Kuan-Ting; Liu, Jen-Pei
2016-01-01
A key feature of precision medicine is that it takes individual variability at the genetic or molecular level into account in determining the best treatment for patients diagnosed with diseases detected by recently developed novel biotechnologies. The enrichment design is an efficient design that enrolls only the patients testing positive for specific molecular targets and randomly assigns them for the targeted treatment or the concurrent control. However there is no diagnostic device with perfect accuracy and precision for detecting molecular targets. In particular, the positive predictive value (PPV) can be quite low for rare diseases with low prevalence. Under the enrichment design, some patients testing positive for specific molecular targets may not have the molecular targets. The efficacy of the targeted therapy may be underestimated in the patients that actually do have the molecular targets. To address the loss of efficiency due to misclassification error, we apply the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential procedure, based on the Cox proportional hazard model, for treatment effects of the targeted treatment effect for the true-positive patients with the molecular targets. Our proposed procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated accuracy measures. We employed the expectation-maximization algorithm in conjunction with the bootstrap technique for estimation of the hazard ratio and its estimated variance. We report the results of simulation studies which empirically investigated the performance of the proposed method. Our proposed method is illustrated by a numerical example.
Liao, Joshua M; Etchegaray, Jason M; Williams, S Tyler; Berger, David H; Bell, Sigall K; Thomas, Eric J
2014-02-01
To develop and test the psychometric properties of a survey to measure students' perceptions about patient safety as observed on clinical rotations. In 2012, the authors surveyed 367 graduating fourth-year medical students at three U.S. MD-granting medical schools. They assessed the survey's reliability and construct and concurrent validity. They examined correlations between students' perceptions of organizational cultural factors, organizational patient safety measures, and students' intended safety behaviors. They also calculated percent positive scores for cultural factors. Two hundred twenty-eight students (62%) responded. Analyses identified five cultural factors (teamwork culture, safety culture, error disclosure culture, experiences with professionalism, and comfort expressing professional concerns) that had construct validity, concurrent validity, and good reliability (Cronbach alphas > 0.70). Across schools, percent positive scores for safety culture ranged from 28% (95% confidence interval [CI], 13%-43%) to 64% (30%-98%), while those for teamwork culture ranged from 47% (32%-62%) to 74% (66%-81%). They were low for error disclosure culture (range: 10% [0%-20%] to 27% [20%-35%]), experiences with professionalism (range: 7% [0%-15%] to 23% [16%-30%]), and comfort expressing professional concerns (range: 17% [5%-29%] to 38% [8%-69%]). Each cultural factor correlated positively with perceptions of overall patient safety as observed in clinical rotations (r = 0.37-0.69, P < .05) and at least one safety behavioral intent item. This study provided initial evidence for the survey's reliability and validity and illustrated its applicability for determining whether students' clinical experiences exemplify positive patient safety environments.
ERIC Educational Resources Information Center
Nonnenkamp, Donna J.
2013-01-01
Medical educators recognize the need for empathetic physicians, and empathy has been considered to be extremely important in medical education. Research has shown that empathy can lead to positive patient outcomes, greater patient satisfaction, and compliance, lower malpractice litigation, reduced cost of care and fewer medical errors. The purpose…
ERIC Educational Resources Information Center
Berndt, Rita Sloan; Haendiges, Anne N.; Mitchum, Charlotte C.
2005-01-01
Aphasic patients with reading impairments frequently substitute incorrect real words for target words when reading aloud. Many of these word substitutions have substantial orthographic overlap with their targets and are classified as ''visual errors'' (i.e., sharing 50% of targets' letters in the same relative position). Fifteen chronic aphasic…
Ribeliene, Janina; Blazeviciene, Aurelija; Nadisauskiene, Ruta Jolanta; Tameliene, Rasa; Kudreviciene, Ausrele; Nedzelskiene, Irena; Macijauskiene, Jurate
2018-04-22
Patients treated in health care facilities that provide services in the fields of obstetrics, gynecology, and neonatology are especially vulnerable. Large multidisciplinary teams of physicians, multiple invasive and noninvasive diagnostic and therapeutic procedures, and the use of advanced technologies increase the probability of adverse events. The evaluation of knowledge about patient safety culture among nurses and midwives working in such units and the identification of critical areas at a health care institution would reduce the number of adverse events and improve patient safety. The aim of the study was to evaluate the opinion of nurses and midwives working in clinical departments that provide services in the fields of obstetrics, gynecology, and neonatology about patient safety culture and to explore potential predictors for the overall perception of safety. We used the Hospital Survey on Patient Safety Culture (HSOPSC) to evaluate nurses' and midwives' opinion about patient safety issues. The overall response rate in the survey was 100% (n = 233). The analysis of the dimensions of safety on the unit level showed that the respondents' most positive evaluations were in the Organizational Learning - Continuous Improvement (73.2%) and Feedback and Communication about Error (66.8%) dimensions, and the most negative evaluations in the Non-punitive Response to Error (33.5%) and Staffing (44.6%) dimensions. On the hospital level, the evaluation of the safety dimensions ranged between 41.4 and 56.8%. The percentage of positive responses in the outcome dimensions Frequency of Events Reported was 82.4%. We found a significant association between the outcome dimension Frequency of Events Reported and the Hospital Management Support for Patient Safety and Feedback and Communication about Error Dimensions. On the hospital level, the critical domains in health care facilities that provide services in the fields of obstetrics, gynecology, and neonatology were Teamwork Across Hospital Units, and on the unit level - Communication Openness, Teamwork Within Units, Non-punitive Response to Error, and Staffing. The remaining domains were seen as having a potential for improvement.
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.
Lee, Eunjoo
2016-09-01
This study compared registered nurses' perceptions of safety climate and attitude toward medication error reporting before and after completing a hospital accreditation program. Medication errors are the most prevalent adverse events threatening patient safety; reducing underreporting of medication errors significantly improves patient safety. Safety climate in hospitals may affect medication error reporting. This study employed a longitudinal, descriptive design. Data were collected using questionnaires. A tertiary acute hospital in South Korea undergoing a hospital accreditation program. Nurses, pre- and post-accreditation (217 and 373); response rate: 58% and 87%, respectively. Hospital accreditation program. Perceived safety climate and attitude toward medication error reporting. The level of safety climate and attitude toward medication error reporting increased significantly following accreditation; however, measures of institutional leadership and management did not improve significantly. Participants' perception of safety climate was positively correlated with their attitude toward medication error reporting; this correlation strengthened following completion of the program. Improving hospitals' safety climate increased nurses' medication error reporting; interventions that help hospital administration and managers to provide more supportive leadership may facilitate safety climate improvement. Hospitals and their units should develop more friendly and intimate working environments that remove nurses' fear of penalties. Administration and managers should support nurses who report their own errors. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.
Zokaei, Nahid; McNeill, Alisdair; Proukakis, Christos; Beavan, Michelle; Jarman, Paul; Korlipara, Prasad; Hughes, Derralynn; Mehta, Atul; Hu, Michele T M; Schapira, Anthony H V; Husain, Masud
2014-08-01
Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short-term memory associated with GBA mutation and with Parkinson's disease. Identification of the specific pattern of cognitive impairment in GBA mutation versus Parkinson's disease is potentially important as it might help to identify individuals at risk of developing Parkinson's disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffet, S; Macq, B; Farace, P
2016-06-15
Purpose: The conversion from Hounsfield units (HU) to stopping powers is a major source of range uncertainty in proton therapy (PT). Our contribution shows how proton radiographs (PR) acquired with a multi-layer ionization chamber in a PT center can be used for accurate patient positioning and subsequently for patient-specific optimization of the conversion from HU to stopping powers. Methods: A multi-layer ionization chamber was used to measure the integral depth-dose (IDD) of 220 MeV pencil beam spots passing through several anthropomorphic phantoms. The whole area of interest was imaged by repositioning the couch and by acquiring a 45×45 mm{sup 2}more » frame for each position. A rigid registration algorithm was implemented to correct the positioning error between the proton radiographs and the planning CT. After registration, the stopping power map obtained from the planning CT with the calibration curve of the treatment planning system was used together with the water equivalent thickness gained from two proton radiographs to generate a phantom-specific stopping power map. Results: Our results show that it is possible to make a registration with submillimeter accuracy from proton radiography obtained by sending beamlets separated by more than 1 mm. This was made possible by the complex shape of the IDD due to the presence of lateral heterogeneities along the path of the beam. Submillimeter positioning was still possible with a 5 mm spot spacing. Phantom specific stopping power maps obtained by minimizing the range error were cross-verified by the acquisition of an additional proton radiography where the phantom was positioned in a random but known manner. Conclusion: Our results indicate that a CT-PR registration algorithm together with range-error based optimization can be used to produce a patient-specific stopping power map. Sylvain Deffet reports financial funding of its PhD thesis by Ion Beam Applications (IBA) during the confines of the study and outside the submitted work. Francois Vander Stappen reports being employed by Ion Beam Applications (IBA) during the confines of the study and outside the submitted work.« less
Usefulness of image morphing techniques in cancer treatment by conformal radiotherapy
NASA Astrophysics Data System (ADS)
Atoui, Hussein; Sarrut, David; Miguet, Serge
2004-05-01
Conformal radiotherapy is a cancer treatment technique, that targets high-energy X-rays to tumors with minimal exposure to surrounding healthy tissues. Irradiation ballistics is calculated based on an initial 3D Computerized Tomography (CT) scan. At every treatment session, the random positioning of the patient, compared to the reference position defined by the initial 3D CT scan, can generate treatment inaccuracies. Positioning errors potentially predispose to dangerous exposure to healthy tissues as well as insufficient irradiation to the tumor. A proposed solution would be the use of portal images generated by Electronic Portal Imaging Devices (EPID). Portal images (PI) allow a comparison with reference images retained by physicians, namely Digitally Reconstructed Radiographs (DRRs). At present, physicians must estimate patient positional errors by visual inspection. However, this may be inaccurate and consumes time. The automation of this task has been the subject of many researches. Unfortunately, the intensive use of DRRs and the high computing time required have prevented real time implementation. We are currently investigating a new method for DRR generation that calculates intermediate DRRs by 2D deformation of previously computed DRRs. We approach this investigation with the use of a morphing-based technique named mesh warping.
Lippi, Giuseppe; Plebani, Mario
2011-04-01
Remarkable technological advances and increased awareness have both contributed to decrease substantially the uncertainty of the analytical phase, so that the manually intensive preanalytical activities currently represent the leading sources of errors in laboratory and transfusion medicine. Among preanalytical errors, misidentification and mistransfusion are still regarded as a considerable problem, posing serious risks for patient health and carrying huge expenses for the healthcare system. As such, a reliable policy of risk management should be readily implemented, developing through a multifaceted approach to prevent or limit the adverse outcomes related to transfusion reactions from blood incompatibility. This strategy encompasses root cause analysis, compliance with accreditation requirements, strict adherence to standard operating procedures, guidelines and recommendations for specimen collection, use of positive identification devices, rejection of potentially misidentified specimens, informatics data entry, query host communication, automated systems for patient identification and sample labeling and an adequate and safe environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Accuracy and Landmark Error Calculation Using Cone-Beam Computed Tomography–Generated Cephalograms
Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Heulfe, Inam; Harmon, Eric T.; Zhu, Hongtu; Proffit, William R.
2010-01-01
Objective To evaluate systematic differences in landmark position between cone-beam computed tomography (CBCT)–generated cephalograms and conventional digital cephalograms and to estimate how much variability should be taken into account when both modalities are used within the same longitudinal study. Materials and Methods Landmarks on homologous cone-beam computed tomographic–generated cephalograms and conventional digital cephalograms of 46 patients were digitized, registered, and compared via the Hotelling T2 test. Results There were no systematic differences between modalities in the position of most landmarks. Three landmarks showed statistically significant differences but did not reach clinical significance. A method for error calculation while combining both modalities in the same individual is presented. Conclusion In a longitudinal follow-up for assessment of treatment outcomes and growth of one individual, the error due to the combination of the two modalities might be larger than previously estimated. PMID:19905853
Accurate blood pressure recording: is it difficult?
Bhalla, A; Singh, R; D'cruz, S; Lehl, S S; Sachdev, A
2005-11-01
Blood pressure (BP) measurement is a routine procedure but errors are frequently committed during BP recording. AIMS AND SETTINGS: The aim of the study was to look at the prevalent practices in the institute regarding BP recording. The study was conducted in the Medicine Department at Government Medical College, Chandigarh, a teaching institute for MBBS students. A prospective, observational study was performed amongst the 80 doctors in a tertiary care hospital. All of them were observed by a single observer during the act of BP recording. The observer was well versed with the guidelines issued by British Hypertension Society (BHS) and the deviations from the standard set of guidelines issued by BHS were noted. The errors were defined as deviations from these guidelines. The results were recorded as percentage of doctors committing these errors. In our study, 90% used mercury type sphygmomanometer. Zero error of the apparatus, hand dominance was not noted by any one. Every one used the standard BP cuff for recording BP. 70% of them did not let the patient rest before recording BP. 80% did not remove the clothing from the arm. None of them recorded BP in both arms. In out patient setting, 80% recorded blood pressure in sitting position and 14% in supine position. In all the patients where BP was recorded in sitting position BP apparatus was below the level of heart and 20% did not have their arm supported. 60% did not use palpatory method for noticing systolic BP and 70% did not raise pressure 30-40 mm Hg above the systolic level before checking the BP by auscultation. 80% lowered the BP at a rate of more than 2 mm/s and 60% rounded off the BP to nearest 5-10 mm Hg. 70% recorded BP only once and 90% of the rest re inflated the cuff without completely deflating and allowing rest before a second reading was obtained. The practice of recording BP in our hospital varies from the standard guidelines issued by the BHS.
Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles
Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián
2016-01-01
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044
Analysis of electrodes' placement and deformation in deep brain stimulation from medical images
NASA Astrophysics Data System (ADS)
Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre
2012-02-01
Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia, in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we studied the electrodes' deformation in regards to patients' clinical data (i.e., sex, mean PD duration and brain atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral STNDBS. We found a placement error of 0.91+/-0.38 mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring better anticipation of electrodes' placement.
Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow.
Guevara-Rojas, Godoberto; Figl, Michael; Schicho, Kurt; Seemann, Rudolf; Traxler, Hannes; Vacariu, Apostolos; Carbon, Claus-Christian; Ewers, Rolf; Watzinger, Franz
2014-09-01
In the present study, we report an innovative workflow using polyetheretherketone (PEEK) patient-specific implants for esthetic corrections in the facial region through onlay grafting. The planning includes implant design according to virtual osteotomy and generation of a subtraction volume. The implant design was refined by stepwise changing the implant geometry according to soft tissue simulations. One patient was scanned using computed tomography. PEEK implants were interactively designed and manufactured using rapid prototyping techniques. Positioning intraoperatively was assisted by computer-aided navigation. Two months after surgery, a 3-dimensional surface model of the patient's face was generated using photogrammetry. Finally, the Hausdorff distance calculation was used to quantify the overall error, encompassing the failures in soft tissue simulation and implantation. The implant positioning process during surgery was satisfactory. The simulated soft tissue surface and the photogrammetry scan of the patient showed a high correspondence, especially where the skin covered the implants. The mean total error (Hausdorff distance) was 0.81 ± 1.00 mm (median 0.48, interquartile range 1.11). The spatial deviation remained less than 0.7 mm for the vast majority of points. The proposed workflow provides a complete computer-aided design, computer-aided manufacturing, and computer-aided surgery chain for implant design, allowing for soft tissue simulation, fabrication of patient-specific implants, and image-guided surgery to position the implants. Much of the surgical complexity resulting from osteotomies of the zygoma, chin, or mandibular angle might be transferred into the planning phase of patient-specific implants. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Patient safety challenges in a case study hospital--of relevance for transfusion processes?
Aase, Karina; Høyland, Sindre; Olsen, Espen; Wiig, Siri; Nilsen, Stein Tore
2008-10-01
The paper reports results from a research project with the objective of studying patient safety, and relates the finding to safety issues within transfusion medicine. The background is an increased focus on undesired events related to diagnosis, medication, and patient treatment in general in the healthcare sector. The study is designed as a case study within a regional Norwegian hospital conducting specialised health care services. The study includes multiple methods such as interviews, document analysis, analysis of error reports, and a questionnaire survey. Results show that the challenges for improved patient safety, based on employees' perceptions, are hospital management support, reporting of accidents/incidents, and collaboration across hospital units. Several of these generic safety challenges are also found to be of relevance for a hospital's transfusion service. Positive patient safety factors are identified as teamwork within hospital units, a non-punitive response to errors, and unit manager's actions promoting safety.
Mbah, Chamberlain; De Ruyck, Kim; De Schrijver, Silke; De Sutter, Charlotte; Schiettecatte, Kimberly; Monten, Chris; Paelinck, Leen; De Neve, Wilfried; Thierens, Hubert; West, Catharine; Amorim, Gustavo; Thas, Olivier; Veldeman, Liv
2018-05-01
Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.
On the application of photogrammetry to the fitting of jawbone-anchored bridges.
Strid, K G
1985-01-01
Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattarivand, Mike; Summers, Clare; Robar, James
Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients basedmore » on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.« less
[Medical errors from positions of mutual relations of patient-lawyer-doctor].
Radysh, Ia F; Tsema, Ie V; Mehed', V P
2013-01-01
The basic theoretical and practical aspects of problem of malpractice in the system of health protection Ukraine are presented in the article. On specific examples the essence of the term "malpractice" is expounded. It was considered types of malpractice, conditions of beginning and kinds of responsibility to assumption of malpractice. The special attention to the legal and mental and ethical questions of problem from positions of protection of rights for a patient and medical worker is spared. The necessity of qualification malpractices on intentional and unintentional, possible and impermissible is grounded.
[Improving inpatient pharmacoterapeutic process by Lean Six Sigma methodology].
Font Noguera, I; Fernández Megía, M J; Ferrer Riquelme, A J; Balasch I Parisi, S; Edo Solsona, M D; Poveda Andres, J L
2013-01-01
Lean Six Sigma methodology has been used to improve care processes, eliminate waste, reduce costs, and increase patient satisfaction. To analyse the results obtained with Lean Six Sigma methodology in the diagnosis and improvement of the inpatient pharmacotherapy process during structural and organisational changes in a tertiary hospital. 1.000 beds tertiary hospital. prospective observational study. The define, measure, analyse, improve and control (DMAIC), were deployed from March to September 2011. An Initial Project Charter was updated as results were obtained. 131 patients with treatments prescribed within 24h after admission and with 4 drugs. safety indicators (medication errors), and efficiency indicators (complaints and time delays). Proportion of patients with a medication error was reduced from 61.0% (25/41 patients) to 55.7% (39/70 patients) in four months. Percentage of errors (regarding the opportunities for error) decreased in the different phases of the process: Prescription: from 5.1% (19/372 opportunities) to 3.3% (19/572 opportunities); Preparation: from 2.7% (14/525 opportunities) to 1.3% (11/847 opportunities); and administration: from 4.9% (16/329 opportunities) to 3.0% (13/433 opportunities). Nursing complaints decreased from 10.0% (2119/21038 patients) to 5.7% (1779/31097 patients). The estimated economic impact was 76,800 euros saved. An improvement in the pharmacotherapeutic process and a positive economic impact was observed, as well as enhancing patient safety and efficiency of the organization. Standardisation and professional training are future Lean Six Sigma candidate projects. Copyright © 2012 SECA. Published by Elsevier Espana. All rights reserved.
Song, Lunar; Park, Byeonghwa; Oh, Kyeung Mi
2015-04-01
Serious medication errors continue to exist in hospitals, even though there is technology that could potentially eliminate them such as bar code medication administration. Little is known about the degree to which the culture of patient safety is associated with behavioral intention to use bar code medication administration. Based on the Technology Acceptance Model, this study evaluated the relationships among patient safety culture and perceived usefulness and perceived ease of use, and behavioral intention to use bar code medication administration technology among nurses in hospitals. Cross-sectional surveys with a convenience sample of 163 nurses using bar code medication administration were conducted. Feedback and communication about errors had a positive impact in predicting perceived usefulness (β=.26, P<.01) and perceived ease of use (β=.22, P<.05). In a multiple regression model predicting for behavioral intention, age had a negative impact (β=-.17, P<.05); however, teamwork within hospital units (β=.20, P<.05) and perceived usefulness (β=.35, P<.01) both had a positive impact on behavioral intention. The overall bar code medication administration behavioral intention model explained 24% (P<.001) of the variance. Identified factors influencing bar code medication administration behavioral intention can help inform hospitals to develop tailored interventions for RNs to reduce medication administration errors and increase patient safety by using this technology.
Arba-Mosquera, Samuel; Aslanides, Ioannis M.
2012-01-01
Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.
Mossburg, Sarah E; Dennison Himmelfarb, Cheryl
2018-06-25
In the last 20 years, there have been numerous successful efforts to improve patient safety, although recent research still shows a significant gap. Researchers have begun exploring the impact of individual level factors on patient safety culture and safety outcomes. This review examines the state of the science exploring the impact of professional burnout and engagement on patient safety culture and safety outcomes. A systematic search was conducted in CINAHL, PubMed, and Embase. Studies included reported on the relationships among burnout or engagement and safety culture or safety outcomes. Twenty-two studies met inclusion criteria. Ten studies showed a relationship between both safety culture and clinical errors with burnout. Two of 3 studies reported an association between burnout and patient outcomes. Fewer studies focused on engagement. Most studies exploring engagement and safety culture found a moderately strong positive association. The limited evidence on the relationship between engagement and errors depicts inconsistent findings. Only one study explored engagement and patient outcomes, which failed to find a relationship. The burnout/safety literature should be expanded to a multidisciplinary focus. Mixed results of the relationship between burnout and errors could be due to a disparate relationship with perceived versus observed errors. The engagement/safety literature is immature, although high engagement seems to be associated with high safety culture. Extending this science into safety outcomes would be meaningful, especially in light of the recent focus on an abundance-based approach to safety.
Experimental investigation of false positive errors in auditory species occurrence surveys
Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.
2012-01-01
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.
SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Herzog, B; Sauer, O
2016-06-15
Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent highermore » doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.« less
Sahay, Ashlyn; Hutchinson, Marie; East, Leah
2015-05-01
Despite the growing awareness of the benefits of positive workplace climates, unsupportive and disruptive workplace behaviours are widespread in health care organisations. Recent graduate nurses, who are often new to a workplace, are particularly vulnerable in unsupportive climates, and are also recognised to be at higher risk for medication errors. Investigate the association between workplace supports and relationships and safe medication practice among graduate nurses. Exploratory study using quantitative survey with a convenience sample of 58 nursing graduates in two Australian States. Online survey focused on graduates' self-reported medication errors, safe medication practice and the nature of workplace supports and relationships. Spearman's correlations identified that unsupportive workplace relationships were inversely related to graduate nurse medication errors and erosion of safe medication practices, while supportive Nurse Unit Manager and supportive work team relationships positively influenced safe medication practice among graduates. Workplace supports and relationships are potentially both the cause and solution to graduate nurse medication errors and safe medication practices. The findings develop further understanding about the impact of unsupportive and disruptive behaviours on patient safety and draw attention to the importance of undergraduate and continuing education strategies that promote positive workplace behaviours and graduate resilience. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nakano, Shogo; Yoshida, Miwa; Fujii, Kimihito; Yorozuya, Kyoko; Kousaka, Junko; Mouri, Yukako; Fukutomi, Takashi; Ohshima, Yukihiko; Kimura, Junko; Ishiguchi, Tsuneo
2012-01-01
This study verified that recently developed real-time virtual sonography (RVS) to coordinate a sonography image and the magnetic resonance imaging (MRI) multiplanar reconstruction (MPR) with magnetic navigation was useful. The purpose of this study was to evaluate the accuracy of RVS to sonographically identify enhancing lesions by breast MRI. Between December 2008 and May 2009, RVS was performed in 51 consecutive patients with 63 enhancing lesions. MRI was performed with the patients in the supine position using a 1.5-T imager with a body surface coil to achieve the same position as with sonography. To assess the accuracy of the RVS, the following three issues were analyzed: (i) The sonographic detection rate of enhancing lesions, (ii) the comparison of the tumor size measured by sonography and the MRI-MPR and (iii) the positioning errors as the distance from the actual sonographic position to the expected MRI position in 3-D. Among the 63 enhancing lesions, 42 (67%) lesions were identified by conventional B-mode, whereas the remaining 21 (33%) initial conventional B-mode occult lesions were identified by RVS alone. The sonographic size of the lesions detected by RVS alone was significantly smaller than that of lesions detected by conventional B-mode (p < 0.001). The mean tumor size provided by RVS was 12.3 mm for real-time sonography and 14.1 mm for MRI-MPR (r = 0.848, p < 0.001). The mean positioning errors for the transverse and sagittal planes and the depth from the skin were 7.7, 6.9 and 2.8 mm, respectively. The overall mean 3D positioning error was 12.0 mm. Our results suggest that RVS has good targeting accuracy to directly compare a sonographic image with MRI results without operator dependence. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, Charles M., E-mail: cable@wfubmc.edu; Bright, Megan; Frizzell, Bart
Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles withmore » 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Christine H.; Gerry, Emily; Chmura, Steven J.
2015-01-01
Purpose: To calculate planning target volume (PTV) margins for chest wall and regional nodal targets using daily orthogonal kilovolt (kV) imaging and to study residual setup error after kV alignment using volumetric cone-beam computed tomography (CBCT). Methods and Materials: Twenty-one postmastectomy patients were treated with intensity modulated radiation therapy with 7-mm PTV margins. Population-based PTV margins were calculated from translational shifts after daily kV positioning and/or weekly CBCT data for each of 8 patients, whose surgical clips were used as surrogates for target volumes. Errors from kV and CBCT data were mathematically combined to generate PTV margins for 3 simulatedmore » alignment workflows: (1) skin marks alone; (2) weekly kV imaging; and (3) daily kV imaging. Results: The kV data from 613 treatment fractions indicated that a 7-mm uniform margin would account for 95% of daily shifts if patients were positioned using only skin marks. Total setup errors incorporating both kV and CBCT data were larger than those from kV alone, yielding PTV expansions of 7 mm anterior–posterior, 9 mm left–right, and 9 mm superior–inferior. Required PTV margins after weekly kV imaging were similar in magnitude as alignment to skin marks, but rotational adjustments of patients were required in 32% ± 17% of treatments. These rotations would have remained uncorrected without the use of daily kV imaging. Despite the use of daily kV imaging, CBCT data taken at the treatment position indicate that an anisotropic PTV margin of 6 mm anterior–posterior, 4 mm left–right, and 8 mm superior–inferior must be retained to account for residual errors. Conclusions: Cone-beam CT provides additional information on 3-dimensional reproducibility of treatment setup for chest wall targets. Three-dimensional data indicate that a uniform 7-mm PTV margin is insufficient in the absence of daily IGRT. Interfraction movement is greater than suggested by 2-dimensional imaging, thus a margin of at least 4 to 8 mm must be retained despite the use of daily IGRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Li, Z; Zheng, D
Purpose: In the context of evaluating dosimetric impacts of a variety of uncertainties involved in HDR Tandem-and-Ovoid treatment, to study the correlations between conventional point doses and 3D volumetric doses. Methods: For 5 cervical cancer patients treated with HDR T&O, 150 plans were retrospectively created to study dosimetric impacts of the following uncertainties: (1) inter-fractional applicator displacement between two treatment fractions within a single insertion by applying Fraction#1 plan to Fraction#2 CT; (2) positional dwell error simulated from −5mm to 5mm in 1mm steps; (3) simulated temporal dwell error of 0.05s, 0.1s, 0.5s, and 1s. The original plans were basedmore » on point dose prescription, from which the volume covered by the prescription dose was generated as the pseudo target volume to study the 3D target dose effect. OARs were contoured. The point and volumetric dose errors were calculated by taking the differences between original and simulated plans. The correlations between the point and volumetric dose errors were analyzed. Results: For the most clinically relevant positional dwell uncertainty of 1mm, temporal uncertainty of 0.05s, and inter-fractional applicator displacement within the same insertion, the mean target D90 and V100 deviation were within 1%. Among these uncertainties, the applicator displacement showed the largest potential target coverage impact (2.6% on D90) as well as the OAR dose impact (2.5% and 3.4% on bladder D2cc and rectum D2cc). The Spearman correlation analysis shows a correlation coefficient of 0.43 with a p-value of 0.11 between target D90 coverage and H point dose. Conclusion: With the most clinically relevant positional and temporal dwell uncertainties and patient interfractional applicator displacement within the same insertion, the dose error is within clinical acceptable range. The lack of correlation between H point and 3D volumetric dose errors is a motivator for the use of 3D treatment planning in cervical HDR brachytherapy.« less
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex(®)3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform.
Hayden, Randall T; Patterson, Donna J; Jay, Dennis W; Cross, Carl; Dotson, Pamela; Possel, Robert E; Srivastava, Deo Kumar; Mirro, Joseph; Shenep, Jerry L
2008-02-01
To assess the ability of a bar code-based electronic positive patient and specimen identification (EPPID) system to reduce identification errors in a pediatric hospital's clinical laboratory. An EPPID system was implemented at a pediatric oncology hospital to reduce errors in patient and laboratory specimen identification. The EPPID system included bar-code identifiers and handheld personal digital assistants supporting real-time order verification. System efficacy was measured in 3 consecutive 12-month time frames, corresponding to periods before, during, and immediately after full EPPID implementation. A significant reduction in the median percentage of mislabeled specimens was observed in the 3-year study period. A decline from 0.03% to 0.005% (P < .001) was observed in the 12 months after full system implementation. On the basis of the pre-intervention detected error rate, it was estimated that EPPID prevented at least 62 mislabeling events during its first year of operation. EPPID decreased the rate of misidentification of clinical laboratory samples. The diminution of errors observed in this study provides support for the development of national guidelines for the use of bar coding for laboratory specimens, paralleling recent recommendations for medication administration.
Local indicators of geocoding accuracy (LIGA): theory and application
Jacquez, Geoffrey M; Rommel, Robert
2009-01-01
Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795
Daini, Roberta; Albonico, Andrea; Malaspina, Manuela; Martelli, Marialuisa; Primativo, Silvia; Arduino, Lisa S
2013-01-01
Although omission and substitution errors in neglect dyslexia (ND) patients have always been considered as different manifestations of the same acquired reading disorder, recently, we proposed a new dual mechanism model. While omissions are related to the exploratory disorder which characterizes unilateral spatial neglect (USN), substitutions are due to a perceptual integration mechanism. A consequence of this hypothesis is that specific training for omission-type ND patients would aim at restoring the oculo-motor scanning and should not improve reading in substitution-type ND. With this aim we administered an optokinetic stimulation (OKS) to two brain-damaged patients with both USN and ND, MA and EP, who showed ND mainly characterized by omissions and substitutions, respectively. MA also showed an impairment in oculo-motor behavior with a non-reading task, while EP did not. The two patients presented a dissociation with respect to their sensitivity to OKS, so that, as expected, MA was positively affected, while EP was not. Our results confirm a dissociation between the two mechanisms underlying omission and substitution reading errors in ND patients. Moreover, they suggest that such a dissociation could possibly be extended to the effectiveness of rehabilitative procedures, and that patients who mainly omit contralesional-sided letters would benefit from OKS.
Daini, Roberta; Albonico, Andrea; Malaspina, Manuela; Martelli, Marialuisa; Primativo, Silvia; Arduino, Lisa S.
2013-01-01
Although omission and substitution errors in neglect dyslexia (ND) patients have always been considered as different manifestations of the same acquired reading disorder, recently, we proposed a new dual mechanism model. While omissions are related to the exploratory disorder which characterizes unilateral spatial neglect (USN), substitutions are due to a perceptual integration mechanism. A consequence of this hypothesis is that specific training for omission-type ND patients would aim at restoring the oculo-motor scanning and should not improve reading in substitution-type ND. With this aim we administered an optokinetic stimulation (OKS) to two brain-damaged patients with both USN and ND, MA and EP, who showed ND mainly characterized by omissions and substitutions, respectively. MA also showed an impairment in oculo-motor behavior with a non-reading task, while EP did not. The two patients presented a dissociation with respect to their sensitivity to OKS, so that, as expected, MA was positively affected, while EP was not. Our results confirm a dissociation between the two mechanisms underlying omission and substitution reading errors in ND patients. Moreover, they suggest that such a dissociation could possibly be extended to the effectiveness of rehabilitative procedures, and that patients who mainly omit contralesional-sided letters would benefit from OKS. PMID:24062678
Lennernäs, B; Edgren, M; Nilsson, S
1999-01-01
The purpose of this study was to evaluate the precision of a sensor and to ascertain the maximum distance between the sensor and the magnet, in a magnetic positioning system for external beam radiotherapy using a trained artificial intelligence neural network for position determination. Magnetic positioning for radiotherapy, previously described by Lennernäs and Nilsson, is a functional technique, but it is time consuming. The sensors are large and the distance between the sensor and the magnetic implant is limited to short distances. This paper presents a new technique for positioning, using an artificial intelligence neural network, which was trained to position the magnetic implant with at least 0.5 mm resolution in X and Y dimensions. The possibility of using the system for determination in the Z dimension, that is the distance between the magnet and the sensor, was also investigated. After training, this system positioned the magnet with a mean error of maximum 0.15 mm in all dimensions and up to 13 mm from the sensor. Of 400 test positions, 8 determinations had an error larger than 0.5 mm, maximum 0.55 mm. A position was determined in approximately 0.01 s.
Positive sliding mode control for blood glucose regulation
NASA Astrophysics Data System (ADS)
Menani, Karima; Mohammadridha, Taghreed; Magdelaine, Nicolas; Abdelaziz, Mourad; Moog, Claude H.
2017-11-01
Biological systems involving positive variables as concentrations are some examples of so-called positive systems. This is the case of the glycemia-insulinemia system considered in this paper. To cope with these physical constraints, it is shown that a positive sliding mode control (SMC) can be designed for glycemia regulation. The largest positive invariant set (PIS) is obtained for the insulinemia subsystem in open and closed loop. The existence of a positive SMC for glycemia regulation is shown here for the first time. Necessary conditions to design the sliding surface and the discontinuity gain are derived to guarantee a positive SMC for the insulin dynamics. SMC is designed to be positive everywhere in the largest closed-loop PIS of plasma insulin system. Two-stage SMC is employed; the last stage SMC2 block uses the glycemia error to design the desired insulin trajectory. Then the plasma insulin state is forced to track the reference via SMC1. The resulting desired insulin trajectory is the required virtual control input of the glycemia system to eliminate blood glucose (BG) error. The positive control is tested in silico on type-1 diabetic patients model derived from real-life clinical data.
Research on the error model of airborne celestial/inertial integrated navigation system
NASA Astrophysics Data System (ADS)
Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang
2015-02-01
Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.
SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, S; Hong, C; Kim, M
Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed withoutmore » the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.« less
SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Rottmann, J; Berbeco, R
2014-06-01
Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantommore » moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the accuracy of auto-tracking. This work is supported in part by the Varian Medical Systems, Inc.« less
The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross
2014-06-15
Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained bymore » continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID image acquisition at the frame rate of at least 4.29 Hz is recommended. Motion blurring in the images with frame rates below 4.29 Hz can significantly reduce the accuracy of autotracking.« less
Rodríguez-Bailón, María; García-Morán, Tamara; Montoro-Membila, Nuria; Ródenas-García, Estrella; Montoro, Marisa Arnedo; Funes Molina, María Jesús
2017-07-01
Previous studies have reported impairments in activities of daily living (ADL) performance in the presence of irrelevant but physically/functionally related objects in dementia patients. The aim of the present study was to increase our knowledge about the impact of the presence of contextually related non-target objects on ADL execution in patients with multi-domain mild cognitive impairment (MCI) and dementia. We compared ADL execution in patients with MCI, dementia, and healthy elderly participants under two experimental conditions: One in which the target objects were embedded with contextually related non-target items that constituted the object set necessary to complete two additional (but unrequired) ADL tasks related to the target task, and a second, control condition where target objects were surrounded by isolated objects (they never constituted a whole set needed to complete an alternative ADL task). Separate analysis of ADL errors associated with the target task versus errors involving the non-target objects revealed that, although the presence of contextually related objects facilitated the accomplishment of the target task, such a condition also led to errors involving the use of irrelevant objects in dementia and MCI. The presence of contextually related non-target items produces both positive and negative effects on ADL performance. These types of non-target objects might help to cue the retrieval of the action schema related to the target task, particularly in patients with MCI. In contrast, the presence of these objects might also lead to distraction in dementia and MCI. (JINS, 2017, 23, 481-492).
Sakarikou, Christina; Altieri, Anna; Bossa, Maria Cristina; Minelli, Silvia; Dolfa, Camilla; Piperno, Micol; Favalli, Cartesio
2018-03-01
Rapid pathogen identification (ID) and antimicrobial susceptibility testing (AST) in bacteremia cases or sepsis could improve patient prognosis. Thus, it is important to provide timely reports, which make it possible for clinicians to set up appropriate antibiotic therapy during the early stages of bloodstream infection (BSI). This study evaluates an in-house microbiological protocol for early ID as well as AST on Gram negative bacteria directly from positive monomicrobial and polymicrobial blood cultures (BCs). A total of 102 non-duplicated positive BCs from patients with Gram-negative bacteremia were tested. Both IDs and ASTs were performed from bacterial pellets extracted directly from BCs using our protocol, which was applied through the combined use of a MALDI-TOF MS and Vitek2 automated system. The results of our study showed a 100% agreement in bacterial ID and 98.25% categorical agreement in AST when compared to those obtained by routine conventional methods. We recorded only a 0.76% minor error (mE), 0.76% major error (ME) and a 0.20% very major error (VME). Moreover, the turnaround time (TAT) regarding the final AST report was significantly shortened (ΔTAT = 8-20 h, p < 0.00001). This in-house protocol is rapid, easy to perform and cost effective and could be successfully introduced into any clinical microbiology laboratory. A final same-day report of ID and AST improves patient management, by early and appropriate antimicrobial treatment and could potentially optimize antimicrobial stewardship programs. Copyright © 2018 Elsevier B.V. All rights reserved.
Bellandi, T; Albolino, S; Tartaglia, R; Filipponi, F
2010-01-01
In February 2007, three organs from an human immunodeficiency virus (HIV)-positive donor were transplanted at two hospitals in the Tuscany Regional Health Care Service, owing to a chain of errors during the donation process. The heart-beating donor was a 41-year-old woman who died as a result of head trauma. The patient's history did not highlight any risky behavior. The available data on previous hospital admissions reported a negative result on HIV testing. During the donation process, the result of the lab test performed for evaluation of organ suitability was mistakenly transcribed from positive to negative. This wrong negative result was then included in the donation record without any cross-check. Therefore, the Regional Transplant Center allocated the liver and both kidneys. The patient also donated tissues, and a second laboratory conducted an evaluation of suitability for the tissue banks. During this process, only 5 days after the successful transplantation procedures, the positive HIV result was fed back to the Regional Transplant Center and the previous error discovered. Transplanted patients were immediately assessed and then treated with antiretroviral medications. A national commission soon performed a systems analysis of the adverse event. Besides the active error committed during the manual transcription for the HIV lab test result, the commission also identified technological factors, such as the lack of integration between the lab machine, the laboratory information system (LIS), and the donor record, as well as organizational factors, such as the distribution to two different labs of the suitability evaluation for organs and tissues. Recommendations included: automatic transmission of lab test results from the lab machine to the LIS and to the donor record, centralization of lab tests for suitability evaluation of organs and tissues, a training program to develop a proactive quality and safety culture in the regional network of donation and transplantations. Copyright 2010. Published by Elsevier Inc.
Kuroda, T; Noma, H; Naito, C; Tada, M; Yamanaka, H; Takemura, T; Nin, K; Yoshihara, H
2013-01-01
Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors. The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Bluetooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis. The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system's "confidence", i.e. the probability of estimation error, must be effective to reduce the oversights. This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun
Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system wasmore » designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Results: Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system’s ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. Conclusions: The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.« less
Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q
2015-01-01
An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system's ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.
Clinical image quality evaluation for panoramic radiography in Korean dental clinics
Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak
2012-01-01
Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nose, Takayuki, E-mail: nose-takayuki@nms.ac.jp; Chatani, Masashi; Otani, Yuki
Purpose: High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Methods and Materials: Conventional X-ray fluoroscopic images aremore » degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Results: Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. Conclusions: With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use.« less
Nose, Takayuki; Chatani, Masashi; Otani, Yuki; Teshima, Teruki; Kumita, Shinichirou
2017-03-15
High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Conventional X-ray fluoroscopic images are degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use. Copyright © 2016 Elsevier Inc. All rights reserved.
Teo, Troy P; Ahmed, Syed Bilal; Kawalec, Philip; Alayoubi, Nadia; Bruce, Neil; Lyn, Ethan; Pistorius, Stephen
2018-02-01
The accurate prediction of intrafraction lung tumor motion is required to compensate for system latency in image-guided adaptive radiotherapy systems. The goal of this study was to identify an optimal prediction model that has a short learning period so that prediction and adaptation can commence soon after treatment begins, and requires minimal reoptimization for individual patients. Specifically, the feasibility of predicting tumor position using a combination of a generalized (i.e., averaged) neural network, optimized using historical patient data (i.e., tumor trajectories) obtained offline, coupled with the use of real-time online tumor positions (obtained during treatment delivery) was examined. A 3-layer perceptron neural network was implemented to predict tumor motion for a prediction horizon of 650 ms. A backpropagation algorithm and batch gradient descent approach were used to train the model. Twenty-seven 1-min lung tumor motion samples (selected from a CyberKnife patient dataset) were sampled at a rate of 7.5 Hz (0.133 s) to emulate the frame rate of an electronic portal imaging device (EPID). A sliding temporal window was used to sample the data for learning. The sliding window length was set to be equivalent to the first breathing cycle detected from each trajectory. Performing a parametric sweep, an averaged error surface of mean square errors (MSE) was obtained from the prediction responses of seven trajectories used for the training of the model (Group 1). An optimal input data size and number of hidden neurons were selected to represent the generalized model. To evaluate the prediction performance of the generalized model on unseen data, twenty tumor traces (Group 2) that were not involved in the training of the model were used for the leave-one-out cross-validation purposes. An input data size of 35 samples (4.6 s) and 20 hidden neurons were selected for the generalized neural network. An average sliding window length of 28 data samples was used. The average initial learning period prior to the availability of the first predicted tumor position was 8.53 ± 1.03 s. Average mean absolute error (MAE) of 0.59 ± 0.13 mm and 0.56 ± 0.18 mm were obtained from Groups 1 and 2, respectively, giving an overall MAE of 0.57 ± 0.17 mm. Average root-mean-square-error (RMSE) of 0.67 ± 0.36 for all the traces (0.76 ± 0.34 mm, Group 1 and 0.63 ± 0.36 mm, Group 2), is comparable to previously published results. Prediction errors are mainly due to the irregular periodicities between cycles. Since the errors from Groups 1 and 2 are within the same range, it demonstrates that this model can generalize and predict on unseen data. This is a first attempt to use an averaged MSE error surface (obtained from the prediction of different patients' tumor trajectories) to determine the parameters of a generalized neural network. This network could be deployed as a plug-and-play predictor for tumor trajectory during treatment delivery, eliminating the need for optimizing individual networks with pretreatment patient data. © 2017 American Association of Physicists in Medicine.
Noninvasive Hemodynamic Measurements During Neurosurgical Procedures in Sitting Position.
Schramm, Patrick; Tzanova, Irene; Gööck, Tilman; Hagen, Frank; Schmidtmann, Irene; Engelhard, Kristin; Pestel, Gunther
2017-07-01
Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.
Cervical sensorimotor control in idiopathic cervical dystonia: A cross-sectional study.
De Pauw, Joke; Mercelis, Rudy; Hallemans, Ann; Michiels, Sarah; Truijen, Steven; Cras, Patrick; De Hertogh, Willem
2017-09-01
Patients with idiopathic adult-onset cervical dystonia (CD) experience an abnormal head posture and involuntary muscle contractions. Although the exact areas affected in the central nervous system remain uncertain, impaired functions in systems stabilizing the head and neck are apparent such as the somatosensory and sensorimotor integration systems. The aim of the study is to investigate cervical sensorimotor control dysfunction in patients with CD. Cervical sensorimotor control was assessed by a head repositioning task in 24 patients with CD and 70 asymptomatic controls. Blindfolded participants were asked to reposition their head to a previously memorized neutral head position (NHP) following an active movement (flexion, extension, left, and right rotation). The repositioning error (joint position error, JPE) was registered via 3D motion analysis with an eight-camera infrared system (VICON ® T10). Disease-specific characteristics of all patients were obtained via the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58), and Toronto Western Spasmodic Rating Scale. Patients with CD showed larger JPE than controls (mean difference of 1.5°, p < .006), and systematically 'overshoot', i.e. surpassed the NHP, whereas control subjects 'undershoot', i.e. fall behind the NHP. The JPE did not correlate with disease-specific characteristics. Cervical sensorimotor control is impaired in patients with CD. As cervical sensorimotor control can be trained, this might be a potential treatment option for therapy, adjuvant to botulinum toxin injections.
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
NASA Astrophysics Data System (ADS)
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.
Bekki, Hirofumi; Harimaya, Katsumi; Matsumoto, Yoshihiro; Hayashida, Mitsumasa; Okada, Seiji; Doi, Toshio; Iwamoto, Yukihide
2016-04-01
A computed tomography study. The aim of the study was to clarify the position of the aorta relative to the spine in patients with Lenke type 1 adolescent idiopathic scoliosis. Several authors have examined the position of the aorta in patients with scoliosis; however, their analysis included several types of curve. There is a possibility that the position of the aorta differs according to the scoliosis curve type. Thirty-eight patients with Lenke type 1 were analyzed. The angle (left pedicle aorta [LtP-Ao] angle) and distance (LtP-Ao distance) from the insertion point of the left pedicle screw to the aorta were measured from T4 through L2. The measured data were evaluated from 4 levels above to 4 levels below the apical vertebra. The difference between lumbar modifiers A and C was examined. Dangerous pedicles, which were defined as those in which the aorta entered the expected area based on the screw direction error and length, were counted from T10 to L2. The aorta was located posterolaterally and adjacent to the vertebra at the middle thoracic level, and anteromedially and distant at the thoracolumbar level. LtP-Ao angle was largest at 1 level above the apical vertebra, and LtP-Ao distance was shortest at 2 levels above. LtP-Ao angle of Lenke 1A was significantly larger than 1C from T11 to L2, and LtP-Ao distance of 1A was significantly shorter than 1C from T11 to L1. When the screw length was 40 mm and the direction error was within 10°, there were a large number of dangerous pedicles at T11, regardless of the lumbar modifier. The direction error has a potential risk of injuring the aorta around the apical vertebra. The selection of screws of the proper length is necessary to avoid a breach of the anterior vertebral wall at thoracolumbar level, especially at T11. 3.
Sethuraman, Usha; Kannikeswaran, Nirupama; Murray, Kyle P; Zidan, Marwan A; Chamberlain, James M
2015-06-01
Prescription errors occur frequently in pediatric emergency departments (PEDs).The effect of computerized physician order entry (CPOE) with electronic medication alert system (EMAS) on these is unknown. The objective was to compare prescription errors rates before and after introduction of CPOE with EMAS in a PED. The hypothesis was that CPOE with EMAS would significantly reduce the rate and severity of prescription errors in the PED. A prospective comparison of a sample of outpatient, medication prescriptions 5 months before and after CPOE with EMAS implementation (7,268 before and 7,292 after) was performed. Error types and rates, alert types and significance, and physician response were noted. Medication errors were deemed significant if there was a potential to cause life-threatening injury, failure of therapy, or an adverse drug effect. There was a significant reduction in the errors per 100 prescriptions (10.4 before vs. 7.3 after; absolute risk reduction = 3.1, 95% confidence interval [CI] = 2.2 to 4.0). Drug dosing error rates decreased from 8 to 5.4 per 100 (absolute risk reduction = 2.6, 95% CI = 1.8 to 3.4). Alerts were generated for 29.6% of prescriptions, with 45% involving drug dose range checking. The sensitivity of CPOE with EMAS in identifying errors in prescriptions was 45.1% (95% CI = 40.8% to 49.6%), and the specificity was 57% (95% CI = 55.6% to 58.5%). Prescribers modified 20% of the dosing alerts, resulting in the error not reaching the patient. Conversely, 11% of true dosing alerts for medication errors were overridden by the prescribers: 88 (11.3%) resulted in medication errors, and 684 (88.6%) were false-positive alerts. A CPOE with EMAS was associated with a decrease in overall prescription errors in our PED. Further system refinements are required to reduce the high false-positive alert rates. © 2015 by the Society for Academic Emergency Medicine.
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
The development and role of megavoltage cone beam computerized tomography in radiation oncology
NASA Astrophysics Data System (ADS)
Morin, Olivier
External beam radiation therapy has now the ability to deliver doses that conform tightly to a tumor volume. The steep dose gradients planned in these treatments make it increasingly important to reproduce the patient position and anatomy at each treatment fraction. For this reason, considerable research now focuses on in-room three-dimensional imaging. This thesis describes the first clinical megavoltage cone beam computed tomography (MVCBCT) system, which utilizes a conventional linear accelerator equipped with an amorphous silicon flat panel detector. The document covers the system development and investigation of its clinical applications over the last 4-5 years. The physical performance of the system was evaluated and optimized for soft-tissue contrast resolution leading to recommendations of imaging protocols to use for specific clinical applications and body sites. MVCBCT images can resolve differences of 5% in electron density for a mean dose of 9 cGy. Hence, the image quality of this system is sufficient to differentiate some soft-tissue structures. The absolute positioning accuracy with MVCBCT is better than 1 mm. The accuracy of isodose lines calculated using MVCBCT images of head and neck patients is within 3% and 3 mm. The system shows excellent stability in image quality, CT# calibration, radiation exposure and absolute positioning over a period of 8 months. A procedure for MVCBCT quality assurance was developed. In our clinic, MVCBCT has been used to detect non rigid spinal cord distortions, to position a patient with a paraspinous tumor close to metallic hardware, to position prostate cancer patients using gold markers or soft-tissue landmarks, to monitor head and neck anatomical changes and their dosimetric consequences, and to complement the convention CT for treatment planning in presence of metallic implants. MVCBCT imaging is changing the clinical practice of our department by increasingly revealing patient-specific errors. New verification protocols are being developed to minimize those errors thus moving the practice of radiation therapy one step closer to personalized medicine.
Social context modulates cognitive markers in Obsessive-Compulsive Disorder.
Santamaría-García, Hernando; Soriano-Mas, Carles; Burgaleta, Miguel; Ayneto, Alba; Alonso, Pino; Menchón, José M; Cardoner, Narcis; Sebastián-Gallés, Nuria
2017-08-03
Error monitoring, cognitive control and motor inhibition control are proposed as cognitive alterations disrupted in obsessive-compulsive disorder (OCD). OCD has also been associated with an increased sensitivity to social evaluations. The effect of a social simulation over electrophysiological indices of cognitive alterations in OCD was examined. A case-control cross-sectional study measuring event-related potentials (ERP) for error monitoring (Error-Related Negativity), cognitive control (N2) and motor control (LRP) was conducted. We analyzed twenty OCD patients and twenty control participants. ERP were recorded during a social game consisting of a visual discrimination task, which was performed in the presence of a simulated superior or an inferior player. Significant social effects (different ERP amplitudes in Superior vs. Inferior player conditions) were found for OCD patients, but not for controls, in all ERP components. Performing the task against a simulated inferior player reduced abnormal ERP responses in OCD to levels observed in controls. The hierarchy-induced ERP effects were accompanied effects over reaction times in OCD patients. Social context modulates signatures of abnormal cognitive functioning in OCD, therefore experiencing a social superiority position impacts over cognitive processes in OCD such as error monitoring mechanisms. These results open the door for the research of new therapeutic choices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladstone, D. J.; Li, S.; Jarvis, L. A.
2011-07-15
Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging,more » the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.« less
Expanded newborn metabolic screening programme in Hong Kong: a three-year journey.
Chong, S C; Law, L K; Hui, J; Lai, C Y; Leung, T Y; Yuen, Y P
2017-10-01
No universal expanded newborn screening service for inborn errors of metabolism is available in Hong Kong despite its long history in developed western countries and rapid development in neighbouring Asian countries. To increase the local awareness and preparedness, the Centre of Inborn Errors of Metabolism of the Chinese University of Hong Kong started a private inborn errors of metabolism screening programme in July 2013. This study aimed to describe the results and implementation of this screening programme. We retrieved the demographics of the screened newborns and the screening results from July 2013 to July 2016. These data were used to calculate quality metrics such as call-back rate and false-positive rate. Clinical details of true-positive and false-negative cases and their outcomes were described. Finally, the call-back logistics for newborns with positive screening results were reviewed. During the study period, 30 448 newborns referred from 13 private and public units were screened. Of the samples, 98.3% were collected within 7 days of life. The overall call-back rate was 0.128% (39/30 448) and the false-positive rate was 0.105% (32/30 448). Six neonates were confirmed to have inborn errors of metabolism, including two cases of medium-chain acyl-coenzyme A dehydrogenase deficiency, one case of carnitine-acylcarnitine translocase deficiency, and three milder conditions. One case of maternal carnitine uptake defect was diagnosed. All patients remained asymptomatic at their last follow-up. The Centre of Inborn Errors of Metabolism has established a comprehensive expanded newborn screening programme for selected inborn errors of metabolism. It sets a standard against which the performance of other private newborn screening tests can be compared. Our experience can also serve as a reference for policymakers when they contemplate establishing a government-funded universal expanded newborn screening programme in the future.
Nevinny-Stickel, Meinhard; Sweeney, Reinhart A; Bale, Reto J; Posch, Andrea; Auberger, Thomas; Lukas, Peter
2004-02-01
Precise reproducible patient positioning is a prerequisite for conformal fractionated radiotherapy. A fixation system based on double-vacuum technology is presented which can be used for conventional as well as hypofractionated stereotactic extracranial radiotherapy. To form the actual vacuum mattress, the patient is pressed into the mattress with a vacuum foil which can also be used for daily repositioning and fixation. A stereotactic frame can be positioned over the region of interest on an indexed base plate. Repositioning accuracy was determined by comparing daily, pretreatment, orthogonal portal images to the respective digitally reconstructed radiographs (DRRs) in ten patients with abdominal and pelvic lesions receiving extracranial fractionated (stereotactic) radiotherapy. The three-dimensional (3-D) vectors and 95% confidence intervals (CI) were calculated from the respective deviations in the three axes. Time required for initial mold production and daily repositioning was also determined. The mean 3-D repositioning error (187 fractions) was 2.5 +/- 1.1 mm. The largest single deviation (10 mm) was observed in a patient treated in prone position. Mold production took an average of 15 min (10-30 min). Repositioning times are not necessarily longer than using no positioning aid at all. The presented fixation system allows reliable, flexible and efficient patient positioning for extracranial stereotactic radiotherapy.
The impact of using an intravenous workflow management system (IVWMS) on cost and patient safety.
Lin, Alex C; Deng, Yihong; Thaibah, Hilal; Hingl, John; Penm, Jonathan; Ivey, Marianne F; Thomas, Mark
2018-07-01
The aim of this study was to determine the financial costs associated with wasted and missing doses before and after the implementation of an intravenous workflow management system (IVWMS) and to quantify the number and the rate of detected intravenous (IV) preparation errors. A retrospective analysis of the sample hospital information system database was conducted using three months of data before and after the implementation of an IVWMS System (DoseEdge ® ) which uses barcode scanning and photographic technologies to track and verify each step of the preparation process. The financial impact associated with wasted and missing >IV doses was determined by combining drug acquisition, labor, accessory, and disposal costs. The intercepted error reports and pharmacist detected error reports were drawn from the IVWMS to quantify the number of errors by defined error categories. The total number of IV doses prepared before and after the implementation of the IVWMS system were 110,963 and 101,765 doses, respectively. The adoption of the IVWMS significantly reduced the amount of wasted and missing IV doses by 14,176 and 2268 doses, respectively (p < 0.001). The overall cost savings of using the system was $144,019 over 3 months. The total number of errors detected was 1160 (1.14%) after using the IVWMS. The implementation of the IVWMS facilitated workflow changes that led to a positive impact on cost and patient safety. The implementation of the IVWMS increased patient safety by enforcing standard operating procedures and bar code verifications. Published by Elsevier B.V.
Evaluation of kidney motion and target localization in abdominal SBRT patients
Sonier, Marcus; Chu, William; Lalani, Nafisha; Erler, Darby; Cheung, Patrick
2016-01-01
The purpose of this study was to evaluate bilateral kidney and target translational/rotational intrafraction motion during stereotactic body radiation therapy treatment delivery of primary renal cell carcinoma and oligometastatic adrenal lesions for patients immobilized in the Elekta BodyFIX system. Bilateral kidney motion was assessed at midplane for 30 patients immobilized in a full‐body dual‐vacuum‐cushion system with two patients immobilized via abdominal compression. Intrafraction motion was assessed for 15 patients using kilovoltage cone‐beam computed tomography (kV‐CBCT) datasets (n=151) correlated to the planning CT. Patient positioning was corrected for translational and rotational misalignments using a robotic couch in six degrees of freedom if setup errors exceeded 1 mm and 1°. Absolute bilateral kidney motion between inhale and exhale 4D CT imaging phases for left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions was 1.51±1.00mm,8.10±4.33mm, and 3.08±2.11mm, respectively. Residual setup error determined across CBCT type (pretreatment, intrafraction, and post‐treatment) for x (LR), y (SI), and z (AP) translations was 0.63±0.74mm,1.08±1.38mm, and 0.70±1.00mm; while for x (pitch), y (roll), and z (yaw) rotations was 0.24±0.39°,0.19±0.34°, and 0.26±0.43°, respectively. Targets were localized to within 2.1 mm and 0.8° 95% of the time. The frequency of misalignments in the y direction was significant (p<0.05) when compared to the x and z directions with no significant difference in translations between IMRT and VMAT. This technique is robust using BodyFIX for patient immobilization and reproducible localization of kidney and adrenal targets and daily CBCT image guidance for correction of positional errors to maintain treatment accuracy. PACS number(s): 87.55.‐x, 87.56.‐v, 87.56.Da PMID:27929514
Tokarz-Sawińska, Ewa
2012-01-01
In Part I the problems associated with refraction, accommodation and convergence and their role in proper eye position/visual alignment of the eyes as well as convergent, divergent and vertical alignment of the eyes have been described.
Superficial vessel reconstruction with a multiview camera system
Marreiros, Filipe M. M.; Rossitti, Sandro; Karlsson, Per M.; Wang, Chunliang; Gustafsson, Torbjörn; Carleberg, Per; Smedby, Örjan
2016-01-01
Abstract. We aim at reconstructing superficial vessels of the brain. Ultimately, they will serve to guide the deformation methods to compensate for the brain shift. A pipeline for three-dimensional (3-D) vessel reconstruction using three mono-complementary metal-oxide semiconductor cameras has been developed. Vessel centerlines are manually selected in the images. Using the properties of the Hessian matrix, the centerline points are assigned direction information. For correspondence matching, a combination of methods was used. The process starts with epipolar and spatial coherence constraints (geometrical constraints), followed by relaxation labeling and an iterative filtering where the 3-D points are compared to surfaces obtained using the thin-plate spline with decreasing relaxation parameter. Finally, the points are shifted to their local centroid position. Evaluation in virtual, phantom, and experimental images, including intraoperative data from patient experiments, shows that, with appropriate camera positions, the error estimates (root-mean square error and mean error) are ∼1 mm. PMID:26759814
Interferometric correction system for a numerically controlled machine
Burleson, Robert R.
1978-01-01
An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.
Factors associated with disclosure of medical errors by housestaff.
Kronman, Andrea C; Paasche-Orlow, Michael; Orlander, Jay D
2012-04-01
Attributes of the organisational culture of residency training programmes may impact patient safety. Training environments are complex, composed of clinical teams, residency programmes, and clinical units. We examined the relationship between residents' perceptions of their training environment and disclosure of or apology for their worst error. Anonymous, self-administered surveys were distributed to Medicine and Surgery residents at Boston Medical Center in 2005. Surveys asked residents to describe their worst medical error, and to answer selected questions from validated surveys measuring elements of working environments that promote learning from error. Subscales measured the microenvironments of the clinical team, residency programme, and clinical unit. Univariate and bivariate statistical analyses examined relationships between trainee characteristics, their perceived learning environment(s), and their responses to the error. Out of 109 surveys distributed to residents, 99 surveys were returned (91% overall response rate), two incomplete surveys were excluded, leaving 97: 61% internal medicine, 39% surgery, 59% male residents. While 31% reported apologising for the situation associated with the error, only 17% reported disclosing the error to patients and/or family. More male residents disclosed the error than female residents (p=0.04). Surgery residents scored higher on the subscales of safety culture pertaining to the residency programme (p=0.02) and managerial commitment to safety (p=0.05). Our Medical Culture Summary score was positively associated with disclosure (p=0.04) and apology (p=0.05). Factors in the learning environments of residents are associated with responses to medical errors. Organisational safety culture can be measured, and used to evaluate environmental attributes of clinical training that are associated with disclosure of, and apology for, medical error.
SU-F-J-25: Position Monitoring for Intracranial SRS Using BrainLAB ExacTrac Snap Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, S; McCaw, T; Huq, M
2016-06-15
Purpose: To determine the accuracy of position monitoring with BrainLAB ExacTrac snap verification following couch rotations during intracranial SRS. Methods: A CT scan of an anthropomorphic head phantom was acquired using 1.25mm slices. The isocenter was positioned near the centroid of the frontal lobe. The head phantom was initially aligned on the treatment couch using cone-beam CT, then repositioned using ExacTrac x-ray verification with residual errors less than 0.2mm and 0.2°. Snap verification was performed over the full range of couch angles in 15° increments with known positioning offsets of 0–3mm applied to the phantom along each axis. At eachmore » couch angle, the smallest tolerance was determined for which no positioning deviation was detected. Results: For couch angles 30°–60° from the center position, where the longitudinal axis of the phantom is approximately aligned with the beam axis of one x-ray tube, snap verification consistently detected positioning errors exceeding the maximum 8mm tolerance. Defining localization error as the difference between the known offset and the minimum tolerance for which no deviation was detected, the RMS error is mostly less than 1mm outside of couch angles 30°–60° from the central couch position. Given separate measurements of patient position from the two imagers, whether to proceed with treatment can be determined by the criterion of a reading within tolerance from just one (OR criterion) or both (AND criterion) imagers. Using a positioning tolerance of 1.5mm, snap verification has sensitivity and specificity of 94% and 75%, respectively, with the AND criterion, and 67% and 93%, respectively, with the OR criterion. If readings exceeding maximum tolerance are excluded, the sensitivity and specificity are 88% and 86%, respectively, with the AND criterion. Conclusion: With a positioning tolerance of 1.5mm, ExacTrac snap verification can be used during intracranial SRS with sensitivity and specificity between 85% and 90%.« less
Using Smart Pumps to Understand and Evaluate Clinician Practice Patterns to Ensure Patient Safety
Mansfield, Jennifer; Jarrett, Steven
2013-01-01
Background: Safety software installed on intravenous (IV) infusion pumps has been shown to positively impact the quality of patient care through avoidance of medication errors. The data derived from the use of smart pumps are often overlooked, although these data provide helpful insight into the delivery of quality patient care. Objective: The objectives of this report are to describe the value of implementing IV infusion safety software and analyzing the data and reports generated by this system. Case study: Based on experience at the Carolinas HealthCare System (CHS), executive score cards provide an aggregate view of compliance rate, number of alerts, overrides, and edits. The report of serious errors averted (ie, critical catches) supplies the location, date, and time of the critical catch, thereby enabling management to pinpoint the end-user for educational purposes. By examining the number of critical catches, a return on investment may be calculated. Assuming 3,328 of these events each year, an estimated cost avoidance would be $29,120,000 per year for CHS. Other reports allow benchmarking between institutions. Conclusion: A review of the data about medication safety across CHS has helped garner support for a medication safety officer position with the goal of ultimately creating a safer environment for the patient. PMID:24474836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less
Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per
2017-04-01
The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.
Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong
2013-01-07
Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.
Jin, Shuo; Li, Dengwang; Yin, Yong
2013-01-01
Accurate registration of 18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from 18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381
Dreyer, A W; Mbambo, D; Machaba, M; Oliphant, C E M; Claassens, M M
2017-03-10
Tuberculosis control programs rely on accurate collection of routine surveillance data to inform program decisions including resource allocation and specific interventions. The electronic TB register (ETR.Net) is dependent on accurate data transcription from both paperbased clinical records and registers at the facilities to report treatment outcome data. The study describes the quality of reporting of TB treatment outcomes from facilities in the Ehlanzeni District, Mpumalanga Province. A descriptive crossectional study of primary healthcare facilities in the district for the period 1 January - 31 December 2010 was performed. New smear positive TB cure rate data was obtained from the ETR.Net followed by verification of paperbased clinical records, both TB folders and the TB register, of 20% of all new smear positive cases across the district for correct reporting to the ETR.Net. Facilities were grouped according to high (>70%) and low cure rates (≤ 70%) as well as high (> 20%) and low (≤ 20%) error proportions in reporting. Kappa statistic was used to determine agreement between paperbased record, TB register and ETR.Net. Of the100 facilities (951 patient clinical records), 51(51%) had high cure rates and high error proportions, 14(14%) had a high cure rate and low error proportion whereas 30(30%) had low cure rates and high error proportions and five (5%) had a low cure rate with low error proportion. Fair agreement was observed (Kappa = 0.33) overall and between registers. Of the 473 patient clinical records which indicated cured, 383(81%) was correctly captured onto the ETR.Net, whereas 51(10.8%) was incorrectly captured and 39(8.2%) was not captured at all. Over reporting of treatment success of 12% occurred on the ETR.Net. The high error proportion in reporting onto the ETR.Net could result in a false sense of improvement in the TB control programme in the Ehlanzeni district.
The Effects of Bar-coding Technology on Medication Errors: A Systematic Literature Review.
Hutton, Kevin; Ding, Qian; Wellman, Gregory
2017-02-24
The bar-coding technology adoptions have risen drastically in U.S. health systems in the past decade. However, few studies have addressed the impact of bar-coding technology with strong prospective methodologies and the research, which has been conducted from both in-pharmacy and bedside implementations. This systematic literature review is to examine the effectiveness of bar-coding technology on preventing medication errors and what types of medication errors may be prevented in the hospital setting. A systematic search of databases was performed from 1998 to December 2016. Studies measuring the effect of bar-coding technology on medication errors were included in a full-text review. Studies with the outcomes other than medication errors such as efficiency or workarounds were excluded. The outcomes were measured and findings were summarized for each retained study. A total of 2603 articles were initially identified and 10 studies, which used prospective before-and-after study design, were fully reviewed in this article. Of the 10 included studies, 9 took place in the United States, whereas the remaining was conducted in the United Kingdom. One research article focused on bar-coding implementation in a pharmacy setting, whereas the other 9 focused on bar coding within patient care areas. All 10 studies showed overall positive effects associated with bar-coding implementation. The results of this review show that bar-coding technology may reduce medication errors in hospital settings, particularly on preventing targeted wrong dose, wrong drug, wrong patient, unauthorized drug, and wrong route errors.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
AIM To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. METHODS Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex®3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. RESULTS Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). CONCLUSION Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform. PMID:27275425
A new markerless patient-to-image registration method using a portable 3D scanner.
Fan, Yifeng; Jiang, Dongsheng; Wang, Manning; Song, Zhijian
2014-10-01
Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. In the phantom experiments, the mean fiducial registration error between the device space and the patient space, the mean surface registration error, and the mean TRE of 15 targets on the surface of each phantom were 0.34 ± 0.01 mm and 0.33 ± 0.02 mm, 1.17 ± 0.02 mm and 1.34 ± 0.10 mm, and 1.06 ± 0.11 mm and 1.48 ± 0.21 mm, respectively. When grouping the targets according to their positions on the head, high accuracy was achieved in all parts of the head, and the TREs were similar across different regions. The authors compared their method with the current surface registration methods that use only a part of the facial surface on the elastic phantom, and the mean TRE of 15 targets was 1.48 ± 0.21 mm and 1.98 ± 0.53 mm, respectively. In a clinical experiment, the mean TRE of seven targets on the patient's head surface was 1.92 ± 0.18 mm, which was sufficient to meet clinical requirements. The proposed surface-matching registration method provides sufficient registration accuracy even in the posterior area of the head. The 3D point cloud of the entire head, including the facial surface and the back of the head, can be easily acquired using a portable 3D scanner. The scanner does not need to be calibrated prior or tracked by the optical tracking system during scanning.
NASA Astrophysics Data System (ADS)
Yoshidome, Satoshi; Arimura, Hidetaka; Terashima, Koutarou; Hirakawa, Masakazu; Hirose, Taka-aki; Fukunaga, Junichi; Nakamura, Yasuhiko
2017-03-01
Recently, image-guided radiotherapy (IGRT) systems using kilovolt cone-beam computed tomography (kV-CBCT) images have become more common for highly accurate patient positioning in stereotactic lung body radiotherapy (SLBRT). However, current IGRT procedures are based on bone structures and subjective correction. Therefore, the aim of this study was to evaluate the proposed framework for automated estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT. Twenty clinical cases are considered, involving solid, pure ground-glass opacity (GGO), mixed GGO, solitary, and non-solitary tumor types. The proposed framework consists of four steps: (1) determination of a search region for tumor location detection in a kV-CBCT image; (2) extraction of a tumor template from a planning CT image; (3) preprocessing for tumor region enhancement (edge and tumor enhancement using a Sobel filter and a blob structure enhancement (BSE) filter, respectively); and (4) tumor location estimation based on a template-matching technique. The location errors in the original, edge-, and tumor-enhanced images were found to be 1.2 ± 0.7 mm, 4.2 ± 8.0 mm, and 2.7 ± 4.6 mm, respectively. The location errors in the original images of solid, pure GGO, mixed GGO, solitary, and non-solitary types of tumors were 1.2 ± 0.7 mm, 1.3 ± 0.9 mm, 0.4 ± 0.6 mm, 1.1 ± 0.8 mm and 1.0 ± 0.7 mm, respectively. These results suggest that the proposed framework is robust as regards automatic estimation of several types of tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT.
Measuring cross-cultural patient safety: identifying barriers and developing performance indicators.
Walker, Roger; St Pierre-Hansen, Natalie; Cromarty, Helen; Kelly, Len; Minty, Bryanne
2010-01-01
Medical errors and cultural errors threaten patient safety. We know that access to care, quality of care and clinical safety are all impacted by cultural issues. Numerous approaches to describing cultural barriers to patient safety have been developed, but these taxonomies do not provide a useful set of tools for defining the nature of the problem and consequently do not establish a sound base for problem solving. The Sioux Lookout Meno Ya Win Health Centre has implemented a cross-cultural patient safety (CCPS) model (Walker 2009). We developed an analytical CCPS framework within the organization, and in this article, we detail the validation process for our framework by way of a literature review and surveys of local and international healthcare professionals. We reinforce the position that while cultural competency may be defined by the service provider, cultural safety is defined by the client. In addition, we document the difficulties surrounding the measurement of cultural competence in terms of patient outcomes, which is an underdeveloped dimension of the field of patient safety. We continue to explore the correlation between organizational performance and measurable patient outcomes.
Nakamura, Mitsuhiro; Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2013-09-06
The Vero4DRT (MHI-TM2000) is capable of performing X-ray image-based tracking (X-ray Tracking) that directly tracks the target or fiducial markers under continuous kV X-ray imaging. Previously, we have shown that irregular respiratory patterns increased X-ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X-ray Tracking errors. Anterior-posterior abdominal skin-surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior-inferior direction. First, a sequential predictive model based on the Levinson-Durbin algorithm was created to estimate the future three-dimensional (3D) target position under continuous kV X-ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X-ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X-ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X-ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T ) was 1.7 ± 0.5 mm (range: 1.1-2.6mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2-2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five patients; no significant difference was found between E95T,FB and E95T,AI (p = 0.21). Correlation analysis revealed that the rapid respiratory velocity significantly increased E95T. Although audio instruction improved breathing regularity, it also increased the respiratory velocity, which did not necessarily reduce tracking errors.
Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2013-01-01
The Vero4DRT (MHI‐TM2000) is capable of performing X‐ray image‐based tracking (X‐ray Tracking) that directly tracks the target or fiducial markers under continuous kV X‐ray imaging. Previously, we have shown that irregular respiratory patterns increased X‐ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X‐ray Tracking errors. Anterior‐posterior abdominal skin‐surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior‐inferior direction. First, a sequential predictive model based on the Levinson‐Durbin algorithm was created to estimate the future three‐dimensional (3D) target position under continuous kV X‐ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X‐ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X‐ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X‐ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T) was 1.7 ± 0.5 mm (range: 1.1–2.6 mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2–2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five patients; no significant difference was found between E95T,FB and ET,AI95(p = 0.21). Correlation analysis revealed that the rapid respiratory velocity significantly increased E95T. Although audio instruction improved breathing regularity, it also increased the respiratory velocity, which did not necessarily reduce tracking errors. PACS number: 87.55.ne, 87.57.N‐, 87.59.C‐, PMID:24036880
Zimmerman, Dale L; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard
2007-01-10
The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m) than 100%-matched automated geocoding (median error length = 168 m). The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.
[Assessment of two applications of medication self-management in older patients. Qualitative study].
Carrillo, I; Guilabert, M; Pérez-Jover, V; Mira, J J
2015-01-01
The aging population and the growing use of technology are two realities of modern society. Developing tools to support medication self-management to polymedicated elderly may contribute to increase their safety. To know how patients polymedicated and older than 64 years manage dose their medication and assessment the utility of two medication self-management applications, specifically analyzing management systems, medication errors and positive and improvable aspects of each of the tools presented. Seven focal groups with 59 patients from associations and health departments were conducted. In such meetings, they received the applications and they were encouraged to use it. Then, a several group questions were asked them about their health status, how they managed their medication and their assessment about the applications. Most participants reported to use memory strategies to take correctly their medication. They assessed positively the applications although some of them showed resistance to incorporate it in their daily routine. The simple interface and ease of use were the characteristics of the applications most appreciated by patients. Is possible to foster among elderly patients the use of technological tools to support the proper administration of medications with purpose is to decrease errors and increase safety. When designing health applications is necessary to take into account the preferences of those who are targeted. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
Mathar, David; Wilkinson, Leonora; Holl, Anna K; Neumann, Jane; Deserno, Lorenz; Villringer, Arno; Jahanshahi, Marjan; Horstmann, Annette
2017-05-01
Incidental learning of appropriate stimulus-response associations is crucial for optimal functioning within our complex environment. Positive and negative prediction errors (PEs) serve as neural teaching signals within distinct ('direct'/'indirect') dopaminergic pathways to update associations and optimize subsequent behavior. Using a computational reinforcement learning model, we assessed learning from positive and negative PEs on a probabilistic task (Weather Prediction Task - WPT) in three populations that allow different inferences on the role of dopamine (DA) signals: (1) Healthy volunteers that repeatedly underwent [ 11 C]raclopride Positron Emission Tomography (PET), allowing for assessment of striatal DA release during learning, (2) Parkinson's disease (PD) patients tested both on and off L-DOPA medication, (3) early Huntington's disease (HD) patients, a disease that is associated with hyper-activation of the 'direct' pathway. Our results show that learning from positive and negative feedback on the WPT is intimately linked to different aspects of dopaminergic transmission. In healthy individuals, the difference in [ 11 C]raclopride binding potential (BP) as a measure for striatal DA release was linearly associated with the positive learning rate. Further, asymmetry between baseline DA tone in the left and right ventral striatum was negatively associated with learning from positive PEs. Female patients with early HD exhibited exaggerated learning rates from positive feedback. In contrast, dopaminergic tone predicted learning from negative feedback, as indicated by an inverted u-shaped association observed with baseline [ 11 C]raclopride BP in healthy controls and the difference between PD patients' learning rate on and off dopaminergic medication. Thus, the ability to learn from positive and negative feedback is a sensitive marker for the integrity of dopaminergic signal transmission in the 'direct' and 'indirect' dopaminergic pathways. The present data are interesting beyond clinical context in that imbalances of dopaminergic signaling have not only been observed for neurological and psychiatric conditions but also been proposed for obesity and adolescence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aliasing errors in measurements of beam position and ellipticity
NASA Astrophysics Data System (ADS)
Ekdahl, Carl
2005-09-01
Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.
Dolch, Michael E; Janitza, Silke; Boulesteix, Anne-Laure; Graßmann-Lichtenauer, Carola; Praun, Siegfried; Denzer, Wolfgang; Schelling, Gustav; Schubert, Sören
2016-12-01
Identification of microorganisms in positive blood cultures still relies on standard techniques such as Gram staining followed by culturing with definite microorganism identification. Alternatively, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or the analysis of headspace volatile compound (VC) composition produced by cultures can help to differentiate between microorganisms under experimental conditions. This study assessed the efficacy of volatile compound based microorganism differentiation into Gram-negatives and -positives in unselected positive blood culture samples from patients. Headspace gas samples of positive blood culture samples were transferred to sterilized, sealed, and evacuated 20 ml glass vials and stored at -30 °C until batch analysis. Headspace gas VC content analysis was carried out via an auto sampler connected to an ion-molecule reaction mass spectrometer (IMR-MS). Measurements covered a mass range from 16 to 135 u including CO2, H2, N2, and O2. Prediction rules for microorganism identification based on VC composition were derived using a training data set and evaluated using a validation data set within a random split validation procedure. One-hundred-fifty-two aerobic samples growing 27 Gram-negatives, 106 Gram-positives, and 19 fungi and 130 anaerobic samples growing 37 Gram-negatives, 91 Gram-positives, and two fungi were analysed. In anaerobic samples, ten discriminators were identified by the random forest method allowing for bacteria differentiation into Gram-negative and -positive (error rate: 16.7 % in validation data set). For aerobic samples the error rate was not better than random. In anaerobic blood culture samples of patients IMR-MS based headspace VC composition analysis facilitates bacteria differentiation into Gram-negative and -positive.
Impact of Standardized Communication Techniques on Errors during Simulated Neonatal Resuscitation.
Yamada, Nicole K; Fuerch, Janene H; Halamek, Louis P
2016-03-01
Current patterns of communication in high-risk clinical situations, such as resuscitation, are imprecise and prone to error. We hypothesized that the use of standardized communication techniques would decrease the errors committed by resuscitation teams during neonatal resuscitation. In a prospective, single-blinded, matched pairs design with block randomization, 13 subjects performed as a lead resuscitator in two simulated complex neonatal resuscitations. Two nurses assisted each subject during the simulated resuscitation scenarios. In one scenario, the nurses used nonstandard communication; in the other, they used standardized communication techniques. The performance of the subjects was scored to determine errors committed (defined relative to the Neonatal Resuscitation Program algorithm), time to initiation of positive pressure ventilation (PPV), and time to initiation of chest compressions (CC). In scenarios in which subjects were exposed to standardized communication techniques, there was a trend toward decreased error rate, time to initiation of PPV, and time to initiation of CC. While not statistically significant, there was a 1.7-second improvement in time to initiation of PPV and a 7.9-second improvement in time to initiation of CC. Should these improvements in human performance be replicated in the care of real newborn infants, they could improve patient outcomes and enhance patient safety. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Panel positioning error and support mechanism for a 30-m THz radio telescope
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Okoh, Daniel; Zhou, Guo-Hua; Li, Ai-Hua; Li, Guo-Ping; Cheng, Jing-Quan
2011-06-01
A 30-m TeraHertz (THz) radio telescope is proposed to operate at 200 μm with an active primary surface. This paper presents sensitivity analysis of active surface panel positioning errors with optical performance in terms of the Strehl ratio. Based on Ruze's surface error theory and using a Monte Carlo simulation, the effects of six rigid panel positioning errors, such as piston, tip, tilt, radial, azimuthal and twist displacements, were directly derived. The optical performance of the telescope was then evaluated using the standard Strehl ratio. We graphically illustrated the various panel error effects by presenting simulations of complete ensembles of full reflector surface errors for the six different rigid panel positioning errors. Study of the panel error sensitivity analysis revealed that the piston error and tilt/tip errors are dominant while the other rigid errors are much less important. Furthermore, as indicated by the results, we conceived of an alternative Master-Slave Concept-based (MSC-based) active surface by implementating a special Series-Parallel Concept-based (SPC-based) hexapod as the active panel support mechanism. A new 30-m active reflector based on the two concepts was demonstrated to achieve correction for all the six rigid panel positioning errors in an economically feasible way.
A comparison of gantry-mounted x-ray-based real-time target tracking methods.
Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien
2018-03-01
Most modern radiotherapy machines are built with a 2D kV imaging system. Combining this imaging system with a 2D-3D inference method would allow for a ready-made option for real-time 3D tumor tracking. This work investigates and compares the accuracy of four existing 2D-3D inference methods using both motion traces inferred from external surrogates and measured internally from implanted beacons. Tumor motion data from 160 fractions (46 thoracic/abdominal patients) of Synchrony traces (inferred traces), and 28 fractions (7 lung patients) of Calypso traces (internal traces) from the LIGHT SABR trial (NCT02514512) were used in this study. The motion traces were used as the ground truth. The ground truth trajectories were used in silico to generate 2D positions projected on the kV detector. These 2D traces were then passed to the 2D-3D inference methods: interdimensional correlation, Gaussian probability density function (PDF), arbitrary-shape PDF, and the Kalman filter. The inferred 3D positions were compared with the ground truth to determine tracking errors. The relationships between tracking error and motion magnitude, interdimensional correlation, and breathing periodicity index (BPI) were also investigated. Larger tracking errors were observed from the Calypso traces, with RMS and 95th percentile 3D errors of 0.84-1.25 mm and 1.72-2.64 mm, compared to 0.45-0.68 mm and 0.74-1.13 mm from the Synchrony traces. The Gaussian PDF method was found to be the most accurate, followed by the Kalman filter, the interdimensional correlation method, and the arbitrary-shape PDF method. Tracking error was found to strongly and positively correlate with motion magnitude for both the Synchrony and Calypso traces and for all four methods. Interdimensional correlation and BPI were found to negatively correlate with tracking error only for the Synchrony traces. The Synchrony traces exhibited higher interdimensional correlation than the Calypso traces especially in the anterior-posterior direction. Inferred traces often exhibit higher interdimensional correlation, which are not true representation of thoracic/abdominal motion and may underestimate kV-based tracking errors. The use of internal traces acquired from systems such as Calypso is advised for future kV-based tracking studies. The Gaussian PDF method is the most accurate 2D-3D inference method for tracking thoracic/abdominal targets. Motion magnitude has significant impact on 2D-3D inference error, and should be considered when estimating kV-based tracking error. © 2018 American Association of Physicists in Medicine.
Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms.
Bodensteiner, C; Darolti, C; Schumacher, H; Matthäus, L; Schweikard, A
2007-01-01
CT-images acquired by mobile C-arm devices can contain artefacts caused by positioning errors. We propose a data driven method based on iterative 3D-reconstruction and 2D/3D-registration to correct projection data inconsistencies. With a 2D/3D-registration algorithm, transformations are computed to align the acquired projection images to a previously reconstructed volume. In an iterative procedure, the reconstruction algorithm uses the results of the registration step. This algorithm also reduces small motion artefacts within 3D-reconstructions. Experiments with simulated projections from real patient data show the feasibility of the proposed method. In addition, experiments with real projection data acquired with an experimental robotised C-arm device have been performed with promising results.
Yohay Carmel; Curtis Flather; Denis Dean
2006-01-01
This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...
Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy.
Morel, Paul; Wu, Xiaodong; Blin, Guillaume; Vialette, Stéphane; Flynn, Ryan; Hyer, Daniel; Wang, Dongxu
2015-01-01
This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. The method proposed in this study adapts the weight (MU) of the delivering pencil beam to that of the target spot; it will actually hit during patient/target motion. The target spot that a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D) CT. After the adapted delivery, the required total weight [Monitor Unit (MU)] for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated. For moderate motion (i.e., mean amplitude 0.5 cm), D95% to the planning target volume (PTV) was only 81.5% of the prescription (RX) dose; with spot weight adaptation PTV D95% achieves 97.7% RX. For large motion amplitude (i.e., 1.5 cm), without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7% RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3 mm or smaller in patient/target position tracking is preferred. The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.
Characterisation of false-positive observations in botanical surveys
2017-01-01
Errors in botanical surveying are a common problem. The presence of a species is easily overlooked, leading to false-absences; while misidentifications and other mistakes lead to false-positive observations. While it is common knowledge that these errors occur, there are few data that can be used to quantify and describe these errors. Here we characterise false-positive errors for a controlled set of surveys conducted as part of a field identification test of botanical skill. Surveys were conducted at sites with a verified list of vascular plant species. The candidates were asked to list all the species they could identify in a defined botanically rich area. They were told beforehand that their final score would be the sum of the correct species they listed, but false-positive errors counted against their overall grade. The number of errors varied considerably between people, some people create a high proportion of false-positive errors, but these are scattered across all skill levels. Therefore, a person’s ability to correctly identify a large number of species is not a safeguard against the generation of false-positive errors. There was no phylogenetic pattern to falsely observed species; however, rare species are more likely to be false-positive as are species from species rich genera. Raising the threshold for the acceptance of an observation reduced false-positive observations dramatically, but at the expense of more false negative errors. False-positive errors are higher in field surveying of plants than many people may appreciate. Greater stringency is required before accepting species as present at a site, particularly for rare species. Combining multiple surveys resolves the problem, but requires a considerable increase in effort to achieve the same sensitivity as a single survey. Therefore, other methods should be used to raise the threshold for the acceptance of a species. For example, digital data input systems that can verify, feedback and inform the user are likely to reduce false-positive errors significantly. PMID:28533972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, D; Zhang, R; Sanders, M
Purpose: Post-irradiation cerebral necrosis (PICN) is a severe late effect that can Result from brain cancers treatment using radiation therapy. The purpose of this study was to compare the treatment plans and predicted risk of PICN after volumetric modulated arc therapy (VMAT) to the risk after passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT) in a cohort of pediatric patients. Methods: Thirteen pediatric patients with varying age and sex were selected for this study. A clinical treatment volume (CTV) was constructed for 8 glioma patients and 5 ependymoma patients. Prescribed dose was 54 Gy over 30 fractionsmore » to the planning volume. Dosimetric endpoints were compared between VMAT and proton plans. The normal tissue complication probability (NTCP) following VMAT and proton therapy planning was also calculated using PICN as the biological endpoint. Sensitivity tests were performed to determine if predicted risk of PICN was sensitive to positional errors, proton range errors and selection of risk models. Results: Both PSPT and IMPT plans resulted in a significant increase in the maximum dose and reduction in the total brain volume irradiated to low doses compared with the VMAT plans. The average ratios of NTCP between PSPT and VMAT were 0.56 and 0.38 for glioma and ependymoma patients respectively and the average ratios of NTCP between IMPT and VMAT were 0.67 and 0.68 for glioma and ependymoma plans respectively. Sensitivity test revealed that predicted ratios of risk were insensitive to range and positional errors but varied with risk model selection. Conclusion: Both PSPT and IMPT plans resulted in a decrease in the predictive risk of necrosis for the pediatric plans studied in this work. Sensitivity analysis upheld the qualitative findings of the risk models used in this study, however more accurate models that take into account dose and volume are needed.« less
Brébion, Gildas; Bressan, Rodrigo A; Ohlsen, Ruth I; David, Anthony S
2013-12-01
Memory impairments in patients with schizophrenia have been associated with various cognitive and clinical factors. Hallucinations have been more specifically associated with errors stemming from source monitoring failure. We conducted a broad investigation of verbal memory and visual memory as well as source memory functioning in a sample of patients with schizophrenia. Various memory measures were tallied, and we studied their associations with processing speed, working memory span, and positive, negative, and depressive symptoms. Superficial and deep memory processes were differentially associated with processing speed, working memory span, avolition, depression, and attention disorders. Auditory/verbal and visual hallucinations were differentially associated with specific types of source memory error. We integrated all the results into a revised version of a previously published model of memory functioning in schizophrenia. The model describes the factors that affect memory efficiency, as well as the cognitive underpinnings of hallucinations within the source monitoring framework. © 2013.
Ghahramanian, Akram; Rezaei, Tayyebeh; Abdullahzadeh, Farahnaz; Sheikhalipour, Zahra; Dianat, Iman
2017-01-01
Background: This study investigated quality of healthcare services from patients’ perspectives and its relationship with patient safety culture and nurse-physician professional communication. Methods: A cross-sectional study was conducted among 300 surgery patients and 101 nurses caring them in a public hospital in Tabriz–Iran. Data were collected using the service quality measurement scale (SERVQUAL), hospital survey on patient safety culture (HSOPSC) and nurse physician professional communication questionnaire. Results: The highest and lowest mean (±SD) scores of the patients’ perception on the healthcare services quality belonged to the assurance 13.92 (±3.55) and empathy 6.78 (±1.88) domains,respectively. With regard to the patient safety culture, the mean percentage of positive answers ranged from 45.87% for "non-punitive response to errors" to 68.21% for "organizational continuous learning" domains. The highest and lowest mean (±SD) scores for the nurse physician professional communication were obtained for "cooperation" 3.44 (±0.35) and "non-participative decision-making" 2.84 (±0.34) domains, respectively. The "frequency of reported errors by healthcare professionals" (B=-4.20, 95% CI = -7.14 to -1.27, P<0.01) and "respect and sharing of information" (B=7.69, 95% CI=4.01 to 11.36, P<0.001) predicted the patients’perceptions of the quality of healthcare services. Conclusion: Organizational culture in dealing with medical error should be changed to non-punitive response. Change in safety culture towards reporting of errors, effective communication and teamwork between healthcare professionals are recommended. PMID:28695106
Experimental investigation of observation error in anuran call surveys
McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.
2010-01-01
Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.
[New patients' rights act--what do we have to consider?].
Kranz, J; Wartensleben, H; Steffens, J
2014-05-01
The controversially discussed act of improving the rights of patients entered into force in Germany on 26 February 2013 without any transitional period. The current law of patients "rights brings together patients" rights at one uniform place in the civil code (BGB, "Bürgerlichen Gesetzbuch") and should, therefore, attract the medical stakeholders' interest. The new patients "rights law improves the patients" position concerning both treatment and doctor's liability law and is supposed to strengthen a new "error culture" in health care. Similarly, clinical and daily practice becomes more complex with high levels of bureaucracy and the patient-physician relation shifts in favour of meticulous documentation.
Korte, Erik A; Pozzi, Nicole; Wardrip, Nina; Ayyoubi, M Tayyeb; Jortani, Saeed A
2018-07-01
There are 13 million blood transfusions each year in the US. Limitations in the donor pool, storage capabilities, mass casualties, access in remote locations and reactivity of donors all limit the availability of transfusable blood products to patients. HBOC-201 (Hemopure®) is a second-generation glutaraldehyde-polymer of bovine hemoglobin, which can serve as an "oxygen bridge" to maintain oxygen carrying capacity while transfusion products are unavailable. Hemopure presents the advantages of extended shelf life, ambient storage, and limited reactive potential, but its extracellular location can also cause significant interference in modern laboratory analyzers similar to severe hemolysis. Observed error in 26 commonly measured analytes was determined on 4 different analytical platforms in plasma from a patient therapeutically transfused Hemopure as well as donor blood spiked with Hemopure at a level equivalent to the therapeutic loading dose (10% v/v). Significant negative error ratios >50% of the total allowable error (>0.5tAE) were reported in 23/104 assays (22.1%), positive bias of >0.5tAE in 26/104 assays (25.0%), and acceptable bias between -0.5tAE and 0.5tAE error ratio was reported in 44/104 (42.3%). Analysis failed in the presence of Hemopure in 11/104 (10.6%). Observed error is further subdivided by platform, wavelength, dilution and reaction method. Administration of Hemopure (or other hemoglobin-based oxygen carriers) presents a challenge to laboratorians tasked with analyzing patient specimens. We provide laboratorians with a reference to evaluate patient samples, select optimal analytical platforms for specific analytes, and predict possible bias beyond the 4 analytical platforms included in this study. Copyright © 2018 Elsevier B.V. All rights reserved.
Changes in refractive errors related to spectacle correction of hyperopia.
Yang, Hee Kyung; Choi, Jung Yeon; Kim, Dae Hyun; Hwang, Jeong-Min
2014-01-01
Hyperopic undercorrection is a common clinical practice. However, less is known of its effect on the change in refractive errors and emmetropization throughout the later years of childhood. To evaluate the effect of spectacle correction on the change in refractive errors in hyperopic children less than 12 years of age with or without strabismus. A retrospective cohort study was performed by a computer based search of the hospital database of patients with hyperopia, accommodative esotropia or exotropia. A total of 150 hyperopic children under 12 years of age were included. Patients were classified into four groups: 1) accommodative esotropia with full correction of hyperopia, 2) exotropia with undercorrection of hyperopia, 3) orthotropia with full correction of hyperopia, 4) orthotropia with undercorrection of hyperopia. The 4 groups were matched by initial age on examination and spherical equivalent refractive errors (SER). The main outcome measure was the change in SER (Diopter/year) in both eyes after two years of follow-up. An overall negative shift in SER was noted during the follow-up period in all groups, except for the group with esotropia and full correction. The mean negative shift of hyperopia was more rapid in groups receiving undercorrection of hyperopia with or without strabismus. The amount of undercorrection of hyperopia was positively correlated to the magnitude of decrease in hyperopia in all patients (r = 0.289, P<0.001) and in the subgroup of patients with orthotropia (r = 0.304, P = 0.011). The amount of undercorrection of hyperopia was the only factor associated with a more negative shift in SER (OR, 2.414; 95% CI, 1.202-4.849; P = 0.013). The amount of undercorrection is significantly correlated to the change in hyperopic refractive errors. Full correction of hyperopia may inhibit emmetropization during early and late childhood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, H; Wang, W; Hu, W
2014-06-01
Purpose: To quantify setup errors by pretreatment kilovolt cone-beam computed tomography(KV-CBCT) scans for middle or distal esophageal carcinoma patients. Methods: Fifty-two consecutive middle or distal esophageal carcinoma patients who underwent IMRT were included this study. A planning CT scan using a big-bore CT simulator was performed in the treatment position and was used as the reference scan for image registration with CBCT. CBCT scans(On-Board Imaging v1. 5 system, Varian Medical Systems) were acquired daily during the first treatment week. A total of 260 CBCT scans was assessed with a registration clip box defined around the PTV-thorax in the reference scanmore » based on(nine CBCTs per patient) bony anatomy using Offline Review software v10.0(Varian Medical Systems). The anterior-posterior(AP), left-right(LR), superiorinferior( SI) corrections were recorded. The systematic and random errors were calculated. The CTV-to-PTV margins in each CBCT frequency was based on the Van Herk formula (2.5Σ+0.7σ). Results: The SD of systematic error (Σ) was 2.0mm, 2.3mm, 3.8mm in the AP, LR and SI directions, respectively. The average random error (σ) was 1.6mm, 2.4mm, 4.1mm in the AP, LR and SI directions, respectively. The CTV-to-PTV safety margin was 6.1mm, 7.5mm, 12.3mm in the AP, LR and SI directions based on van Herk formula. Conclusion: Our data recommend the use of 6 mm, 8mm, and 12 mm for esophageal carcinoma patient setup in AP, LR, SI directions, respectively.« less
NASA Astrophysics Data System (ADS)
Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza
2017-03-01
External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy
Ding, J; Zhao, K X; Li, Y P; Ma, H Z; Chen, X; Guo, X; Zhu, L N; Li, N D; Zhang, W
2016-08-01
To study clinical characteristics and surgical treatment of idiopathic congenital nystagmus (ICN). A retrospective study was conducted in 224 patients with ICN in Tianjin eye hospital from July 2007 to February 2013. There were 224 patients, 158 (70.54%) males and 66 (29.5%) females, mean age was (11.6±8.4) years and (11.4±6.4) years separately. Horizontal nystgamus happened in 215 cases, 3 cases were vertical type and 6 cases were mixed. 214 cases were with no history of operation and 10 patients had ever underwent surgeries before. Furthermore, 151 patients combined with strabismus and refractive error, anterior segment or retinal disorders, which accounting for 67.4% of all the patients. 48 patients were associated myopia, 30 patients with hyperopia, 43 patients with strabismus. Among them, 153 cases of compensatory head position direction were horizontal with face turn, 43 cases (43/153, 28.1%) showed face turning to the left, 110 cases (110/153, 71.9%) showed face turning to the right. Surgeries were designed according to the compensatory head position and head retroversion angle. For 15 patients with double intermediate zones, the position which was often used with good visual function was chosen for operation design. As for the patients with nystagmus and strabismus, the transfer null zone to primary position for the dominant eye and strabismus surgery for the other eye was chosen. And for complicated patients with compensative head position, the dominant head posture were designed for surgery. ICN is dominated by male with variable clinical manifestations. Surgical choice for ICN depends on the direction of head position and if there is strabismus accompanying it.The aim of ocular muscle surgery is to transfer null zone to primary position. (Chin J Ophthalmol, 2016, 52: 574-578).
Wang, He; Wang, Congjun; Tung, Samuel; Dimmitt, Andrew Wilson; Wong, Pei Fong; Edson, Mark A.; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Gunn, Gary B.; Takiar, Vinita; Wang, Xin A.; Luo, Dershan; Yang, James N.; Wong, Jennifer
2016-01-01
The purpose of this study was to investigate the setup and positioning uncertainty of a custom cushion/mask/bite‐block (CMB) immobilization system and determine PTV margin for image‐guided head and neck stereotactic ablative radiotherapy (HN‐SABR). We analyzed 105 treatment sessions among 21 patients treated with HN‐SABR for recurrent head and neck cancers using a custom CMB immobilization system. Initial patient setup was performed using the ExacTrac infrared (IR) tracking system and initial setup errors were based on comparison of ExacTrac IR tracking system to corrected online ExacTrac X‐rays images registered to treatment plans. Residual setup errors were determined using repeat verification X‐ray. The online ExacTrac corrections were compared to cone‐beam CT (CBCT) before treatment to assess agreement. Intrafractional positioning errors were determined using prebeam X‐rays. The systematic and random errors were analyzed. The initial translational setup errors were −0.8±1.3 mm, −0.8±1.6 mm, and 0.3±1.9 mm in AP, CC, and LR directions, respectively, with a three‐dimensional (3D) vector of 2.7±1.4 mm. The initial rotational errors were up to 2.4° if 6D couch is not available. CBCT agreed with ExacTrac X‐ray images to within 2 mm and 2.5°. The intrafractional uncertainties were 0.1±0.6 mm, 0.1±0.6 mm, and 0.2±0.5 mm in AP, CC, and LR directions, respectively, and 0.0∘±0.5°, 0.0∘±0.6°, and −0.1∘±0.4∘ in yaw, roll, and pitch direction, respectively. The translational vector was 0.9±0.6 mm. The calculated PTV margins mPTV(90,95) were within 1.6 mm when using image guidance for online setup correction. The use of image guidance for online setup correction, in combination with our customized CMB device, highly restricted target motion during treatments and provided robust immobilization to ensure minimum dose of 95% to target volume with 2.0 mm PTV margin for HN‐SABR. PACS number(s): 87.55.ne PMID:27167275
Position Error Covariance Matrix Validation and Correction
NASA Technical Reports Server (NTRS)
Frisbee, Joe, Jr.
2016-01-01
In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta
Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less
ADEPT, a dynamic next generation sequencing data error-detection program with trimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Shihai; Lo, Chien-Chi; Li, Po-E
Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less
ADEPT, a dynamic next generation sequencing data error-detection program with trimming
Feng, Shihai; Lo, Chien-Chi; Li, Po-E; ...
2016-02-29
Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less
Orbæk, Janne; Gaard, Mette; Fabricius, Pia; Lefevre, Rikke S; Møller, Tom
2015-05-01
The technology-driven medication process is complex, involving advanced technologies, patient participation and increased safety measures. Medication administration errors are frequently reported, with nurses implicated in 26-38% of in-hospital cases. This points to the need for new ways of educating nursing students in today's medication administration. To explore nursing students' experiences and competences with the technology-driven medication administration process. 16 pre-graduate nursing students were included in two focus group interviews which were recorded, transcribed and analyzed using the systematic horizontal phenomenological-hermeneutic template methodology. The interviews uncovered that understanding the technologies; professionalism and patient safety are three crucial elements in the medication process. The students expressed positivity and confidence in using technology, but were fearful of committing serious medication errors. From the nursing students' perspective, experienced nurses deviate from existing guidelines, leaving them feeling isolated in practical learning situations. Having an unclear nursing role model for the technology-driven medication process, nursing students face difficulties in identifying and adopting best practices. The impact of using technology on the frequency, type and severity of medication errors; the technologies implications on nursing professionalism and the nurses ability to secure patient adherence to the medication process, still remains to be studied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hwang, Jee-In; Park, Hyeoun-Ae
2015-07-01
This study investigated individual and work-related factors associated with nurses' perceptions of evidence-based practice (EBP) and quality improvement (QI), and the relationships between evidence-based practice, quality improvement and clinical errors. Understanding the factors affecting evidence-based practice and quality improvement activities and their relationships with clinical errors is important for designing strategies to promote evidence-based practice, quality improvement and patient safety. A cross-sectional survey was conducted with 594 nurses in two Korean teaching hospitals using the evidence-based practice Questionnaire and quality improvement scale developed in this study. Four hundred and forty-three nurses (74.6%) returned the completed survey. Nurses' ages and educational levels were significantly associated with evidence-based practice scores whereas age and job position were associated with quality improvement scores. There were positive, moderate correlations between evidence-based practice and quality improvement scores. Nurses who had not made any clinical errors during the past 12 months had significantly higher quality improvement skills scores than those who had. The findings indicated the necessity of educational support regarding evidence-based practice and quality improvement for younger staff nurses who have no master degrees. Enhancing quality improvement skills may reduce clinical errors. Nurse managers should consider the characteristics of their staff when implementing educational and clinical strategies for evidence-based practice and quality improvement. © 2013 John Wiley & Sons Ltd.
The relationship between nursing leadership and patient outcomes: a systematic review update.
Wong, Carol A; Cummings, Greta G; Ducharme, Lisa
2013-07-01
Our aim was to describe the findings of a systematic review of studies that examine the relationship between nursing leadership practices and patient outcomes. As healthcare faces an economic downturn, stressful work environments, upcoming retirements of leaders and projected workforce shortages, implementing strategies to ensure effective leadership and optimal patient outcomes are paramount. However, a gap still exists in what is known about the association between nursing leadership and patient outcomes. Published English-only research articles that examined leadership practices of nurses in formal leadership positions and patient outcomes were selected from eight online bibliographic databases. Quality assessments, data extraction and analysis were completed on all included studies. A total of 20 studies satisfied our inclusion criteria and were retained. Current evidence suggests relationships between positive relational leadership styles and higher patient satisfaction and lower patient mortality, medication errors, restraint use and hospital-acquired infections. The findings document evidence of a positive relationship between relational leadership and a variety of patient outcomes, although future testing of leadership models that examine the mechanisms of influence on outcomes is warranted. Efforts by organisations and individuals to develop transformational and relational leadership reinforces organisational strategies to improve patient outcomes. © 2013 John Wiley & Sons Ltd.
Grall, Maximilien; Azoulay, Elie; Galicier, Lionel; Provôt, François; Wynckel, Alain; Poullin, Pascale; Grange, Steven; Halimi, Jean-Michel; Lautrette, Alexandre; Delmas, Yahsou; Presne, Claire; Hamidou, Mohamed; Girault, Stéphane; Pène, Frédéric; Perez, Pierre; Kanouni, Tarik; Seguin, Amélie; Mousson, Christiane; Chauveau, Dominique; Ojeda-Uribe, Mario; Barbay, Virginie; Veyradier, Agnès; Coppo, Paul; Benhamou, Ygal
2017-04-01
Thrombotic thrombocytopenic purpura (TTP) has a devastating prognosis without adapted management. Sources of misdiagnosis need to be identified to avoid delayed treatment. We studied 84 patients with a final diagnosis of severe (<10%) acquired ADAMTS13 deficiency-associated TTP from our National database that included 423 patients, who had an initial misdiagnosis (20% of all TTP). Main diagnostic errors were attributed to autoimmune thrombocytopenia, associated (51%) or not (37%) with autoimmune hemolytic anemia. At admission, misdiagnosed patients were more frequently females (P = .034) with a history of autoimmune disorder (P = .017) and had organ involvement in 67% of cases; they had more frequently antinuclear antibodies (P = .035), a low/undetectable schistocyte count (P = .001), a less profound anemia (P = .008), and a positive direct antiglobulin test (DAT) (P = .008). In multivariate analysis, female gender (P = .022), hemoglobin level (P = .028), a positive DAT (P = .004), and a low schistocytes count on diagnosis (P < .001) were retained as risk factors of misdiagnosis. Platelet count recovery was significantly longer in the misdiagnosed group (P = .041) without consequence on mortality, exacerbation and relapse. However, patients in the misdiagnosed group had a less severe disease than those in the accurately diagnosed group, as evidenced by less organ involvement at TTP diagnosis (P = .006). TTP is frequently misdiagnosed with autoimmune cytopenias. A low schistocyte count and a positive DAT should not systematically rule out TTP, especially when associated with organ failure. © 2017 Wiley Periodicals, Inc.
Estimating time of HIV-1 infection from next-generation sequence diversity
2017-01-01
Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is challenging, but important to understand the epidemiology of the infection. Here we explore the utility of virus diversity estimated by next-generation sequencing (NGS) as novel biomarker by using a recent genome-wide longitudinal dataset obtained from 11 untreated HIV-1-infected patients with known dates of infection. The results were validated on a second dataset from 31 patients. Virus diversity increased linearly with time, particularly at 3rd codon positions, with little inter-patient variation. The precision of the TI estimate improved with increasing sequencing depth, showing that diversity in NGS data yields superior estimates to the number of ambiguous sites in Sanger sequences, which is one of the alternative biomarkers. The full advantage of deep NGS was utilized with continuous diversity measures such as average pairwise distance or site entropy, rather than the fraction of polymorphic sites. The precision depended on the genomic region and codon position and was highest when 3rd codon positions in the entire pol gene were used. For these data, TI estimates had a mean absolute error of around 1 year. The error increased only slightly from around 0.6 years at a TI of 6 months to around 1.1 years at 6 years. Our results show that virus diversity determined by NGS can be used to estimate time since HIV-1 infection many years after the infection, in contrast to most alternative biomarkers. We provide the regression coefficients as well as web tool for TI estimation. PMID:28968389
Skull registration for prone patient position using tracked ultrasound
NASA Astrophysics Data System (ADS)
Underwood, Grace; Ungi, Tamas; Baum, Zachary; Lasso, Andras; Kronreif, Gernot; Fichtinger, Gabor
2017-03-01
PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6+/-0.1mm and the average distance of points off the skull surface was 0.6+/-0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.
NASA Technical Reports Server (NTRS)
Webb, L. D.; Washington, H. P.
1972-01-01
Static pressure position error calibrations for a compensated and an uncompensated XB-70 nose boom pitot static probe were obtained in flight. The methods (Pacer, acceleration-deceleration, and total temperature) used to obtain the position errors over a Mach number range from 0.5 to 3.0 and an altitude range from 25,000 feet to 70,000 feet are discussed. The error calibrations are compared with the position error determined from wind tunnel tests, theoretical analysis, and a standard NACA pitot static probe. Factors which influence position errors, such as angle of attack, Reynolds number, probe tip geometry, static orifice location, and probe shape, are discussed. Also included are examples showing how the uncertainties caused by position errors can affect the inlet controls and vertical altitude separation of a supersonic transport.
NASA Astrophysics Data System (ADS)
Yokoi, Naoaki; Kawahara, Yasuhiro; Hosaka, Hiroshi; Sakata, Kenji
Focusing on the Personal Handy-phone System (PHS) positioning service used in physical distribution logistics, a positioning error offset method for improving positioning accuracy is invented. A disadvantage of PHS positioning is that measurement errors caused by the fluctuation of radio waves due to buildings around the terminal are large, ranging from several tens to several hundreds of meters. In this study, an error offset method is developed, which learns patterns of positioning results (latitude and longitude) containing errors and the highest signal strength at major logistic points in advance, and matches them with new data measured in actual distribution processes according to the Mahalanobis distance. Then the matching resolution is improved to 1/40 that of the conventional error offset method.
A simulation of GPS and differential GPS sensors
NASA Technical Reports Server (NTRS)
Rankin, James M.
1993-01-01
The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Zwan, B; Central Coast Cancer Centre, Gosford, NSW; Colvill, E
2016-06-15
Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3)more » field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm{sup 2} (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.« less
A five-year experience with throat cultures.
Shank, J C; Powell, T A
1984-06-01
This study addresses the usefulness of the throat culture in a family practice residency setting and explores the following questions: (1) Do faculty physicians clinically identify streptococcal pharyngitis better than residents? (2) With time, will residents and faculty physicians improve in their diagnostic accuracy? (3) Should the throat culture be used always, selectively, or never? A total of 3,982 throat cultures were obtained over a five-year study period with 16 percent positive for beta-hemolytic streptococci. The results were compared with the physician's clinical diagnosis of either "nonstreptococcal" (category A) or "streptococcal" (category B). Within category A, 363 of 3,023 patients had positive cultures (12 percent clinical diagnostic error rate). Within category B, 665 of 959 patients had negative cultures (69 percent clinical diagnostic error rate). Faculty were significantly better than residents in diagnosing streptococcal pharyngitis, but not in diagnosing nonstreptococcal sore throats. Neither faculty nor residents improved their diagnostic accuracy over time. Regarding age-specific recommendations, the findings support utilizing a throat culture in all children aged 2 to 15 years with sore throat, but in adults only when the physician suspects streptococcal pharyngitis.
Mull, Hillary J; Borzecki, Ann M; Loveland, Susan; Hickson, Kathleen; Chen, Qi; MacDonald, Sally; Shin, Marlena H; Cevasco, Marisa; Itani, Kamal M F; Rosen, Amy K
2014-04-01
The Patient Safety Indicators (PSIs) use administrative data to screen for select adverse events (AEs). In this study, VA Surgical Quality Improvement Program (VASQIP) chart review data were used as the gold standard to measure the criterion validity of 5 surgical PSIs. Independent chart review was also used to determine reasons for PSI errors. The sensitivity, specificity, and positive predictive value of PSI software version 4.1a were calculated among Veterans Health Administration hospitalizations (2003-2007) reviewed by VASQIP (n = 268,771). Nurses re-reviewed a sample of hospitalizations for which PSI and VASQIP AE detection disagreed. Sensitivities ranged from 31% to 68%, specificities from 99.1% to 99.8%, and positive predictive values from 31% to 72%. Reviewers found that coding errors accounted for some PSI-VASQIP disagreement; some disagreement was also the result of differences in AE definitions. These results suggest that the PSIs have moderate criterion validity; however, some surgical PSIs detect different AEs than VASQIP. Future research should explore using both methods to evaluate surgical quality. Published by Elsevier Inc.
Effects of learning climate and registered nurse staffing on medication errors.
Chang, Yunkyung; Mark, Barbara
2011-01-01
Despite increasing recognition of the significance of learning from errors, little is known about how learning climate contributes to error reduction. The purpose of this study was to investigate whether learning climate moderates the relationship between error-producing conditions and medication errors. A cross-sectional descriptive study was done using data from 279 nursing units in 146 randomly selected hospitals in the United States. Error-producing conditions included work environment factors (work dynamics and nurse mix), team factors (communication with physicians and nurses' expertise), personal factors (nurses' education and experience), patient factors (age, health status, and previous hospitalization), and medication-related support services. Poisson models with random effects were used with the nursing unit as the unit of analysis. A significant negative relationship was found between learning climate and medication errors. It also moderated the relationship between nurse mix and medication errors: When learning climate was negative, having more registered nurses was associated with fewer medication errors. However, no relationship was found between nurse mix and medication errors at either positive or average levels of learning climate. Learning climate did not moderate the relationship between work dynamics and medication errors. The way nurse mix affects medication errors depends on the level of learning climate. Nursing units with fewer registered nurses and frequent medication errors should examine their learning climate. Future research should be focused on the role of learning climate as related to the relationships between nurse mix and medication errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Tomohiro; Miyabe, Yuki, E-mail: miyabe@kuhp.kyoto-u.ac.jp; Yamada, Masahiro
Purpose: The Vero4DRT system has the capability for dynamic tumor-tracking (DTT) stereotactic irradiation using a unique gimbaled x-ray head. The purposes of this study were to develop DTT conformal arc irradiation and to estimate its geometric and dosimetric accuracy. Methods: The gimbaled x-ray head, supported on an O-ring gantry, was moved in the pan and tilt directions during O-ring gantry rotation. To evaluate the mechanical accuracy, the gimbaled x-ray head was moved during the gantry rotating according to input command signals without a target tracking, and a machine log analysis was performed. The difference between a command and a measuredmore » position was calculated as mechanical error. To evaluate beam-positioning accuracy, a moving phantom, which had a steel ball fixed at the center, was driven based on a sinusoidal wave (amplitude [A]: 20 mm, time period [T]: 4 s), a patient breathing motion with a regular pattern (A: 16 mm, average T: 4.5 s), and an irregular pattern (A: 7.2–23.0 mm, T: 2.3–10.0 s), and irradiated with DTT during gantry rotation. The beam-positioning error was evaluated as the difference between the centroid position of the irradiated field and the steel ball on images from an electronic portal imaging device. For dosimetric accuracy, dose distributions in static and moving targets were evaluated with DTT conformal arc irradiation. Results: The root mean squares (RMSs) of the mechanical error were up to 0.11 mm for pan motion and up to 0.14 mm for tilt motion. The RMSs of the beam-positioning error were within 0.23 mm for each pattern. The dose distribution in a moving phantom with tracking arc irradiation was in good agreement with that in static conditions. Conclusions: The gimbal positional accuracy was not degraded by gantry motion. As in the case of a fixed port, the Vero4DRT system showed adequate accuracy of DTT conformal arc irradiation.« less
Trinh, Tony W; Glazer, Daniel I; Sadow, Cheryl A; Sahni, V Anik; Geller, Nina L; Silverman, Stuart G
2018-03-01
To determine test characteristics of CT urography for detecting bladder cancer in patients with hematuria and those undergoing surveillance, and to analyze reasons for false-positive and false-negative results. A HIPAA-compliant, IRB-approved retrospective review of reports from 1623 CT urograms between 10/2010 and 12/31/2013 was performed. 710 examinations for hematuria or bladder cancer history were compared to cystoscopy performed within 6 months. Reference standard was surgical pathology or 1-year minimum clinical follow-up. False-positive and false-negative examinations were reviewed to determine reasons for errors. Ninety-five bladder cancers were detected. CT urography accuracy: was 91.5% (650/710), sensitivity 86.3% (82/95), specificity 92.4% (568/615), positive predictive value 63.6% (82/129), and negative predictive value was 97.8% (568/581). Of 43 false positives, the majority of interpretation errors were due to benign prostatic hyperplasia (n = 12), trabeculated bladder (n = 9), and treatment changes (n = 8). Other causes include blood clots, mistaken normal anatomy, infectious/inflammatory changes, or had no cystoscopic correlate. Of 13 false negatives, 11 were due to technique, one to a large urinary residual, one to artifact. There were no errors in perception. CT urography is an accurate test for diagnosing bladder cancer; however, in protocols relying predominantly on excretory phase images, overall sensitivity remains insufficient to obviate cystoscopy. Awareness of bladder cancer mimics may reduce false-positive results. Improvements in CTU technique may reduce false-negative results.
Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation.
Alex, Varghese; Vaidhya, Kiran; Thirunavukkarasu, Subramaniam; Kesavadas, Chandrasekharan; Krishnamurthi, Ganapathy
2017-10-01
The work explores the use of denoising autoencoders (DAEs) for brain lesion detection, segmentation, and false-positive reduction. Stacked denoising autoencoders (SDAEs) were pretrained using a large number of unlabeled patient volumes and fine-tuned with patches drawn from a limited number of patients ([Formula: see text], 40, 65). The results show negligible loss in performance even when SDAE was fine-tuned using 20 labeled patients. Low grade glioma (LGG) segmentation was achieved using a transfer learning approach in which a network pretrained with high grade glioma data was fine-tuned using LGG image patches. The networks were also shown to generalize well and provide good segmentation on unseen BraTS 2013 and BraTS 2015 test data. The manuscript also includes the use of a single layer DAE, referred to as novelty detector (ND). ND was trained to accurately reconstruct nonlesion patches. The reconstruction error maps of test data were used to localize lesions. The error maps were shown to assign unique error distributions to various constituents of the glioma, enabling localization. The ND learns the nonlesion brain accurately as it was also shown to provide good segmentation performance on ischemic brain lesions in images from a different database.
Realtime mitigation of GPS SA errors using Loran-C
NASA Technical Reports Server (NTRS)
Braasch, Soo Y.
1994-01-01
The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.
Laboratory testing in primary care: A systematic review of health IT impacts.
Maillet, Éric; Paré, Guy; Currie, Leanne M; Raymond, Louis; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne
2018-08-01
Laboratory testing in primary care is a fundamental process that supports patient management and care. Any breakdown in the process may alter clinical information gathering and decision-making activities and can lead to medical errors and potential adverse outcomes for patients. Various information technologies are being used in primary care with the goal to support the process, maximize patient benefits and reduce medical errors. However, the overall impact of health information technologies on laboratory testing processes has not been evaluated. To synthesize the positive and negative impacts resulting from the use of health information technology in each phase of the laboratory 'total testing process' in primary care. We conducted a systematic review. Databases including Medline, PubMed, CINAHL, Web of Science and Google Scholar were searched. Studies eligible for inclusion reported empirical data on: 1) the use of a specific IT system, 2) the impacts of the systems to support the laboratory testing process, and were conducted in 3) primary care settings (including ambulatory care and primary care offices). Our final sample consisted of 22 empirical studies which were mapped to a framework that outlines the phases of the laboratory total testing process, focusing on phases where medical errors may occur. Health information technology systems support several phases of the laboratory testing process, from ordering the test to following-up with patients. This is a growing field of research with most studies focusing on the use of information technology during the final phases of the laboratory total testing process. The findings were largely positive. Positive impacts included easier access to test results by primary care providers, reduced turnaround times, and increased prescribed tests based on best practice guidelines. Negative impacts were reported in several studies: paper-based processes employed in parallel to the electronic process increased the potential for medical errors due to clinicians' cognitive overload; systems deemed not reliable or user-friendly hampered clinicians' performance; and organizational issues arose when results tracking relied on the prescribers' memory. The potential of health information technology lies not only in the exchange of health information, but also in knowledge sharing among clinicians. This review has underscored the important role played by cognitive factors, which are critical in the clinician's decision-making, the selection of the most appropriate tests, correct interpretation of the results and efficient interventions. By providing the right information, at the right time to the right clinician, many IT solutions adequately support the laboratory testing process and help primary care clinicians make better decisions. However, several technological and organizational barriers require more attention to fully support the highly fragmented and error-prone process of laboratory testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-02-04
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-01-01
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda
2015-02-04
To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.
Patient Registration Using Photogrammetric Surface Reconstruction from Smartphone Imagery
NASA Astrophysics Data System (ADS)
Hellwich, O.; Rose, A.; Bien, T.; Malolepszy, C.; Mucha, D.; Krüger, T.
2016-06-01
In navigated surgery the patient's body has to be co-registered with presurgically acquired 3D data in order to enable navigation of the surgical instrument. For this purpose the body surface of the patient can be acquired by means of photogrammetry and co-registered to corresponding surfaces in the presurgical data. In this paper this task is exemplarily solved for 3D data of human heads using the face surface to establish correspondence. We focus on investigation of achieved geometric accuracies reporting positioning errors in the range of 1 mm.
Hubbeling, Dieneke
2016-09-01
This paper addresses the concept of moral luck. Moral luck is discussed in the context of medical error, especially an error of omission that occurs frequently, but only rarely has adverse consequences. As an example, a failure to compare the label on a syringe with the drug chart results in the wrong medication being administered and the patient dies. However, this error may have previously occurred many times with no tragic consequences. Discussions on moral luck can highlight conflicting intuitions. Should perpetrators receive a harsher punishment because of an adverse outcome, or should they be dealt with in the same way as colleagues who have acted similarly, but with no adverse effects? An additional element to the discussion, specifically with medical errors, is that according to the evidence currently available, punishing individual practitioners does not seem to be effective in preventing future errors. The following discussion, using relevant philosophical and empirical evidence, posits a possible solution for the moral luck conundrum in the context of medical error: namely, making a distinction between the duty to make amends and assigning blame. Blame should be assigned on the basis of actual behavior, while the duty to make amends is dependent on the outcome.
A quantitative assessment of patient and nurse outcomes of bedside nursing report implementation.
Sand-Jecklin, Kari; Sherman, Jay
2014-10-01
To quantify quantitative outcomes of a practice change to a blended form of bedside nursing report. The literature identifies several benefits of bedside nursing shift report. However, published studies have not adequately quantified outcomes related to this process change, having either small or unreported sample sizes or not testing for statistical significance. Quasi-experimental pre- and postimplementation design. Seven medical-surgical units in a large university hospital implemented a blend of recorded and bedside nursing report. Outcomes monitored included patient and nursing satisfaction, patient falls, nursing overtime and medication errors. We found statistically significant improvements postimplementation in four patient survey items specifically impacted by the change to bedside report. Nursing perceptions of report were significantly improved in the areas of patient safety and involvement in care and nurse accountability postimplementation. However, there was a decline in nurse perception that report took a reasonable amount of time after bedside report implementation; contrary to these perceptions, there was no significant increase in nurse overtime. Patient falls at shift change decreased substantially after the implementation of bedside report. An intervening variable during the study period invalidated the comparison of medication errors pre- and postintervention. There was some indication from both patients and nurses that bedside report was not always consistently implemented. Several positive outcomes were documented in relation to the implementation of a blended bedside shift report, with few drawbacks. Nurse attitudes about report at the final data collection were more positive than at the initial postimplementation data collection. If properly implemented, nursing bedside report can result in improved patient and nursing satisfaction and patient safety outcomes. However, managers should involve staff nurses in the implementation process and continue to monitor consistency in report format as well as satisfaction with the process. © 2014 John Wiley & Sons Ltd.
Matharoo, Manmeet; Haycock, Adam; Sevdalis, Nick; Thomas-Gibson, Siwan
2014-12-14
To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes. A novel endoscopy team training intervention for BCS teams was developed and evaluated as a pre-post intervention study. Four multi-disciplinary BCS teams constituting BCS endoscopist(s), specialist screening practitioners, endoscopy nurses and administrative staff (A) from English BCS training centres participated. No patients were involved in this study. Expert multidisciplinary faculty delivered a single day's training utilising real clinical examples. Pre and post-course evaluation comprised participants' patient safety awareness, attitudes, and knowledge. Global course evaluations were also collected. Twenty-three participants attended and their patient safety knowledge improved significantly from 43%-55% (P ≤ 0.001) following the training intervention. 12/41 (29%) of the safety attitudes items significantly improved in the areas of perceived patient safety knowledge and awareness. The remaining safety attitude items: perceived influence on patient safety, attitudes towards error management, error management actions and personal views following an error were unchanged following training. Both qualitative and quantitative global course evaluations were positive: 21/23 (91%) participants strongly agreed/agreed that they were satisfied with the course. Qualitative evaluation included mandating such training for endoscopy teams outside BCS and incorporating team training within wider endoscopy training. Limitations of the study include no measure of increased patient safety in clinical practice following training. A novel comprehensive training package addressing patient safety, non-technical skills and adverse event analysis was successful in improving multi-disciplinary teams' knowledge and safety attitudes.
Matharoo, Manmeet; Haycock, Adam; Sevdalis, Nick; Thomas-Gibson, Siwan
2014-01-01
AIM: To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes. METHODS: A novel endoscopy team training intervention for BCS teams was developed and evaluated as a pre-post intervention study. Four multi-disciplinary BCS teams constituting BCS endoscopist(s), specialist screening practitioners, endoscopy nurses and administrative staff (A) from English BCS training centres participated. No patients were involved in this study. Expert multidisciplinary faculty delivered a single day’s training utilising real clinical examples. Pre and post-course evaluation comprised participants’ patient safety awareness, attitudes, and knowledge. Global course evaluations were also collected. RESULTS: Twenty-three participants attended and their patient safety knowledge improved significantly from 43%-55% (P ≤ 0.001) following the training intervention. 12/41 (29%) of the safety attitudes items significantly improved in the areas of perceived patient safety knowledge and awareness. The remaining safety attitude items: perceived influence on patient safety, attitudes towards error management, error management actions and personal views following an error were unchanged following training. Both qualitative and quantitative global course evaluations were positive: 21/23 (91%) participants strongly agreed/agreed that they were satisfied with the course. Qualitative evaluation included mandating such training for endoscopy teams outside BCS and incorporating team training within wider endoscopy training. Limitations of the study include no measure of increased patient safety in clinical practice following training. CONCLUSION: A novel comprehensive training package addressing patient safety, non-technical skills and adverse event analysis was successful in improving multi-disciplinary teams’ knowledge and safety attitudes. PMID:25516665
An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes
Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin
2014-01-01
In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
SU-G-TeP4-12: Individual Beam QA for a Robotic Radiosurgery System Using a Scintillator Cone
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuinness, C; Descovich, M; Sudhyadhom, A
2016-06-15
Purpose: The targeting accuracy of the Cyberknife system is measured by end-to-end tests delivering multiple isocentric beams to a point in space. While the targeting accuracy of two representative beams can be determined by a Winston-Lutz-type test, no test is available today to determine the targeting accuracy of each clinical beam. We used a scintillator cone to measure the accuracy of each individual beam. Methods: The XRV-124 from Logos Systems Int’l is a scintillator cone with an imaging system that is able to measure individual beam vectors and a resulting error between planned and measured beam coordinates. We measured themore » targeting accuracy of isocentric and non-isocentric beams for a number of test cases using the Iris and the fixed collimator. The average difference between plan and measured beam position was 0.8–1.2mm across the collimator sizes and plans considered here. The max error for a single beam was 2.5mm for the isocentric plans, and 1.67mm for the non-isocentric plans. The standard deviation of the differences was 0.5mm or less. Conclusion: The CyberKnife System is specified to have an overall targeting accuracy for static targets of less than 0.95mm. In E2E tests using the XRV124 system we measure average beam accuracy between 0.8 to 1.23mm, with maximum of 2.5mm. We plan to investigate correlations between beam position error and robot position, and to quantify the effect of beam position errors on patient specific plans. Martina Descovich has received research support and speaker honoraria from Accuray.« less
The Frame Constraint on Experimentally Elicited Speech Errors in Japanese.
Saito, Akie; Inoue, Tomoyoshi
2017-06-01
The so-called syllable position effect in speech errors has been interpreted as reflecting constraints posed by the frame structure of a given language, which is separately operating from linguistic content during speech production. The effect refers to the phenomenon that when a speech error occurs, replaced and replacing sounds tend to be in the same position within a syllable or word. Most of the evidence for the effect comes from analyses of naturally occurring speech errors in Indo-European languages, and there are few studies examining the effect in experimentally elicited speech errors and in other languages. This study examined whether experimentally elicited sound errors in Japanese exhibits the syllable position effect. In Japanese, the sub-syllabic unit known as "mora" is considered to be a basic sound unit in production. Results showed that the syllable position effect occurred in mora errors, suggesting that the frame constrains the ordering of sounds during speech production.
Henneman, Elizabeth A; Roche, Joan P; Fisher, Donald L; Cunningham, Helene; Reilly, Cheryl A; Nathanson, Brian H; Henneman, Philip L
2010-02-01
This study examined types of errors that occurred or were recovered in a simulated environment by student nurses. Errors occurred in all four rule-based error categories, and all students committed at least one error. The most frequent errors occurred in the verification category. Another common error was related to physician interactions. The least common errors were related to coordinating information with the patient and family. Our finding that 100% of student subjects committed rule-based errors is cause for concern. To decrease errors and improve safe clinical practice, nurse educators must identify effective strategies that students can use to improve patient surveillance. Copyright 2010 Elsevier Inc. All rights reserved.
Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995
NASA Technical Reports Server (NTRS)
Blerman, Gregory S.
1995-01-01
Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.
Statistical approaches to account for false-positive errors in environmental DNA samples.
Lahoz-Monfort, José J; Guillera-Arroita, Gurutzeta; Tingley, Reid
2016-05-01
Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies. © 2015 John Wiley & Sons Ltd.
Ballesteros Peña, Sendoa
2013-04-01
To estimate the frequency of therapeutic errors and to evaluate the diagnostic accuracy in the recognition of shockable rhythms by automated external defibrillators. A retrospective descriptive study. Nine basic life support units from Biscay (Spain). Included 201 patients with cardiac arrest, since 2006 to 2011. The study was made of the suitability of treatment (shock or not) after each analysis and medical errors identified. The sensitivity, specificity and predictive values with 95% confidence intervals were then calculated. A total of 811 electrocardiographic rhythm analyses were obtained, of which 120 (14.1%), from 30 patients, corresponded to shockable rhythms. Sensitivity and specificity for appropriate automated external defibrillators management of a shockable rhythm were 85% (95% CI, 77.5% to 90.3%) and 100% (95% CI, 99.4% to 100%), respectively. Positive and negative predictive values were 100% (95% CI, 96.4% to 100%) and 97.5% (95% CI, 96% to 98.4%), respectively. There were 18 (2.2%; 95% CI, 1.3% to 3.5%) errors associated with defibrillator management, all relating to cases of shockable rhythms that were not shocked. One error was operator dependent, 6 were defibrillator dependent (caused by interaction of pacemakers), and 11 were unclassified. Automated external defibrillators have a very high specificity and moderately high sensitivity. There are few operator dependent errors. Implanted pacemakers interfere with defibrillator analyses. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Awareness of deficits and error processing after traumatic brain injury.
Larson, Michael J; Perlstein, William M
2009-10-28
Severe traumatic brain injury is frequently associated with alterations in performance monitoring, including reduced awareness of physical and cognitive deficits. We examined the relationship between awareness of deficits and electrophysiological indices of performance monitoring, including the error-related negativity and posterror positivity (Pe) components of the scalp-recorded event-related potential, in 16 traumatic brain injury survivors who completed a Stroop color-naming task while event-related potential measurements were recorded. Awareness of deficits was measured as the discrepancy between patient and significant-other ratings on the Frontal Systems Behavior Scale. The amplitude of the Pe, but not error-related negativity, was reliably associated with decreased awareness of deficits. Results indicate that Pe amplitude may serve as an electrophysiological indicator of awareness of abilities and deficits.
A survey of liver pathology in needle biopsies from HBsAg and anti-HBe positive individuals.
ter Borg, F; ten Kate, F J; Cuypers, H T; Leentvaar-Kuijpers, A; Oosting, J; Wertheim-van Dillen, P M; Honkoop, P; Rasch, M C; de Man, R A; van Hattum, J; Chamuleau, R A; Tytgat, G N; Jones, E A
2000-07-01
To use laboratory data and liver biopsies, prospectively obtained from hepatitis B surface antigen (HBsAg) and anti hepatitis B e antigen (anti-HBe) positive patients, for the assessment of: (1) the relation between biopsy length/number of portal tracts and sampling error; (2) the relation between the severity of piecemeal necrosis and the new grading terminology (minimal, mild, moderate, and severe chronic hepatitis); and (3) liver pathology, which has not been studied in patients with this specific serological profile. The study group (n = 174) included 104 patients with normal aminotransferase concentrations and no cases with clinically apparent cirrhosis. The specimen length and number of portal tracts were measured at light microscopy examination. Sampling error analysis was related to the discrepancies between aminotransferase concentrations versus histological grade. Detailed histological scorings were undertaken by the reference pathologist and compared with laboratory and hepatitis B virus (HBV) DNA precore sequence data. Sampling error seemed to be a constant feature, even for biopsies > or = 20 mm, but increased dramatically in biopsies < 5 mm long and/or containing less than four portal tracts. Between 25% and 30% of biopsies, graded as "mild" or "moderate" activity showed features of moderate and severe piecemeal necrosis, respectively. Ten per cent of the patients with normal aminotransferase values had stage III-IV hepatic fibrosis, and 20% had piecemeal necrosis. Only cytoplasmic, not nuclear, core antigen expression was a strong predictor of high hepatitis B viraemia. There was no association between precore stop codon mutations, grade/stage of liver disease, and hepatitis B core antigen (HBcAg) expression. The specimen available for light microscopical examination should be > 5 mm long and should contain more than four portal tracts. In addition, the new grading terminology might give the clinician an inappropriately mild impression of the severity of piecemeal necrosis. Furthermore, even in the presence of normal aminotransferase concentrations, considerable liver pathology can be found in 10-20% of HBsAg and anti-HBe positive individuals; such pathology is not associated with the occurrence of precore stop codon mutations.
Correcting for deformation in skin-based marker systems.
Alexander, E J; Andriacchi, T P
2001-03-01
A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.
The Impact of Information Culture on Patient Safety Outcomes
Mikkonen, Santtu; Saranto, Kaija; Bates, David W.
2017-01-01
Summary Background An organization’s information culture and information management practices create conditions for processing patient information in hospitals. Information management incidents are failures that could lead to adverse events for the patient if they are not detected. Objectives To test a theoretical model that links information culture in acute care hospitals to information management incidents and patient safety outcomes. Methods Reason’s model for the stages of development of organizational accidents was applied. Study data were collected from a cross-sectional survey of 909 RNs who work in medical or surgical units at 32 acute care hospitals in Finland. Structural equation modeling was used to assess how well the hypothesized model fit the study data. Results Fit indices indicated a good fit for the model. In total, 18 of the 32 paths tested were statistically significant. Documentation errors had the strongest total effect on patient safety outcomes. Organizational guidance positively affected information availability and utilization of electronic patient records, whereas the latter had the strongest total effect on the reduction of information delays. Conclusions Patient safety outcomes are associated with information management incidents and information culture. Further, the dimensions of the information culture create work conditions that generate errors in hospitals. PMID:28272647
Jylhä, Virpi; Mikkonen, Santtu; Saranto, Kaija; Bates, David W
2017-03-08
An organization's information culture and information management practices create conditions for processing patient information in hospitals. Information management incidents are failures that could lead to adverse events for the patient if they are not detected. To test a theoretical model that links information culture in acute care hospitals to information management incidents and patient safety outcomes. Reason's model for the stages of development of organizational accidents was applied. Study data were collected from a cross-sectional survey of 909 RNs who work in medical or surgical units at 32 acute care hospitals in Finland. Structural equation modeling was used to assess how well the hypothesized model fit the study data. Fit indices indicated a good fit for the model. In total, 18 of the 32 paths tested were statistically significant. Documentation errors had the strongest total effect on patient safety outcomes. Organizational guidance positively affected information availability and utilization of electronic patient records, whereas the latter had the strongest total effect on the reduction of information delays. Patient safety outcomes are associated with information management incidents and information culture. Further, the dimensions of the information culture create work conditions that generate errors in hospitals.
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
2017-09-01
The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min -1 . Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean : R 2 = 0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
NASA Astrophysics Data System (ADS)
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
2017-09-01
The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2 = 0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
Influence of positive subliminal and supraliminal affective cues on goal pursuit in schizophrenia.
Chaillou, Anne-Clémence; Giersch, Anne; Bonnefond, Anne; Custers, Ruud; Capa, Rémi L
2015-02-01
Goal pursuit is known to be impaired in schizophrenia, but nothing much is known in these patients about unconscious affective processes underlying goal pursuit. Evidence suggests that in healthy individuals positive subliminal cues are taken as a signal that goal pursuit is easy and therefore reduce the effort that is mobilized for goal attainment. Patients with schizophrenia and healthy controls were instructed that a long run of successive correct responses in a visual attention task would entitle them to a reward (the goal to attain). Affective pictures were displayed supraliminally or subliminally during each run and electrophysiological activity was recorded. Patients self-assessed the emotional content of the pictures correctly. However, differences between patients and controls emerged during the goal pursuit task. Healthy controls mobilized less effort for the positive than the neutral subliminal pictures, as suggested by increased error rates and the weaker contingent negative variation (CNV). For the patients, no influence of positive subliminal pictures was found on performance and on the CNV. Similarly the influence of positive pictures was absent or abnormal on components which are usually impaired in patients (fronto-central P2 and N2). In contrast, positive pictures influenced normally the parieto-occipital N2, related to a component of visual attention which has been proposed to be preserved in schizophrenia. The present study indicates the difficulties of patients to modulate effort mobilization during goal pursuit in the presence of positive subliminal cues. The results question the role of cognitive deficits on affective influences. Copyright © 2014 Elsevier B.V. All rights reserved.
Opioid errors in inpatient palliative care services: a retrospective review.
Heneka, Nicole; Shaw, Tim; Rowett, Debra; Lapkin, Samuel; Phillips, Jane L
2018-06-01
Opioids are a high-risk medicine frequently used to manage palliative patients' cancer-related pain and other symptoms. Despite the high volume of opioid use in inpatient palliative care services, and the potential for patient harm, few studies have focused on opioid errors in this population. To (i) identify the number of opioid errors reported by inpatient palliative care services, (ii) identify reported opioid error characteristics and (iii) determine the impact of opioid errors on palliative patient outcomes. A 24-month retrospective review of opioid errors reported in three inpatient palliative care services in one Australian state. Of the 55 opioid errors identified, 84% reached the patient. Most errors involved morphine (35%) or hydromorphone (29%). Opioid administration errors accounted for 76% of reported opioid errors, largely due to omitted dose (33%) or wrong dose (24%) errors. Patients were more likely to receive a lower dose of opioid than ordered as a direct result of an opioid error (57%), with errors adversely impacting pain and/or symptom management in 42% of patients. Half (53%) of the affected patients required additional treatment and/or care as a direct consequence of the opioid error. This retrospective review has provided valuable insights into the patterns and impact of opioid errors in inpatient palliative care services. Iatrogenic harm related to opioid underdosing errors contributed to palliative patients' unrelieved pain. Better understanding the factors that contribute to opioid errors and the role of safety culture in the palliative care service context warrants further investigation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Laboratory errors and patient safety.
Miligy, Dawlat A
2015-01-01
Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.
Zeraatchi, Alireza; Talebian, Mohammad-Taghi; Nejati, Amir; Dashti-Khavidaki, Simin
2013-07-01
Emergency departments (EDs) are characterized by simultaneous care of multiple patients with various medical conditions. Due to a large number of patients with complex diseases, speed and complexity of medication use, working in under-staffing and crowded environment, medication errors are commonly perpetrated by emergency care providers. This study was designed to evaluate the incidence of medication errors among patients attending to an ED in a teaching hospital in Iran. In this cross-sectional study, a total of 500 patients attending to ED were randomly assessed for incidence and types of medication errors. Some factors related to medication errors such as working shift, weekdays and schedule of the educational program of trainee were also evaluated. Nearly, 22% of patients experienced at least one medication error. The rate of medication errors were 0.41 errors per patient and 0.16 errors per ordered medication. The frequency of medication errors was higher in men, middle age patients, first weekdays, night-time work schedules and the first semester of educational year of new junior emergency medicine residents. More than 60% of errors were prescription errors by physicians and the remaining were transcription or administration errors by nurses. More than 35% of the prescribing errors happened during the selection of drug dose and frequency. The most common medication errors by nurses during the administration were omission error (16.2%) followed by unauthorized drug (6.4%). Most of the medication errors happened for anticoagulants and thrombolytics (41.2%) followed by antimicrobial agents (37.7%) and insulin (7.4%). In this study, at least one-fifth of the patients attending to ED experienced medication errors resulting from multiple factors. More common prescription errors happened during ordering drug dose and frequency. More common administration errors included dug omission or unauthorized drug.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, K; Takai, Y; Southern Tohoku BNCT Research Center, Koriyama
2016-06-15
Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostatemore » at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by post-indwelled CT images.« less
Servo control booster system for minimizing following error
Wise, William L.
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Zimmer, Claus; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M
2015-07-01
Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods. The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery. The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%. In comparison with fMRI, rTMS is a more sensitive but less specific tool for preoperative language mapping than DCS. Moreover, rTMS is most reliable when using ERTs of 15%, 20%, 25%, or the 2-out-of-3 rule and a PTI of 0 msec. Furthermore, the combination of fMRI and rTMS leads to a higher correlation to DCS than both techniques alone, and the presented protocols for combined noninvasive language mapping might play a supportive role in the language-mapping assessment prior to the gold-standard intraoperative DCS.
Tonutti, Michele; Gras, Gauthier; Yang, Guang-Zhong
2017-07-01
Accurate reconstruction and visualisation of soft tissue deformation in real time is crucial in image-guided surgery, particularly in augmented reality (AR) applications. Current deformation models are characterised by a trade-off between accuracy and computational speed. We propose an approach to derive a patient-specific deformation model for brain pathologies by combining the results of pre-computed finite element method (FEM) simulations with machine learning algorithms. The models can be computed instantaneously and offer an accuracy comparable to FEM models. A brain tumour is used as the subject of the deformation model. Load-driven FEM simulations are performed on a tetrahedral brain mesh afflicted by a tumour. Forces of varying magnitudes, positions, and inclination angles are applied onto the brain's surface. Two machine learning algorithms-artificial neural networks (ANNs) and support vector regression (SVR)-are employed to derive a model that can predict the resulting deformation for each node in the tumour's mesh. The tumour deformation can be predicted in real time given relevant information about the geometry of the anatomy and the load, all of which can be measured instantly during a surgical operation. The models can predict the position of the nodes with errors below 0.3mm, beyond the general threshold of surgical accuracy and suitable for high fidelity AR systems. The SVR models perform better than the ANN's, with positional errors for SVR models reaching under 0.2mm. The results represent an improvement over existing deformation models for real time applications, providing smaller errors and high patient-specificity. The proposed approach addresses the current needs of image-guided surgical systems and has the potential to be employed to model the deformation of any type of soft tissue. Copyright © 2017 Elsevier B.V. All rights reserved.
Cao, Hui; Stetson, Peter; Hripcsak, George
2003-01-01
Many types of medical errors occur in and outside of hospitals, some of which have very serious consequences and increase cost. Identifying errors is a critical step for managing and preventing them. In this study, we assessed the explicit reporting of medical errors in the electronic record. We used five search terms "mistake," "error," "incorrect," "inadvertent," and "iatrogenic" to survey several sets of narrative reports including discharge summaries, sign-out notes, and outpatient notes from 1991 to 2000. We manually reviewed all the positive cases and identified them based on the reporting of physicians. We identified 222 explicitly reported medical errors. The positive predictive value varied with different keywords. In general, the positive predictive value for each keyword was low, ranging from 3.4 to 24.4%. Therapeutic-related errors were the most common reported errors and these reported therapeutic-related errors were mainly medication errors. Keyword searches combined with manual review indicated some medical errors that were reported in medical records. It had a low sensitivity and a moderate positive predictive value, which varied by search term. Physicians were most likely to record errors in the Hospital Course and History of Present Illness sections of discharge summaries. The reported errors in medical records covered a broad range and were related to several types of care providers as well as non-health care professionals.
Role-modeling and medical error disclosure: a national survey of trainees.
Martinez, William; Hickson, Gerald B; Miller, Bonnie M; Doukas, David J; Buckley, John D; Song, John; Sehgal, Niraj L; Deitz, Jennifer; Braddock, Clarence H; Lehmann, Lisa Soleymani
2014-03-01
To measure trainees' exposure to negative and positive role-modeling for responding to medical errors and to examine the association between that exposure and trainees' attitudes and behaviors regarding error disclosure. Between May 2011 and June 2012, 435 residents at two large academic medical centers and 1,187 medical students from seven U.S. medical schools received anonymous, electronic questionnaires. The questionnaire asked respondents about (1) experiences with errors, (2) training for responding to errors, (3) behaviors related to error disclosure, (4) exposure to role-modeling for responding to errors, and (5) attitudes regarding disclosure. Using multivariate regression, the authors analyzed whether frequency of exposure to negative and positive role-modeling independently predicted two primary outcomes: (1) attitudes regarding disclosure and (2) nontransparent behavior in response to a harmful error. The response rate was 55% (884/1,622). Training on how to respond to errors had the largest independent, positive effect on attitudes (standardized effect estimate, 0.32, P < .001); negative role-modeling had the largest independent, negative effect (standardized effect estimate, -0.26, P < .001). Positive role-modeling had a positive effect on attitudes (standardized effect estimate, 0.26, P < .001). Exposure to negative role-modeling was independently associated with an increased likelihood of trainees' nontransparent behavior in response to an error (OR 1.37, 95% CI 1.15-1.64; P < .001). Exposure to role-modeling predicts trainees' attitudes and behavior regarding the disclosure of harmful errors. Negative role models may be a significant impediment to disclosure among trainees.
Reducing patient identification errors related to glucose point-of-care testing.
Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron
2011-01-01
Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT.
Reducing patient identification errors related to glucose point-of-care testing
Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron
2011-01-01
Background: Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Materials and Methods: Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. Results: When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Conclusion: Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT. PMID:21633490
Nguyen, Anthony N; Moore, Julie; O'Dwyer, John; Philpot, Shoni
2016-01-01
The paper assesses the utility of Medtex on automating Cancer Registry notifications from narrative histology and cytology reports from the Queensland state-wide pathology information system. A corpus of 45.3 million pathology HL7 messages (including 119,581 histology and cytology reports) from a Queensland pathology repository for the year of 2009 was analysed by Medtex for cancer notification. Reports analysed by Medtex were consolidated at a patient level and compared against patients with notifiable cancers from the Queensland Oncology Repository (QOR). A stratified random sample of 1,000 patients was manually reviewed by a cancer clinical coder to analyse agreements and discrepancies. Sensitivity of 96.5% (95% confidence interval: 94.5-97.8%), specificity of 96.5% (95.3-97.4%) and positive predictive value of 83.7% (79.6-86.8%) were achieved for identifying cancer notifiable patients. Medtex achieved high sensitivity and specificity across the breadth of cancers, report types, pathology laboratories and pathologists throughout the State of Queensland. The high sensitivity also resulted in the identification of cancer patients that were not found in the QOR. High sensitivity was at the expense of positive predictive value; however, these cases may be considered as lower priority to Cancer Registries as they can be quickly reviewed. Error analysis revealed that system errors tended to be tumour stream dependent. Medtex is proving to be a promising medical text analytic system. High value cancer information can be generated through intelligent data classification and extraction on large volumes of unstructured pathology reports. PMID:28269893
Mocellin, Simone; Ambrosi, Alessandro; Montesco, Maria Cristina; Foletto, Mirto; Zavagno, Giorgio; Nitti, Donato; Lise, Mario; Rossi, Carlo Riccardo
2006-08-01
Currently, approximately 80% of melanoma patients undergoing sentinel node biopsy (SNB) have negative sentinel lymph nodes (SLNs), and no prediction system is reliable enough to be implemented in the clinical setting to reduce the number of SNB procedures. In this study, the predictive power of support vector machine (SVM)-based statistical analysis was tested. The clinical records of 246 patients who underwent SNB at our institution were used for this analysis. The following clinicopathologic variables were considered: the patient's age and sex and the tumor's histological subtype, Breslow thickness, Clark level, ulceration, mitotic index, lymphocyte infiltration, regression, angiolymphatic invasion, microsatellitosis, and growth phase. The results of SVM-based prediction of SLN status were compared with those achieved with logistic regression. The SLN positivity rate was 22% (52 of 234). When the accuracy was > or = 80%, the negative predictive value, positive predictive value, specificity, and sensitivity were 98%, 54%, 94%, and 77% and 82%, 41%, 69%, and 93% by using SVM and logistic regression, respectively. Moreover, SVM and logistic regression were associated with a diagnostic error and an SNB percentage reduction of (1) 1% and 60% and (2) 15% and 73%, respectively. The results from this pilot study suggest that SVM-based prediction of SLN status might be evaluated as a prognostic method to avoid the SNB procedure in 60% of patients currently eligible, with a very low error rate. If validated in larger series, this strategy would lead to obvious advantages in terms of both patient quality of life and costs for the health care system.
Nguyen, Anthony N; Moore, Julie; O'Dwyer, John; Philpot, Shoni
2016-01-01
The paper assesses the utility of Medtex on automating Cancer Registry notifications from narrative histology and cytology reports from the Queensland state-wide pathology information system. A corpus of 45.3 million pathology HL7 messages (including 119,581 histology and cytology reports) from a Queensland pathology repository for the year of 2009 was analysed by Medtex for cancer notification. Reports analysed by Medtex were consolidated at a patient level and compared against patients with notifiable cancers from the Queensland Oncology Repository (QOR). A stratified random sample of 1,000 patients was manually reviewed by a cancer clinical coder to analyse agreements and discrepancies. Sensitivity of 96.5% (95% confidence interval: 94.5-97.8%), specificity of 96.5% (95.3-97.4%) and positive predictive value of 83.7% (79.6-86.8%) were achieved for identifying cancer notifiable patients. Medtex achieved high sensitivity and specificity across the breadth of cancers, report types, pathology laboratories and pathologists throughout the State of Queensland. The high sensitivity also resulted in the identification of cancer patients that were not found in the QOR. High sensitivity was at the expense of positive predictive value; however, these cases may be considered as lower priority to Cancer Registries as they can be quickly reviewed. Error analysis revealed that system errors tended to be tumour stream dependent. Medtex is proving to be a promising medical text analytic system. High value cancer information can be generated through intelligent data classification and extraction on large volumes of unstructured pathology reports.
Espin, Sherry; Levinson, Wendy; Regehr, Glenn; Baker, G Ross; Lingard, Lorelei
2006-01-01
Calls abound for a culture change in health care to improve patient safety. However, effective change cannot proceed without a clear understanding of perceptions and beliefs about error. In this study, we describe and compare operative team members' and patients' perceptions of error, reporting of error, and disclosure of error. Thirty-nine interviews of team members (9 surgeons, 9 nurses, 10 anesthesiologists) and patients (11) were conducted at 2 teaching hospitals using 4 scenarios as prompts. Transcribed responses to open questions were analyzed by 2 researchers for recurrent themes using the grounded-theory method. Yes/no answers were compared across groups using chi-square analyses. Team members and patients agreed on what constitutes an error. Deviation from standards and negative outcome were emphasized as definitive features. Patients and nurse professionals differed significantly in their perception of whether errors should be reported. Nurses were willing to report only events within their disciplinary scope of practice. Although most patients strongly advocated full disclosure of errors (what happened and how), team members preferred to disclose only what happened. When patients did support partial disclosure, their rationales varied from that of team members. Both operative teams and patients define error in terms of breaking the rules and the concept of "no harm no foul." These concepts pose challenges for treating errors as system failures. A strong culture of individualism pervades nurses' perception of error reporting, suggesting that interventions are needed to foster collective responsibility and a constructive approach to error identification.
Geodetic positioning using a global positioning system of satellites
NASA Technical Reports Server (NTRS)
Fell, P. J.
1980-01-01
Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.
Neural evidence for enhanced error detection in major depressive disorder.
Chiu, Pearl H; Deldin, Patricia J
2007-04-01
Anomalies in error processing have been implicated in the etiology and maintenance of major depressive disorder. In particular, depressed individuals exhibit heightened sensitivity to error-related information and negative environmental cues, along with reduced responsivity to positive reinforcers. The authors examined the neural activation associated with error processing in individuals diagnosed with and without major depression and the sensitivity of these processes to modulation by monetary task contingencies. The error-related negativity and error-related positivity components of the event-related potential were used to characterize error monitoring in individuals with major depressive disorder and the degree to which these processes are sensitive to modulation by monetary reinforcement. Nondepressed comparison subjects (N=17) and depressed individuals (N=18) performed a flanker task under two external motivation conditions (i.e., monetary reward for correct responses and monetary loss for incorrect responses) and a nonmonetary condition. After each response, accuracy feedback was provided. The error-related negativity component assessed the degree of anomaly in initial error detection, and the error positivity component indexed recognition of errors. Across all conditions, the depressed participants exhibited greater amplitude of the error-related negativity component, relative to the comparison subjects, and equivalent error positivity amplitude. In addition, the two groups showed differential modulation by task incentives in both components. These data implicate exaggerated early error-detection processes in the etiology and maintenance of major depressive disorder. Such processes may then recruit excessive neural and cognitive resources that manifest as symptoms of depression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H; Sarkar, V; Paxton, A
Purpose: To explore the feasibility of supraclavicular field treatment by investigating the variation of junction position between tangential and supraclavicular fields during left breast radiation using DIBH technique. Methods: Six patients with left breast cancer treated using DIBH technique were included in this study. AlignRT system was used to track patient’s breast surface. During daily treatment, when the patient’s DIBH reached preset AlignRT tolerance of ±3mm for all principle directions (vertical, longitudinal, and lateral), the remaining longitudinal offset was recorded. The average with standard-deviation and the range of daily longitudinal offset for the entire treatment course were calculated for allmore » six patients (93 fractions totally). The ranges of average ± 1σ and 2σ were calculated, and they represent longitudinal field edge error with the confidence level of 68% and 95%. Based on these longitudinal errors, dose at junction between breast tangential and supraclavicular fields with variable gap/overlap sizes was calculated as a percentage of prescription (on a representative patient treatment plan). Results: The average of longitudinal offset for all patients is 0.16±1.32mm, and the range of longitudinal offset is −2.6 to 2.6mm. The range of longitudinal field edge error at 68% confidence level is −1.48 to 1.16mm, and at 95% confidence level is −2.80 to 2.48mm. With a 5mm and 1mm gap, the junction dose could be as low as 37.5% and 84.9% of prescription dose; with a 5mm and 1mm overlap, the junction dose could be as high as 169.3% and 117.6%. Conclusion: We observed longitudinal field edge error at 95% confidence level is about ±2.5mm, and the junction dose could reach 70% hot/cold between different DIBH. However, over the entire course of treatment, the average junction variation for all patients is within 0.2mm. The results from our study shows it is potentially feasible to treat supraclavicular field with breast tangents.« less
Patients with chronic insomnia have selective impairments in memory that are modulated by cortisol.
Chen, Gui-Hai; Xia, Lan; Wang, Fang; Li, Xue-Wei; Jiao, Chuan-An
2016-10-01
Memory impairment is a frequent complaint in insomniacs; however, it is not consistently demonstrated. It is unknown whether memory impairment in insomniacs involves neuroendocrine dysfunction. The participants in this study were selected from the clinical setting and included 21 patients with chronic insomnia disorder (CID), 25 patients with insomnia and comorbid depressive disorder (CDD), and 20 control participants without insomnia. We evaluated spatial working and reference memory, object working and reference memory, and object recognition memory using the Nine Box Maze Test. We also evaluated serum neuroendocrine hormone levels. Compared to the controls, the CID patients made significantly more errors in spatial working and object recognition memory (p < .05), whereas the CDD patients performed poorly in all the assessed memory types (p < .05). In addition, the CID patients had higher levels (mean difference [95% CI]) of corticotrophin-releasing hormone, cortisol (31.98 [23.97, 39.98] μg/l), total triiodothyronine (667.58 [505.71, 829.45] μg/l), and total thyroxine (41.49 [33.23, 49.74] μg/l) (p < .05), and lower levels of thyrotropin-releasing hormone (-35.93 [-38.83, -33.02] ng/l), gonadotropin-releasing hormone (-4.50 [-5.02, -3.98] ng/l) (p < .05), and adrenocorticotropic hormone compared to the CDD patients. After controlling for confounding variables, the partial correlation analysis revealed that the levels of cortisol positively correlated with the errors in object working memory (r = .534, p = .033) and negatively correlated with the errors in object recognition memory (r = -.659, p = .006) in the CID patients. The results suggest that the CID patients had selective memory impairment, which may be mediated by increased cortisol levels. © 2016 Society for Psychophysiological Research.
Research on correction algorithm of laser positioning system based on four quadrant detector
NASA Astrophysics Data System (ADS)
Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia
2018-02-01
This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.
Cohen, Aaron M
2008-01-01
We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.
Generalized site occupancy models allowing for false positive and false negative errors
Royle, J. Andrew; Link, W.A.
2006-01-01
Site occupancy models have been developed that allow for imperfect species detection or ?false negative? observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that ?false positive? errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.
Image registration assessment in radiotherapy image guidance based on control chart monitoring.
Xia, Wenyao; Breen, Stephen L
2018-04-01
Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.
New prospective 4D-CT for mitigating the effects of irregular respiratory motion
NASA Astrophysics Data System (ADS)
Pan, Tinsu; Martin, Rachael M.; Luo, Dershan
2017-08-01
Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashii, Haruko, E-mail: haruko@pmrc.tsukuba.ac.jp; Hashimoto, Takayuki; Okawa, Ayako
2013-03-01
Purpose: Radiation therapy for cancer may be required for patients with implantable cardiac devices. However, the influence of secondary neutrons or scattered irradiation from high-energy photons (≥10 MV) on implantable cardioverter-defibrillators (ICDs) is unclear. This study was performed to examine this issue in 2 ICD models. Methods and Materials: ICDs were positioned around a water phantom under conditions simulating clinical radiation therapy. The ICDs were not irradiated directly. A control ICD was positioned 140 cm from the irradiation isocenter. Fractional irradiation was performed with 18-MV and 10-MV photon beams to give cumulative in-field doses of 600 Gy and 1600 Gy,more » respectively. Errors were checked after each fraction. Soft errors were defined as severe (change to safety back-up mode), moderate (memory interference, no changes in device parameters), and minor (slight memory change, undetectable by computer). Results: Hard errors were not observed. For the older ICD model, the incidences of severe, moderate, and minor soft errors at 18 MV were 0.75, 0.5, and 0.83/50 Gy at the isocenter. The corresponding data for 10 MV were 0.094, 0.063, and 0 /50 Gy. For the newer ICD model at 18 MV, these data were 0.083, 2.3, and 5.8 /50 Gy. Moderate and minor errors occurred at 18 MV in control ICDs placed 140 cm from the isocenter. The error incidences were 0, 1, and 0 /600 Gy at the isocenter for the newer model, and 0, 1, and 6 /600Gy for the older model. At 10 MV, no errors occurred in control ICDs. Conclusions: ICD errors occurred more frequently at 18 MV irradiation, which suggests that the errors were mainly caused by secondary neutrons. Soft errors of ICDs were observed with high energy photon beams, but most were not critical in the newer model. These errors may occur even when the device is far from the irradiation field.« less
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors.
Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Tognetti, Alessandro
2016-04-23
Patient-specific performance assessment of arm movements in daily life activities is fundamental for neurological rehabilitation therapy. In most applications, the shoulder movement is simplified through a socket-ball joint, neglecting the movement of the scapular-thoracic complex. This may lead to significant errors. We propose an innovative bi-articular model of the human shoulder for estimating the position of the hand in relation to the sternum. The model takes into account both the scapular-toracic and gleno-humeral movements and their ratio governed by the scapular-humeral rhythm, fusing the information of inertial and textile-based strain sensors. To feed the reconstruction algorithm based on the bi-articular model, an ad-hoc sensing shirt was developed. The shirt was equipped with two inertial measurement units (IMUs) and an integrated textile strain sensor. We built the bi-articular model starting from the data obtained in two planar movements (arm abduction and flexion in the sagittal plane) and analysing the error between the reference data - measured through an optical reference system - and the socket-ball approximation of the shoulder. The 3D model was developed by extending the behaviour of the kinematic chain revealed in the planar trajectories through a parameter identification that takes into account the body structure of the subject. The bi-articular model was evaluated in five subjects in comparison with the optical reference system. The errors were computed in terms of distance between the reference position of the trochlea (end-effector) and the correspondent model estimation. The introduced method remarkably improved the estimation of the position of the trochlea (and consequently the estimation of the hand position during reaching activities) reducing position errors from 11.5 cm to 1.8 cm. Thanks to the developed bi-articular model, we demonstrated a reliable estimation of the upper arm kinematics with a minimal sensing system suitable for daily life monitoring of recovery.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
Yan, Hui; Dai, Jian-Rong
2016-03-08
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm and CPU-based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU-based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU-based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU-based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy.
The effects of knee direction, physical activity and age on knee joint position sense.
Relph, Nicola; Herrington, Lee
2016-06-01
Previous research has suggested a decline in knee proprioception with age. Furthermore, regular participation in physical activity may improve proprioceptive ability. However, there is no large scale data on uninjured populations to confirm these theories. The aim of this study was to provide normative knee joint position data (JPS) from healthy participants aged 18-82years to evaluate the effects of age, physical activity and knee direction. A sample of 116 participants across five age groups was used. The main outcome measures were knee JPS absolute error scores into flexion and extension, Tegner activity levels and General Practitioner Physical Activity Questionnaire results. Absolute error scores in to knee flexion were 3.6°, 3.9°, 3.5°, 3.7° and 3.1° and knee extension were 2.7°, 2.5°, 2.9°, 3.4° and 3.9° for ages 15-29, 30-44, 45-59, 60-74 and 75 years old respectively. Knee extension and flexion absolute error scores were significantly different when age group data were pooled. There was a significant effect of age and activity level on joint position sense into knee extension. Age and lower Tegner scores were also negatively correlated to joint position sense into knee extension. The results provide some evidence for a decline in knee joint position sense with age. Further, active populations may have heightened static proprioception compared to inactive groups. Normative knee joint position sense data is provided and may be used by practitioners to identify patients with reduced proprioceptive ability. Copyright © 2016 Elsevier B.V. All rights reserved.
Bazzi, Ali M; Al-Tawfiq, Jaffar A; Rabaan, Ali A
2017-01-01
Acinetobacter baumannii and Brucella species are Gram-negative organisms that are vulnerable to misinterpretation as Gram-positive or Gram-variable in blood cultures. We assess the random errors in gram stain interpretation to reduce the likelihood of such errors and therefore patient harm. Aerobic and anaerobic blood cultures from two patients in an acute care facility in Saudi Arabia were subjected to preliminary Gram-staining. In case 1, VITEK-2 Anaerobe Identification, repeat Gram staining from a blood agar plate, Remel BactiDrop™ Oxidase test, Urea Agar urease test and real-time PCR were used to confirm presence of Brucella and absence of Coryneform species. In case 2, repeat Gram- staining from the plate and the vials, VITEK-2 Gram-Negative Identification, real-time PCR and subculture on to Columbia agar, blood agar, and MacConkey agar were carried out to identify A. baumannii . In case 1, initially pleomorphic Gram-positive bacteria were identified. Coryneform species were suspected. Tiny growth was observed after 24 h on blood agar plates, and good growth by 48 h. Presence of Brucella species was ultimately confirmed. In case 2, preliminary Gram-stain results suggested giant Gram-positive oval cocci. Further testing over 18-24 h identified A. baumannii . Oxidase test from the plate and urease test from the culture vial is recommended after apparent identification of pleomorphic Gram-positive bacilli from blood culture, once tiny growth is observed, to distinguish Brucella from Corynebacterium species. If giant Gram-positive oval cocci are indicated by preliminary Gram-staining, it is recommended that the Gram stain be repeated from the plate after 4-6 h, or culture should be tested in Triple Sugar Iron (TSI) medium and the Gram stain repeated after 2-4 h incubation.
Digital repeat analysis; setup and operation.
Nol, J; Isouard, G; Mirecki, J
2006-06-01
Since the emergence of digital imaging, there have been questions about the necessity of continuing reject analysis programs in imaging departments to evaluate performance and quality. As a marketing strategy, most suppliers of digital technology focus on the supremacy of the technology and its ability to reduce the number of repeats, resulting in less radiation doses given to patients and increased productivity in the department. On the other hand, quality assurance radiographers and radiologists believe that repeats are mainly related to positioning skills, and repeat analysis is the main tool to plan training needs to up-skill radiographers. A comparative study between conventional and digital imaging was undertaken to compare outcomes and evaluate the need for reject analysis. However, digital technology still being at its early development stages, setting a credible reject analysis program became the major task of the study. It took the department, with the help of the suppliers of the computed radiography reader and the picture archiving and communication system, over 2 years of software enhancement to build a reliable digital repeat analysis system. The results were supportive of both philosophies; the number of repeats as a result of exposure factors was reduced dramatically; however, the percentage of repeats as a result of positioning skills was slightly on the increase for the simple reason that some rejects in the conventional system qualifying for both exposure and positioning errors were classified as exposure error. The ability of digitally adjusting dark or light images reclassified some of those images as positioning errors.
System Related Interventions to Reduce Diagnostic Error: A Narrative Review
Singh, Hardeep; Graber, Mark L.; Kissam, Stephanie M.; Sorensen, Asta V.; Lenfestey, Nancy F.; Tant, Elizabeth M.; Henriksen, Kerm; LaBresh, Kenneth A.
2013-01-01
Background Diagnostic errors (missed, delayed, or wrong diagnosis) have gained recent attention and are associated with significant preventable morbidity and mortality. We reviewed the recent literature to identify interventions that have been, or could be, implemented to address systems-related factors that contribute directly to diagnostic error. Methods We conducted a comprehensive search using multiple search strategies. We first identified candidate articles in English between 2000 and 2009 from a PubMed search that exclusively evaluated for articles related to diagnostic error or delay. We then sought additional papers from references in the initial dataset, searches of additional databases, and subject matter experts. Articles were included if they formally evaluated an intervention to prevent or reduce diagnostic error; however, we also included papers if interventions were suggested and not tested in order to inform the state-of-the science on the topic. We categorized interventions according to the step in the diagnostic process they targeted: patient-provider encounter, performance and interpretation of diagnostic tests, follow-up and tracking of diagnostic information, subspecialty and referral-related; and patient-specific. Results We identified 43 articles for full review, of which 6 reported tested interventions and 37 contained suggestions for possible interventions. Empirical studies, though somewhat positive, were non-experimental or quasi-experimental and included a small number of clinicians or health care sites. Outcome measures in general were underdeveloped and varied markedly between studies, depending on the setting or step in the diagnostic process involved. Conclusions Despite a number of suggested interventions in the literature, few empirical studies have tested interventions to reduce diagnostic error in the last decade. Advancing the science of diagnostic error prevention will require more robust study designs and rigorous definitions of diagnostic processes and outcomes to measure intervention effects. PMID:22129930
The multiple hop test: a discriminative or evaluative instrument for chronic ankle instability?
Eechaute, Christophe; Bautmans, Ivan; De Hertogh, Willem; Vaes, Peter
2012-05-01
To determine whether the multiple hop test should be used as an evaluative or a discriminative instrument for chronic ankle instability (CAI). Blinded case-control study. : University research laboratory. Twenty-nine healthy subjects (21 men, 8 women, mean age 21.8 years) and 29 patients with CAI (17 men, 12 women, mean age 24.9 years) were selected. Subjects performed a multiple hop test and hopped on 10 different tape markers while trying to avoid any postural correction. Minimal detectable changes (MDC) of the number of balance errors, the time value, and the visual analog scale (VAS) score (perceived difficulty) were calculated as evaluative measures. For the discriminative properties, a receiver operating characteristic curve was determined and the area under curve (AUC), the sensitivity, specificity, diagnostic accuracy (DA), and likelihood ratios (LR) were calculated whether 1, 2, or 3 outcomes were positive. Based on their MDC, outcomes should, respectively, change by more than 7 errors (41%), 6 seconds (15%), and 27 mm (55%, VAS score) before considering it as a real change. Area under curves were, respectively, 79% (errors), 77% (time value), and 65% (VAS score). The most optimal cutoff point was, respectively, 13.5 errors, 35 seconds, and 32.5 mm. When 2 of 3 outcomes were positive, the sensitivity was 86%, the specificity was 79%, the DA was 83%, the positive LR was 4.2, and the negative LR was 0.17. The multiple hop test seems to be more a discriminative instrument for CAI, and its responsiveness needs to be demonstrated.
Refractive errors in Aminu Kano Teaching Hospital, Kano Nigeria.
Lawan, Abdu; Eme, Okpo
2011-12-01
The aim of the study is to retrospectively determine the pattern of refractive errors seen in the eye clinic of Aminu Kano Teaching Hospital, Kano-Nigeria from January to December, 2008. The clinic refraction register was used to retrieve the case folders of all patients refracted during the review period. Information extracted includes patient's age, sex, and types of refractive error. All patients had basic eye examination (to rule out other causes of subnormal vision) including intra ocular pressure measurement and streak retinoscopy at two third meter working distance. The final subjective refraction correction given to the patients was used to categorise the type of refractive error. Refractive errors was observed in 1584 patients and accounted for 26.9% of clinic attendance. There were more females than males (M: F=1.0: 1.2). The common types of refractive errors are presbyopia in 644 patients (40%), various types of astigmatism in 527 patients (33%), myopia in 216 patients (14%), hypermetropia in 171 patients (11%) and aphakia in 26 patients (2%). Refractive errors are common causes of presentation in the eye clinic. Identification and correction of refractive errors should be an integral part of eye care delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runxiao, L; Aikun, W; Xiaomei, F
2015-06-15
Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning
Deng, Zhongliang
2018-01-01
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization. PMID:29361718
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
Deng, Zhongliang; Fu, Xiao; Wang, Hanhua
2018-01-20
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
Diagnosis is a team sport - partnering with allied health professionals to reduce diagnostic errors.
Thomas, Dana B; Newman-Toker, David E
2016-06-01
Diagnostic errors are the most common, most costly, and most catastrophic of medical errors. Interdisciplinary teamwork has been shown to reduce harm from therapeutic errors, but sociocultural barriers may impact the engagement of allied health professionals (AHPs) in the diagnostic process. A qualitative case study of the experience at a single institution around involvement of an AHP in the diagnostic process for acute dizziness and vertigo. We detail five diagnostic error cases in which the input of a physical therapist was central to correct diagnosis. We further describe evolution of the sociocultural milieu at the institution as relates to AHP engagement in diagnosis. Five patients with acute vestibular symptoms were initially misdiagnosed by physicians and then correctly diagnosed based on input from a vestibular physical therapist. These included missed labyrinthine concussion and post-traumatic benign paroxysmal positional vertigo (BPPV); BPPV called gastroenteritis; BPPV called stroke; stroke called BPPV; and multiple sclerosis called BPPV. As a consequence of surfacing these diagnostic errors, initial resistance to physical therapy input to aid medical diagnosis has gradually declined, creating a more collaborative environment for 'team diagnosis' of patients with dizziness and vertigo at the institution. Barriers to AHP engagement in 'team diagnosis' include sociocultural norms that establish medical diagnosis as something reserved only for physicians. Drawing attention to the valuable diagnostic contributions of AHPs may help facilitate cultural change. Future studies should seek to measure diagnostic safety culture and then implement proven strategies to breakdown sociocultural barriers that inhibit effective teamwork and transdisciplinary diagnosis.
Thomas, Dana B; Newman-Toker, David E
2016-06-01
Diagnostic errors are the most common, most costly, and most catastrophic of medical errors. Interdisciplinary teamwork has been shown to reduce harm from therapeutic errors, but sociocultural barriers may impact the engagement of allied health professionals (AHPs) in the diagnostic process. A qualitative case study of the experience at a single institution around involvement of an AHP in the diagnostic process for acute dizziness and vertigo. We detail five diagnostic error cases in which the input of a physical therapist was central to correct diagnosis. We further describe evolution of the sociocultural milieu at the institution as relates to AHP engagement in diagnosis. Five patients with acute vestibular symptoms were initially misdiagnosed by physicians and then correctly diagnosed based on input from a vestibular physical therapist. These included missed labyrinthine concussion and post-traumatic benign paroxysmal positional vertigo (BPPV); BPPV called gastroenteritis; BPPV called stroke; stroke called BPPV; and multiple sclerosis called BPPV. As a consequence of surfacing these diagnostic errors, initial resistance to physical therapy input to aid medical diagnosis has gradually declined, creating a more collaborative environment for 'team diagnosis' of patients with dizziness and vertigo at the institution. Barriers to AHP engagement in 'team diagnosis' include sociocultural norms that establish medical diagnosis as something reserved only for physicians. Drawing attention to the valuable diagnostic contributions of AHPs may help facilitate cultural change. Future studies should seek to measure diagnostic safety culture and then implement proven strategies to breakdown sociocultural barriers that inhibit effective teamwork and transdisciplinary diagnosis.
MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system
NASA Astrophysics Data System (ADS)
Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron
2014-03-01
Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.
Error framing effects on performance: cognitive, motivational, and affective pathways.
Steele-Johnson, Debra; Kalinoski, Zachary T
2014-01-01
Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.
Yu, Shao Hua; Zhu, Jun Peng; Xu, You; Zheng, Lei Lei; Chai, Hao; He, Wei; Liu, Wei Bo; Li, Hui Chun; Wang, Wei
2012-12-01
To study the contribution of executive function to abnormal recognition of facial expressions of emotion in schizophrenia patients. Abnormal recognition of facial expressions of emotion was assayed according to Japanese and Caucasian facial expressions of emotion (JACFEE), Wisconsin card sorting test (WCST), positive and negative symptom scale, and Hamilton anxiety and depression scale, respectively, in 88 paranoid schizophrenia patients and 75 healthy volunteers. Patients scored higher on the Positive and Negative Symptom Scale and the Hamilton Anxiety and Depression Scales, displayed lower JACFEE recognition accuracies and poorer WCST performances. The JACFEE recognition accuracy of contempt and disgust was negatively correlated with the negative symptom scale score while the recognition accuracy of fear was positively with the positive symptom scale score and the recognition accuracy of surprise was negatively with the general psychopathology score in patients. Moreover, the WCST could predict the JACFEE recognition accuracy of contempt, disgust, and sadness in patients, and the perseverative errors negatively predicted the recognition accuracy of sadness in healthy volunteers. The JACFEE recognition accuracy of sadness could predict the WCST categories in paranoid schizophrenia patients. Recognition accuracy of social-/moral emotions, such as contempt, disgust and sadness is related to the executive function in paranoid schizophrenia patients, especially when regarding sadness. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
Heinz, Christian; Gerum, Sabine; Freislederer, Philipp; Ganswindt, Ute; Roeder, Falk; Corradini, Stefanie; Belka, Claus; Niyazi, Maximilian
2016-06-27
Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume. We analyzed six patients (3 m, 3f) treated with SBRT in 2014. After fiducial marker implantation, all patients received a treatment CT (free breathing, without abdominal compression) and a 4D-CT (consisting of 10 respiratory phases). For all patients the gross tumor volumes (GTVs), internal target volume (ITV), planning target volume (PTV), internal marker target volumes (IMTVs) and the internal liver target volume (ILTV) were delineated based on the CT and 4D-CT images. CBCT imaging was used for the standard treatment setup based on the fiducial markers. According to the patient coordinates the 3 translational compensation values (t x , t y , t z ) for the interfractional motion were calculated by matching the blurred fiducial markers with the corresponding IMTV structures. 4 observers were requested to recalculate the translational compensation values for each CBCT (31) based on the ILTV structures. The differences of the translational compensation values between the IMTV and ILTV approach were analyzed. The magnitude of the mean absolute 3D registration error with regard to the gold standard overall patients and observers was 0.50 cm ± 0.28 cm. Individual registration errors up to 1.3 cm were observed. There was no significant overall linear correlation between the respiratory motion and the registration error of the ILTV approach. Two different methods to calculate the translational compensation values for interfractional motion in stereotactic liver therapy were evaluated. The registration accuracy of the ILTV approach is mainly limited by the non-rigid behavior of the liver and the individual registration experience of the observer. The ILTV approach lacks the accuracy that would be desired for stereotactic radiotherapy of the liver.
On the use of drawing tasks in neuropsychological assessment.
Smith, Alastair D
2009-03-01
Drawing tasks have attained a central position in neuropsychological assessment and are considered a rich source of information about the presence (or absence) of cognitive and perceptuo-motor abilities. However, unlike other tests of cognitive impairment, drawing tasks are often administered without reference to normative models of graphic production, and their results are often analyzed qualitatively. I begin this article by delineating the different ways in which drawing errors have been used to indicate particular functional deficits in neurological patients. I then describe models of drawing that have been explicitly based on the errors observed in patient drawings. Finally, the case is made for developing a more sensitive set of metrics in order to quantitatively assess patient performance. By providing a finer grain of analysis to assessment we will not only be better able to characterize the consequences of cognitive dysfunction, but may also be able to more subtly characterize and dissociate patients who would otherwise have been placed in the same broad category of impairment. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoegele, W.; Loeschel, R.; Dobler, B.
2011-02-15
Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem withmore » prior knowledge and is solved using a Bayesian maximum a posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy.« less
Saathoff, April M; MacDonald, Ryan; Krenzischek, Erundina
2018-03-01
The objective of this study was to evaluate the impact of specimen collection technology implementation featuring computerized provider order entry, positive patient identification, bedside specimen label printing, and barcode scanning on the reduction of mislabeled specimens and collection turnaround times in the emergency, medical-surgical, critical care, and maternal child health departments at a community teaching hospital. A quantitative analysis of a nonrandomized, pre-post intervention study design evaluated the statistical significance of reduction of mislabeled specimen percentages and collection turnaround times affected by the implementation of specimen collection technology. Mislabeled specimen percentages in all areas decreased from an average of 0.020% preimplementation to an average of 0.003% postimplementation, with a P < .001. Collection turnaround times longer than 60 minutes decreased after the implementation of specimen collection technology by an average of 27%, with a P < .001. Specimen collection and identification errors are a significant problem in healthcare, contributing to incorrect diagnoses, delayed care, lack of essential treatments, and patient injury or death. Collection errors can also contribute to an increased length of stay, increased healthcare costs, and decreased patient satisfaction. Specimen collection technology has structures in place to prevent collection errors and improve the overall efficiency of the specimen collection process.
Servo control booster system for minimizing following error
Wise, W.L.
1979-07-26
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, A; Foster, J; Chu, W
2015-06-15
Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weeklymore » CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.« less
NASA Astrophysics Data System (ADS)
Fraser, Danielle
In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck imaging. Two case studies of nasopharyngeal cancer are discussed. The deformation of disease-positive cervical lymph nodes was monitored throughout treatment. Node volumes shrunk to 17% of the initial volume, moved up 1.3 cm, and received up to a 12% lower dose than that prescribed. It is shown that difficulties in imaging soft tissue in the neck region are circumvented with ultrasound imaging, and after dosimetric verification it is argued that adaptive replanning may be more beneficial than patient realignment when intensity modulated radiation therapy techniques are used. Some of the largest dose delivery errors were found in external electron beam treatments for breast cancer patients who underwent breast conserving surgery. Inaccuracies in conventional treatment planning resulted in substantial target dose discrepancies of up to 88%. When patient setup errors, interfraction tumour bed motion, and tissue remodeling were considered, inadequate target coverage was exacerbated. This thesis quantifies the dose discrepancy between that prescribed and that delivered. I delve into detail for common IGRT treatment sites, and illuminate problems that have not received much attention for less common IGRT treatment sites.
Palmer, Katherine A; Shane, Rita; Wu, Cindy N; Bell, Douglas S; Diaz, Frank; Cook-Wiens, Galen; Jackevicius, Cynthia A
2016-01-01
Objective We sought to assess the potential of a widely available source of electronic medication data to prevent medication history errors and resultant inpatient order errors. Methods We used admission medication history (AMH) data from a recent clinical trial that identified 1017 AMH errors and 419 resultant inpatient order errors among 194 hospital admissions of predominantly older adult patients on complex medication regimens. Among the subset of patients for whom we could access current Surescripts electronic pharmacy claims data (SEPCD), two pharmacists independently assessed error severity and our main outcome, which was whether SEPCD (1) was unrelated to the medication error; (2) probably would not have prevented the error; (3) might have prevented the error; or (4) probably would have prevented the error. Results Seventy patients had both AMH errors and current, accessible SEPCD. SEPCD probably would have prevented 110 (35%) of 315 AMH errors and 46 (31%) of 147 resultant inpatient order errors. When we excluded the least severe medication errors, SEPCD probably would have prevented 99 (47%) of 209 AMH errors and 37 (61%) of 61 resultant inpatient order errors. SEPCD probably would have prevented at least one AMH error in 42 (60%) of 70 patients. Conclusion When current SEPCD was available for older adult patients on complex medication regimens, it had substantial potential to prevent AMH errors and resultant inpatient order errors, with greater potential to prevent more severe errors. Further study is needed to measure the benefit of SEPCD in actual use at hospital admission. PMID:26911817
Suba, Eric J; Pfeifer, John D; Raab, Stephen S
2007-10-01
Patient identification errors in surgical pathology often involve switches of prostate or breast needle core biopsy specimens among patients. We assessed strategies for decreasing the occurrence of these uncommon and yet potentially catastrophic events. Root cause analyses were performed following 3 cases of patient identification error involving prostate needle core biopsy specimens. Patient identification errors in surgical pathology result from slips and lapses of automatic human action that may occur at numerous steps during pre-laboratory, laboratory and post-laboratory work flow processes. Patient identification errors among prostate needle biopsies may be difficult to entirely prevent through the optimization of work flow processes. A DNA time-out, whereby DNA polymorphic microsatellite analysis is used to confirm patient identification before radiation therapy or radical surgery, may eliminate patient identification errors among needle biopsies.
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Lausberg, Hedda; Cruz, Robyn F; Kita, Sotaro; Zaidel, Eran; Ptito, Alain
2003-02-01
Investigations of left hand praxis in imitation and object use in patients with callosal disconnection have yielded divergent results, inducing a debate between two theoretical positions. Whereas Liepmann suggested that the left hemisphere is motor dominant, others maintain that both hemispheres have equal motor competences and propose that left hand apraxia in patients with callosal disconnection is secondary to left hemispheric specialization for language or other task modalities. The present study aims to gain further insight into the motor competence of the right hemisphere by investigating pantomime of object use in split-brain patients. Three patients with complete callosotomy and, as control groups, five patients with partial callosotomy and nine healthy subjects were examined for their ability to pantomime object use to visual object presentation and demonstrate object manipulation. In each condition, 11 objects were presented to the subjects who pantomimed or demonstrated the object use with either hand. In addition, six object pairs were presented to test bimanual coordination. Two independent raters evaluated the videotaped movement demonstrations. While object use demonstrations were perfect in all three groups, the split-brain patients displayed apraxic errors only with their left hands in the pantomime condition. The movement analysis of concept and execution errors included the examination of ipsilateral versus contralateral motor control. As the right hand/left hemisphere performances demonstrated retrieval of the correct movement concepts, concept errors by the left hand were taken as evidence for right hemisphere control. Several types of execution errors reflected a lack of distal motor control indicating the use of ipsilateral pathways. While one split-brain patient controlled his left hand predominantly by ipsilateral pathways in the pantomime condition, the error profile in the other two split-brain patients suggested that the right hemisphere controlled their left hands. In the object use condition, in all three split-brain patients fine-graded distal movements in the left hand indicated right hemispheric control. Our data show left hand apraxia in split-brain patients is not limited to verbal commands, but also occurs in pantomime to visual presentation of objects. As the demonstration with object in hand was unimpaired in either hand, both hemispheres must contain movement concepts for object use. However, the disconnected right hemisphere is impaired in retrieving the movement concept in response to visual object presentation, presumably because of a deficit in associating perceptual object representation with the movement concepts.
Diehm, Nicolas; Sin, Sangmun; Hoppe, Hanno; Baumgartner, Iris; Büchler, Philippe
2011-06-01
To assess if finite element (FE) models can be used to predict deformation of the femoropopliteal segment during knee flexion. Magnetic resonance angiography (MRA) images were acquired on the lower limbs of 8 healthy volunteers (5 men; mean age 28 ± 4 years). Images were taken in 2 natural positions, with the lower limb fully extended and with the knee bent at ~ 40°. Patient-specific FE models were developed and used to simulate the experimental situation. The displacements of the artery during knee bending as predicted by the numerical model were compared to the corresponding positions measured on the MRA images. The numerical predictions showed a good overall agreement between the calculated displacements of the motion measures from MRA images. The average position error comparing the calculated vs. actual displacements of the femoropopliteal intersection measured on the MRA was 8 ± 4 mm. Two of the 8 subjects showed large prediction errors (average 13 ± 5 mm); these 2 volunteers were the tallest subjects involved in the study and had a low body mass index (20.5 kg/m²). The present computational model is able to capture the gross mechanical environment of the femoropopliteal intersection during knee bending and provide a better understanding of the complex biomechanical behavior. However, results suggest that patient-specific mechanical properties and detailed muscle modeling are required to provide accurate patient-specific numerical predictions of arterial displacement. Further adaptation of this model is expected to provide an improved ability to predict the multiaxial deformation of this arterial segment during leg movements and to optimize future stent designs.
Immobilisation precision in VMAT for oral cancer patients
NASA Astrophysics Data System (ADS)
Norfadilah, M. N.; Ahmad, R.; Heng, S. P.; Lam, K. S.; Radzi, A. B. Ahmad; John, L. S. H.
2017-05-01
A study was conducted to evaluate and quantify a precision of the interfraction setup with different immobilisation devices throughout the treatment time. Local setup accuracy was analysed for 8 oral cancer patients receiving radiotherapy; 4 with HeadFIX® mouthpiece moulded with wax (HFW) and 4 with 10 ml/cc syringe barrel (SYR). Each patients underwent Image Guided Radiotherapy (IGRT) with total of 209 cone-beam computed tomography (CBCT) data sets for position set up errors measurement. The setup variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. Overall mean displacement (M), the population systematic (Σ) and random (σ) errors and the 3D vector length were calculated. Clinical target volume to planning target volume (CTV-PTV) margins were calculated according to the van Herk formula (2.5Σ+0.7σ). The M values for both group were < 1 mm and < 1° in all translational and rotational directions. This indicate there is no significant imprecision in the equipment (lasers) and during procedure. The interfraction translational 3 dimension vector for HFW and SYR were 1.93±0.66mm and 3.84±1.34mm, respectively. The interfraction average rotational error were 0.00°±0.65° and 0.34°±0.59°, respectively. CTV-PTV margins along the 3 translational axis (Right-Left, Superior-Inferior, Anterior-Posterior) calculated were 3.08, 2.22 and 0.81 mm for HFW and 3.76, 6.24 and 5.06 mm for SYR. The results of this study have demonstrated that HFW more precise in reproducing patient position compared to conventionally used SYR (p<0.001). All margin calculated did not exceed hospital protocol (5mm) except S-I and A-P axes using syringe. For this reason, a daily IGRT is highly recommended to improve the immobilisation precision.
Matta, George Y; Bohsali, Fuad B; Chisolm, Margaret S
2018-01-01
Background Clinicians’ use of electronic health record (EHR) systems while multitasking may increase the risk of making errors, but silent EHR system use may lower patient satisfaction. Delaying EHR system use until after patient visits may increase clinicians’ EHR workload, stress, and burnout. Objective We aimed to describe the perspectives of clinicians, educators, administrators, and researchers about misses and near misses that they felt were related to clinician multitasking while using EHR systems. Methods This observational study was a thematic analysis of perspectives elicited from 63 continuing medical education (CME) participants during 2 workshops and 1 interactive lecture about challenges and strategies for relationship-centered communication during clinician EHR system use. The workshop elicited reflection about memorable times when multitasking EHR use was associated with “misses” (errors that were not caught at the time) or “near misses” (mistakes that were caught before leading to errors). We conducted qualitative analysis using an editing analysis style to identify codes and then select representative themes and quotes. Results All workshop participants shared stories of misses or near misses in EHR system ordering and documentation or patient-clinician communication, wondering about “misses we don’t even know about.” Risk factors included the computer’s position, EHR system usability, note content and style, information overload, problematic workflows, systems issues, and provider and patient communication behaviors and expectations. Strategies to reduce multitasking EHR system misses included clinician transparency when needing silent EHR system use (eg, for prescribing), narrating EHR system use, patient activation during EHR system use, adapting visit organization and workflow, improving EHR system design, and improving team support and systems. Conclusions CME participants shared numerous stories of errors and near misses in EHR tasks and communication that they felt related to EHR multitasking. However, they brainstormed diverse strategies for using EHR systems safely while preserving patient relationships. PMID:29410388
Ratanawongsa, Neda; Matta, George Y; Bohsali, Fuad B; Chisolm, Margaret S
2018-02-06
Clinicians' use of electronic health record (EHR) systems while multitasking may increase the risk of making errors, but silent EHR system use may lower patient satisfaction. Delaying EHR system use until after patient visits may increase clinicians' EHR workload, stress, and burnout. We aimed to describe the perspectives of clinicians, educators, administrators, and researchers about misses and near misses that they felt were related to clinician multitasking while using EHR systems. This observational study was a thematic analysis of perspectives elicited from 63 continuing medical education (CME) participants during 2 workshops and 1 interactive lecture about challenges and strategies for relationship-centered communication during clinician EHR system use. The workshop elicited reflection about memorable times when multitasking EHR use was associated with "misses" (errors that were not caught at the time) or "near misses" (mistakes that were caught before leading to errors). We conducted qualitative analysis using an editing analysis style to identify codes and then select representative themes and quotes. All workshop participants shared stories of misses or near misses in EHR system ordering and documentation or patient-clinician communication, wondering about "misses we don't even know about." Risk factors included the computer's position, EHR system usability, note content and style, information overload, problematic workflows, systems issues, and provider and patient communication behaviors and expectations. Strategies to reduce multitasking EHR system misses included clinician transparency when needing silent EHR system use (eg, for prescribing), narrating EHR system use, patient activation during EHR system use, adapting visit organization and workflow, improving EHR system design, and improving team support and systems. CME participants shared numerous stories of errors and near misses in EHR tasks and communication that they felt related to EHR multitasking. However, they brainstormed diverse strategies for using EHR systems safely while preserving patient relationships. ©Neda Ratanawongsa, George Y Matta, Fuad B Bohsali, Margaret S Chisolm. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 06.02.2018.
Location verification algorithm of wearable sensors for wireless body area networks.
Wang, Hua; Wen, Yingyou; Zhao, Dazhe
2018-01-01
Knowledge of the location of sensor devices is crucial for many medical applications of wireless body area networks, as wearable sensors are designed to monitor vital signs of a patient while the wearer still has the freedom of movement. However, clinicians or patients can misplace the wearable sensors, thereby causing a mismatch between their physical locations and their correct target positions. An error of more than a few centimeters raises the risk of mistreating patients. The present study aims to develop a scheme to calculate and detect the position of wearable sensors without beacon nodes. A new scheme was proposed to verify the location of wearable sensors mounted on the patient's body by inferring differences in atmospheric air pressure and received signal strength indication measurements from wearable sensors. Extensive two-sample t tests were performed to validate the proposed scheme. The proposed scheme could easily recognize a 30-cm horizontal body range and a 65-cm vertical body range to correctly perform sensor localization and limb identification. All experiments indicate that the scheme is suitable for identifying wearable sensor positions in an indoor environment.
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do no good because the analyst defaults to no knowledge of the combined, relative position error covariance matrix. It is reasonable to think, given an assumption of no covariance information, an analyst might still attempt to determine the error covariance matrix that results in an upper bound on the P (sub c). Without some guidance on limits to the shape, size and orientation of the unknown covariance matrix, the limiting case is a degenerate ellipse lying along the relative miss vector in the collision plane. Unless the miss position is exceptionally large or the at-risk object is exceptionally small, this method results in a maximum P (sub c) too large to be of practical use. For example, assuming that the miss distance is equal to the current ISS alert volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radius. The maximum (degenerate ellipse) P (sub c) is about 0.00136. At 40 kilometers, the maximum P (sub c) would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver threshold of 0.0001. In fact, a miss distance of almost 340 kilometers is necessary to reduce the maximum P (sub c) associated with this degenerate ellipse to the ISS maneuver threshold value. Such a result is frequently of no practical value to the analyst. Some improvement may be made with respect to this problem by realizing that while the position error covariance matrix of one of the objects (usually the debris object) may not be known the position error covariance matrix of the other object (usually the asset) is almost always available. Making use of the position error covariance information for the one object provides an improvement in finding a maximum P (sub c) which, in some cases, may offer real utility. The equations to be used are presented and their use discussed.
Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F
2010-09-01
To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four 103Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. For the phantom study, seed localization error is (0.58 +/- 0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/ iteration on a 1 GHz processor. The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate approximately 1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.
2010-09-15
Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selectedmore » from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.« less
Karliner, Leah S; Jacobs, Elizabeth A; Chen, Alice Hm; Mutha, Sunita
2007-01-01
Objective To determine if professional medical interpreters have a positive impact on clinical care for limited English proficiency (LEP) patients. Data Sources A systematic literature search, limited to the English language, in PubMed and PsycINFO for publications between 1966 and September 2005, and a search of the Cochrane Library. Study Design Any peer-reviewed article which compared at least two language groups, and contained data about professional medical interpreters and addressed communication (errors and comprehension), utilization, clinical outcomes, or satisfaction were included. Of 3,698 references, 28 were found by multiple reviewers to meet inclusion criteria and, of these, 21 assessed professional interpreters separately from ad hoc interpreters. Data were abstracted from each article by two reviewers. Data were collected on the study design, size, comparison groups, analytic technique, interpreter training, and method of determining the participants' need for an interpreter. Each study was evaluated for the effect of interpreter use on four clinical topics that were most likely to either impact or reflect disparities in health and health care. Principal Findings In all four areas examined, use of professional interpreters is associated with improved clinical care more than is use of ad hoc interpreters, and professional interpreters appear to raise the quality of clinical care for LEP patients to approach or equal that for patients without language barriers. Conclusions Published studies report positive benefits of professional interpreters on communication (errors and comprehension), utilization, clinical outcomes and satisfaction with care. PMID:17362215
The pattern of the discovery of medication errors in a tertiary hospital in Hong Kong.
Samaranayake, N R; Cheung, S T D; Chui, W C M; Cheung, B M Y
2013-06-01
The primary goal of reducing medication errors is to eliminate those that reach the patient. We aimed to study the pattern of interceptions to tackle medication errors along the medication use processes. Tertiary care hospital in Hong Kong. The 'Swiss Cheese Model' was used to explain the interceptions targeting medication error reporting over 5 years (2006-2010). Proportions of prescribing, dispensing and drug administration errors intercepted by pharmacists and nurses; proportions of prescribing, dispensing and drug administration errors that reached the patient. Our analysis included 1,268 in-patient medication errors, of which 53.4% were related to prescribing, 29.0% to administration and 17.6% to dispensing. 34.1% of all medication errors (4.9% prescribing, 26.8% drug administration and 2.4% dispensing) were not intercepted. Pharmacy staff intercepted 85.4% of the prescribing errors. Nurses detected 83.0% of dispensing and 5.0% of prescribing errors. However, 92.4% of all drug administration errors reached the patient. Having a preventive measure at each stage of the medication use process helps to prevent most errors. Most drug administration errors reach the patient as there is no defense against these. Therefore, more interventions to prevent drug administration errors are warranted.
Automated working distance adjustment for a handheld OCT-Laryngoscope
NASA Astrophysics Data System (ADS)
Donner, Sabine; Bleeker, Sebastian; Ripken, Tammo; Krueger, Alexander
2014-03-01
Optical coherence tomography (OCT) is an imaging technique which enables diagnosis of vocal cord tissue structure by non-contact optical biopsies rather than invasive tissue biopsies. For diagnosis on awake patients OCT was adapted to a rigid indirect laryngoscope. The working distance must match the probe-sample distance, which varies from patient to patient. Therefore the endoscopic OCT sample arm has a variable working distance of 40 mm to 80 mm. The current axial position is identified by automated working distance adjustments based on image processing. The OCT reference plane and the focal plane of the sample arm are moved according to position errors. Repeated position adjustment during the whole diagnostic procedure keeps the tissue sample at the optimal axial position. The auto focus identifies and adjusts the working distance within the range of 50 mm within a maximum time of 2.7 s. Continuous image stabilisation reduces axial sample movement within the sampling depth for handheld OCT scanning. Rapid autofocus reduces the duration of the diagnostic procedure and axial position stabilisation eases the use of the OCT laryngoscope. Therefore this work is an important step towards the integration of OCT into indirect laryngoscopes.
Treleaven, Julia; Jull, Gwendolen; Sterling, Michele
2003-01-01
Dizziness and/or unsteadiness are common symptoms of chronic whiplash-associated disorders. This study aimed to report the characteristics of these symptoms and determine whether there was any relationship to cervical joint position error. Joint position error, the accuracy to return to the natural head posture following extension and rotation, was measured in 102 subjects with persistent whiplash-associated disorder and 44 control subjects. Whiplash subjects completed a neck pain index and answered questions about the characteristics of dizziness. The results indicated that subjects with whiplash-associated disorders had significantly greater joint position errors than control subjects. Within the whiplash group, those with dizziness had greater joint position errors than those without dizziness following rotation (rotation (R) 4.5 degrees (0.3) vs 2.9 degrees (0.4); rotation (L) 3.9 degrees (0.3) vs 2.8 degrees (0.4) respectively) and a higher neck pain index (55.3% (1.4) vs 43.1% (1.8)). Characteristics of the dizziness were consistent for those reported for a cervical cause but no characteristics could predict the magnitude of joint position error. Cervical mechanoreceptor dysfunction is a likely cause of dizziness in whiplash-associated disorder.
Inter- and Intrafraction Uncertainty in Prostate Bed Image-Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kitty; Palma, David A.; Department of Oncology, University of Western Ontario, London
2012-10-01
Purpose: The goals of this study were to measure inter- and intrafraction setup error and prostate bed motion (PBM) in patients undergoing post-prostatectomy image-guided radiotherapy (IGRT) and to propose appropriate population-based three-dimensional clinical target volume to planning target volume (CTV-PTV) margins in both non-IGRT and IGRT scenarios. Methods and Materials: In this prospective study, 14 patients underwent adjuvant or salvage radiotherapy to the prostate bed under image guidance using linac-based kilovoltage cone-beam CT (kV-CBCT). Inter- and intrafraction uncertainty/motion was assessed by offline analysis of three consecutive daily kV-CBCT images of each patient: (1) after initial setup to skin marks, (2)more » after correction for positional error/immediately before radiation treatment, and (3) immediately after treatment. Results: The magnitude of interfraction PBM was 2.1 mm, and intrafraction PBM was 0.4 mm. The maximum inter- and intrafraction prostate bed motion was primarily in the anterior-posterior direction. Margins of at least 3-5 mm with IGRT and 4-7 mm without IGRT (aligning to skin marks) will ensure 95% of the prescribed dose to the clinical target volume in 90% of patients. Conclusions: PBM is a predominant source of intrafraction error compared with setup error and has implications for appropriate PTV margins. Based on inter- and estimated intrafraction motion of the prostate bed using pre- and post-kV-CBCT images, CBCT IGRT to correct for day-to-day variances can potentially reduce CTV-PTV margins by 1-2 mm. CTV-PTV margins for prostate bed treatment in the IGRT and non-IGRT scenarios are proposed; however, in cases with more uncertainty of target delineation and image guidance accuracy, larger margins are recommended.« less
Ni, Yizhao; Lingren, Todd; Hall, Eric S; Leonard, Matthew; Melton, Kristin; Kirkendall, Eric S
2018-05-01
Timely identification of medication administration errors (MAEs) promises great benefits for mitigating medication errors and associated harm. Despite previous efforts utilizing computerized methods to monitor medication errors, sustaining effective and accurate detection of MAEs remains challenging. In this study, we developed a real-time MAE detection system and evaluated its performance prior to system integration into institutional workflows. Our prospective observational study included automated MAE detection of 10 high-risk medications and fluids for patients admitted to the neonatal intensive care unit at Cincinnati Children's Hospital Medical Center during a 4-month period. The automated system extracted real-time medication use information from the institutional electronic health records and identified MAEs using logic-based rules and natural language processing techniques. The MAE summary was delivered via a real-time messaging platform to promote reduction of patient exposure to potential harm. System performance was validated using a physician-generated gold standard of MAE events, and results were compared with those of current practice (incident reporting and trigger tools). Physicians identified 116 MAEs from 10 104 medication administrations during the study period. Compared to current practice, the sensitivity with automated MAE detection was improved significantly from 4.3% to 85.3% (P = .009), with a positive predictive value of 78.0%. Furthermore, the system showed potential to reduce patient exposure to harm, from 256 min to 35 min (P < .001). The automated system demonstrated improved capacity for identifying MAEs while guarding against alert fatigue. It also showed promise for reducing patient exposure to potential harm following MAE events.
Moritz, Steffen; Voigt, Miriam; Köther, Ulf; Leighton, Lucy; Kjahili, Besiane; Babur, Zehra; Jungclaussen, David; Veckenstedt, Ruth; Grzella, Karsten
2014-06-01
There is emerging evidence that the induction of doubt can reduce positive symptoms in patients with schizophrenia. Based on prior investigations indicating that brief psychological interventions may attenuate core aspects of delusions, we set up a proof of concept study using a virtual reality experiment. We explored whether feedback for false judgments positively influences delusion severity. A total of 33 patients with schizophrenia participated in the experiment. Following a short practice trial, patients were instructed to navigate through a virtual street on two occasions (noise versus no noise), where they met six different pedestrians in each condition. Subsequently, patients were asked to recollect the pedestrians and their corresponding facial affect in a recognition task graded for confidence. Before and after the experiment, the Paranoia Checklist (frequency subscale) was administered. The Paranoia Checklist score declined significantly from pre to post at a medium effect size. We split the sample into those with some improvement versus those that either showed no improvement, or worsened. Improvement was associated with lower confidence ratings (both during the experiment, particularly for incorrect responses, and according to retrospect assessment). No control condition, unclear if improvement is sustained. The study tentatively suggests that a brief virtual reality experiment involving error feedback may ameliorate delusional ideas. Randomized controlled trials and dismantling studies are now needed to substantiate the findings and to pinpoint the underlying therapeutic mechanisms, for example error feedback or fostering attenuation of confidence judgments in the face of incomplete evidence. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wagar, Elizabeth A; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A
2006-11-01
Patient safety is an increasingly visible and important mission for clinical laboratories. Attention to improving processes related to patient identification and specimen labeling is being paid by accreditation and regulatory organizations because errors in these areas that jeopardize patient safety are common and avoidable through improvement in the total testing process. To assess patient identification and specimen labeling improvement after multiple implementation projects using longitudinal statistical tools. Specimen errors were categorized by a multidisciplinary health care team. Patient identification errors were grouped into 3 categories: (1) specimen/requisition mismatch, (2) unlabeled specimens, and (3) mislabeled specimens. Specimens with these types of identification errors were compared preimplementation and postimplementation for 3 patient safety projects: (1) reorganization of phlebotomy (4 months); (2) introduction of an electronic event reporting system (10 months); and (3) activation of an automated processing system (14 months) for a 24-month period, using trend analysis and Student t test statistics. Of 16,632 total specimen errors, mislabeled specimens, requisition mismatches, and unlabeled specimens represented 1.0%, 6.3%, and 4.6% of errors, respectively. Student t test showed a significant decrease in the most serious error, mislabeled specimens (P < .001) when compared to before implementation of the 3 patient safety projects. Trend analysis demonstrated decreases in all 3 error types for 26 months. Applying performance-improvement strategies that focus longitudinally on specimen labeling errors can significantly reduce errors, therefore improving patient safety. This is an important area in which laboratory professionals, working in interdisciplinary teams, can improve safety and outcomes of care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zafirovski, Aleksandar; Smith, Jeffery
Purpose: This report describes the value of a voluntary error reporting system and the impact of a series of quality assurance (QA) measures including checklists and timeouts on reported error rates in patients receiving radiation therapy. Methods and Materials: A voluntary error reporting system was instituted with the goal of recording errors, analyzing their clinical impact, and guiding the implementation of targeted QA measures. In response to errors committed in relation to treatment of the wrong patient, wrong treatment site, and wrong dose, a novel initiative involving the use of checklists and timeouts for all staff was implemented. The impactmore » of these and other QA initiatives was analyzed. Results: From 2001 to 2011, a total of 256 errors in 139 patients after 284,810 external radiation treatments (0.09% per treatment) were recorded in our voluntary error database. The incidence of errors related to patient/tumor site, treatment planning/data transfer, and patient setup/treatment delivery was 9%, 40.2%, and 50.8%, respectively. The compliance rate for the checklists and timeouts initiative was 97% (P<.001). These and other QA measures resulted in a significant reduction in many categories of errors. The introduction of checklists and timeouts has been successful in eliminating errors related to wrong patient, wrong site, and wrong dose. Conclusions: A comprehensive QA program that regularly monitors staff compliance together with a robust voluntary error reporting system can reduce or eliminate errors that could result in serious patient injury. We recommend the adoption of these relatively simple QA initiatives including the use of checklists and timeouts for all staff to improve the safety of patients undergoing radiation therapy in the modern era.« less
Quality assurance of dynamic parameters in volumetric modulated arc therapy.
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-07-01
The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.
Financial errors in dementia: Testing a neuroeconomic conceptual framework
Chiong, Winston; Hsu, Ming; Wudka, Danny; Miller, Bruce L.; Rosen, Howard J.
2013-01-01
Financial errors by patients with dementia can have devastating personal and family consequences. We developed and evaluated a neuroeconomic conceptual framework for understanding financial errors across different dementia syndromes, using a systematic, retrospective, blinded chart review of demographically-balanced cohorts of patients with Alzheimer’s disease (AD, n=100) and behavioral variant frontotemporal dementia (bvFTD, n=50). Reviewers recorded specific reports of financial errors according to a conceptual framework identifying patient cognitive and affective characteristics, and contextual influences, conferring susceptibility to each error. Specific financial errors were reported for 49% of AD and 70% of bvFTD patients (p = 0.012). AD patients were more likely than bvFTD patients to make amnestic errors (p< 0.001), while bvFTD patients were more likely to spend excessively (p = 0.004) and to exhibit other behaviors consistent with diminished sensitivity to losses and other negative outcomes (p< 0.001). Exploratory factor analysis identified a social/affective vulnerability factor associated with errors in bvFTD, and a cognitive vulnerability factor associated with errors in AD. Our findings highlight the frequency and functional importance of financial errors as symptoms of AD and bvFTD. A conceptual model derived from neuroeconomic literature identifies factors that influence vulnerability to different types of financial error in different dementia syndromes, with implications for early diagnosis and subsequent risk prevention. PMID:23550884
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming
2016-12-01
An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.
NASA Astrophysics Data System (ADS)
Noble, Jack H.; Warren, Frank M.; Labadie, Robert F.; Dawant, Benoit; Fitzpatrick, J. Michael
2007-03-01
In cochlear implant surgery an electrode array is permanently implanted to stimulate the auditory nerve and allow deaf people to hear. Current surgical techniques require wide excavation of the mastoid region of the temporal bone and one to three hours time to avoid damage to vital structures. Recently a far less invasive approach has been proposed-percutaneous cochlear access, in which a single hole is drilled from skull surface to the cochlea. The drill path is determined by attaching a fiducial system to the patient's skull and then choosing, on a pre-operative CT, an entry point and a target point. The drill is advanced to the target, the electrodes placed through the hole, and a stimulator implanted at the surface of the skull. The major challenge is the determination of a safe and effective drill path, which with high probability avoids specific vital structures-the facial nerve, the ossicles, and the external ear canal-and arrives at the basal turn of the cochlea. These four features lie within a few millimeters of each other, the drill is one millimeter in diameter, and errors in the determination of the target position are on the order of 0.5mm root-mean square. Thus, path selection is both difficult and critical to the success of the surgery. This paper presents a method for finding optimally safe and effective paths while accounting for target positioning error.
ERROR COMPENSATOR FOR A POSITION TRANSDUCER
Fowler, A.H.
1962-06-12
A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)
Clarke, D L; Kong, V Y; Naidoo, L C; Furlong, H; Aldous, C
2013-01-01
Acute surgical patients are particularly vulnerable to human error. The Acute Physiological Support Team (APST) was created with the twin objectives of identifying high-risk acute surgical patients in the general wards and reducing both the incidence of error and impact of error on these patients. A number of error taxonomies were used to understand the causes of human error and a simple risk stratification system was adopted to identify patients who are particularly at risk of error. During the period November 2012-January 2013 a total of 101 surgical patients were cared for by the APST at Edendale Hospital. The average age was forty years. There were 36 females and 65 males. There were 66 general surgical patients and 35 trauma patients. Fifty-six patients were referred on the day of their admission. The average length of stay in the APST was four days. Eleven patients were haemo-dynamically unstable on presentation and twelve were clinically septic. The reasons for referral were sepsis,(4) respiratory distress,(3) acute kidney injury AKI (38), post-operative monitoring (39), pancreatitis,(3) ICU down-referral,(7) hypoxia,(5) low GCS,(1) coagulopathy.(1) The mortality rate was 13%. A total of thirty-six patients experienced 56 errors. A total of 143 interventions were initiated by the APST. These included institution or adjustment of intravenous fluids (101), blood transfusion,(12) antibiotics,(9) the management of neutropenic sepsis,(1) central line insertion,(3) optimization of oxygen therapy,(7) correction of electrolyte abnormality,(8) correction of coagulopathy.(2) CONCLUSION: Our intervention combined current taxonomies of error with a simple risk stratification system and is a variant of the defence in depth strategy of error reduction. We effectively identified and corrected a significant number of human errors in high-risk acute surgical patients. This audit has helped understand the common sources of error in the general surgical wards and will inform on-going error reduction initiatives. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Nurses' behaviors and visual scanning patterns may reduce patient identification errors.
Marquard, Jenna L; Henneman, Philip L; He, Ze; Jo, Junghee; Fisher, Donald L; Henneman, Elizabeth A
2011-09-01
Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20) administered medications to 3 patients in a simulated clinical setting, with 1 patient having an embedded ID error. Error-identifying nurses tended to complete more process steps in a similar amount of time than non-error-identifying nurses and tended to scan information across artifacts (e.g., ID band, patient chart, medication label) rather than fixating on several pieces of information on a single artifact before fixating on another artifact. Non-error-indentifying nurses tended to increase their durations of off-topic conversations-a type of process interruption-over the course of the trials; the difference between groups was significant in the trial with the embedded ID error. Error-identifying nurses tended to have their most fixations in a row on the patient's chart, whereas non-error-identifying nurses did not tend to have a single artifact on which they consistently fixated. Finally, error-identifying nurses tended to have predictable eye fixation sequences across artifacts, whereas non-error-identifying nurses tended to have seemingly random eye fixation sequences. This finding has implications for nurse training and the design of tools and technologies that support nurses as they complete the medication administration process. (c) 2011 APA, all rights reserved.
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
Refractive errors in presbyopic patients in Kano, Nigeria.
Lawan, Abdu; Okpo, Eme; Philips, Ebisike
2014-01-01
The study is a retrospective review of the pattern of refractive errors in presbyopic patients seen in the eye clinic from January to December, 2009. The clinic refraction register was used to retrieve the case folders of all patients refracted during the review period. Information extracted includes patient's age, sex, and types of refractive error. Unaided and pin hole visual acuity was done with Snellen's or "E" Charts and near vision with Jaeger's chart in English or Hausa. All patients had basic eye examination and streak retinoscopy at two third meter working distance. The final subjective refractive correction given to the patients was used to categorize the type of refractive error. There were 5893 patients, 1584 had refractive error and 644 were presbyopic. There were 289 males and 355 females (M:F= 1:1.2). Presbyopia accounted for 10.9% of clinic attendance and 40% of patients with refractive error. Presbyopia was seen in 17%, the remaining 83% required distance correction; astigmatism was seen in 41%, hypermetropia 29%, myopia 9% and aphakia 4%. Refractive error was commoner in females than males and the relationship was statistically significant (P-value = 0.017; P < 0.05 considered significant). Presbyopia is common and most of the patients had other refractive errors. Full refraction is advised for all patients.
Compensation for positioning error of industrial robot for flexible vision measuring system
NASA Astrophysics Data System (ADS)
Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui
2013-01-01
Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.
Kuhn, Jens; Gründler, Theo O J; Bauer, Robert; Huff, Wolfgang; Fischer, Adrian G; Lenartz, Doris; Maarouf, Mohammad; Bührle, Christian; Klosterkötter, Joachim; Ullsperger, Markus; Sturm, Volker
2011-10-01
Following recent advances in neuromodulation therapy for mental disorders, we treated one patient with severe alcohol addiction with deep brain stimulation (DBS) of the nucleus accumbens (NAc). Before and one year following the surgery, we assessed the effects of DBS within the NAc on the addiction as well as on psychometric scores and electrophysiological measures of cognitive control. In our patient, DBS achieved normalization of addictive behavior and craving. An electrophysiological marker of error processing (the error-related negativity) linked to anterior mid-cingulate cortex (aMCC) functioning was altered through DBS, an effect that could be reversed by periods without stimulation. Thus, this case supports the hypothesis that DBS of the NAc could have a positive effect on addiction trough a normalization of craving associated with aMCC dysfunction. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.
Walston, Stephen L; Mwachofi, Ari; Aldosari, Bakheet; Al-Omar, Badran A; Yousef, Asmaa Al; Sheikh, Asiya
2010-01-01
INVESTIGATED: The implementation of information systems and the creation of an open culture, characterized by emphasis on patient safety and problem solving, are 2 means suggested to improve health care quality. This study examines the effects of use of information technology and focus on patient safety and problem solving on the visibility of patient care errors. A survey of nurses in Saudi Arabia is analyzed by means of factor analysis and multiregression analysis to examine nurses' use of information technology and culture in controlling errors. Our research suggests that greater use of information technology to control patient care errors may reduce the prevalence of such errors while an increased focus on patient safety and problem solving facilitates an open environment where errors can be more openly discussed and addressed. The use of technology appears to have a role in decreasing errors. Yet, an organization that focuses on problem solving and patient safety can open lines of communication and create a culture in which errors can be discussed and resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.
2015-09-01
Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper
Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculatedmore » as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max} underestimated the accumulated heart D{sub max} for 9.1% patients using online and 13.6% patients using offline bony anatomy setup correction, which validated that PRV margin size was adequate. Conclusion: Considerable cardiac position variability relative to the bony anatomy was observed in breast cancer patients. A PRV margin can be used during treatment planning to take these uncertainties into account.« less
Malinova, Vesna; Schlegel, Anna; Rohde, Veit; Mielke, Dorothee
2017-07-01
For the fibrinolytic therapy of intracerebral hematomas (ICH) using recombinant tissue plasminogen activator (rtPA), a catheter position in the core of the hematoma along the largest clot diameter was assumed to be optimal for an effective clot lysis. However, it never had been proven that core position indeed enhances clot lysis if compared with less optimal catheter positions. In this study, the impact of the catheter position on the effectiveness and on the time course of clot lysis was evaluated. We analyzed the catheter position using a relative error calculating the distance perpendicular to the catheter's center in relation to hematoma's diameter and evaluated the relative hematoma volume reduction (RVR). The correlation of the RVR with the catheter position was evaluated. Additionally, we tried to identify patterns of clot lysis with different catheter positions. The patient's outcome at discharge was evaluated using the Glasgow outcome score. A total of 105 patients were included in the study. The mean hematoma volume was 56 ml. The overall RVR was 62.7 %. In 69 patients, a catheter position in the core of the clot was achieved. We found no significant correlation between catheter position and hematoma RVR (linear regression, p = 0.14). Core catheter position leads to more symmetrical hematoma RVR. Faster clot lysis happens in the vicinity of the catheter openings. We found no significant difference in the patient's outcome dependent on the catheter position (linear regression, p = 0.90). The catheter position in the core of the hematoma along its largest diameter does not significantly influence the effectiveness of clot lysis after rtPA application.
Reward positivity: Reward prediction error or salience prediction error?
Heydari, Sepideh; Holroyd, Clay B
2016-08-01
The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.
Refractive errors and cataract as causes of visual impairment in Brazil.
Eduardo Leite Arieta, Carlos; Nicolini Delgado, Alzira Maria; José, Newton Kara; Temporini, Edméia Rita; Alves, Milton Ruiz; de Carvalho Moreira Filho, Djalma
2003-02-01
To identify the main causes of visual impairment (VA
Moshirfar, Majid; McCaughey, Michael V; Santiago-Caban, Luis
2015-01-01
Postoperative residual refractive error following cataract surgery is not an uncommon occurrence for a large proportion of modern-day patients. Residual refractive errors can be broadly classified into 3 main categories: myopic, hyperopic, and astigmatic. The degree to which a residual refractive error adversely affects a patient is dependent on the magnitude of the error, as well as the specific type of intraocular lens the patient possesses. There are a variety of strategies for resolving residual refractive errors that must be individualized for each specific patient scenario. In this review, the authors discuss contemporary methods for rectification of residual refractive error, along with their respective indications/contraindications, and efficacies. PMID:25663845
Moshirfar, Majid; McCaughey, Michael V; Santiago-Caban, Luis
2014-12-01
Postoperative residual refractive error following cataract surgery is not an uncommon occurrence for a large proportion of modern-day patients. Residual refractive errors can be broadly classified into 3 main categories: myopic, hyperopic, and astigmatic. The degree to which a residual refractive error adversely affects a patient is dependent on the magnitude of the error, as well as the specific type of intraocular lens the patient possesses. There are a variety of strategies for resolving residual refractive errors that must be individualized for each specific patient scenario. In this review, the authors discuss contemporary methods for rectification of residual refractive error, along with their respective indications/contraindications, and efficacies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velec, Michael, E-mail: michael.velec@rmp.uhn.on.ca; Institute of Medical Science, University of Toronto, Toronto, ON; Moseley, Joanne L.
2012-07-15
Purpose: To investigate the accumulated dose deviations to tumors and normal tissues in liver stereotactic body radiotherapy (SBRT) and investigate their geometric causes. Methods and Materials: Thirty previously treated liver cancer patients were retrospectively evaluated. Stereotactic body radiotherapy was planned on the static exhale CT for 27-60 Gy in 6 fractions, and patients were treated in free-breathing with daily cone-beam CT guidance. Biomechanical model-based deformable image registration accumulated dose over both the planning four-dimensional (4D) CT (predicted breathing dose) and also over each fraction's respiratory-correlated cone-beam CT (accumulated treatment dose). The contribution of different geometric errors to changes between themore » accumulated and predicted breathing dose were quantified. Results: Twenty-one patients (70%) had accumulated dose deviations relative to the planned static prescription dose >5%, ranging from -15% to 5% in tumors and -42% to 8% in normal tissues. Sixteen patients (53%) still had deviations relative to the 4D CT-predicted dose, which were similar in magnitude. Thirty-two tissues in these 16 patients had deviations >5% relative to the 4D CT-predicted dose, and residual setup errors (n = 17) were most often the largest cause of the deviations, followed by deformations (n = 8) and breathing variations (n = 7). Conclusion: The majority of patients had accumulated dose deviations >5% relative to the static plan. Significant deviations relative to the predicted breathing dose still occurred in more than half the patients, commonly owing to residual setup errors. Accumulated SBRT dose may be warranted to pursue further dose escalation, adaptive SBRT, and aid in correlation with clinical outcomes.« less
A new bite block for panoramic radiographs of anterior edentulous patients: A technical report.
Park, Jong-Woong; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul
2015-06-01
Panoramic radiographs taken using conventional chin-support devices have often presented problems with positioning accuracy and reproducibility. The aim of this report was to propose a new bite block for panoramic radiographs of anterior edentulous patients that better addresses these two issues. A new panoramic radiography bite block similar to the bite block for dentulous patients was developed to enable proper positioning stability for edentulous patients. The new bite block was designed and implemented in light of previous studies. The height of the new bite block was 18 mm and to compensate for the horizontal edentulous space, its horizontal width was 7 mm. The panoramic radiographs using the new bite block were compared with those using the conventional chin-support device. Panoramic radiographs taken with the new bite block showed better stability and bilateral symmetry than those taken with the conventional chin-support device. Patients also showed less movement and more stable positioning during panoramic radiography with the new bite block. Conventional errors in panoramic radiographs of edentulous patients could be caused by unreliability of the chin-support device. The newly proposed bite block for panoramic radiographs of edentulous patients showed better reliability. Further study is required to evaluate the image quality and reproducibility of images with the new bite block.
Patient safety culture assessment in oman.
Al-Mandhari, Ahmed; Al-Zakwani, Ibrahim; Al-Kindi, Moosa; Tawilah, Jihane; Dorvlo, Atsu S S; Al-Adawi, Samir
2014-07-01
To illustrate the patient safety culture in Oman as gleaned via 12 indices of patient safety culture derived from the Hospital Survey on Patient Safety Culture (HSPSC) and to compare the average positive response rates in patient safety culture between Oman and the USA, Taiwan, and Lebanon. This was a cross-sectional research study employed to gauge the performance of HSPSC safety indices among health workers representing five secondary and tertiary care hospitals in the northern region of Oman. The participants (n=398) represented different professional designations of hospital staff. Analyses were performed using univariate statistics. The overall average positive response rate for the 12 patient safety culture dimensions of the HSPSC survey in Oman was 58%. The indices from HSPSC that were endorsed the highest included 'organizational learning and continuous improvement' while conversely, 'non-punitive response to errors' was ranked the least. There were no significant differences in average positive response rates between Oman and the United States (58% vs. 61%; p=0.666), Taiwan (58% vs. 64%; p=0.386), and Lebanon (58% vs. 61%; p=0.666). This study provides the first empirical study on patient safety culture in Oman which is similar to those rates reported elsewhere. It highlights the specific strengths and weaknesses which may stem from the specific milieu prevailing in Oman.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Shi, W; Andrews, D
2016-06-15
Purpose: To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac x-ray imaging systems for cranial radiotherapy. Method: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (Version 2.5), which is integrated with a BrainLab ExacTrac imaging system (Version 6.1.1). The phantom study was based on a Rando head phantom, which was designed to evaluate isocenter-location dependence of the image registrations. Ten isocenters were selected at various locations in the phantom, which represented clinical treatment sites. CBCT and ExacTrac x-ray images were taken when the phantom was located at each isocenter. The patientmore » study included thirteen patients. CBCT and ExacTrac x-ray images were taken at each patient’s treatment position. Six-dimensional image registrations were performed on CBCT and ExacTrac, and residual errors calculated from CBCT and ExacTrac were compared. Results: In the phantom study, the average residual-error differences between CBCT and ExacTrac image registrations were: 0.16±0.10 mm, 0.35±0.20 mm, and 0.21±0.15 mm, in the vertical, longitudinal, and lateral directions, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.36±0.11 degree, 0.14±0.10 degree, and 0.12±0.10 degree, respectively. In the patient study, the average residual-error differences in the vertical, longitudinal, and lateral directions were: 0.13±0.13 mm, 0.37±0.21 mm, 0.22±0.17 mm, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.30±0.10 degree, 0.18±0.11 degree, and 0.22±0.13 degree, respectively. Larger residual-error differences (up to 0.79 mm) were observed in the longitudinal direction in the phantom and patient studies where isocenters were located in or close to frontal lobes, i.e., located superficially. Conclusion: Overall, the average residual-error differences were within 0.4 mm in the translational directions and were within 0.4 degree in the rotational directions.« less
Error analysis for relay type satellite-aided search and rescue systems
NASA Technical Reports Server (NTRS)
Marini, J. W.
1977-01-01
An analysis was made of the errors in the determination of the position of an emergency transmitter in a satellite aided search and rescue system. The satellite was assumed to be at a height of 820 km in a near circular near polar orbit. Short data spans of four minutes or less were used. The error sources considered were measurement noise, transmitter frequency drift, ionospheric effects and error in the assumed height of the transmitter. The errors were calculated for several different transmitter positions, data rates and data spans. The only transmitter frequency used was 406 MHz, but the results can be scaled to different frequencies. In a typical case, in which four Doppler measurements were taken over a span of two minutes, the position error was about 1.2 km.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1978-01-01
Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.
Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong
2017-06-01
The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.
Medication Errors in Patients with Enteral Feeding Tubes in the Intensive Care Unit.
Sohrevardi, Seyed Mojtaba; Jarahzadeh, Mohammad Hossein; Mirzaei, Ehsan; Mirjalili, Mahtabalsadat; Tafti, Arefeh Dehghani; Heydari, Behrooz
2017-01-01
Most patients admitted to Intensive Care Units (ICU) have problems in using oral medication or ingesting solid forms of drugs. Selecting the most suitable dosage form in such patients is a challenge. The current study was conducted to assess the frequency and types of errors of oral medication administration in patients with enteral feeding tubes or suffering swallowing problems. A cross-sectional study was performed in the ICU of Shahid Sadoughi Hospital, Yazd, Iran. Patients were assessed for the incidence and types of medication errors occurring in the process of preparation and administration of oral medicines. Ninety-four patients were involved in this study and 10,250 administrations were observed. Totally, 4753 errors occurred among the studied patients. The most commonly used drugs were pantoprazole tablet, piracetam syrup, and losartan tablet. A total of 128 different types of drugs and nine different oral pharmaceutical preparations were prescribed for the patients. Forty-one (35.34%) out of 116 different solid drugs (except effervescent tablets and powders) could be substituted by liquid or injectable forms. The most common error was the wrong time of administration. Errors of wrong dose preparation and administration accounted for 24.04% and 25.31% of all errors, respectively. In this study, at least three-fourth of the patients experienced medication errors. The occurrence of these errors can greatly impair the quality of the patients' pharmacotherapy, and more attention should be paid to this issue.
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
Cross-Reactivity of Pantoprazole with Three Commercial Cannabinoids Immunoassays in Urine.
Gomila, Isabel; Barceló, Bernardino; Rosell, Antonio; Avella, Sonia; Sahuquillo, Laura; Dastis, Macarena
2017-11-01
Pantoprazole is a frequently prescribed proton pump inhibitor (PPI) commonly utilized in the management of gastrointestinal symptoms. Few substances have proved to cause a false-positive cannabinoid urine screen. However, a case of false-positive urine cannabinoid screen in a patient who received a pantoprazole dose has been recently published. The purpose of this study was to determine the potential cross-reactivity of pantoprazole in the cannabinoid immunoassays: Alere Triage® TOX Drug Screen, KIMS® Cannabinoids II and DRI® Cannabinoids Assay. Drug-free urine to which pantoprazole was added up to 12,000 μg/mL produced negative results in the DRI® Cannabinoids and KIMS® Cannabinoids II. Alere Triage® TOX Drug Screen assay gave positive results at pantoprazole concentrations higher than 1,000 μg/mL. Urine samples from 8 pediatric patients were collected at the beginning of their pantoprazole treatment. Alere Triage® TOX Drug Screen assay produced positive test results in all patient samples and KIMS® Cannabinoids II immunoassay produced positive test results in one patient sample. None patient sample gave a false-positive result when analyzed by the DRI® Cannabinoids Assay. Our findings demonstrate that some cannabinoids immunoassays are susceptible to cross-reaction errors resulting from the presence in urine of pantoprazole and the resulting metabolism of the parent drug. Clinicians should be aware of the possibility of false-positive results for cannabinoids after a pantoprazole treatment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Ha, Jihye; Han, Geum Hee; Kim, Myungsook; Lee, Kyungwon
2018-01-01
Background Early and appropriate antibiotic treatment improves the clinical outcome of patients with septicemia; therefore, reducing the turn-around time for identification (ID) and antimicrobial susceptibility test (AST) results is essential. We established a method for rapid ID and AST using short-term incubation of positive blood culture broth samples on solid media, and evaluated its performance relative to that of the conventional method using two rapid ID systems and a rapid AST method. Methods A total of 254 mono-microbial samples were included. Positive blood culture samples were incubated on blood agar plates for six hours and identified by the MicroFlex LT (Bruker Daltonics) and Vitek-MS (bioMeriéux) systems, followed by AST using the Vitek2 System (bioMeriéux). Results The correct species-level ID rates were 82.3% (209/254) and 78.3% (199/254) for the MicroFlex LT and Vitek-MS platforms, respectively. For the 1,174 microorganism/antimicrobial agent combinations tested, the rapid AST method showed total concordance of 97.8% (1,148/1,174) with the conventional method, with a very major error rate of 0.5%, major error rate of 0.7%, and minor error rate of 1.0%. Conclusions Routine implementation of this short-term incubation method could provide ID results on the day of blood culture-positivity detection and one day earlier than the conventional AST method. This simple method will be very useful for rapid ID and AST of bacteria from positive blood culture bottles in routine clinical practice. PMID:29401558
Oh, Hyun Jun; Yang, Il-Hyung
2016-01-01
Objectives: To propose a novel method for determining the three-dimensional (3D) root apex position of maxillary teeth using a two-dimensional (2D) panoramic radiograph image and a 3D virtual maxillary cast model. Methods: The subjects were 10 adult orthodontic patients treated with non-extraction. The multiple camera matrices were used to define transformative relationships between tooth images of the 2D panoramic radiographs and the 3D virtual maxillary cast models. After construction of the root apex-specific projective (RASP) models, overdetermined equations were used to calculate the 3D root apex position with a direct linear transformation algorithm and the known 2D co-ordinates of the root apex in the panoramic radiograph. For verification of the estimated 3D root apex position, the RASP and 3D-CT models were superimposed using a best-fit method. Then, the values of estimation error (EE; mean, standard deviation, minimum error and maximum error) between the two models were calculated. Results: The intraclass correlation coefficient values exhibited good reliability for the landmark identification. The mean EE of all root apices of maxillary teeth was 1.88 mm. The EE values, in descending order, were as follows: canine, 2.30 mm; first premolar, 1.93 mm; second premolar, 1.91 mm; first molar, 1.83 mm; second molar, 1.82 mm; lateral incisor, 1.80 mm; and central incisor, 1.53 mm. Conclusions: Camera calibration technology allows reliable determination of the 3D root apex position of maxillary teeth without the need for 3D-CT scan or tooth templates. PMID:26317151
Ha, Jihye; Hong, Sung Kuk; Han, Geum Hee; Kim, Myungsook; Yong, Dongeun; Lee, Kyungwon
2018-05-01
Early and appropriate antibiotic treatment improves the clinical outcome of patients with septicemia; therefore, reducing the turn-around time for identification (ID) and antimicrobial susceptibility test (AST) results is essential. We established a method for rapid ID and AST using short-term incubation of positive blood culture broth samples on solid media, and evaluated its performance relative to that of the conventional method using two rapid ID systems and a rapid AST method. A total of 254 mono-microbial samples were included. Positive blood culture samples were incubated on blood agar plates for six hours and identified by the MicroFlex LT (Bruker Daltonics) and Vitek-MS (bioMeriéux) systems, followed by AST using the Vitek2 System (bioMeriéux). The correct species-level ID rates were 82.3% (209/254) and 78.3% (199/254) for the MicroFlex LT and Vitek-MS platforms, respectively. For the 1,174 microorganism/antimicrobial agent combinations tested, the rapid AST method showed total concordance of 97.8% (1,148/1,174) with the conventional method, with a very major error rate of 0.5%, major error rate of 0.7%, and minor error rate of 1.0%. Routine implementation of this short-term incubation method could provide ID results on the day of blood culture-positivity detection and one day earlier than the conventional AST method. This simple method will be very useful for rapid ID and AST of bacteria from positive blood culture bottles in routine clinical practice. © The Korean Society for Laboratory Medicine
Differences among Job Positions Related to Communication Errors at Construction Sites
NASA Astrophysics Data System (ADS)
Takahashi, Akiko; Ishida, Toshiro
In a previous study, we classified the communicatio n errors at construction sites as faulty intention and message pattern, inadequate channel pattern, and faulty comprehension pattern. This study seeks to evaluate the degree of risk of communication errors and to investigate differences among people in various job positions in perception of communication error risk . Questionnaires based on the previous study were a dministered to construction workers (n=811; 149 adminis trators, 208 foremen and 454 workers). Administrators evaluated all patterns of communication error risk equally. However, foremen and workers evaluated communication error risk differently in each pattern. The common contributing factors to all patterns wer e inadequate arrangements before work and inadequate confirmation. Some factors were common among patterns but other factors were particular to a specific pattern. To help prevent future accidents at construction sites, administrators should understand how people in various job positions perceive communication errors and propose human factors measures to prevent such errors.
Kager, Simone; Budhota, Aamani; Deshmukh, Vishwanath A.; Kuah, Christopher W. K.; Yam, Lester H. L.; Xiang, Liming; Chua, Karen S. G.; Masia, Lorenzo; Campolo, Domenico
2017-01-01
Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants’ hand was passively moved to the target position guided by the H-Man robot (Criterion movement) and were asked to indicate during a second passive movement towards the same target (Matching movement) when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed) and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings. PMID:29161264
Contingent negative variation (CNV) associated with sensorimotor timing error correction.
Jang, Joonyong; Jones, Myles; Milne, Elizabeth; Wilson, Daniel; Lee, Kwang-Hyuk
2016-02-15
Detection and subsequent correction of sensorimotor timing errors are fundamental to adaptive behavior. Using scalp-recorded event-related potentials (ERPs), we sought to find ERP components that are predictive of error correction performance during rhythmic movements. Healthy right-handed participants were asked to synchronize their finger taps to a regular tone sequence (every 600 ms), while EEG data were continuously recorded. Data from 15 participants were analyzed. Occasional irregularities were built into stimulus presentation timing: 90 ms before (advances: negative shift) or after (delays: positive shift) the expected time point. A tapping condition alternated with a listening condition in which identical stimulus sequence was presented but participants did not tap. Behavioral error correction was observed immediately following a shift, with a degree of over-correction with positive shifts. Our stimulus-locked ERP data analysis revealed, 1) increased auditory N1 amplitude for the positive shift condition and decreased auditory N1 modulation for the negative shift condition; and 2) a second enhanced negativity (N2) in the tapping positive condition, compared with the tapping negative condition. In response-locked epochs, we observed a CNV (contingent negative variation)-like negativity with earlier latency in the tapping negative condition compared with the tapping positive condition. This CNV-like negativity peaked at around the onset of subsequent tapping, with the earlier the peak, the better the error correction performance with the negative shifts while the later the peak, the better the error correction performance with the positive shifts. This study showed that the CNV-like negativity was associated with the error correction performance during our sensorimotor synchronization study. Auditory N1 and N2 were differentially involved in negative vs. positive error correction. However, we did not find evidence for their involvement in behavioral error correction. Overall, our study provides the basis from which further research on the role of the CNV in perceptual and motor timing can be developed. Copyright © 2015 Elsevier Inc. All rights reserved.
Usefulness of Guided Breathing for Dose Rate-Regulated Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han-Oh, Sarah; Department of Radiation Oncology, University of Maryland Medical System, Baltimore, MD; Yi, Byong Yong
2009-02-01
Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lungmore » cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 {+-} 0.8 mm and 92% {+-} 5%, 1.9 {+-} 1.0 mm and 93% {+-} 6%, and 1.8 {+-} 0.7 mm and 92% {+-} 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking.« less
[Improvement of team competence in the operating room : Training programs from aviation].
Schmidt, C E; Hardt, F; Möller, J; Malchow, B; Schmidt, K; Bauer, M
2010-08-01
Growing attention has been drawn to patient safety during recent months due to media reports of clinical errors. To date only clinical incident reporting systems have been implemented in acute care hospitals as instruments of risk management. However, these systems only have a limited impact on human factors which account for the majority of all errors in medicine. Crew resource management (CRM) starts here. For the commissioning of a new hospital in Minden, training programs were installed in order to maintain patient safety in a new complex environment. The training was planned in three parts: All relevant processes were defined as standard operating procedures (SOP), visualized and then simulated in the new building. In addition, staff members (trainers) in leading positions were trained in CRM in order to train the complete staff. The training programs were analyzed by questionnaires. Selection of topics, relevance for practice and mode of presentation were rated as very good by 73% of the participants. The staff members ranked the topics communication in crisis situations, individual errors and compensating measures as most important followed by case studies and teamwork. Employees improved in compliance to the SOP, team competence and communication. In high technology environments with escalating workloads and interdisciplinary organization, staff members are confronted with increasing demands in knowledge and skills. To reduce errors under such working conditions relevant processes should be standardized and trained for the emergency situation. Human performance can be supported by well-trained interpersonal skills which are evolved in CRM training. In combination these training programs make a significant contribution to maintaining patient safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amstutz, Christoph A., E-mail: christoph.amstutz@usz.ch; Bechrakis, Nikolaos E.; Foerster, Michael H.
2012-03-15
Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial positionmore » of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.« less
Hickey, Edward J; Nosikova, Yaroslavna; Pham-Hung, Eric; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Redington, Andrew; Van Arsdell, Glen S
2015-02-01
We hypothesized that the National Aeronautics and Space Administration "threat and error" model (which is derived from analyzing >30,000 commercial flights, and explains >90% of crashes) is directly applicable to pediatric cardiac surgery. We implemented a unit-wide performance initiative, whereby every surgical admission constitutes a "flight" and is tracked in real time, with the aim of identifying errors. The first 500 consecutive patients (524 flights) were analyzed, with an emphasis on the relationship between error cycles and permanent harmful outcomes. Among 524 patient flights (risk adjustment for congenital heart surgery category: 1-6; median: 2) 68 (13%) involved residual hemodynamic lesions, 13 (2.5%) permanent end-organ injuries, and 7 deaths (1.3%). Preoperatively, 763 threats were identified in 379 (72%) flights. Only 51% of patient flights (267) were error free. In the remaining 257 flights, 430 errors occurred, most commonly related to proficiency (280; 65%) or judgment (69, 16%). In most flights with errors (173 of 257; 67%), an unintended clinical state resulted, ie, the error was consequential. In 60% of consequential errors (n = 110; 21% of total), subsequent cycles of additional error/unintended states occurred. Cycles, particularly those containing multiple errors, were very significantly associated with permanent harmful end-states, including residual hemodynamic lesions (P < .0001), end-organ injury (P < .0001), and death (P < .0001). Deaths were almost always preceded by cycles (6 of 7; P < .0001). Human error, if not mitigated, often leads to cycles of error and unintended patient states, which are dangerous and precede the majority of harmful outcomes. Efforts to manage threats and error cycles (through crew resource management techniques) are likely to yield large increases in patient safety. Copyright © 2015. Published by Elsevier Inc.
Amiri Arimi, Somayeh; Ghamkhar, Leila; Kahlaee, Amir H
2018-01-02
Impairment in the cervical proprioception and deep flexor muscle function and morphology have been regarded to be associated with chronic neck pain (CNP). The aim of the study is to assess the relationship between proprioception and flexor endurance capacity and size and clinical CNP characteristics. This was an observational, cross-sectional study. Rehabilitation hospital laboratory. Sixty subjects with or without CNP participated in the study. Joint position error, clinical deep flexor endurance test score, longus colli/capitis and sternocleidomastoid muscle size, pain intensity, neck pain-related disability, and fear of movement were assessed. Multivariate analysis of variance and Pearson correlation tests were used to compare the groups and quantify the strength of the associations among variables, respectively. Logistic regression analysis was performed to test the predictive value of the dependent variables for the development of neck pain. CNP patients showed lower flexor endurance (P = 0.01) and smaller longus colli size (P < 0.01). The joint position error was not statistically different between the groups. Longus colli size was correlated with local flexor endurance in both CNP (P = 0.01) and control (P = 0.04) groups. Among clinical CNP characteristics, kinesiophobia showed fair correlation with joint position error (r = 0.39, P = 0.03). Left rotation error and local flexor endurance were significant predictors of CNP development (β = 1.22, P = 0.02, and β = 0.97, P = 0.02, respectively). The results indicated that cervical proprioception was associated neither with deep flexor muscle structure/function nor with clinical CNP characteristics. Left rotation error and local flexor endurance were found relevant to neck pain development. © 2017 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Patient safety priorities in mental healthcare in Switzerland: a modified Delphi study.
Mascherek, Anna C; Schwappach, David L B
2016-08-05
Identifying patient safety priorities in mental healthcare is an emerging issue. A variety of aspects of patient safety in medical care apply for patient safety in mental care as well. However, specific aspects may be different as a consequence of special characteristics of patients, setting and treatment. The aim of the present study was to combine knowledge from the field and research and bundle existing initiatives and projects to define patient safety priorities in mental healthcare in Switzerland. The present study draws on national expert panels, namely, round-table discussion and modified Delphi consensus method. As preparation for the modified Delphi questionnaire, two round-table discussions and one semistructured questionnaire were conducted. Preparative work was conducted between May 2015 and October 2015. The modified Delphi was conducted to gauge experts' opinion on priorities in patient safety in mental healthcare in Switzerland. In two independent rating rounds, experts made private ratings. The modified Delphi was conducted in winter 2015. Nine topics were defined along the treatment pathway: diagnostic errors, non-drug treatment errors, medication errors, errors related to coercive measures, errors related to aggression management against self and others, errors in treatment of suicidal patients, communication errors, errors at interfaces of care and structural errors. Patient safety is considered as an important topic of quality in mental healthcare among experts, but it has been seriously neglected up until now. Activities in research and in practice are needed. Structural errors and diagnostics were given highest priority. From the topics identified, some are overlapping with important aspects of patient safety in medical care; however, some core aspects are unique. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Patient safety priorities in mental healthcare in Switzerland: a modified Delphi study
Mascherek, Anna C
2016-01-01
Objective Identifying patient safety priorities in mental healthcare is an emerging issue. A variety of aspects of patient safety in medical care apply for patient safety in mental care as well. However, specific aspects may be different as a consequence of special characteristics of patients, setting and treatment. The aim of the present study was to combine knowledge from the field and research and bundle existing initiatives and projects to define patient safety priorities in mental healthcare in Switzerland. The present study draws on national expert panels, namely, round-table discussion and modified Delphi consensus method. Design As preparation for the modified Delphi questionnaire, two round-table discussions and one semistructured questionnaire were conducted. Preparative work was conducted between May 2015 and October 2015. The modified Delphi was conducted to gauge experts' opinion on priorities in patient safety in mental healthcare in Switzerland. In two independent rating rounds, experts made private ratings. The modified Delphi was conducted in winter 2015. Results Nine topics were defined along the treatment pathway: diagnostic errors, non-drug treatment errors, medication errors, errors related to coercive measures, errors related to aggression management against self and others, errors in treatment of suicidal patients, communication errors, errors at interfaces of care and structural errors. Conclusions Patient safety is considered as an important topic of quality in mental healthcare among experts, but it has been seriously neglected up until now. Activities in research and in practice are needed. Structural errors and diagnostics were given highest priority. From the topics identified, some are overlapping with important aspects of patient safety in medical care; however, some core aspects are unique. PMID:27496233
Finkelstein's test: a descriptive error that can produce a false positive.
Elliott, B G
1992-08-01
Over the last three decades an error in performing Finkelstein's test has crept into the English literature in both text books and journals. This error can produce a false-positive, and if relied upon, a wrong diagnosis can be made, leading to inappropriate surgery.
Coherent detection of position errors in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu
2007-09-01
Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.
Balthazar, Marcio Luiz Figueredo; Cendes, Fernando; Damasceno, Benito Pereira
2008-11-01
Naming difficulty is common in Alzheimer's disease (AD), but the nature of this problem is not well established. The authors investigated the presence of semantic breakdown and the pattern of general and semantic errors in patients with mild AD, patients with amnestic mild cognitive impairment (aMCI), and normal controls by examining their spontaneous answers on the Boston Naming Test (BNT) and verifying whether they needed or were benefited by semantic and phonemic cues. The errors in spontaneous answers were classified in four mutually exclusive categories (semantic errors, visual paragnosia, phonological errors, and omission errors), and the semantic errors were further subclassified as coordinate, superordinate, and circumlocutory. Patients with aMCI performed normally on the BNT and needed fewer semantic and phonemic cues than patients with mild AD. After semantic cues, subjects with aMCI and control subjects gave more correct answers than patients with mild AD, but after phonemic cues, there was no difference between the three groups, suggesting that the low performance of patients with AD cannot be completely explained by semantic breakdown. Patterns of spontaneous naming errors and subtypes of semantic errors were similar in the three groups, with decreasing error frequency from coordinate to superordinate to circumlocutory subtypes.
Direct evidence for a position input to the smooth pursuit system.
Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe
2005-07-01
When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error. Here, we show that, when a visual target is flashed during ongoing smooth pursuit, it evokes a smooth eye movement toward the flash. The velocity of this evoked smooth movement is proportional to the position error of the flash; it is neither influenced by the velocity of the ongoing smooth pursuit eye movement nor by the occurrence of a saccade, but the effect is absent if the flash is ignored by the subject. Furthermore, the response started around 85 ms after the flash presentation and decayed with an average time constant of 276 ms. Thus this is the first direct evidence of a position input to the smooth pursuit system. This study shows further evidence for a coupling between saccadic and smooth pursuit systems. It also suggests that there is an interaction between position and velocity error signals in the control of more complex movements.
The Importance of Semi-Major Axis Knowledge in the Determination of Near-Circular Orbits
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.
1998-01-01
Modem orbit determination has mostly been accomplished using Cartesian coordinates. This usage has carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented positioning accuracy of GPS has tended to focus attention more on the system's capability to locate the spacecraft's location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit adjustment maneuvers. For the quite common case of near-circular orbits, the degree to which position and velocity estimates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly produce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are the following: (1) downrange position error grows at the per orbit rate of 3(pi) times the SMA error; (2) a velocity change imparted to the orbit will have an error of (pi) divided by the orbit period times the SMA error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequential orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construction of the initial covariance accomplishes half of this objective, by specifying the partition of the covariance corresponding to down-track position and radial velocity errors. The remainder of the in-plane covariance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illustrates the effect of properly and not properly initializing a covariance. This figure was produced by propagating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial position coordinates, of about half of the lower subplot, whose initial covariance was based on other considerations.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
Tao, Haojuan; Wong, Gloria H Y; Zhang, Huiran; Zhou, Yuan; Xue, Zhimin; Shan, Baoci; Chen, Eric Y H; Liu, Zhening
2015-07-30
Delusions of reference (DOR) are theoretically linked with aberrant salience and associative learning. Previous studies have shown that the caudate nucleus plays a critical role in the cognitive circuits of coding prediction errors and associative learning. The current study aimed at testing the hypothesis that abnormalities in the caudate nucleus may be involved in the neuroanatomical substrate of DOR. Structural magnetic resonance imaging of the brain was performed in 44 first-episode psychosis patients (with diagnoses of schizophrenia or schizophreniform disorder) and 25 healthy controls. Patients were divided into three groups according to symptoms: patients with DOR as prominent positive symptom; patients with prominent positive symptoms other than DOR; and patients with minimal positive symptoms. All groups were age-, gender-, and education-matched, and patient groups were matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to identify group differences in grey matter density. Relationships were explored between grey matter density and DOR. Patients with DOR were found to have reduced grey matter density in the caudate compared with patients without DOR and healthy controls. Grey matter density values of the left and right caudate head were negatively correlated with DOR severity. Decreased grey matter density in the caudate nucleus may underlie DOR in early psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Malone, Emma; Jehl, Markus; Arridge, Simon; Betcke, Timo; Holder, David
2014-06-01
We investigate the application of multifrequency electrical impedance tomography (MFEIT) to imaging the brain in stroke patients. The use of MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke, and therefore improve the outcome of treatment. Recent advances in the imaging methodology suggest that the use of spectral constraints could allow for the reconstruction of a one-shot image. We performed a simulation study to investigate the feasibility of imaging stroke in a head model with realistic conductivities. We introduced increasing levels of modelling errors to test the robustness of the method to the most common sources of artefact. We considered the case of errors in the electrode placement, spectral constraints, and contact impedance. The results indicate that errors in the position and shape of the electrodes can affect image quality, although our imaging method was successful in identifying tissues with sufficiently distinct spectra.
Functional Multijoint Position Reproduction Acuity in Overhead-Throwing Athletes
Tripp, Brady L; Uhl, Timothy L; Mattacola, Carl G; Srinivasan, Cidambi; Shapiro, Robert
2006-01-01
Context: Baseball players rely on the sensorimotor system to uphold the balance between upper extremity stability and mobility while maintaining athletic performance. However, few researchers have studied functional multijoint measures of sensorimotor acuity in overhead-throwing athletes. Objective: To compare sensorimotor acuity between 2 high-demand functional positions and among planes of motion within individual joints and to describe a novel method of measuring sensorimotor function. Design: Single-session, repeated-measures design. Setting: University musculoskeletal research laboratory. Patients or Other Participants: Twenty-one National Collegiate Athletic Association Division I baseball players (age = 20.8 ± 1.5 years, height = 181.3 ± 5.1 cm, mass = 87.8 ± 9.1 kg) with no history of upper extremity injury or central nervous system disorder. Main Outcome Measure(s): We measured active multijoint position reproduction acuity in multiple planes using an electromagnetic tracking device. Subjects reproduced 2 positions: arm cock and ball release. We calculated absolute and variable error for individual motions at the scapulothoracic, glenohumeral, elbow, and wrist joints and calculated overall joint acuity with 3-dimensional variable error. Results: Acuity was significantly better in the arm-cock position compared with ball release at the scapulothoracic and glenohumeral joints. We observed significant differences among planes of motion within the scapulothoracic and glenohumeral joints at ball release. Scapulothoracic internal rotation and glenohumeral horizontal abduction and rotation displayed less acuity than other motions. Conclusions: We established the reliability of a functional measure of upper extremity sensorimotor system acuity in baseball players. Using this technique, we observed differences in acuity between 2 test positions and among planes of motion within the glenohumeral and scapulothoracic joints. Clinicians may consider these differences when designing and implementing sensorimotor system training. Our error scores are similar in magnitude to those reported using single-joint and single-plane measures. However, 3-dimensional, multijoint measures allow practical, unconstrained test positions and offer additional insight into the upper extremity as a functional unit. PMID:16791298
Catching errors with patient-specific pretreatment machine log file analysis.
Rangaraj, Dharanipathy; Zhu, Mingyao; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar H; Brame, Scott; Mutic, Sasa
2013-01-01
A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian. Using an in-house developed computer program called "Dynalog QA," we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams. Since clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein. It has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less
Applying health education theory to patient safety programs: three case studies.
Gilkey, Melissa B; Earp, Jo Anne L; French, Elizabeth A
2008-04-01
Program planning for patient safety is challenging because intervention-oriented surveillance data are not yet widely available to those working in this nascent field. Even so, health educators are uniquely positioned to contribute to patient safety intervention efforts because their theoretical training provides them with a guide for designing and implementing prevention programs. This article demonstrates the utility of applying health education concepts from three prominent patient safety campaigns, including the concepts of risk perception, community participation, and social marketing. The application of these theoretical concepts to patient safety programs suggests that health educators possess a knowledge base and skill set highly relevant to patient safety and that their perspective should be increasingly brought to bear on the design and evaluation of interventions that aim to protect patients from preventable medical error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoelstra, Femke; Soernsen de Koste, John R. van; Vincent, Andrew
2009-06-01
Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihoodmore » ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop adaptive planning with feedback for MRI-guided focal HDR prostate brachytherapy with a single divergent needle robotic implant device. After each needle insertion, the dwell positions for that needle are calculated and the positioning of remaining needles and dosimetry are both updated based on MR imaging. Methods: Errors in needle positioning may occur due to inaccurate needle insertion (caused by e.g. the needle’s bending) and unpredictable changes in patient anatomy. Consequently, the dose plan quality might dramatically decrease compared to the preplan. In this study, a procedure was developed to re-optimize, after each needle insertion, the remaining needlemore » angulations, source positions and dwell times in order to obtain an optimal coverage (D95% PTV>19 Gy) without exceeding the constraints of the organs at risk (OAR) (D10% urethra<21 Gy, D1cc bladder<12 Gy and D1cc rectum<12 Gy). Complete HDR procedures with 6 needle insertions were simulated for a patient MR-image set with PTV, prostate, urethra, bladder and rectum delineated. Random angulation errors, modeled by a Gaussian distribution (standard deviation of 3 mm at the needle’s tip), were generated for each needle insertion. We compared the final dose parameters for the situations (I) without re-optimization and (II) with the automatic feedback. Results: The computation time of replanning was below 100 seconds on a current desk computer. For the patient tested, a clinically acceptable dose plan was achieved while applying the automatic feedback (median(range) in Gy, D95% PTV: 19.9(19.3–20.3), D10% urethra: 13.4(11.9–18.0), D1cc rectum: 11.0(10.7–11.6), D1cc bladder: 4.9(3.6–6.8)). This was not the case without re-optimization (median(range) in Gy, D95% PTV: 19.4(14.9–21.3), D10% urethra: 12.6(11.0–15.7), D1cc rectum: 10.9(8.9–14.1), D1cc bladder: 4.8(4.4–5.2)). Conclusion: An automatic guidance strategy for HDR prostate brachytherapy was developed to compensate errors in needle positioning and improve the dose distribution. Without re-optimization, target coverage and OAR constraints may not be achieved. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are full-time employees of Philips Medical Systems Nederland B.V.« less
Hicks, Rodney W; Becker, Shawn C
2006-01-01
Medication errors can be harmful, especially if they involve the intravenous (IV) route of administration. A mixed-methodology study using a 5-year review of 73,769 IV-related medication errors from a national medication error reporting program indicates that between 3% and 5% of these errors were harmful. The leading type of error was omission, and the leading cause of error involved clinician performance deficit. Using content analysis, three themes-product shortage, calculation errors, and tubing interconnectivity-emerge and appear to predispose patients to harm. Nurses often participate in IV therapy, and these findings have implications for practice and patient safety. Voluntary medication error-reporting programs afford an opportunity to improve patient care and to further understanding about the nature of IV-related medication errors.
SU-F-E-18: Training Monthly QA of Medical Accelerators: Illustrated Instructions for Self-Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Court, L; Wang, H; Aten, D
Purpose: To develop and test clear illustrated instructions for training of monthly mechanical QA of medical linear accelerators. Methods: Illustrated instructions were created for monthly mechanical QA with tolerance tabulated, and underwent several steps of review and refinement. Testers with zero QA experience were then recruited from our radiotherapy department (1 student, 2 computational scientists and 8 dosimetrists). The following parameters were progressively de-calibrated on a Varian C-series linac: Group A = gantry angle, ceiling laser position, X1 jaw position, couch longitudinal position, physical graticule position (5 testers); Group B = Group A + wall laser position, couch lateral andmore » vertical position, collimator angle (3 testers); Group C = Group B + couch angle, wall laser angle, and optical distance indicator (3 testers). Testers were taught how to use the linac, and then used the instructions to try to identify these errors. A physicist observed each session, giving support on machine operation, as necessary. The instructions were further tested with groups of therapists, graduate students and physics residents at multiple institutions. We have also changed the language of the instructions to simulate using the instructions with non-English speakers. Results: Testers were able to follow the instructions. They determined gantry, collimator and couch angle errors within 0.4, 0.3, and 0.9degrees of the actual changed values, respectively. Laser positions were determined within 1mm, and jaw positions within 2mm. Couch position errors were determined within 2 and 3mm for lateral/longitudinal and vertical errors, respectively. Accessory positioning errors were determined within 1mm. ODI errors were determined within 2mm when comparing with distance sticks, and 6mm when using blocks, indicating that distance sticks should be the preferred approach for inexperienced staff. Conclusion: Inexperienced users were able to follow these instructions, and catch errors within the criteria suggested by AAPM TG142 for linacs used for IMRT.« less
Position sense at the human elbow joint measured by arm matching or pointing.
Tsay, Anthony; Allen, Trevor J; Proske, Uwe
2016-10-01
Position sense at the human elbow joint has traditionally been measured in blindfolded subjects using a forearm matching task. Here we compare position errors in a matching task with errors generated when the subject uses a pointer to indicate the position of a hidden arm. Evidence from muscle vibration during forearm matching supports a role for muscle spindles in position sense. We have recently shown using vibration, as well as muscle conditioning, which takes advantage of muscle's thixotropic property, that position errors generated in a forearm pointing task were not consistent with a role by muscle spindles. In the present study we have used a form of muscle conditioning, where elbow muscles are co-contracted at the test angle, to further explore differences in position sense measured by matching and pointing. For fourteen subjects, in a matching task where the reference arm had elbow flexor and extensor muscles contracted at the test angle and the indicator arm had its flexors conditioned at 90°, matching errors lay in the direction of flexion by 6.2°. After the same conditioning of the reference arm and extension conditioning of the indicator at 0°, matching errors lay in the direction of extension (5.7°). These errors were consistent with predictions based on a role by muscle spindles in determining forearm matching outcomes. In the pointing task subjects moved a pointer to align it with the perceived position of the hidden arm. After conditioning of the reference arm as before, pointing errors all lay in a more extended direction than the actual position of the arm by 2.9°-7.3°, a distribution not consistent with a role by muscle spindles. We propose that in pointing muscle spindles do not play the major role in signalling limb position that they do in matching, but that other sources of sensory input should be given consideration, including afferents from skin and joint.
Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control
Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun
2016-01-01
Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768
Kathpal, Madeera; Tinnel, Brent; Sun, Kelly; Ninneman, Stephanie; Malmer, Cynthia; Wendt, Stacie; Buff, Sheena; Valentich, David; Gossweiler, Marisa; Macdonald, Dusten
2016-01-01
With most patients now living long after their breast cancer diagnosis, minimizing long-term side effects of breast cancer treatment, such as reducing late cardiac and pulmonary side effects of radiation therapy (RT), is particularly important. It is now possible to use an electromagnetic tracking system to allow real-time tracking of chest wall (CW) position during the delivery of RT. Here, we report our experience using electromagnetic surface transponders as an added measure of CW position during deep inspiration breath hold (DIBH). We conducted a single-institution institutional review board-approved retrospective review of 15 female left-sided breast cancer patients treated between July 2012 and June 2013 with conventional whole breast radiation. We compared daily port films with treatment planning digitally reconstructed radiographs to establish daily setup accuracy, then used Calypso tracings to compare the position of the CW during the daily port film with the position of the CW during that day's treatment to determine the reproducibility of the breath hold position. Finally, we created competing treatment plans not using DIBH and used a paired t test to compare mean heart (MH) and left anterior descending (LAD) coronary artery dose between the 2 techniques. Mean total error (inter- and intrafraction) was dominated by interfraction error and was greatest in the longitudinal direction with a mean of 2.13 mm and 2 standard deviations of 8.2 mm. DIBH significantly reduced MH and LAD dose versus free breathing plans (MH, 1.26 Gy vs 2.84 Gy, P ≤ .001; LAD, 5.49 Gy vs 18.15 Gy, P ≤ .001). This study demonstrates that DIBH with electromagnetic confirmation of CW position is feasible, and allows potential improvement in the accurate delivery of adjuvant RT therapy for breast cancer. Published by Elsevier Inc.
The Impact of a Patient Safety Program on Medical Error Reporting
2005-05-01
307 The Impact of a Patient Safety Program on Medical Error Reporting Donald R. Woolever Abstract Background: In response to the occurrence of...a sentinel event—a medical error with serious consequences—Eglin U.S. Air Force (USAF) Regional Hospital developed and implemented a patient safety...communication, teamwork, and reporting. Objective: To determine the impact of a patient safety program on patterns of medical error reporting. Methods: This
Mino-León, Dolores; Reyes-Morales, Hortensia; Jasso, Luis; Douvoba, Svetlana Vladislavovna
2012-06-01
Inappropriate prescription is a relevant problem in primary health care settings in Mexico, with potentially harmful consequences for patients. To evaluate the effectiveness of incorporating a pharmacist into primary care health team to reduce prescription errors for patients with diabetes and/or hypertension. One Family Medicine Clinic from the Mexican Institute of Social Security in Mexico City. A "pharmacotherapy intervention" provided by pharmacists through a quasi experimental (before-after) design was carried out. Physicians who allowed access to their diabetes and/or hypertensive patients' medical records and prescriptions were included in the study. Prescription errors were classified as "filling", "clinical" or "both". Descriptive analysis, identification of potential drug-drug interactions (pD-DI), and comparison of the proportion of patients with prescriptions with errors detected "before" and "after" intervention were performed. Decrease in the proportion of patients who received prescriptions with errors after the intervention. Pharmacists detected at least one type of error in 79 out of 160 patients. Errors were "clinical", "both" and "filling" in 47, 21 and 11 of these patient's prescriptions respectively. Predominant errors were, in the subgroup of patient's prescriptions with "clinical" errors, pD-DI; in the subgroup of "both" errors, lack of information on dosing interval and pD-DI; and in the "filling" subgroup, lack of information on dosing interval. The pD-DI caused 50 % of the errors detected, from which 19 % were of major severity. The impact of the correction of errors post-intervention was observed in 19 % of patients who had erroneous prescriptions before the intervention of the pharmacist (49.3-30.3 %, p < 0.05). The impact of the intervention was relevant from a clinical point of view for the public health services in Mexico. The implementation of early warning systems of the most widely prescribed drugs is an alternative for reducing prescription errors and consequently the risks they may cause.
Dreisinger, Naomi; Zapolsky, Nathan
2017-02-01
The emergency department (ED) is an environment that is conducive to medical errors. The ED is a time-pressured environment where physicians aim to rapidly evaluate and treat patients. Quick thinking and problem-based solutions are often used to assist in evaluation and diagnosis. Error analysis leads to an understanding of the cause of a medical error and is important to prevent future errors. Research suggests mechanisms to prevent medical errors in the pediatric ED, but prevention is not always possible. Transparency about errors is necessary to assure a trusting doctor-patient relationship. Patients want to be informed about all errors, and apologies are hard. Apologizing for a significant medical error that may have caused a complication is even harder. Having a systematic way to go about apologizing makes the process easier, and helps assure that the right information is relayed to the patient and his or her family. This creates an environment of autonomy and shared decision making that is ultimately beneficial to all aspects of patient care.
Modulation of habit formation by levodopa in Parkinson's disease.
Marzinzik, Frank; Wotka, Johann; Wahl, Michael; Krugel, Lea K; Kordsachia, Catarina; Klostermann, Fabian
2011-01-01
Dopamine promotes the execution of positively reinforced actions, but its role for the formation of behaviour when feedback is unavailable remains open. To study this issue, the performance of treated/untreated patients with Parkinson's disease and controls was analysed in an implicit learning task, hypothesising dopamine-dependent adherence to hidden task rules. Sixteen patients on/off levodopa and fourteen healthy subjects engaged in a Go/NoGo paradigm comprising four equiprobable stimuli. One of the stimuli was defined as target which was first consistently preceded by one of the three non-target stimuli (conditioning), whereas this coupling was dissolved thereafter (deconditioning). Two task versions were presented: in a 'Go version', only the target cue required the execution of a button press, whereas non-target stimuli were not instructive of a response; in a 'NoGo version', only the target cue demanded the inhibition of the button press which was demanded upon any non-target stimulus. Levodopa influenced in which task version errors grew from conditioning to deconditioning: in unmedicated patients just as controls errors only rose in the NoGo version with an increase of incorrect responses to target cues. Contrarily, in medicated patients errors went up only in the Go version with an increase of response omissions to target cues. The error increases during deconditioning can be understood as a perpetuation of reaction tendencies acquired during conditioning. The levodopa-mediated modulation of this carry-over effect suggests that dopamine supports habit conditioning under the task demand of response execution, but dampens it when inhibition is required. However, other than in reinforcement learning, supporting dopaminergic actions referred to the most frequent, i. e., non-target behaviour. Since this is passive whenever selective actions are executed against an inactive background, dopaminergic treatment could in according scenarios contribute to passive behaviour in patients with Parkinson's disease.
Fisseni, Gregor; Pentzek, Michael; Abholz, Heinz-Harald
2008-02-01
GPs' recollections about their 'most serious errors in treatment' and about the consequences for themselves. Does it make a difference, who (else) contributed to the error, or to its discovery or disclosure? Anonymous questionnaire study concerning the 'three most serious errors in your career as a GP'. The participating doctors were given an operational definition of 'serious error'. They applied a special recall technique, using patient-induced associations to bring to mind former 'serious errors'. The recall method and the semi-structured 25-item questionnaire used were developed and piloted by the authors. The items were analysed quantitatively and by qualitative content analysis. General practices in the North Rhine region in Germany: 32 GPs anonymously reported about 75 'most serious errors'. In more than half of the cases analysed, other people contributed considerably to the GPs' serious errors. Most of the errors were discovered and disclosed to the patient by doctors: either by the GPs themselves, or by colleagues. A lot of GPs suffered loss of reputation and loss of patients. However, the number of patients staying with their GP clearly exceeded the number leaving their GP, depending on who else contributed to the error, who discovered it and who disclosed it to the patient. The majority of patients still trusted their GP after a serious error, especially if the GP was not the only one who contributed to the error and if the GP played an active role in the discovery and disclosure or the error.
Plan for Quality to Improve Patient Safety at the Point of Care
Ehrmeyer, Sharon S.
2011-01-01
The U.S. Institute of Medicine (IOM) much publicized report in “To Err is Human” (2000, National Academy Press) stated that as many as 98 000 hospitalized patients in the U.S. die each year due to preventable medical errors. This revelation about medical error and patient safety focused the public and the medical community's attention on errors in healthcare delivery including laboratory and point-of-care-testing (POCT). Errors introduced anywhere in the POCT process clearly can impact quality and place patient's safety at risk. While POCT performed by or near the patient reduces the potential of some errors, the process presents many challenges to quality with its multiple tests sites, test menus, testing devices and non-laboratory analysts, who often have little understanding of quality testing. Incoherent or no regulations and the rapid availability of test results for immediate clinical intervention can further amplify errors. System planning and management of the entire POCT process are essential to reduce errors and improve quality and patient safety. PMID:21808107
Bell, Sigall K; White, Andrew A; Yi, Jean C; Yi-Frazier, Joyce P; Gallagher, Thomas H
2017-12-01
Transparent communication after medical error includes disclosing the mistake to the patient, discussing the event with colleagues, and reporting to the institution. Little is known about whether attitudes about these transparency practices are related. Understanding these relationships could inform educational and organizational strategies to promote transparency. We analyzed responses of 3038 US and Canadian physicians to a medical error communication survey. We used bivariate correlations, principal components analysis, and linear regression to determine whether and how physician attitudes about transparent communication with patients, peers, and the institution after error were related. Physician attitudes about disclosing errors to patients, peers, and institutions were correlated (all P's < 0.001) and represented 2 principal components analysis factors, namely, communication with patients and communication with peers/institution. Predictors of attitudes supporting transparent communication with patients and peers/institution included female sex, US (vs Canadian) doctors, academic (vs private) practice, the belief that disclosure decreased likelihood of litigation, and the belief that system changes occur after error reporting. In addition, younger physicians, surgeons, and those with previous experience disclosing a serious error were more likely to agree with disclosure to patients. In comparison, doctors who believed that disclosure would decrease patient trust were less likely to agree with error disclosure to patients. Previous disclosure education was associated with attitudes supporting greater transparency with peers/institution. Physician attitudes about discussing errors with patients, colleagues, and institutions are related. Several predictors of transparency affect all 3 practices and are potentially modifiable by educational and institutional strategies.
Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID
NASA Astrophysics Data System (ADS)
Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun
2015-11-01
Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...
Errors in imaging patients in the emergency setting
Reginelli, Alfonso; Lo Re, Giuseppe; Midiri, Federico; Muzj, Carlo; Romano, Luigia; Brunese, Luca
2016-01-01
Emergency and trauma care produces a “perfect storm” for radiological errors: uncooperative patients, inadequate histories, time-critical decisions, concurrent tasks and often junior personnel working after hours in busy emergency departments. The main cause of diagnostic errors in the emergency department is the failure to correctly interpret radiographs, and the majority of diagnoses missed on radiographs are fractures. Missed diagnoses potentially have important consequences for patients, clinicians and radiologists. Radiologists play a pivotal role in the diagnostic assessment of polytrauma patients and of patients with non-traumatic craniothoracoabdominal emergencies, and key elements to reduce errors in the emergency setting are knowledge, experience and the correct application of imaging protocols. This article aims to highlight the definition and classification of errors in radiology, the causes of errors in emergency radiology and the spectrum of diagnostic errors in radiography, ultrasonography and CT in the emergency setting. PMID:26838955
Errors in imaging patients in the emergency setting.
Pinto, Antonio; Reginelli, Alfonso; Pinto, Fabio; Lo Re, Giuseppe; Midiri, Federico; Muzj, Carlo; Romano, Luigia; Brunese, Luca
2016-01-01
Emergency and trauma care produces a "perfect storm" for radiological errors: uncooperative patients, inadequate histories, time-critical decisions, concurrent tasks and often junior personnel working after hours in busy emergency departments. The main cause of diagnostic errors in the emergency department is the failure to correctly interpret radiographs, and the majority of diagnoses missed on radiographs are fractures. Missed diagnoses potentially have important consequences for patients, clinicians and radiologists. Radiologists play a pivotal role in the diagnostic assessment of polytrauma patients and of patients with non-traumatic craniothoracoabdominal emergencies, and key elements to reduce errors in the emergency setting are knowledge, experience and the correct application of imaging protocols. This article aims to highlight the definition and classification of errors in radiology, the causes of errors in emergency radiology and the spectrum of diagnostic errors in radiography, ultrasonography and CT in the emergency setting.
Gade, Venkata; Allen, Jerome; Cole, Jeffrey L; Barrance, Peter J
2016-07-01
To characterize the ability of patients with symptomatic knee osteoarthritis (OA) to perform a weight-bearing activity compatible with upright magnetic resonance imaging (MRI) scanning and how this ability is affected by knee pain symptoms and flexion angles. Cross-sectional observational study assessing effects of knee flexion angle, pain level, and study sequence on accuracy and duration of performing a task used in weight-bearing MRI evaluation. Visual feedback of knee position from an MRI compatible sensor was provided. Pain levels were self-reported on a standardized scale. Simulated MRI setup in a research laboratory. Convenience sample of individuals (N=14; 9 women, 5 men; mean, 69±14y) with symptomatic knee OA. Not applicable. Averaged absolute and signed angle error from target knee flexion for each minute of trial and duration tolerance (the duration that subjects maintained position within a prescribed error threshold). Absolute targeting error increased at longer trial durations (P<.001). Duration tolerance decreased with increasing pain (mean ± SE, no pain: 3min 19s±11s; severe pain: 1min 49s±23s; P=.008). Study sequence affected duration tolerance (first knee: 3min 5s±9.1s; second knee: 2min 19s±9.7s; P=.015). The study provided evidence that weight-bearing MRI evaluations based on imaging protocols in the range of 2 to 3 minutes are compatible with patients reporting mild to moderate knee OA-related pain. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Morales-González, María Fernanda; Galiano Gálvez, María Alejandra
2017-09-08
Our institution implemented the use of pre-designed labeling of intravenous drugs and fluids, administration routes and infusion pumps of to prevent medication errors. To evaluate the effectiveness of predesigned labeling in reducing medication errors in the preparation and administration stages of prescribed medication in patients hospitalized with invasive lines, and to characterize medication errors. This is a pre/post intervention study. Pre-intervention group: invasively administered dose from July 1st to December 31st, 2014, using traditional labeling (adhesive paper handwritten note). Post-intervention group: dose administered from January 1st to June 30th, 2015, using predesigned labeling (labeling with preset data-adhesive labels, color- grouped by drugs, labels with colors for invasive lines). Outcome: medication errors in hospitalized patients, as measured with notification form and record electronics. Tabulation/analysis Stata-10, with descriptive statistics, hypotheses testing, estimating risk with 95% confidence. In the pre-intervention group, 5,819 doses of drugs were administered invasively in 634 patients. Error rate of 1.4 x 1,000 administrations. The post-intervention group of 1088 doses comprised 8,585 patients with similar routes of administration. The error rate was 0.3 x 1,000 (p = 0.034). Patients receiving medication through an invasive route who did not use predesigned labeling had 4.6 times more risk of medication error than those who had used predesigned labels (95% CI: 1.25 to 25.4). The adult critically ill patient unit had the highest proportion of medication errors. The most frequent error was wrong dose administration. 41.2% produced harm to the patient. The use of predesigned labeling in invasive lines reduces errors in medication in the last two phases: preparation and administration.
Missed lung cancer: when, where, and why?
del Ciello, Annemilia; Franchi, Paola; Contegiacomo, Andrea; Cicchetti, Giuseppe; Bonomo, Lorenzo; Larici, Anna Rita
2017-01-01
Missed lung cancer is a source of concern among radiologists and an important medicolegal challenge. In 90% of the cases, errors in diagnosis of lung cancer occur on chest radiographs. It may be challenging for radiologists to distinguish a lung lesion from bones, pulmonary vessels, mediastinal structures, and other complex anatomical structures on chest radiographs. Nevertheless, lung cancer can also be overlooked on computed tomography (CT) scans, regardless of the context, either if a clinical or radiologic suspect exists or for other reasons. Awareness of the possible causes of overlooking a pulmonary lesion can give radiologists a chance to reduce the occurrence of this eventuality. Various factors contribute to a misdiagnosis of lung cancer on chest radiographs and on CT, often very similar in nature to each other. Observer error is the most significant one and comprises scanning error, recognition error, decision-making error, and satisfaction of search. Tumor characteristics such as lesion size, conspicuity, and location are also crucial in this context. Even technical aspects can contribute to the probability of skipping lung cancer, including image quality and patient positioning and movement. Albeit it is hard to remove missed lung cancer completely, strategies to reduce observer error and methods to improve technique and automated detection may be valuable in reducing its likelihood. PMID:28206951
Intact error monitoring in combat Veterans with post-traumatic stress disorder.
Swick, Diane; Honzel, Nikki; Turken, U
2015-11-30
The error-related negativity (ERN) is a neuroelectric signature of performance monitoring during speeded response time tasks. Previous studies indicate that individuals with anxiety disorders show ERN enhancements that correlate with the degree of clinical symptomology. Less is known about the error monitoring system in post-traumatic stress disorder (PTSD). PTSD is characterized by impairments in the regulation of fear and other emotional responses, as well as deficits in maintaining cognitive control. Here, combat Veterans with PTSD were compared to control Veterans in two different versions of the flanker task (n=13 or 14 per group). Replicating and extending previous findings, PTSD patients showed an intact ERN in both experiments. In addition, task performance and error compensation behavior were intact. Finally, ERN amplitude showed no relationship with self-reported PTSD, depression, or post-concussive symptoms. These results suggest that error monitoring represents a relative strength in PTSD that can dissociate from cognitive control functions that are impaired, such as response inhibition and sustained attention. A healthy awareness of errors in external actions could be leveraged to improve interoceptive awareness of emotional state. The results could have positive implications for PTSD treatments that rely on self-monitoring abilities, such as neurofeedback and mindfulness training. Published by Elsevier Ireland Ltd.
Kuikka, Liisa; Pitkälä, Kaisu
2014-01-01
Abstract Objective. To study coping differences between young and experienced GPs in primary care who experience medical errors and uncertainty. Design. Questionnaire-based survey (self-assessment) conducted in 2011. Setting. Finnish primary practice offices in Southern Finland. Subjects. Finnish GPs engaged in primary health care from two different respondent groups: young (working experience ≤ 5years, n = 85) and experienced (working experience > 5 years, n = 80). Main outcome measures. Outcome measures included experiences and attitudes expressed by the included participants towards medical errors and tolerance of uncertainty, their coping strategies, and factors that may influence (positively or negatively) sources of errors. Results. In total, 165/244 GPs responded (response rate: 68%). Young GPs expressed significantly more often fear of committing a medical error (70.2% vs. 48.1%, p = 0.004) and admitted more often than experienced GPs that they had committed a medical error during the past year (83.5% vs. 68.8%, p = 0.026). Young GPs were less prone to apologize to a patient for an error (44.7% vs. 65.0%, p = 0.009) and found, more often than their more experienced colleagues, on-site consultations and electronic databases useful for avoiding mistakes. Conclusion. Experienced GPs seem to better tolerate uncertainty and also seem to fear medical errors less than their young colleagues. Young and more experienced GPs use different coping strategies for dealing with medical errors. Implications. When GPs become more experienced, they seem to get better at coping with medical errors. Means to support these skills should be studied in future research. PMID:24914458
Huckels-Baumgart, Saskia; Baumgart, André; Buschmann, Ute; Schüpfer, Guido; Manser, Tanja
2016-12-21
Interruptions and errors during the medication process are common, but published literature shows no evidence supporting whether separate medication rooms are an effective single intervention in reducing interruptions and errors during medication preparation in hospitals. We tested the hypothesis that the rate of interruptions and reported medication errors would decrease as a result of the introduction of separate medication rooms. Our aim was to evaluate the effect of separate medication rooms on interruptions during medication preparation and on self-reported medication error rates. We performed a preintervention and postintervention study using direct structured observation of nurses during medication preparation and daily structured medication error self-reporting of nurses by questionnaires in 2 wards at a major teaching hospital in Switzerland. A volunteer sample of 42 nurses was observed preparing 1498 medications for 366 patients over 17 hours preintervention and postintervention on both wards. During 122 days, nurses completed 694 reporting sheets containing 208 medication errors. After the introduction of the separate medication room, the mean interruption rate decreased significantly from 51.8 to 30 interruptions per hour (P < 0.01), and the interruption-free preparation time increased significantly from 1.4 to 2.5 minutes (P < 0.05). Overall, the mean medication error rate per day was also significantly reduced after implementation of the separate medication room from 1.3 to 0.9 errors per day (P < 0.05). The present study showed the positive effect of a hospital-based intervention; after the introduction of the separate medication room, the interruption and medication error rates decreased significantly.
Disclosing Medical Errors to Patients: Attitudes and Practices of Physicians and Trainees
Jones, Elizabeth W.; Wu, Barry J.; Forman-Hoffman, Valerie L.; Levi, Benjamin H.; Rosenthal, Gary E.
2007-01-01
BACKGROUND Disclosing errors to patients is an important part of patient care, but the prevalence of disclosure, and factors affecting it, are poorly understood. OBJECTIVE To survey physicians and trainees about their practices and attitudes regarding error disclosure to patients. DESIGN AND PARTICIPANTS Survey of faculty physicians, resident physicians, and medical students in Midwest, Mid-Atlantic, and Northeast regions of the United States. MEASUREMENTS Actual error disclosure; hypothetical error disclosure; attitudes toward disclosure; demographic factors. RESULTS Responses were received from 538 participants (response rate = 77%). Almost all faculty and residents responded that they would disclose a hypothetical error resulting in minor (97%) or major (93%) harm to a patient. However, only 41% of faculty and residents had disclosed an actual minor error (resulting in prolonged treatment or discomfort), and only 5% had disclosed an actual major error (resulting in disability or death). Moreover, 19% acknowledged not disclosing an actual minor error and 4% acknowledged not disclosing an actual major error. Experience with malpractice litigation was not associated with less actual or hypothetical error disclosure. Faculty were more likely than residents and students to disclose a hypothetical error and less concerned about possible negative consequences of disclosure. Several attitudes were associated with greater likelihood of hypothetical disclosure, including the belief that disclosure is right even if it comes at a significant personal cost. CONCLUSIONS There appears to be a gap between physicians’ attitudes and practices regarding error disclosure. Willingness to disclose errors was associated with higher training level and a variety of patient-centered attitudes, and it was not lessened by previous exposure to malpractice litigation. PMID:17473944
Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law
NASA Astrophysics Data System (ADS)
Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang
2017-04-01
This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy
Dai, Jian‐Rong
2016-01-01
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two‐dimensional kV projections covering a narrow scan angles. Comparing with conventional cone‐beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic processing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone‐beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU‐based algorithm and CPU‐based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU‐based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU‐based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU‐based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy. PACS number(s): 87.57.nf PMID:27074482
Automatic patient alignment system using 3D ultrasound.
Kaar, Marcus; Figl, Michael; Hoffmann, Rainer; Birkfellner, Wolfgang; Stock, Markus; Georg, Dietmar; Goldner, Gregor; Hummel, Johann
2013-04-01
Recent developments in radiation therapy such as intensity modulated radiotherapy (IMRT) or dose painting promise to provide better dose distribution on the tumor. For effective application of these methods the exact positioning of the patient and the localization of the irradiated organ and surrounding structures is crucial. Especially with respect to the treatment of the prostate, ultrasound (US) allows for differentiation between soft tissue and was therefore applied by various repositioning systems, such as BAT or Clarity. The authors built a new system which uses 3D US at both sites, the CT room and the intervention room and applied a 3D/3D US/US registration for automatic repositioning. In a first step the authors applied image preprocessing methods to prepare the US images for an optimal registration process. For the 3D/3D registration procedure five different metrics were evaluated. To find the image metric which fits best for a particular patient three 3D US images were taken at the CT site and registered to each other. From these results an US registration error was calculated. The most successful image metric was then applied for the US/US registration process. The success of the whole repositioning method was assessed by taking the results of an ExacTrac system as golden standard. The US/US registration error was found to be 2.99 ± 1.54 mm with respect to the mutual information metric by Mattes (eleven patients) which revealed to be the most suitable of the assessed metrics. For complete repositioning chain the error amounted to 4.15 ± 1.20 mm (ten patients). The authors developed a system for patient repositioning which works automatically without the necessity of user interaction with an accuracy which seems to be suitable for clinical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka
2015-04-15
Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less
Analysis of Sources of Large Positioning Errors in Deterministic Fingerprinting
2017-01-01
Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities. PMID:29186921
NASA Technical Reports Server (NTRS)
Keller, M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Inherent errors in using nonmetric Skylab photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The final block adjustment was executed holding to 14 of the office-identified photo control points. Solution accuracy was evaluated by comparing the analytically computed ground positions of the withheld photo control points with their known ground positions and also by determining the standard errors of these points from variance values. A horizontal position RMS error of 15 meters was attained. The maximum observed error in position at a control point was 25 meters.
[Refractive errors in patients with cerebral palsy].
Mrugacz, Małgorzata; Bandzul, Krzysztof; Kułak, Wojciech; Poppe, Ewa; Jurowski, Piotr
2013-04-01
Ocular changes are common in patients with cerebral palsy (CP) and they exist in about 50% of cases. The most common are refractive errors and strabismus disease. The aim of the paper was to estimate the relativeness between refractive errors and neurological pathologies in patients with selected types of CP. MATERIAL AND METHODS. The subject of the analysis was showing refractive errors in patients within two groups of CP: diplegia spastica and tetraparesis, with nervous system pathologies taken into account. Results. This study was proven some correlations between refractive errors and type of CP and severity of the CP classified in GMFCS scale. Refractive errors were more common in patients with tetraparesis than with diplegia spastica. In the group with diplegia spastica more common were myopia and astigmatism, however in tetraparesis - hyperopia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yock, A; UT Graduate School of Biomedical Sciences, Houston, TX; Rao, A
2014-06-15
Purpose: To generate, evaluate, and compare models that predict longitudinal changes in tumor morphology throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe the size, shape, and position of 35 oropharyngeal GTVs at each treatment fraction during intensity-modulated radiation therapy. The feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 GTV surface landmarks. The other was based on a spherical harmonic decomposition of these distances. Feature vectors over the course of therapy were describedmore » using static, linear, and mean models. The error of these models in forecasting GTV morphology was evaluated with leave-one-out cross-validation, and their accuracy was compared using Wilcoxon signed-rank tests. The effect of adjusting model parameters at 1, 2, 3, or 5 time points (adjustment points) was also evaluated. Results: The addition of a single adjustment point to the static model decreased the median error in forecasting the position of GTV surface landmarks by 1.2 mm (p<0.001). Additional adjustment points further decreased forecast error by about 0.4 mm each. The linear model decreased forecast error compared to the static model for feature vectors based on both shape descriptors (0.2 mm), while the mean model did so only for those based on the inter-landmark distances (0.2 mm). The decrease in forecast error due to adding adjustment points was greater than that due to model selection. Both effects diminished with subsequent adjustment points. Conclusion: Models of tumor morphology that include information from prior patients and/or prior treatment fractions are able to predict the tumor surface at each treatment fraction during radiation therapy. The predicted tumor morphology can be compared with patient anatomy or dose distributions, opening the possibility of anticipatory re-planning. American Legion Auxiliary Fellowship; The University of Texas Graduate School of Biomedical Sciences at Houston.« less