Sample records for pattern classification algorithm

  1. Pattern Classifications Using Grover's and Ventura's Algorithms in a Two-qubits System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Radhey, Kishori; Rajput, B. S.

    2018-03-01

    Carrying out the classification of patterns in a two-qubit system by separately using Grover's and Ventura's algorithms on different possible superposition, it has been shown that the exclusion superposition and the phase-invariance superposition are the most suitable search states obtained from two-pattern start-states and one-pattern start-states, respectively, for the simultaneous classifications of patterns. The higher effectiveness of Grover's algorithm for large search states has been verified but the higher effectiveness of Ventura's algorithm for smaller data base has been contradicted in two-qubit systems and it has been demonstrated that the unknown patterns (not present in the concerned data-base) are classified more efficiently than the known ones (present in the data-base) in both the algorithms. It has also been demonstrated that different states of Singh-Rajput MES obtained from the corresponding self-single- pattern start states are the most suitable search states for the classification of patterns |00>,|01 >, |10> and |11> respectively on the second iteration of Grover's method or the first operation of Ventura's algorithm.

  2. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  3. Simultaneous classification of Oranges and Apples Using Grover's and Ventura' Algorithms in a Two-qubits System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Radhey, Kishori; Kumar, Sandeep

    2017-08-01

    In the present paper, simultaneous classification of Orange and Apple has been carried out using both Grover's iterative algorithm (Grover 1996) and Ventura's model (Ventura and Martinez, Inf. Sci. 124, 273-296, 2000) taking different superposition of two- pattern start state containing Orange and Apple both, one- pattern start state containing Apple as search state and another one- pattern start state containing Orange as search state. It has been shown that the exclusion superposition is the most suitable two- pattern search state for simultaneous classification of pattern associated with Apples and Oranges and the superposition of phase-invariance are the best choice as the respective search state based on one -pattern start-states in both Grover's and Ventura's methods of classifications of patterns.

  4. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    PubMed

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  5. Classification of Parkinson's disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples.

    PubMed

    Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang

    2016-11-16

    The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.

  6. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  7. Binary Classification using Decision Tree based Genetic Programming and Its Application to Analysis of Bio-mass Data

    NASA Astrophysics Data System (ADS)

    To, Cuong; Pham, Tuan D.

    2010-01-01

    In machine learning, pattern recognition may be the most popular task. "Similar" patterns identification is also very important in biology because first, it is useful for prediction of patterns associated with disease, for example cancer tissue (normal or tumor); second, similarity or dissimilarity of the kinetic patterns is used to identify coordinately controlled genes or proteins involved in the same regulatory process. Third, similar genes (proteins) share similar functions. In this paper, we present an algorithm which uses genetic programming to create decision tree for binary classification problem. The application of the algorithm was implemented on five real biological databases. Base on the results of comparisons with well-known methods, we see that the algorithm is outstanding in most of cases.

  8. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  9. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  10. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  11. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  12. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  13. Prediction of customer behaviour analysis using classification algorithms

    NASA Astrophysics Data System (ADS)

    Raju, Siva Subramanian; Dhandayudam, Prabha

    2018-04-01

    Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.

  14. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    PubMed

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  15. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  16. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  17. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns

    PubMed Central

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191

  18. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    PubMed

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  19. Protein classification using sequential pattern mining.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2006-01-01

    Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.

  20. Comparative study of classification algorithms for immunosignaturing data

    PubMed Central

    2012-01-01

    Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data. Results We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy. Conclusions ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties. PMID:22720696

  1. Automatic comparison of striation marks and automatic classification of shoe prints

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac

    1995-09-01

    A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.

  2. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  3. Parametric classification of handvein patterns based on texture features

    NASA Astrophysics Data System (ADS)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  4. K-Nearest Neighbor Algorithm Optimization in Text Categorization

    NASA Astrophysics Data System (ADS)

    Chen, Shufeng

    2018-01-01

    K-Nearest Neighbor (KNN) classification algorithm is one of the simplest methods of data mining. It has been widely used in classification, regression and pattern recognition. The traditional KNN method has some shortcomings such as large amount of sample computation and strong dependence on the sample library capacity. In this paper, a method of representative sample optimization based on CURE algorithm is proposed. On the basis of this, presenting a quick algorithm QKNN (Quick k-nearest neighbor) to find the nearest k neighbor samples, which greatly reduces the similarity calculation. The experimental results show that this algorithm can effectively reduce the number of samples and speed up the search for the k nearest neighbor samples to improve the performance of the algorithm.

  5. Clustering Of Left Ventricular Wall Motion Patterns

    NASA Astrophysics Data System (ADS)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  6. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

    PubMed

    Formisano, Elia; De Martino, Federico; Valente, Giancarlo

    2008-09-01

    Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.

  7. Optical Neural Classification Of Binary Patterns

    NASA Astrophysics Data System (ADS)

    Gustafson, Steven C.; Little, Gordon R.

    1988-05-01

    Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.

  8. Classification and Sequential Pattern Analysis for Improving Managerial Efficiency and Providing Better Medical Service in Public Healthcare Centers

    PubMed Central

    Chung, Sukhoon; Rhee, Hyunsill; Suh, Yongmoo

    2010-01-01

    Objectives This study sought to find answers to the following questions: 1) Can we predict whether a patient will revisit a healthcare center? 2) Can we anticipate diseases of patients who revisit the center? Methods For the first question, we applied 5 classification algorithms (decision tree, artificial neural network, logistic regression, Bayesian networks, and Naïve Bayes) and the stacking-bagging method for building classification models. To solve the second question, we performed sequential pattern analysis. Results We determined: 1) In general, the most influential variables which impact whether a patient of a public healthcare center will revisit it or not are personal burden, insurance bill, period of prescription, age, systolic pressure, name of disease, and postal code. 2) The best plain classification model is dependent on the dataset. 3) Based on average of classification accuracy, the proposed stacking-bagging method outperformed all traditional classification models and our sequential pattern analysis revealed 16 sequential patterns. Conclusions Classification models and sequential patterns can help public healthcare centers plan and implement healthcare service programs and businesses that are more appropriate to local residents, encouraging them to revisit public health centers. PMID:21818426

  9. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.

    PubMed

    Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa

    2015-01-01

    The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

  10. Sensitivity Analysis for Probabilistic Neural Network Structure Reduction.

    PubMed

    Kowalski, Piotr A; Kusy, Maciej

    2018-05-01

    In this paper, we propose the use of local sensitivity analysis (LSA) for the structure simplification of the probabilistic neural network (PNN). Three algorithms are introduced. The first algorithm applies LSA to the PNN input layer reduction by selecting significant features of input patterns. The second algorithm utilizes LSA to remove redundant pattern neurons of the network. The third algorithm combines the proposed two and constitutes the solution of how they can work together. PNN with a product kernel estimator is used, where each multiplicand computes a one-dimensional Cauchy function. Therefore, the smoothing parameter is separately calculated for each dimension by means of the plug-in method. The classification qualities of the reduced and full structure PNN are compared. Furthermore, we evaluate the performance of PNN, for which global sensitivity analysis (GSA) and the common reduction methods are applied, both in the input layer and the pattern layer. The models are tested on the classification problems of eight repository data sets. A 10-fold cross validation procedure is used to determine the prediction ability of the networks. Based on the obtained results, it is shown that the LSA can be used as an alternative PNN reduction approach.

  11. Real-time detection and classification of anomalous events in streaming data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferragut, Erik M.; Goodall, John R.; Iannacone, Michael D.

    2016-04-19

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The events can be displayed to a user in user-defined groupings in an animated fashion. The system can include a plurality of anomaly detectors that together implement an algorithm to identify low probability events and detect atypical traffic patterns. The atypical traffic patterns can then be classified as being of interest or not. In one particular example, in a network environment, the classification can be whether the network traffic is malicious or not.

  12. Multilayer perceptron, fuzzy sets, and classification

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.; Mitra, Sushmita

    1992-01-01

    A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.

  13. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    NASA Astrophysics Data System (ADS)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures, multilayer percepterons and convolutional neural networks. Our research with neural networks has encountered a great deal of difficulties regarding hyperparameter estimation for good training convergence rate and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable parameters (or weights) initialization, and so on, are chosen via a trial and error process with some educated guesses. However, we developed the first quantitative method to compare weight initialization strategies, a critical hyperparameter choice during training, to estimate among a group of candidate strategies which would make the network converge to the highest classification accuracy faster with high probability. Our method provides a quick, objective measure to compare initialization strategies to select the best possible among them beforehand without having to complete multiple training sessions for each candidate strategy to compare final results.

  14. The effect of lossy image compression on image classification

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.

  15. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    PubMed Central

    Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  16. A novel user classification method for femtocell network by using affinity propagation algorithm and artificial neural network.

    PubMed

    Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

  17. Data Analytics for Smart Parking Applications.

    PubMed

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-09-23

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.

  18. Data Analytics for Smart Parking Applications

    PubMed Central

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-01-01

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset. PMID:27669259

  19. Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.

    PubMed

    Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L

    2014-10-01

    Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Study on store-space assignment based on logistic AGV in e-commerce goods to person picking pattern

    NASA Astrophysics Data System (ADS)

    Xu, Lijuan; Zhu, Jie

    2017-10-01

    This paper studied on the store-space assignment based on logistic AGV in E-commerce goods to person picking pattern, and established the store-space assignment model based on the lowest picking cost, and design for store-space assignment algorithm after the cluster analysis based on similarity coefficient. And then through the example analysis, compared the picking cost between store-space assignment algorithm this paper design and according to item number and storage according to ABC classification allocation, and verified the effectiveness of the design of the store-space assignment algorithm.

  1. Investigation of computer-aided colonic crypt pattern analysis

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Pan, Yinsheng; Sivak, Michael V., Jr.; Olowe, Kayode; Rollins, Andrew M.

    2007-02-01

    Colorectal cancer is the second leading cause of cancer-related death in the United States. Approximately 50% of these deaths could be prevented by earlier detection through screening. Magnification chromoendoscopy is a technique which utilizes tissue stains applied to the gastrointestinal mucosa and high-magnification endoscopy to better visualize and characterize lesions. Prior studies have shown that shapes of colonic crypts change with disease and show characteristic patterns. Current methods for assessing colonic crypt patterns are somewhat subjective and not standardized. Computerized algorithms could be used to standardize colonic crypt pattern assessment. We have imaged resected colonic mucosa in vitro (N = 70) using methylene blue dye and a surgical microscope to approximately simulate in vivo imaging with magnification chromoendoscopy. We have developed a method of computerized processing to analyze the crypt patterns in the images. The quantitative image analysis consists of three steps. First, the crypts within the region of interest of colonic tissue are semi-automatically segmented using watershed morphological processing. Second, crypt size and shape parameters are extracted from the segmented crypts. Third, each sample is assigned to a category according to the Kudo criteria. The computerized classification is validated by comparison with human classification using the Kudo classification criteria. The computerized colonic crypt pattern analysis algorithm will enable a study of in vivo magnification chromoendoscopy of colonic crypt pattern correlated with risk of colorectal cancer. This study will assess the feasibility of screening and surveillance of the colon using magnification chromoendoscopy.

  2. Patterns among the ashes: Exploring the relationship between landscape pattern and the emerald ash borer

    Treesearch

    Susan J. Crocker; Dacia M. Meneguzzo; Greg C. Liknes

    2010-01-01

    Landscape metrics, including host abundance and population density, were calculated using forest inventory and land cover data to assess the relationship between landscape pattern and the presence or absence of the emerald ash borer (EAB) (Agrilus planipennis Fairmaire). The Random Forests classification algorithm in the R statistical environment was...

  3. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  4. Compensatory neurofuzzy model for discrete data classification in biomedical

    NASA Astrophysics Data System (ADS)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  5. Low-power wearable respiratory sound sensing.

    PubMed

    Oletic, Dinko; Arsenali, Bruno; Bilas, Vedran

    2014-04-09

    Building upon the findings from the field of automated recognition of respiratory sound patterns, we propose a wearable wireless sensor implementing on-board respiratory sound acquisition and classification, to enable continuous monitoring of symptoms, such as asthmatic wheezing. Low-power consumption of such a sensor is required in order to achieve long autonomy. Considering that the power consumption of its radio is kept minimal if transmitting only upon (rare) occurrences of wheezing, we focus on optimizing the power consumption of the digital signal processor (DSP). Based on a comprehensive review of asthmatic wheeze detection algorithms, we analyze the computational complexity of common features drawn from short-time Fourier transform (STFT) and decision tree classification. Four algorithms were implemented on a low-power TMS320C5505 DSP. Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds in two operating scenarios of different detection fidelities. The execution times of all algorithms were measured. The best classification accuracy of over 92%, while occupying only 2.6% of the DSP's processing time, is obtained for the algorithm featuring the time-frequency tracking of shapes of crests originating from wheezing, with spectral features modeled using energy.

  6. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  7. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.

    PubMed

    Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A

    2013-08-01

    In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.

  8. Noise tolerant dendritic lattice associative memories

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  9. VTOL shipboard letdown guidance system analysis

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    Alternative letdown guidance strategies are examined for landing of a VTOL aircraft onboard a small aviation ship under adverse environmental conditions. Off line computer simulation of shipboard landing task is utilized for assessing the relative merits of the proposed guidance schemes. The touchdown performance of a nominal constant rate of descent (CROD) letdown strategy serves as a benchmark for ranking the performance of the alternative letdown schemes. Analysis of ship motion time histories indicates the existence of an alternating sequence of quiescent and rough motions called lulls and swells. A real time algorithms lull/swell classification based upon ship motion pattern features is developed. The classification algorithm is used to command a go/no go signal to indicate the initiation and termination of an acceptable landing window. Simulation results show that such a go/no go pattern based letdown guidance strategy improves touchdown performance.

  10. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  11. Application of the pessimistic pruning to increase the accuracy of C4.5 algorithm in diagnosing chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.

    2018-03-01

    A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.

  12. Acoustic transient classification with a template correlation processor.

    PubMed

    Edwards, R T

    1999-10-01

    I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.

  13. Unsupervised classification of variable stars

    NASA Astrophysics Data System (ADS)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variablemore » objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.« less

  15. Clustering-based Feature Learning on Variable Stars

    NASA Astrophysics Data System (ADS)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    2016-04-01

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.

  16. Classification of Regional Radiographic Emphysematous Patterns Using Low-Attenuation Gap Length Matrix

    NASA Astrophysics Data System (ADS)

    Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki

    The standard computer-tomography-based method for measuring emphysema uses percentage of area of low attenuation which is called the pixel index (PI). However, the PI method is susceptible to the problem of averaging effect and this causes the discrepancy between what the PI method describes and what radiologists observe. Knowing that visual recognition of the different types of regional radiographic emphysematous tissues in a CT image can be fuzzy, this paper proposes a low-attenuation gap length matrix (LAGLM) based algorithm for classifying the regional radiographic lung tissues into four emphysema types distinguishing, in particular, radiographic patterns that imply obvious or subtle bullous emphysema from those that imply diffuse emphysema or minor destruction of airway walls. Neural network is used for discrimination. The proposed LAGLM method is inspired by, but different from, former texture-based methods like gray level run length matrix (GLRLM) and gray level gap length matrix (GLGLM). The proposed algorithm is successfully validated by classifying 105 lung regions that are randomly selected from 270 images. The lung regions are hand-annotated by radiologists beforehand. The average four-class classification accuracies in the form of the proposed algorithm/PI/GLRLM/GLGLM methods are: 89.00%/82.97%/52.90%/51.36%, respectively. The p-values from the correlation analyses between the classification results of 270 images and pulmonary function test results are generally less than 0.01. The classification results are useful for a followup study especially for monitoring morphological changes with progression of pulmonary disease.

  17. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    PubMed

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  18. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  19. Biometric Authentication for Gender Classification Techniques: A Review

    NASA Astrophysics Data System (ADS)

    Mathivanan, P.; Poornima, K.

    2017-12-01

    One of the challenging biometric authentication applications is gender identification and age classification, which captures gait from far distance and analyze physical information of the subject such as gender, race and emotional state of the subject. It is found that most of the gender identification techniques have focused only with frontal pose of different human subject, image size and type of database used in the process. The study also classifies different feature extraction process such as, Principal Component Analysis (PCA) and Local Directional Pattern (LDP) that are used to extract the authentication features of a person. This paper aims to analyze different gender classification techniques that help in evaluating strength and weakness of existing gender identification algorithm. Therefore, it helps in developing a novel gender classification algorithm with less computation cost and more accuracy. In this paper, an overview and classification of different gender identification techniques are first presented and it is compared with other existing human identification system by means of their performance.

  20. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  1. An OMIC biomarker detection algorithm TriVote and its application in methylomic biomarker detection.

    PubMed

    Xu, Cheng; Liu, Jiamei; Yang, Weifeng; Shu, Yayun; Wei, Zhipeng; Zheng, Weiwei; Feng, Xin; Zhou, Fengfeng

    2018-04-01

    Transcriptomic and methylomic patterns represent two major OMIC data sources impacted by both inheritable genetic information and environmental factors, and have been widely used as disease diagnosis and prognosis biomarkers. Modern transcriptomic and methylomic profiling technologies detect the status of tens of thousands or even millions of probing residues in the human genome, and introduce a major computational challenge for the existing feature selection algorithms. This study proposes a three-step feature selection algorithm, TriVote, to detect a subset of transcriptomic or methylomic residues with highly accurate binary classification performance. TriVote outperforms both filter and wrapper feature selection algorithms with both higher classification accuracy and smaller feature number on 17 transcriptomes and two methylomes. Biological functions of the methylome biomarkers detected by TriVote were discussed for their disease associations. An easy-to-use Python package is also released to facilitate the further applications.

  2. Evaluation of algorithms for estimating wheat acreage from multispectral scanner data. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Richardson, W.; Pentland, A. P.

    1976-01-01

    The author has identified the following significant results. Fourteen different classification algorithms were tested for their ability to estimate the proportion of wheat in an area. For some algorithms, accuracy of classification in field centers was observed. The data base consisted of ground truth and LANDSAT data from 55 sections (1 x 1 mile) from five LACIE intensive test sites in Kansas and Texas. Signatures obtained from training fields selected at random from the ground truth were generally representative of the data distribution patterns. LIMMIX, an algorithm that chooses a pure signature when the data point is close enough to a signature mean and otherwise chooses the best mixture of a pair of signatures, reduced the average absolute error to 6.1% and the bias to 1.0%. QRULE run with a null test achieved a similar reduction.

  3. An Ultrasonographic Periodontal Probe

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  4. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    PubMed

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  5. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    PubMed

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Supporting Solar Physics Research via Data Mining

    NASA Astrophysics Data System (ADS)

    Angryk, Rafal; Banda, J.; Schuh, M.; Ganesan Pillai, K.; Tosun, H.; Martens, P.

    2012-05-01

    In this talk we will briefly introduce three pillars of data mining (i.e. frequent patterns discovery, classification, and clustering), and discuss some possible applications of known data mining techniques which can directly benefit solar physics research. In particular, we plan to demonstrate applicability of frequent patterns discovery methods for the verification of hypotheses about co-occurrence (in space and time) of filaments and sigmoids. We will also show how classification/machine learning algorithms can be utilized to verify human-created software modules to discover individual types of solar phenomena. Finally, we will discuss applicability of clustering techniques to image data processing.

  7. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features.

    PubMed

    Amudha, P; Karthik, S; Sivakumari, S

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  8. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    PubMed Central

    Amudha, P.; Karthik, S.; Sivakumari, S.

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  9. Segmentation and classification of cell cycle phases in fluorescence imaging.

    PubMed

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  10. Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification

    PubMed Central

    Pham, Tuan D.

    2014-01-01

    The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744

  11. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    PubMed

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  12. Spectral analysis of two-signed microarray expression data.

    PubMed

    Higham, Desmond J; Kalna, Gabriela; Vass, J Keith

    2007-06-01

    We give a simple and informative derivation of a spectral algorithm for clustering and reordering complementary DNA microarray expression data. Here, expression levels of a set of genes are recorded simultaneously across a number of samples, with a positive weight reflecting up-regulation and a negative weight reflecting down-regulation. We give theoretical support for the algorithm based on a biologically justified hypothesis about the structure of the data, and illustrate its use on public domain data in the context of unsupervised tumour classification. The algorithm is derived by considering a discrete optimization problem and then relaxing to the continuous realm. We prove that in the case where the data have an inherent 'checkerboard' sign pattern, the algorithm will automatically reveal that pattern. Further, our derivation shows that the algorithm may be regarded as imposing a random graph model on the expression levels and then clustering from a maximum likelihood perspective. This indicates that the output will be tolerant to perturbations and will reveal 'near-checkerboard' patterns when these are present in the data. It is interesting to note that the checkerboard structure is revealed by the first (dominant) singular vectors--previous work on spectral methods has focussed on the case of nonnegative edge weights, where only the second and higher singular vectors are relevant. We illustrate the algorithm on real and synthetic data, and then use it in a tumour classification context on three different cancer data sets. Our results show that respecting the two-signed nature of the data (thereby distinguishing between up-regulation and down-regulation) reveals structures that cannot be gleaned from the absolute value data (where up- and down-regulation are both regarded as 'changes').

  13. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    PubMed

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Cloud Classification in Polar and Desert Regions and Smoke Classification from Biomass Burning Using a Hierarchical Neural Network

    NASA Technical Reports Server (NTRS)

    Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald

    1996-01-01

    This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.

  15. Validation of classification algorithms for childhood diabetes identified from administrative data.

    PubMed

    Vanderloo, Saskia E; Johnson, Jeffrey A; Reimer, Kim; McCrea, Patrick; Nuernberger, Kimberly; Krueger, Hans; Aydede, Sema K; Collet, Jean-Paul; Amed, Shazhan

    2012-05-01

    Type 1 diabetes is the most common form of diabetes among children; however, the proportion of cases of childhood type 2 diabetes is increasing. In Canada, the National Diabetes Surveillance System (NDSS) uses administrative health data to describe trends in the epidemiology of diabetes, but does not specify diabetes type. The objective of this study was to validate algorithms to classify diabetes type in children <20 yr identified using the NDSS methodology. We applied the NDSS case definition to children living in British Columbia between 1 April 1996 and 31 March 2007. Through an iterative process, four potential classification algorithms were developed based on demographic characteristics and drug-utilization patterns. Each algorithm was then validated against a gold standard clinical database. Algorithms based primarily on an age rule (i.e., age <10 at diagnosis categorized type 1 diabetes) were most sensitive in the identification of type 1 diabetes; algorithms with restrictions on drug utilization (i.e., no prescriptions for insulin ± glucose monitoring strips categorized type 2 diabetes) were most sensitive for identifying type 2 diabetes. One algorithm was identified as having the optimal balance of sensitivity (Sn) and specificity (Sp) for the identification of both type 1 (Sn: 98.6%; Sp: 78.2%; PPV: 97.8%) and type 2 diabetes (Sn: 83.2%; Sp: 97.5%; PPV: 73.7%). Demographic characteristics in combination with drug-utilization patterns can be used to differentiate diabetes type among cases of pediatric diabetes identified within administrative health databases. Validation of similar algorithms in other regions is warranted. © 2011 John Wiley & Sons A/S.

  16. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  17. Attribute-based Decision Graphs: A framework for multiclass data classification.

    PubMed

    Bertini, João Roberto; Nicoletti, Maria do Carmo; Zhao, Liang

    2017-01-01

    Graph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph-AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover

    NASA Astrophysics Data System (ADS)

    Salman, S. S.; Abbas, W. A.

    2018-05-01

    The goal of the study is to support analysis Enhancement of Resolution and study effect on classification methods on bands spectral information of specific and quantitative approaches. In this study introduce a method to enhancement resolution Landsat 8 of combining the bands spectral of 30 meters resolution with panchromatic band 8 of 15 meters resolution, because of importance multispectral imagery to extracting land - cover. Classification methods used in this study to classify several lands -covers recorded from OLI- 8 imagery. Two methods of Data mining can be classified as either supervised or unsupervised. In supervised methods, there is a particular predefined target, that means the algorithm learn which values of the target are associated with which values of the predictor sample. K-nearest neighbors and maximum likelihood algorithms examine in this work as supervised methods. In other hand, no sample identified as target in unsupervised methods, the algorithm of data extraction searches for structure and patterns between all the variables, represented by Fuzzy C-mean clustering method as one of the unsupervised methods, NDVI vegetation index used to compare the results of classification method, the percent of dense vegetation in maximum likelihood method give a best results.

  19. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    PubMed Central

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6∼8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3∼5 pattern classes considering the trade-off between time consumption and classification rate. PMID:22736979

  20. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata

    PubMed Central

    Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-01-01

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100

  1. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.

    PubMed

    Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-11-08

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.

  2. Assessment of pedophilia using hemodynamic brain response to sexual stimuli.

    PubMed

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Neutze, Janina; Deuschl, Günther; Mehdorn, Hubertus; Siebner, Hartwig; Bosinski, Hartmut

    2012-02-01

    Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability. To evaluate whether spatial response pattern to sexual stimuli as revealed by a change in the blood oxygen level-dependent signal facilitates the identification of pedophiles. During functional magnetic resonance imaging, pedophilic and nonpedophilic participants were briefly exposed to same- and opposite-sex images of nude children and adults. We calculated differences in blood oxygen level-dependent signals to child and adult sexual stimuli for each participant. The corresponding contrast images were entered into a group analysis to calculate whole-brain difference maps between groups. We calculated an expression value that corresponded to the group result for each participant. These expression values were submitted to 2 different classification algorithms: Fisher linear discriminant analysis and κ -nearest neighbor analysis. This classification procedure was cross-validated using the leave-one-out method. Section of Sexual Medicine, Medical School, Christian Albrechts University of Kiel, Kiel, Germany. We recruited 24 participants with pedophilia who were sexually attracted to either prepubescent girls (n = 11) or prepubescent boys (n = 13) and 32 healthy male controls who were sexually attracted to either adult women (n = 18) or adult men (n = 14). Sensitivity and specificity scores of the 2 classification algorithms. The highest classification accuracy was achieved by Fisher linear discriminant analysis, which showed a mean accuracy of 95% (100% specificity, 88% sensitivity). Functional brain response patterns to sexual stimuli contain sufficient information to identify pedophiles with high accuracy. The automatic classification of these patterns is a promising objective tool to clinically diagnose pedophilia.

  3. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    PubMed Central

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis. PMID:25705672

  4. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.

    PubMed

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  5. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  6. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  7. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  8. The construction of support vector machine classifier using the firefly algorithm.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

  9. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511

  10. Using Gaussian mixture models to detect and classify dolphin whistles and pulses.

    PubMed

    Peso Parada, Pablo; Cardenal-López, Antonio

    2014-06-01

    In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.

  11. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    PubMed

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  12. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  13. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  14. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    PubMed

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Patterns of brain structural connectivity differentiate normal weight from overweight subjects

    PubMed Central

    Gupta, Arpana; Mayer, Emeran A.; Sanmiguel, Claudia P.; Van Horn, John D.; Woodworth, Davis; Ellingson, Benjamin M.; Fling, Connor; Love, Aubrey; Tillisch, Kirsten; Labus, Jennifer S.

    2015-01-01

    Background Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. Aim To apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements. Methods Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals. Results 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42 morphological features, achieved 69% accuracy in discriminating overweight from normal weight. In both brain signatures regions of the reward, salience, executive control and emotional arousal networks were associated with lower morphological values in overweight individuals compared to normal weight individuals, while the opposite pattern was seen for regions of the somatosensory network. Conclusions 1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity involving regions of the reward and associated networks can identify specific targets for mechanistic studies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity. PMID:25737959

  16. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    PubMed

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.

    PubMed

    Hausfeld, Lars; Valente, Giancarlo; Formisano, Elia

    2014-08-01

    When multivariate pattern decoding is applied to fMRI studies entailing more than two experimental conditions, a most common approach is to transform the multiclass classification problem into a series of binary problems. Furthermore, for decoding analyses, classification accuracy is often the only outcome reported although the topology of activation patterns in the high-dimensional features space may provide additional insights into underlying brain representations. Here we propose to decode and visualize voxel patterns of fMRI datasets consisting of multiple conditions with a supervised variant of self-organizing maps (SSOMs). Using simulations and real fMRI data, we evaluated the performance of our SSOM-based approach. Specifically, the analysis of simulated fMRI data with varying signal-to-noise and contrast-to-noise ratio suggested that SSOMs perform better than a k-nearest-neighbor classifier for medium and large numbers of features (i.e. 250 to 1000 or more voxels) and similar to support vector machines (SVMs) for small and medium numbers of features (i.e. 100 to 600voxels). However, for a larger number of features (>800voxels), SSOMs performed worse than SVMs. When applied to a challenging 3-class fMRI classification problem with datasets collected to examine the neural representation of three human voices at individual speaker level, the SSOM-based algorithm was able to decode speaker identity from auditory cortical activation patterns. Classification performances were similar between SSOMs and other decoding algorithms; however, the ability to visualize decoding models and underlying data topology of SSOMs promotes a more comprehensive understanding of classification outcomes. We further illustrated this visualization ability of SSOMs with a re-analysis of a dataset examining the representation of visual categories in the ventral visual cortex (Haxby et al., 2001). This analysis showed that SSOMs could retrieve and visualize topography and neighborhood relations of the brain representation of eight visual categories. We conclude that SSOMs are particularly suited for decoding datasets consisting of more than two classes and are optimally combined with approaches that reduce the number of voxels used for classification (e.g. region-of-interest or searchlight approaches). Copyright © 2014. Published by Elsevier Inc.

  18. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  19. Comparing Features for Classification of MEG Responses to Motor Imagery.

    PubMed

    Halme, Hanna-Leena; Parkkonen, Lauri

    2016-01-01

    Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio-spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system.

  20. A comparison of different chemometrics approaches for the robust classification of electronic nose data.

    PubMed

    Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston

    2014-11-01

    Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data.

  1. A HIERARCHIAL STOCHASTIC MODEL OF LARGE SCALE ATMOSPHERIC CIRCULATION PATTERNS AND MULTIPLE STATION DAILY PRECIPITATION

    EPA Science Inventory

    A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...

  2. Feature extraction via KPCA for classification of gait patterns.

    PubMed

    Wu, Jianning; Wang, Jue; Liu, Li

    2007-06-01

    Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

  3. An ECG signals compression method and its validation using NNs.

    PubMed

    Fira, Catalina Monica; Goras, Liviu

    2008-04-01

    This paper presents a new algorithm for electrocardiogram (ECG) signal compression based on local extreme extraction, adaptive hysteretic filtering and Lempel-Ziv-Welch (LZW) coding. The algorithm has been verified using eight of the most frequent normal and pathological types of cardiac beats and an multi-layer perceptron (MLP) neural network trained with original cardiac patterns and tested with reconstructed ones. Aspects regarding the possibility of using the principal component analysis (PCA) to cardiac pattern classification have been investigated as well. A new compression measure called "quality score," which takes into account both the reconstruction errors and the compression ratio, is proposed.

  4. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    PubMed

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  5. CIFAR10-DVS: An Event-Stream Dataset for Object Classification

    PubMed Central

    Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping

    2017-01-01

    Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification. PMID:28611582

  6. CIFAR10-DVS: An Event-Stream Dataset for Object Classification.

    PubMed

    Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping

    2017-01-01

    Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as "CIFAR10-DVS." The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification.

  7. An embedded face-classification system for infrared images on an FPGA

    NASA Astrophysics Data System (ADS)

    Soto, Javier E.; Figueroa, Miguel

    2014-10-01

    We present a face-classification architecture for long-wave infrared (IR) images implemented on a Field Programmable Gate Array (FPGA). The circuit is fast, compact and low power, can recognize faces in real time and be embedded in a larger image-processing and computer vision system operating locally on an IR camera. The algorithm uses Local Binary Patterns (LBP) to perform feature extraction on each IR image. First, each pixel in the image is represented as an LBP pattern that encodes the similarity between the pixel and its neighbors. Uniform LBP codes are then used to reduce the number of patterns to 59 while preserving more than 90% of the information contained in the original LBP representation. Then, the image is divided into 64 non-overlapping regions, and each region is represented as a 59-bin histogram of patterns. Finally, the algorithm concatenates all 64 regions to create a 3,776-bin spatially enhanced histogram. We reduce the dimensionality of this histogram using Linear Discriminant Analysis (LDA), which improves clustering and enables us to store an entire database of 53 subjects on-chip. During classification, the circuit applies LBP and LDA to each incoming IR image in real time, and compares the resulting feature vector to each pattern stored in the local database using the Manhattan distance. We implemented the circuit on a Xilinx Artix-7 XC7A100T FPGA and tested it with the UCHThermalFace database, which consists of 28 81 x 150-pixel images of 53 subjects in indoor and outdoor conditions. The circuit achieves a 98.6% hit ratio, trained with 16 images and tested with 12 images of each subject in the database. Using a 100 MHz clock, the circuit classifies 8,230 images per second, and consumes only 309mW.

  8. Feature extraction and classification algorithms for high dimensional data

    NASA Technical Reports Server (NTRS)

    Lee, Chulhee; Landgrebe, David

    1993-01-01

    Feature extraction and classification algorithms for high dimensional data are investigated. Developments with regard to sensors for Earth observation are moving in the direction of providing much higher dimensional multispectral imagery than is now possible. In analyzing such high dimensional data, processing time becomes an important factor. With large increases in dimensionality and the number of classes, processing time will increase significantly. To address this problem, a multistage classification scheme is proposed which reduces the processing time substantially by eliminating unlikely classes from further consideration at each stage. Several truncation criteria are developed and the relationship between thresholds and the error caused by the truncation is investigated. Next an approach to feature extraction for classification is proposed based directly on the decision boundaries. It is shown that all the features needed for classification can be extracted from decision boundaries. A characteristic of the proposed method arises by noting that only a portion of the decision boundary is effective in discriminating between classes, and the concept of the effective decision boundary is introduced. The proposed feature extraction algorithm has several desirable properties: it predicts the minimum number of features necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; and it finds the necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of equal means or equal covariances as some previous algorithms do. In addition, the decision boundary feature extraction algorithm can be used both for parametric and non-parametric classifiers. Finally, some problems encountered in analyzing high dimensional data are studied and possible solutions are proposed. First, the increased importance of the second order statistics in analyzing high dimensional data is recognized. By investigating the characteristics of high dimensional data, the reason why the second order statistics must be taken into account in high dimensional data is suggested. Recognizing the importance of the second order statistics, there is a need to represent the second order statistics. A method to visualize statistics using a color code is proposed. By representing statistics using color coding, one can easily extract and compare the first and the second statistics.

  9. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.

    PubMed

    Joshuva, A; Sugumaran, V

    2017-03-01

    Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  11. Multiscale corner detection and classification using local properties and semantic patterns

    NASA Astrophysics Data System (ADS)

    Gallo, Giovanni; Giuoco, Alessandro L.

    2002-05-01

    A new technique to detect, localize and classify corners in digital closed curves is proposed. The technique is based on correct estimation of support regions for each point. We compute multiscale curvature to detect and to localize corners. As a further step, with the aid of some local features, it's possible to classify corners into seven distinct types. Classification is performed using a set of rules, which describe corners according to preset semantic patterns. Compared with existing techniques, the proposed approach inscribes itself into the family of algorithms that try to explain the curve, instead of simple labeling. Moreover, our technique works in manner similar to what is believed are typical mechanisms of human perception.

  12. SemiBoost: boosting for semi-supervised learning.

    PubMed

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  13. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  14. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    PubMed Central

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  15. Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework.

    PubMed

    Liu, Wenbo; Li, Ming; Yi, Li

    2016-08-01

    The atypical face scanning patterns in individuals with Autism Spectrum Disorder (ASD) has been repeatedly discovered by previous research. The present study examined whether their face scanning patterns could be potentially useful to identify children with ASD by adopting the machine learning algorithm for the classification purpose. Particularly, we applied the machine learning method to analyze an eye movement dataset from a face recognition task [Yi et al., 2016], to classify children with and without ASD. We evaluated the performance of our model in terms of its accuracy, sensitivity, and specificity of classifying ASD. Results indicated promising evidence for applying the machine learning algorithm based on the face scanning patterns to identify children with ASD, with a maximum classification accuracy of 88.51%. Nevertheless, our study is still preliminary with some constraints that may apply in the clinical practice. Future research should shed light on further valuation of our method and contribute to the development of a multitask and multimodel approach to aid the process of early detection and diagnosis of ASD. Autism Res 2016, 9: 888-898. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  16. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  17. Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition

    PubMed Central

    Koutsouleris, Nikolaos; Meisenzahl, Eva M.; Davatzikos, Christos; Bottlender, Ronald; Frodl, Thomas; Scheuerecker, Johanna; Schmitt, Gisela; Zetzsche, Thomas; Decker, Petra; Reiser, Maximilian; Möller, Hans-Jürgen; Gaser, Christian

    2014-01-01

    Context Identification of individuals at high risk of developing psychosis has relied on prodromal symptomatology. Recently, machine learning algorithms have been successfully used for magnetic resonance imaging–based diagnostic classification of neuropsychiatric patient populations. Objective To determine whether multivariate neuroanatomical pattern classification facilitates identification of individuals in different at-risk mental states (ARMS) of psychosis and enables the prediction of disease transition at the individual level. Design Multivariate neuroanatomical pattern classification was performed on the structural magnetic resonance imaging data of individuals in early or late ARMS vs healthy controls (HCs). The predictive power of the method was then evaluated by categorizing the baseline imaging data of individuals with transition to psychosis vs those without transition vs HCs after 4 years of clinical follow-up. Classification generalizability was estimated by cross-validation and by categorizing an independent cohort of 45 new HCs. Setting Departments of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany. Participants The first classification analysis included 20 early and 25 late at-risk individuals and 25 matched HCs. The second analysis consisted of 15 individuals with transition, 18 without transition, and 17 matched HCs. Main Outcome Measures Specificity, sensitivity, and accuracy of classification. Results The 3-group, cross-validated classification accuracies of the first analysis were 86% (HCs vs the rest), 91% (early at-risk individuals vs the rest), and 86% (late at-risk individuals vs the rest). The accuracies in the second analysis were 90% (HCs vs the rest), 88% (individuals with transition vs the rest), and 86% (individuals without transition vs the rest). Independent HCs were correctly classified in 96% (first analysis) and 93% (second analysis) of cases. Conclusions Different ARMSs and their clinical outcomes may be reliably identified on an individual basis by assessing patterns of whole-brain neuroanatomical abnormalities. These patterns may serve as valuable biomarkers for the clinician to guide early detection in the prodromal phase of psychosis. PMID:19581561

  18. Design of partially supervised classifiers for multispectral image data

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, David

    1993-01-01

    A partially supervised classification problem is addressed, especially when the class definition and corresponding training samples are provided a priori only for just one particular class. In practical applications of pattern classification techniques, a frequently observed characteristic is the heavy, often nearly impossible requirements on representative prior statistical class characteristics of all classes in a given data set. Considering the effort in both time and man-power required to have a well-defined, exhaustive list of classes with a corresponding representative set of training samples, this 'partially' supervised capability would be very desirable, assuming adequate classifier performance can be obtained. Two different classification algorithms are developed to achieve simplicity in classifier design by reducing the requirement of prior statistical information without sacrificing significant classifying capability. The first one is based on optimal significance testing, where the optimal acceptance probability is estimated directly from the data set. In the second approach, the partially supervised classification is considered as a problem of unsupervised clustering with initially one known cluster or class. A weighted unsupervised clustering procedure is developed to automatically define other classes and estimate their class statistics. The operational simplicity thus realized should make these partially supervised classification schemes very viable tools in pattern classification.

  19. Scalable Kernel Methods and Algorithms for General Sequence Analysis

    ERIC Educational Resources Information Center

    Kuksa, Pavel

    2011-01-01

    Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…

  20. A Comparison of Machine Learning Algorithms for Chemical Toxicity Classification Using a Simulated Multi-Scale Data Model

    EPA Science Inventory

    Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in hig...

  1. Introduction to multivariate discrimination

    NASA Astrophysics Data System (ADS)

    Kégl, Balázs

    2013-07-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyperparameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either relevant to or even motivated by certain unorthodox applications of multivariate discrimination in experimental physics.

  2. Vasculitic wheel - an algorithmic approach to cutaneous vasculitides.

    PubMed

    Ratzinger, Gudrun; Zelger, Bettina Gudrun; Carlson, J Andrew; Burgdorf, Walter; Zelger, Bernhard

    2015-11-01

    Previous classifications of vasculitides suffer from several defects. First, classifications may follow different principles including clinicopathologic findings, etiology, pathogenesis, prognosis, or therapeutic options. Second, authors fail to distinguish between vasculitis and coagulopathy. Third, vasculitides are systemic diseases. Organ-specific variations make morphologic findings difficult to compare. Fourth, subtle changes are recognized in the skin, but may be asymptomatic in other organs. Our aim was to use the skin and subcutis as a model and the clinicopathologic correlation as the basic process for classification. We use an algorithmic approach with pattern analysis, which allows for consistent reporting of microscopic findings. We first differentiate between small and medium vessel vasculitis. In the second step, we differentiate the subtypes of small (capillaries versus postcapillary venules) and medium-sized (arterioles/arteries versus veins) vessels. In the final step, we differentiate, according to the predominant cell type, into leukocytoclastic and/or granulomatous vasculitis. Starting from leukocytoclastic vasculitis as a central reaction pattern of cutaneous small/medium vessel vasculitides, its relations or variations may be arranged around it like spokes of a wheel around the hub. This may help establish some basic order in this rather complex realm of cutaneous vasculitides, leading to a better understanding in a complicated field. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  3. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  4. Effect of filtration of signals of brain activity on quality of recognition of brain activity patterns using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.

    2018-02-01

    In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.

  5. Improved GART neural network model for pattern classification and rule extraction with application to power systems.

    PubMed

    Yap, Keem Siah; Lim, Chee Peng; Au, Mau Teng

    2011-12-01

    Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.

  6. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  7. Genetic Programming and Frequent Itemset Mining to Identify Feature Selection Patterns of iEEG and fMRI Epilepsy Data

    PubMed Central

    Smart, Otis; Burrell, Lauren

    2014-01-01

    Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059

  8. An algorithm for generating modular hierarchical neural network classifiers: a step toward larger scale applications

    NASA Astrophysics Data System (ADS)

    Roverso, Davide

    2003-08-01

    Many-class learning is the problem of training a classifier to discriminate among a large number of target classes. Together with the problem of dealing with high-dimensional patterns (i.e. a high-dimensional input space), the many class problem (i.e. a high-dimensional output space) is a major obstacle to be faced when scaling-up classifier systems and algorithms from small pilot applications to large full-scale applications. The Autonomous Recursive Task Decomposition (ARTD) algorithm is here proposed as a solution to the problem of many-class learning. Example applications of ARTD to neural classifier training are also presented. In these examples, improvements in training time are shown to range from 4-fold to more than 30-fold in pattern classification tasks of both static and dynamic character.

  9. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.

    PubMed

    Mane, Vijay Mahadeo; Jadhav, D V

    2017-05-24

    Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.

  10. Wood industrial application for quality control using image processing

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J. O.; Neves, J. A. C.

    1994-11-01

    This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.

  11. Fast Low-Rank Shared Dictionary Learning for Image Classification.

    PubMed

    Tiep Huu Vu; Monga, Vishal

    2017-11-01

    Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e., claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Furthermore, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image data sets establish the advantages of our method over the state-of-the-art dictionary learning methods.

  12. Fast Low-Rank Shared Dictionary Learning for Image Classification

    NASA Astrophysics Data System (ADS)

    Vu, Tiep Huu; Monga, Vishal

    2017-11-01

    Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e. claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Further, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image datasets establish the advantages of our method over state-of-the-art dictionary learning methods.

  13. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  14. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  15. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  16. Semi-supervised and unsupervised extreme learning machines.

    PubMed

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  17. Knowledge discovery from patients' behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services.

    PubMed

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.

  18. Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

    PubMed Central

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177

  19. The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ebert, Elizabeth

    1990-01-01

    The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.

  20. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A semi-automated method for bone age assessment using cervical vertebral maturation.

    PubMed

    Baptista, Roberto S; Quaglio, Camila L; Mourad, Laila M E H; Hummel, Anderson D; Caetano, Cesar Augusto C; Ortolani, Cristina Lúcia F; Pisa, Ivan T

    2012-07-01

    To propose a semi-automated method for pattern classification to predict individuals' stage of growth based on morphologic characteristics that are described in the modified cervical vertebral maturation (CVM) method of Baccetti et al. A total of 188 lateral cephalograms were collected, digitized, evaluated manually, and grouped into cervical stages by two expert examiners. Landmarks were located on each image and measured. Three pattern classifiers based on the Naïve Bayes algorithm were built and assessed using a software program. The classifier with the greatest accuracy according to the weighted kappa test was considered best. The classifier showed a weighted kappa coefficient of 0.861 ± 0.020. If an adjacent estimated pre-stage or poststage value was taken to be acceptable, the classifier would show a weighted kappa coefficient of 0.992 ± 0.019. Results from this study show that the proposed semi-automated pattern classification method can help orthodontists identify the stage of CVM. However, additional studies are needed before this semi-automated classification method for CVM assessment can be implemented in clinical practice.

  2. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  3. Comparing Features for Classification of MEG Responses to Motor Imagery

    PubMed Central

    Halme, Hanna-Leena; Parkkonen, Lauri

    2016-01-01

    Background Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. Methods MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio—spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. Results The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. Conclusions We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system. PMID:27992574

  4. Test Generation Algorithm for Fault Detection of Analog Circuits Based on Extreme Learning Machine

    PubMed Central

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin; Ren, Xuelong

    2014-01-01

    This paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-effective and low-risk for analog device under test (DUT). This method uses test patterns derived from the test generation algorithm to stimulate DUT, and then samples output responses of the DUT for fault classification and detection. The novel ELM-based test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time efficiently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision efficiently in case of reduction of the number of impulse-response samples. Thirdly, a new process of test signal generator and a test structure in test generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning are confirmed in experiments. PMID:25610458

  5. Long-range dismount activity classification: LODAC

    NASA Astrophysics Data System (ADS)

    Garagic, Denis; Peskoe, Jacob; Liu, Fang; Cuevas, Manuel; Freeman, Andrew M.; Rhodes, Bradley J.

    2014-06-01

    Continuous classification of dismount types (including gender, age, ethnicity) and their activities (such as walking, running) evolving over space and time is challenging. Limited sensor resolution (often exacerbated as a function of platform standoff distance) and clutter from shadows in dense target environments, unfavorable environmental conditions, and the normal properties of real data all contribute to the challenge. The unique and innovative aspect of our approach is a synthesis of multimodal signal processing with incremental non-parametric, hierarchical Bayesian machine learning methods to create a new kind of target classification architecture. This architecture is designed from the ground up to optimally exploit correlations among the multiple sensing modalities (multimodal data fusion) and rapidly and continuously learns (online self-tuning) patterns of distinct classes of dismounts given little a priori information. This increases classification performance in the presence of challenges posed by anti-access/area denial (A2/AD) sensing. To fuse multimodal features, Long-range Dismount Activity Classification (LODAC) develops a novel statistical information theoretic approach for multimodal data fusion that jointly models multimodal data (i.e., a probabilistic model for cross-modal signal generation) and discovers the critical cross-modal correlations by identifying components (features) with maximal mutual information (MI) which is efficiently estimated using non-parametric entropy models. LODAC develops a generic probabilistic pattern learning and classification framework based on a new class of hierarchical Bayesian learning algorithms for efficiently discovering recurring patterns (classes of dismounts) in multiple simultaneous time series (sensor modalities) at multiple levels of feature granularity.

  6. A Data Mining Approach to Identify Sexuality Patterns in a Brazilian University Population.

    PubMed

    Waleska Simões, Priscyla; Cesconetto, Samuel; Toniazzo de Abreu, Larissa Letieli; Côrtes de Mattos Garcia, Merisandra; Cassettari Junior, José Márcio; Comunello, Eros; Bisognin Ceretta, Luciane; Aparecida Manenti, Sandra

    2015-01-01

    This paper presents the profile and experience of sexuality generated from a data mining classification task. We used a database about sexuality and gender violence performed on a university population in southern Brazil. The data mining task identified two relationships between the variables, which enabled the distinction of subgroups that better detail the profile and experience of sexuality. The identification of the relationships between the variables define behavioral models and factors of risk that will help define the algorithms being implemented in the data mining classification task.

  7. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    PubMed

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  8. Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.

    PubMed

    Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya

    2018-01-01

    One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the algorithm and the subsequent conducting of the experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Robust pattern decoding in shape-coded structured light

    NASA Astrophysics Data System (ADS)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  10. A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems.

    PubMed

    Mao, Yingchi; Zhong, Haishi; Xiao, Xianjian; Li, Xiaofang

    2017-03-06

    With the rapid spread of built-in GPS handheld smart devices, the trajectory data from GPS sensors has grown explosively. Trajectory data has spatio-temporal characteristics and rich information. Using trajectory data processing techniques can mine the patterns of human activities and the moving patterns of vehicles in the intelligent transportation systems. A trajectory similarity measure is one of the most important issues in trajectory data mining (clustering, classification, frequent pattern mining, etc.). Unfortunately, the main similarity measure algorithms with the trajectory data have been found to be inaccurate, highly sensitive of sampling methods, and have low robustness for the noise data. To solve the above problems, three distances and their corresponding computation methods are proposed in this paper. The point-segment distance can decrease the sensitivity of the point sampling methods. The prediction distance optimizes the temporal distance with the features of trajectory data. The segment-segment distance introduces the trajectory shape factor into the similarity measurement to improve the accuracy. The three kinds of distance are integrated with the traditional dynamic time warping algorithm (DTW) algorithm to propose a new segment-based dynamic time warping algorithm (SDTW). The experimental results show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR) , and DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms.

  11. Correlation-based pattern recognition for implantable defibrillators.

    PubMed Central

    Wilkins, J.

    1996-01-01

    An estimated 300,000 Americans die each year from cardiac arrhythmias. Historically, drug therapy or surgery were the only treatment options available for patients suffering from arrhythmias. Recently, implantable arrhythmia management devices have been developed. These devices allow abnormal cardiac rhythms to be sensed and corrected in vivo. Proper arrhythmia classification is critical to selecting the appropriate therapeutic intervention. The classification problem is made more challenging by the power/computation constraints imposed by the short battery life of implantable devices. Current devices utilize heart rate-based classification algorithms. Although easy to implement, rate-based approaches have unacceptably high error rates in distinguishing supraventricular tachycardia (SVT) from ventricular tachycardia (VT). Conventional morphology assessment techniques used in ECG analysis often require too much computation to be practical for implantable devices. In this paper, a computationally-efficient, arrhythmia classification architecture using correlation-based morphology assessment is presented. The architecture classifies individuals heart beats by assessing similarity between an incoming cardiac signal vector and a series of prestored class templates. A series of these beat classifications are used to make an overall rhythm assessment. The system makes use of several new results in the field of pattern recognition. The resulting system achieved excellent accuracy in discriminating SVT and VT. PMID:8947674

  12. Toward On-Demand Deep Brain Stimulation Using Online Parkinson's Disease Prediction Driven by Dynamic Detection.

    PubMed

    Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas

    2017-12-01

    In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.

  13. A novel single neuron perceptron with universal approximation and XOR computation properties.

    PubMed

    Lotfi, Ehsan; Akbarzadeh-T, M-R

    2014-01-01

    We propose a biologically motivated brain-inspired single neuron perceptron (SNP) with universal approximation and XOR computation properties. This computational model extends the input pattern and is based on the excitatory and inhibitory learning rules inspired from neural connections in the human brain's nervous system. The resulting architecture of SNP can be trained by supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine) pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP) with gradient decent backpropagation (GDBP) learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time, and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various problems such as in pattern recognition and classification.

  14. Digital processing of satellite imagery application to jungle areas of Peru

    NASA Technical Reports Server (NTRS)

    Pomalaza, J. C. (Principal Investigator); Pomalaza, C. A.; Espinoza, J.

    1976-01-01

    The author has identified the following significant results. The use of clustering methods permits the development of relatively fast classification algorithms that could be implemented in an inexpensive computer system with limited amount of memory. Analysis of CCTs using these techniques can provide a great deal of detail permitting the use of the maximum resolution of LANDSAT imagery. Potential cases were detected in which the use of other techniques for classification using a Gaussian approximation for the distribution functions can be used with advantage. For jungle areas, channels 5 and 7 can provide enough information to delineate drainage patterns, swamp and wet areas, and make a reasonable broad classification of forest types.

  15. Video-based depression detection using local Curvelet binary patterns in pairwise orthogonal planes.

    PubMed

    Pampouchidou, Anastasia; Marias, Kostas; Tsiknakis, Manolis; Simos, Panagiotis; Fan Yang; Lemaitre, Guillaume; Meriaudeau, Fabrice

    2016-08-01

    Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Orthogonal-Planes. Performance of the algorithms was tested on the benchmark dataset provided by the Audio/Visual Emotion Challenge 2014, with the person-specific system achieving 97.6% classification accuracy, and the person-independed one yielding promising preliminary results of 74.5% accuracy. The paper concludes with open issues, proposed solutions, and future plans.

  16. Control chart pattern recognition using RBF neural network with new training algorithm and practical features.

    PubMed

    Addeh, Abdoljalil; Khormali, Aminollah; Golilarz, Noorbakhsh Amiri

    2018-05-04

    The control chart patterns are the most commonly used statistical process control (SPC) tools to monitor process changes. When a control chart produces an out-of-control signal, this means that the process has been changed. In this study, a new method based on optimized radial basis function neural network (RBFNN) is proposed for control chart patterns (CCPs) recognition. The proposed method consists of four main modules: feature extraction, feature selection, classification and learning algorithm. In the feature extraction module, shape and statistical features are used. Recently, various shape and statistical features have been presented for the CCPs recognition. In the feature selection module, the association rules (AR) method has been employed to select the best set of the shape and statistical features. In the classifier section, RBFNN is used and finally, in RBFNN, learning algorithm has a high impact on the network performance. Therefore, a new learning algorithm based on the bees algorithm has been used in the learning module. Most studies have considered only six patterns: Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift and Downward Shift. Since three patterns namely Normal, Stratification, and Systematic are very similar to each other and distinguishing them is very difficult, in most studies Stratification and Systematic have not been considered. Regarding to the continuous monitoring and control over the production process and the exact type detection of the problem encountered during the production process, eight patterns have been investigated in this study. The proposed method is tested on a dataset containing 1600 samples (200 samples from each pattern) and the results showed that the proposed method has a very good performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  18. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.

    PubMed

    Ortiz-Catalan, Max; Håkansson, Bo; Brånemark, Rickard

    2014-07-01

    The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigate different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the multi-layer perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the one-vs-one (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability are evaluated in real time using the motion test and target achievement control (TAC) test, respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.

  19. Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing.

    PubMed

    Dottori, Martin; Sedeño, Lucas; Martorell Caro, Miguel; Alifano, Florencia; Hesse, Eugenia; Mikulan, Ezequiel; García, Adolfo M; Ruiz-Tagle, Amparo; Lillo, Patricia; Slachevsky, Andrea; Serrano, Cecilia; Fraiman, Daniel; Ibanez, Agustin

    2017-06-19

    Developing effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer's disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.

  20. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia

    PubMed Central

    Kim, Junghoe; Calhoun, Vince D.; Shim, Eunsoo; Lee, Jong-Hwan

    2015-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. PMID:25987366

  1. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  2. FHR patterns that become significant in connection with ST waveform changes and metabolic acidosis at birth.

    PubMed

    Rosén, Karl G; Norén, Håkan; Carlsson, Ann

    2018-04-18

    Recent developments have produced new CTG classification systems and the question is to what extent these may affect the model of FHR + ST interpretation? The two new systems (FIGO2015 and SSOG2017) classify FHR + ST events differently from the current CTG classification system used in the STAN interpretation algorithm (STAN2007). Identify the predominant FHR patterns in connection with ST events in cases of cord artery metabolic acidosis missed by the different CTG classification systems. Indicate to what extent STAN clinical guidelines could be modified enhancing the sensitivity. Provide a pathophysiological rationale. Forty-four cases with umbilical cord artery metabolic acidosis were retrieved from a European multicenter database. Significant FHR + ST events were evaluated post hoc in consensus by an expert panel. Eighteen cases were not identified as in need of intervention and regarded as negative in the sensitivity analysis. In 12 cases, ST changes occurred but the CTG was regarded as reassuring. Visual analysis of the FHR + ST tracings revealed specific FHR patterns: Conclusion: These findings indicate FHR + ST analysis may be undertaken regardless of CTG classification system provided there is a more physiologically oriented approach to FHR assessment in connection with an ST event.

  3. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    PubMed

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®

  4. Automatic tissue characterization from ultrasound imagery

    NASA Astrophysics Data System (ADS)

    Kadah, Yasser M.; Farag, Aly A.; Youssef, Abou-Bakr M.; Badawi, Ahmed M.

    1993-08-01

    In this work, feature extraction algorithms are proposed to extract the tissue characterization parameters from liver images. Then the resulting parameter set is further processed to obtain the minimum number of parameters representing the most discriminating pattern space for classification. This preprocessing step was applied to over 120 pathology-investigated cases to obtain the learning data for designing the classifier. The extracted features are divided into independent training and test sets and are used to construct both statistical and neural classifiers. The optimal criteria for these classifiers are set to have minimum error, ease of implementation and learning, and the flexibility for future modifications. Various algorithms for implementing various classification techniques are presented and tested on the data. The best performance was obtained using a single layer tensor model functional link network. Also, the voting k-nearest neighbor classifier provided comparably good diagnostic rates.

  5. Automated Method of Frequency Determination in Software Metric Data Through the Use of the Multiple Signal Classification (MUSIC) Algorithm

    DTIC Science & Technology

    1998-06-26

    METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is

  6. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  7. Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds

    NASA Astrophysics Data System (ADS)

    Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert

    2014-06-01

    Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.

  8. Machine learning for the assessment of Alzheimer's disease through DTI

    NASA Astrophysics Data System (ADS)

    Lella, Eufemia; Amoroso, Nicola; Bellotti, Roberto; Diacono, Domenico; La Rocca, Marianna; Maggipinto, Tommaso; Monaco, Alfonso; Tangaro, Sabina

    2017-09-01

    Digital imaging techniques have found several medical applications in the development of computer aided detection systems, especially in neuroimaging. Recent advances in Diffusion Tensor Imaging (DTI) aim to discover biological markers for the early diagnosis of Alzheimer's disease (AD), one of the most widespread neurodegenerative disorders. We explore here how different supervised classification models provide a robust support to the diagnosis of AD patients. We use DTI measures, assessing the structural integrity of white matter (WM) fiber tracts, to reveal patterns of disrupted brain connectivity. In particular, we provide a voxel-wise measure of fractional anisotropy (FA) and mean diffusivity (MD), thus identifying the regions of the brain mostly affected by neurodegeneration, and then computing intensity features to feed supervised classification algorithms. In particular, we evaluate the accuracy of discrimination of AD patients from healthy controls (HC) with a dataset of 80 subjects (40 HC, 40 AD), from the Alzheimer's Disease Neurodegenerative Initiative (ADNI). In this study, we compare three state-of-the-art classification models: Random Forests, Naive Bayes and Support Vector Machines (SVMs). We use a repeated five-fold cross validation framework with nested feature selection to perform a fair comparison between these algorithms and evaluate the information content they provide. Results show that AD patterns are well localized within the brain, thus DTI features can support the AD diagnosis.

  9. Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis.

    PubMed

    Bhaduri, Aritra; Banerjee, Amitava; Roy, Subhrajit; Kar, Sougata; Basu, Arindam

    2018-03-01

    We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.

  10. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    PubMed

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  11. Comparative study of classification algorithms for damage classification in smart composite laminates

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Ryoo, Chang-Kyung; Kim, Heung Soo

    2017-04-01

    This paper presents a comparative study of different classification algorithms for the classification of various types of inter-ply delaminations in smart composite laminates. Improved layerwise theory is used to model delamination at different interfaces along the thickness and longitudinal directions of the smart composite laminate. The input-output data obtained through surface bonded piezoelectric sensor and actuator is analyzed by the system identification algorithm to get the system parameters. The identified parameters for the healthy and delaminated structure are supplied as input data to the classification algorithms. The classification algorithms considered in this study are ZeroR, Classification via regression, Naïve Bayes, Multilayer Perceptron, Sequential Minimal Optimization, Multiclass-Classifier, and Decision tree (J48). The open source software of Waikato Environment for Knowledge Analysis (WEKA) is used to evaluate the classification performance of the classifiers mentioned above via 75-25 holdout and leave-one-sample-out cross-validation regarding classification accuracy, precision, recall, kappa statistic and ROC Area.

  12. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  13. Improving the discrimination of hand motor imagery via virtual reality based visual guidance.

    PubMed

    Liang, Shuang; Choi, Kup-Sze; Qin, Jing; Pang, Wai-Man; Wang, Qiong; Heng, Pheng-Ann

    2016-08-01

    While research on the brain-computer interface (BCI) has been active in recent years, how to get high-quality electrical brain signals to accurately recognize human intentions for reliable communication and interaction is still a challenging task. The evidence has shown that visually guided motor imagery (MI) can modulate sensorimotor electroencephalographic (EEG) rhythms in humans, but how to design and implement efficient visual guidance during MI in order to produce better event-related desynchronization (ERD) patterns is still unclear. The aim of this paper is to investigate the effect of using object-oriented movements in a virtual environment as visual guidance on the modulation of sensorimotor EEG rhythms generated by hand MI. To improve the classification accuracy on MI, we further propose an algorithm to automatically extract subject-specific optimal frequency and time bands for the discrimination of ERD patterns produced by left and right hand MI. The experimental results show that the average classification accuracy of object-directed scenarios is much better than that of non-object-directed scenarios (76.87% vs. 69.66%). The result of the t-test measuring the difference between them is statistically significant (p = 0.0207). When compared to algorithms based on fixed frequency and time bands, contralateral dominant ERD patterns can be enhanced by using the subject-specific optimal frequency and the time bands obtained by our proposed algorithm. These findings have the potential to improve the efficacy and robustness of MI-based BCI applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging.

    PubMed

    Wang, Rui; Li, Rui; Lei, Yanyan; Zhu, Quing

    2015-01-01

    Support vector machine (SVM) is one of the most effective classification methods for cancer detection. The efficiency and quality of a SVM classifier depends strongly on several important features and a set of proper parameters. Here, a series of classification analyses, with one set of photoacoustic data from ovarian tissues ex vivo and a widely used breast cancer dataset- the Wisconsin Diagnostic Breast Cancer (WDBC), revealed the different accuracy of a SVM classification in terms of the number of features used and the parameters selected. A pattern recognition system is proposed by means of SVM-Recursive Feature Elimination (RFE) with the Radial Basis Function (RBF) kernel. To improve the effectiveness and robustness of the system, an optimized tuning ensemble algorithm called as SVM-RFE(C) with correlation filter was implemented to quantify feature and parameter information based on cross validation. The proposed algorithm is first demonstrated outperforming SVM-RFE on WDBC. Then the best accuracy of 94.643% and sensitivity of 94.595% were achieved when using SVM-RFE(C) to test 57 new PAT data from 19 patients. The experiment results show that the classifier constructed with SVM-RFE(C) algorithm is able to learn additional information from new data and has significant potential in ovarian cancer diagnosis.

  15. False alarm reduction by the And-ing of multiple multivariate Gaussian classifiers

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2003-09-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. This paper describes a method for training several multivariate Gaussian classifiers such that their And-ing dramatically reduces false alarms while maintaining a high probability of classification. This training approach is referred to as the Focused- Training method. This work extends our 2001-2002 work where the Focused-Training method was used with three other types of classifiers: the Attractor-based K-Nearest Neighbor Neural Network (a type of radial-basis, probabilistic neural network), the Optimal Discrimination Filter Classifier (based linear discrimination theory), and the Quadratic Penalty Function Support Vector Machine (QPFSVM). Although our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to a wide range of pattern recognition and automatic target recognition (ATR) problems.

  16. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.

    PubMed

    Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi

    2016-09-01

    The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.

  17. Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

    PubMed

    Bi, Xia-An; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

  18. Integrating Multibeam Backscatter Angular Response, Mosaic and Bathymetry Data for Benthic Habitat Mapping

    PubMed Central

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre

    2014-01-01

    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155

  19. Sensor fusion approaches for EMI and GPR-based subsurface threat identification

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.

  20. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soner Yorgun, M.; Rood, Richard B.

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  1. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE PAGES

    Soner Yorgun, M.; Rood, Richard B.

    2016-11-11

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  2. Optimizing Input/Output Using Adaptive File System Policies

    NASA Technical Reports Server (NTRS)

    Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.

    1996-01-01

    Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.

  3. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Multiple confidence estimates as indices of eyewitness memory.

    PubMed

    Sauer, James D; Brewer, Neil; Weber, Nathan

    2008-08-01

    Eyewitness identification decisions are vulnerable to various influences on witnesses' decision criteria that contribute to false identifications of innocent suspects and failures to choose perpetrators. An alternative procedure using confidence estimates to assess the degree of match between novel and previously viewed faces was investigated. Classification algorithms were applied to participants' confidence data to determine when a confidence value or pattern of confidence values indicated a positive response. Experiment 1 compared confidence group classification accuracy with a binary decision control group's accuracy on a standard old-new face recognition task and found superior accuracy for the confidence group for target-absent trials but not for target-present trials. Experiment 2 used a face mini-lineup task and found reduced target-present accuracy offset by large gains in target-absent accuracy. Using a standard lineup paradigm, Experiments 3 and 4 also found improved classification accuracy for target-absent lineups and, with a more sophisticated algorithm, for target-present lineups. This demonstrates the accessibility of evidence for recognition memory decisions and points to a more sensitive index of memory quality than is afforded by binary decisions.

  5. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    PubMed

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  6. Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing

    NASA Astrophysics Data System (ADS)

    Tian, Q.; Fainman, Y.; Lee, Sing H.

    1989-02-01

    The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.

  7. Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm

    PubMed Central

    2011-01-01

    Background Tokenization is an important component of language processing yet there is no widely accepted tokenization method for English texts, including biomedical texts. Other than rule based techniques, tokenization in the biomedical domain has been regarded as a classification task. Biomedical classifier-based tokenizers either split or join textual objects through classification to form tokens. The idiosyncratic nature of each biomedical tokenizer’s output complicates adoption and reuse. Furthermore, biomedical tokenizers generally lack guidance on how to apply an existing tokenizer to a new domain (subdomain). We identify and complete a novel tokenizer design pattern and suggest a systematic approach to tokenizer creation. We implement a tokenizer based on our design pattern that combines regular expressions and machine learning. Our machine learning approach differs from the previous split-join classification approaches. We evaluate our approach against three other tokenizers on the task of tokenizing biomedical text. Results Medpost and our adapted Viterbi tokenizer performed best with a 92.9% and 92.4% accuracy respectively. Conclusions Our evaluation of our design pattern and guidelines supports our claim that the design pattern and guidelines are a viable approach to tokenizer construction (producing tokenizers matching leading custom-built tokenizers in a particular domain). Our evaluation also demonstrates that ambiguous tokenizations can be disambiguated through POS tagging. In doing so, POS tag sequences and training data have a significant impact on proper text tokenization. PMID:21658288

  8. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations

    PubMed Central

    Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.

    2016-01-01

    Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941

  9. Identification of Shearer Cutting Patterns Using Vibration Signals Based on a Least Squares Support Vector Machine with an Improved Fruit Fly Optimization Algorithm

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing

    2016-01-01

    Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615

  10. Sequenced subjective accents for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  11. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  12. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  13. Participatory Classification in a System for Assessing Multimodal Transportation Patterns

    DTIC Science & Technology

    2015-02-17

    Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm

  14. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia

    PubMed Central

    Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.

    2011-01-01

    Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948

  15. A nonlinear discriminant algorithm for feature extraction and data classification.

    PubMed

    Santa Cruz, C; Dorronsoro, J R

    1998-01-01

    This paper presents a nonlinear supervised feature extraction algorithm that combines Fisher's criterion function with a preliminary perceptron-like nonlinear projection of vectors in pattern space. Its main motivation is to combine the approximation properties of multilayer perceptrons (MLP's) with the target free nature of Fisher's classical discriminant analysis. In fact, although MLP's provide good classifiers for many problems, there may be some situations, such as unequal class sizes with a high degree of pattern mixing among them, that may make difficult the construction of good MLP classifiers. In these instances, the features extracted by our procedure could be more effective. After the description of its construction and the analysis of its complexity, we will illustrate its use over a synthetic problem with the above characteristics.

  16. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  17. Hierarchical trie packet classification algorithm based on expectation-maximization clustering

    PubMed Central

    Bi, Xia-an; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476

  18. The generalization ability of online SVM classification based on Markov sampling.

    PubMed

    Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang

    2015-03-01

    In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.

  19. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    PubMed

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  20. Diagnostic Utility of the ADI-R and DSM-5 in the Assessment of Latino Children and Adolescents.

    PubMed

    Magaña, Sandy; Vanegas, Sandra B

    2017-05-01

    Latino children in the US are systematically underdiagnosed with Autism Spectrum Disorder (ASD); therefore, it is important that recent changes to the diagnostic process do not exacerbate this pattern of under-identification. Previous research has found that the Autism Diagnostic Interview-Revised (ADI-R) algorithm, based on the Diagnostic and Statistical Manual of Mental Disorder, Fourth Edition, Text Revision (DSM-IV-TR), has limitations with Latino children of Spanish speaking parents. We evaluated whether an ADI-R algorithm based on the new DSM-5 classification for ASD would be more sensitive in identifying Latino children of Spanish speaking parents who have a clinical diagnosis of ASD. Findings suggest that the DSM-5 algorithm shows better sensitivity than the DSM-IV-TR algorithm for Latino children.

  1. Automated Decision Tree Classification of Corneal Shape

    PubMed Central

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645

  2. Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification.

    PubMed

    Dai, Mengxi; Zheng, Dezhi; Liu, Shucong; Zhang, Pengju

    2018-01-01

    Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods.

  3. Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification

    PubMed Central

    Dai, Mengxi; Liu, Shucong; Zhang, Pengju

    2018-01-01

    Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods. PMID:29743934

  4. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  5. Voice based gender classification using machine learning

    NASA Astrophysics Data System (ADS)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  6. A semi-supervised classification algorithm using the TAD-derived background as training data

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Ambeau, Brittany; Messinger, David W.

    2013-05-01

    In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.

  7. An algorithm for power line detection and warning based on a millimeter-wave radar video.

    PubMed

    Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting

    2011-12-01

    Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm. © 2011 IEEE

  8. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.

    PubMed

    Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C

    2014-08-01

    The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  10. Filter bank common spatial patterns in mental workload estimation.

    PubMed

    Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H

    2015-01-01

    EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.

  11. Regularised extreme learning machine with misclassification cost and rejection cost for gene expression data classification.

    PubMed

    Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi

    2015-01-01

    The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.

  12. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

  13. Image-classification-based global dimming algorithm for LED backlights in LCDs

    NASA Astrophysics Data System (ADS)

    Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv

    2015-07-01

    Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.

  14. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  15. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    PubMed

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  16. A review and analysis of neural networks for classification of remotely sensed multispectral imagery

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1993-01-01

    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.

  17. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.

    PubMed

    Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan

    2016-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.

    PubMed

    Shabanzadeh, Parvaneh; Yusof, Rubiyah

    2015-01-01

    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

  19. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    PubMed

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

  20. Security authentication using phase-encoded nanoparticle structures and polarized light.

    PubMed

    Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram

    2015-01-15

    Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.

  1. Beyond mind-reading: multi-voxel pattern analysis of fMRI data.

    PubMed

    Norman, Kenneth A; Polyn, Sean M; Detre, Greg J; Haxby, James V

    2006-09-01

    A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.

  2. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    NASA Astrophysics Data System (ADS)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  3. Comparison analysis for classification algorithm in data mining and the study of model use

    NASA Astrophysics Data System (ADS)

    Chen, Junde; Zhang, Defu

    2018-04-01

    As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.

  4. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  5. Performance of fusion algorithms for computer-aided detection and classification of mines in very shallow water obtained from testing in navy Fleet Battle Exercise-Hotel 2000

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William; Kerfoot, Ian

    2001-10-01

    The performance of Computer Aided Detection/Computer Aided Classification (CAD/CAC) Fusion algorithms on side-scan sonar images was evaluated using data taken at the Navy's's Fleet Battle Exercise-Hotel held in Panama City, Florida, in August 2000. A 2-of-3 binary fusion algorithm is shown to provide robust performance. The algorithm accepts the classification decisions and associated contact locations form three different CAD/CAC algorithms, clusters the contacts based on Euclidian distance, and then declares a valid target when a clustered contact is declared by at least 2 of the 3 individual algorithms. This simple binary fusion provided a 96 percent probability of correct classification at a false alarm rate of 0.14 false alarms per image per side. The performance represented a 3.8:1 reduction in false alarms over the best performing single CAD/CAC algorithm, with no loss in probability of correct classification.

  6. Contributions to "k"-Means Clustering and Regression via Classification Algorithms

    ERIC Educational Resources Information Center

    Salman, Raied

    2012-01-01

    The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…

  7. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  8. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison.

    PubMed

    Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard

    2016-10-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.

  9. Sequencing batch-reactor control using Gaussian-process models.

    PubMed

    Kocijan, Juš; Hvala, Nadja

    2013-06-01

    This paper presents a Gaussian-process (GP) model for the design of sequencing batch-reactor (SBR) control for wastewater treatment. The GP model is a probabilistic, nonparametric model with uncertainty predictions. In the case of SBR control, it is used for the on-line optimisation of the batch-phases duration. The control algorithm follows the course of the indirect process variables (pH, redox potential and dissolved oxygen concentration) and recognises the characteristic patterns in their time profile. The control algorithm uses GP-based regression to smooth the signals and GP-based classification for the pattern recognition. When tested on the signals from an SBR laboratory pilot plant, the control algorithm provided a satisfactory agreement between the proposed completion times and the actual termination times of the biodegradation processes. In a set of tested batches the final ammonia and nitrate concentrations were below 1 and 0.5 mg L(-1), respectively, while the aeration time was shortened considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Exploring the CAESAR database using dimensionality reduction techniques

    NASA Astrophysics Data System (ADS)

    Mendoza-Schrock, Olga; Raymer, Michael L.

    2012-06-01

    The Civilian American and European Surface Anthropometry Resource (CAESAR) database containing over 40 anthropometric measurements on over 4000 humans has been extensively explored for pattern recognition and classification purposes using the raw, original data [1-4]. However, some of the anthropometric variables would be impossible to collect in an uncontrolled environment. Here, we explore the use of dimensionality reduction methods in concert with a variety of classification algorithms for gender classification using only those variables that are readily observable in an uncontrolled environment. Several dimensionality reduction techniques are employed to learn the underlining structure of the data. These techniques include linear projections such as the classical Principal Components Analysis (PCA) and non-linear (manifold learning) techniques, such as Diffusion Maps and the Isomap technique. This paper briefly describes all three techniques, and compares three different classifiers, Naïve Bayes, Adaboost, and Support Vector Machines (SVM), for gender classification in conjunction with each of these three dimensionality reduction approaches.

  11. An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Fealy, Rowan

    2013-04-01

    Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.

  12. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  13. Artificial metaplasticity neural network applied to credit scoring.

    PubMed

    Marcano-Cedeño, Alexis; Marin-de-la-Barcena, A; Jimenez-Trillo, J; Piñuela, J A; Andina, D

    2011-08-01

    The assessment of the risk of default on credit is important for financial institutions. Different Artificial Neural Networks (ANN) have been suggested to tackle the credit scoring problem, however, the obtained error rates are often high. In the search for the best ANN algorithm for credit scoring, this paper contributes with the application of an ANN Training Algorithm inspired by the neurons' biological property of metaplasticity. This algorithm is especially efficient when few patterns of a class are available, or when information inherent to low probability events is crucial for a successful application, as weight updating is overemphasized in the less frequent activations than in the more frequent ones. Two well-known and readily available such as: Australia and German data sets has been used to test the algorithm. The results obtained by AMMLP shown have been superior to state-of-the-art classification algorithms in credit scoring.

  14. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Discovering biclusters in gene expression data based on high-dimensional linear geometries

    PubMed Central

    Gan, Xiangchao; Liew, Alan Wee-Chung; Yan, Hong

    2008-01-01

    Background In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits consistent pattern over a subset of conditions. Conventional clustering algorithms that deal with the entire row or column in an expression matrix would therefore fail to detect these useful patterns in the data. Recently, biclustering has been proposed to detect a subset of genes exhibiting consistent pattern over a subset of conditions. However, most existing biclustering algorithms are based on searching for sub-matrices within a data matrix by optimizing certain heuristically defined merit functions. Moreover, most of these algorithms can only detect a restricted set of bicluster patterns. Results In this paper, we present a novel geometric perspective for the biclustering problem. The biclustering process is interpreted as the detection of linear geometries in a high dimensional data space. Such a new perspective views biclusters with different patterns as hyperplanes in a high dimensional space, and allows us to handle different types of linear patterns simultaneously by matching a specific set of linear geometries. This geometric viewpoint also inspires us to propose a generic bicluster pattern, i.e. the linear coherent model that unifies the seemingly incompatible additive and multiplicative bicluster models. As a particular realization of our framework, we have implemented a Hough transform-based hyperplane detection algorithm. The experimental results on human lymphoma gene expression dataset show that our algorithm can find biologically significant subsets of genes. Conclusion We have proposed a novel geometric interpretation of the biclustering problem. We have shown that many common types of bicluster are just different spatial arrangements of hyperplanes in a high dimensional data space. An implementation of the geometric framework using the Fast Hough transform for hyperplane detection can be used to discover biologically significant subsets of genes under subsets of conditions for microarray data analysis. PMID:18433477

  16. Neural architecture design based on extreme learning machine.

    PubMed

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks.

    PubMed

    Zhang, Jianhua; Li, Sunan; Wang, Rubin

    2017-01-01

    In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.

  18. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  19. Quantification of differences between nailfold capillaroscopy images with a scleroderma pattern and normal pattern using measures of geometric and algorithmic complexity.

    PubMed

    Urwin, Samuel George; Griffiths, Bridget; Allen, John

    2017-02-01

    This study aimed to quantify and investigate differences in the geometric and algorithmic complexity of the microvasculature in nailfold capillaroscopy (NFC) images displaying a scleroderma pattern and those displaying a 'normal' pattern. 11 NFC images were qualitatively classified by a capillary specialist as indicative of 'clear microangiopathy' (CM), i.e. a scleroderma pattern, and 11 as 'not clear microangiopathy' (NCM), i.e. a 'normal' pattern. Pre-processing was performed, and fractal dimension (FD) and Kolmogorov complexity (KC) were calculated following image binarisation. FD and KC were compared between groups, and a k-means cluster analysis (n  =  2) on all images was performed, without prior knowledge of the group assigned to them (i.e. CM or NCM), using FD and KC as inputs. CM images had significantly reduced FD and KC compared to NCM images, and the cluster analysis displayed promising results that the quantitative classification of images into CM and NCM groups is possible using the mathematical measures of FD and KC. The analysis techniques used show promise for quantitative microvascular investigation in patients with systemic sclerosis.

  20. Detection of cracks on concrete surfaces by hyperspectral image processing

    NASA Astrophysics Data System (ADS)

    Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo

    2017-06-01

    All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly discretized for crack detection on concrete surfaces, considering cracking combined with the most usual concrete anomalies, namely biological colonization.

  1. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology.

    PubMed

    Koch, Julian; Stisen, Simon

    2017-01-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics.

  2. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    NASA Astrophysics Data System (ADS)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  3. Contextual classification of multispectral image data: Approximate algorithm

    NASA Technical Reports Server (NTRS)

    Tilton, J. C. (Principal Investigator)

    1980-01-01

    An approximation to a classification algorithm incorporating spatial context information in a general, statistical manner is presented which is computationally less intensive. Classifications that are nearly as accurate are produced.

  4. Thermography based diagnosis of ruptured anterior cruciate ligament (ACL) in canines

    NASA Astrophysics Data System (ADS)

    Lama, Norsang; Umbaugh, Scott E.; Mishra, Deependra; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    Anterior cruciate ligament (ACL) rupture in canines is a common orthopedic injury in veterinary medicine. Veterinarians use both imaging and non-imaging methods to diagnose the disease. Common imaging methods such as radiography, computed tomography (CT scan) and magnetic resonance imaging (MRI) have some disadvantages: expensive setup, high dose of radiation, and time-consuming. In this paper, we present an alternative diagnostic method based on feature extraction and pattern classification (FEPC) to diagnose abnormal patterns in ACL thermograms. The proposed method was experimented with a total of 30 thermograms for each camera view (anterior, lateral and posterior) including 14 disease and 16 non-disease cases provided from Long Island Veterinary Specialists. The normal and abnormal patterns in thermograms are analyzed in two steps: feature extraction and pattern classification. Texture features based on gray level co-occurrence matrices (GLCM), histogram features and spectral features are extracted from the color normalized thermograms and the computed feature vectors are applied to Nearest Neighbor (NN) classifier, K-Nearest Neighbor (KNN) classifier and Support Vector Machine (SVM) classifier with leave-one-out validation method. The algorithm gives the best classification success rate of 86.67% with a sensitivity of 85.71% and a specificity of 87.5% in ACL rupture detection using NN classifier for the lateral view and Norm-RGB-Lum color normalization method. Our results show that the proposed method has the potential to detect ACL rupture in canines.

  5. Merged or monolithic? Using machine-learning to reconstruct the dynamical history of simulated star clusters

    NASA Astrophysics Data System (ADS)

    Pasquato, Mario; Chung, Chul

    2016-05-01

    Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims: We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods: We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results: The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.

  6. Towards a robust framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Samal, A.; Singh, R.

    2017-12-01

    Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.

  7. Assessing paedophilia based on the haemodynamic brain response to face images.

    PubMed

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Deuschl, Günther; Huchzermeier, Christian; Stirn, Aglaja; Bosinski, Hartmut; Roman Siebner, Hartwig

    2016-01-01

    Objective assessment of sexual preferences may be of relevance in the treatment and prognosis of child sexual offenders. Previous research has indicated that this can be achieved by pattern classification of brain responses to sexual child and adult images. Our recent research showed that human face processing is tuned to sexual age preferences. This observation prompted us to test whether paedophilia can be inferred based on the haemodynamic brain responses to adult and child faces. Twenty-four men sexually attracted to prepubescent boys or girls (paedophiles) and 32 men sexually attracted to men or women (teleiophiles) were exposed to images of child and adult, male and female faces during a functional magnetic resonance imaging (fMRI) session. A cross-validated, automatic pattern classification algorithm of brain responses to facial stimuli yielded four misclassified participants (three false positives), corresponding to a specificity of 91% and a sensitivity of 95%. These results indicate that the functional response to facial stimuli can be reliably used for fMRI-based classification of paedophilia, bypassing the problem of showing child sexual stimuli to paedophiles.

  8. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  9. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A novel artificial immune clonal selection classification and rule mining with swarm learning model

    NASA Astrophysics Data System (ADS)

    Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.

    2013-06-01

    Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.

  11. A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification.

    PubMed

    Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; Zhang, David

    2017-02-01

    Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.

  12. [Combining speech sample and feature bilateral selection algorithm for classification of Parkinson's disease].

    PubMed

    Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei

    2018-02-01

    Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.

  13. An assessment of the effectiveness of a random forest classifier for land-cover classification

    NASA Astrophysics Data System (ADS)

    Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.

    2012-01-01

    Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.

  14. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    USGS Publications Warehouse

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  15. Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography.

    PubMed

    Ruiz Hidalgo, Irene; Rodriguez, Pablo; Rozema, Jos J; Ní Dhubhghaill, Sorcha; Zakaria, Nadia; Tassignon, Marie-José; Koppen, Carina

    2016-06-01

    To evaluate the performance of a support vector machine algorithm that automatically and objectively identifies corneal patterns based on a combination of 22 parameters obtained from Pentacam measurements and to compare this method with other known keratoconus (KC) classification methods. Pentacam data from 860 eyes were included in the study and divided into 5 groups: 454 KC, 67 forme fruste (FF), 28 astigmatic, 117 after refractive surgery (PR), and 194 normal eyes (N). Twenty-two parameters were used for classification using a support vector machine algorithm developed in Weka, a machine-learning computer software. The cross-validation accuracy for 3 different classification tasks (KC vs. N, FF vs. N and all 5 groups) was calculated and compared with other known classification methods. The accuracy achieved in the KC versus N discrimination task was 98.9%, with 99.1% sensitivity and 98.5% specificity for KC detection. The accuracy in the FF versus N task was 93.1%, with 79.1% sensitivity and 97.9% specificity for the FF discrimination. Finally, for the 5-groups classification, the accuracy was 88.8%, with a weighted average sensitivity of 89.0% and specificity of 95.2%. Despite using the strictest definition for FF KC, the present study obtained comparable or better results than the single-parameter methods and indices reported in the literature. In some cases, direct comparisons with the literature were not possible because of differences in the compositions and definitions of the study groups, especially the FF KC.

  16. Semi-supervised anomaly detection - towards model-independent searches of new physics

    NASA Astrophysics Data System (ADS)

    Kuusela, Mikael; Vatanen, Tommi; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu

    2012-06-01

    Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where there is an unexpected signal, a neural network might fail to correctly identify it, while anomaly detection does not suffer from such a limitation. On the other hand, when there are no systematic errors in the training data, both methods perform comparably.

  17. Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zhang, Kai; Liu, Xiyang; Long, Erping; Jiang, Jiewei; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Li, Wangting; Lin, Haotian

    2017-01-01

    There are many image classification methods, but it remains unclear which methods are most helpful for analyzing and intelligently identifying ophthalmic images. We select representative slit-lamp images which show the complexity of ocular images as research material to compare image classification algorithms for diagnosing ophthalmic diseases. To facilitate this study, some feature extraction algorithms and classifiers are combined to automatic diagnose pediatric cataract with same dataset and then their performance are compared using multiple criteria. This comparative study reveals the general characteristics of the existing methods for automatic identification of ophthalmic images and provides new insights into the strengths and shortcomings of these methods. The relevant methods (local binary pattern +SVMs, wavelet transformation +SVMs) which achieve an average accuracy of 87% and can be adopted in specific situations to aid doctors in preliminarily disease screening. Furthermore, some methods requiring fewer computational resources and less time could be applied in remote places or mobile devices to assist individuals in understanding the condition of their body. In addition, it would be helpful to accelerate the development of innovative approaches and to apply these methods to assist doctors in diagnosing ophthalmic disease.

  18. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    NASA Astrophysics Data System (ADS)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  19. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  20. Efficient Fingercode Classification

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  1. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to themore » new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.« less

  2. Testing block subdivision algorithms on block designs

    NASA Astrophysics Data System (ADS)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  3. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  4. Spectral band selection for classification of soil organic matter content

    NASA Technical Reports Server (NTRS)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  5. The applicability of FORMOSAT-2 images to coastal waters/bodies classification

    NASA Astrophysics Data System (ADS)

    Teodoro, Ana; Duarte, Lia; Silva, Pedro

    2015-10-01

    FORMOSAT-2, launched in May 2004, is a Taiwanese satellite developed by the National Space Organization (NSPO) of Taiwan. The Remote Sensing Instrument (RSI) is a high spatial- resolution optical sensor onboard FORMOSAT-2 with a 2 m spatial resolution in the panchromatic (PAN) band and a 8 m spatial resolution in four multispectral (MS) bands from the visible to near-infrared region. The RSI images acquired during the daytime can be used for land cover/use studies, natural and forestry resources, disaster prevention and rescue works. The main objectives of this work were to investigate the application of FORMOSAT-2 data in order to: (1) identify beach patterns; (2) correctly extract a sand spit boundary. Different pixel-based and object-based classification algorithms were applied to four FORMOSAT-2 scenes and the results were compared with the results already obtained in previous works. Analyzing the results obtained, is possible to conclude that the FORMOSAT-2 data are adequate to the correct identification of beach patterns and to an accurately extraction of the sand spit boundary (Douro river estuary, Porto, Portugal). The results obtained were compared with the results already achieved with IKONOS-2 images. In conclusion, this research has demonstrated that the FORMOSAT-2 data and image processing techniques employed are an effective methodology to identify beach patterns and to correctly extract sand spit boundaries. In the future more FORMOSAT-2 images will be processed and will be consider the use of pan sharped images and data mining algorithms.

  6. Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms.

    PubMed

    Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael

    2014-10-01

    This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naϊve Bayes for Indonesian text

    NASA Astrophysics Data System (ADS)

    Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia

    2018-03-01

    Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.

  8. Identifying patients with poststroke mild cognitive impairment by pattern recognition of working memory load-related ERP.

    PubMed

    Li, Xiaoou; Yan, Yuning; Wei, Wenshi

    2013-01-01

    The early detection of subjects with probable cognitive deficits is crucial for effective appliance of treatment strategies. This paper explored a methodology used to discriminate between evoked related potential signals of stroke patients and their matched control subjects in a visual working memory paradigm. The proposed algorithm, which combined independent component analysis and orthogonal empirical mode decomposition, was applied to extract independent sources. Four types of target stimulus features including P300 peak latency, P300 peak amplitude, root mean square, and theta frequency band power were chosen. Evolutionary multiple kernel support vector machine (EMK-SVM) based on genetic programming was investigated to classify stroke patients and healthy controls. Based on 5-fold cross-validation runs, EMK-SVM provided better classification performance compared with other state-of-the-art algorithms. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the maximum classification accuracies of 91.76% and 82.23% for 0-back and 1-back tasks, respectively. Overall, the experimental results showed that the proposed method was effective. The approach in this study may eventually lead to a reliable tool for identifying suitable brain impairment candidates and assessing cognitive function.

  9. Multitemporal spatial pattern analysis of Tulum's tropical coastal landscape

    NASA Astrophysics Data System (ADS)

    Ramírez-Forero, Sandra Carolina; López-Caloca, Alejandra; Silván-Cárdenas, José Luis

    2011-11-01

    The tropical coastal landscape of Tulum in Quintana Roo, Mexico has a high ecological, economical, social and cultural value, it provides environmental and tourism services at global, national, regional and local levels. The landscape of the area is heterogeneous and presents random fragmentation patterns. In recent years, tourist services of the region has been increased promoting an accelerate expansion of hotels, transportation and recreation infrastructure altering the complex landscape. It is important to understand the environmental dynamics through temporal changes on the spatial patterns and to propose a better management of this ecological area to the authorities. This paper addresses a multi-temporal analysis of land cover changes from 1993 to 2000 in Tulum using Thematic Mapper data acquired by Landsat-5. Two independent methodologies were applied for the analysis of changes in the landscape and for the definition of fragmentation patterns. First, an Iteratively Multivariate Alteration Detection (IR-MAD) algorithm was used to detect and localize land cover change/no-change areas. Second, the post-classification change detection evaluated using the Support Vector Machine (SVM) algorithm. Landscape metrics were calculated from the results of IR-MAD and SVM. The analysis of the metrics indicated, among other things, a higher fragmentation pattern along roadways.

  10. Infrared Ship Classification Using A New Moment Pattern Recognition Concept

    NASA Astrophysics Data System (ADS)

    Casasent, David; Pauly, John; Fetterly, Donald

    1982-03-01

    An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.

  11. Weakly supervised classification in high energy physics

    DOE PAGES

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; ...

    2017-05-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  12. Weakly supervised classification in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  13. Detection and classification of human body odor using an electronic nose.

    PubMed

    Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat

    2009-01-01

    An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition.

  14. Detection and Classification of Human Body Odor Using an Electronic Nose

    PubMed Central

    Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat

    2009-01-01

    An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition. PMID:22399995

  15. Cascaded deep decision networks for classification of endoscopic images

    NASA Astrophysics Data System (ADS)

    Murthy, Venkatesh N.; Singh, Vivek; Sun, Shanhui; Bhattacharya, Subhabrata; Chen, Terrence; Comaniciu, Dorin

    2017-02-01

    Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review process or to have automatic indication for highly suspicious areas during an online guidance. This also applies to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role. Image classification is a standard pattern recognition problem and is well studied in the literature. However, performance on the challenging endoscopic images still has room for improvement. In this paper, we present a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard Deep neural network based methods. During the learning phase, CDDN automatically builds a network which discards samples that are classified with high confidence scores by a previously trained network and concentrates only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%. In addition, CDDN can also be applied to other image classification problems.

  16. Assessment of Cropping System Diversity in the Fergana Valley Through Image Fusion of Landsat 8 and SENTINEL-1

    NASA Astrophysics Data System (ADS)

    Dimov, D.; Kuhn, J.; Conrad, C.

    2016-06-01

    In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  17. Applying Cost-Sensitive Extreme Learning Machine and Dissimilarity Integration to Gene Expression Data Classification.

    PubMed

    Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin

    2016-01-01

    Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.

  18. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

    PubMed Central

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 − 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning. PMID:27065782

  19. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  20. Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI

    PubMed Central

    Devlaminck, Dieter; Wyns, Bart; Grosse-Wentrup, Moritz; Otte, Georges; Santens, Patrick

    2011-01-01

    Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low. PMID:22007194

  1. Prominent feature extraction for review analysis: an empirical study

    NASA Astrophysics Data System (ADS)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  2. Reduction from cost-sensitive ordinal ranking to weighted binary classification.

    PubMed

    Lin, Hsuan-Tien; Li, Ling

    2012-05-01

    We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows not only the design of good ordinal ranking algorithms based on well-tuned binary classification approaches, but also the derivation of new generalization bounds for ordinal ranking from known bounds for binary classification. In addition, our framework unifies many existing ordinal ranking algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms. In addition, the newly designed algorithms lead to better cost-sensitive ordinal ranking performance, as well as improved listwise ranking performance.

  3. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  4. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  5. A review of contrast pattern based data mining

    NASA Astrophysics Data System (ADS)

    Zhu, Shiwei; Ju, Meilong; Yu, Junfeng; Cai, Binlei; Wang, Aiping

    2015-07-01

    Contrast pattern based data mining is concerned with the mining of patterns and models that contrast two or more datasets. Contrast patterns can describe similarities or differences between the datasets. They represent strong contrast knowledge and have been shown to be very successful for constructing accurate and robust clusters and classifiers. The increasing use of contrast pattern data mining has initiated a great deal of research and development attempts in the field of data mining. A comprehensive revision on the existing contrast pattern based data mining research is given in this paper. They are generally categorized into background and representation, definitions and mining algorithms, contrast pattern based classification, clustering, and other applications, the research trends in future. The primary of this paper is to server as a glossary for interested researchers to have an overall picture on the current contrast based data mining development and identify their potential research direction to future investigation.

  6. Simple-random-sampling-based multiclass text classification algorithm.

    PubMed

    Liu, Wuying; Wang, Lin; Yi, Mianzhu

    2014-01-01

    Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.

  7. Hidden Semi-Markov Models and Their Application

    NASA Astrophysics Data System (ADS)

    Beyreuther, M.; Wassermann, J.

    2008-12-01

    In the framework of detection and classification of seismic signals there are several different approaches. Our choice for a more robust detection and classification algorithm is to adopt Hidden Markov Models (HMM), a technique showing major success in speech recognition. HMM provide a powerful tool to describe highly variable time series based on a double stochastic model and therefore allow for a broader class description than e.g. template based pattern matching techniques. Being a fully probabilistic model, HMM directly provide a confidence measure of an estimated classification. Furthermore and in contrast to classic artificial neuronal networks or support vector machines, HMM are incorporating the time dependence explicitly in the models thus providing a adequate representation of the seismic signal. As the majority of detection algorithms, HMM are not based on the time and amplitude dependent seismogram itself but on features estimated from the seismogram which characterize the different classes. Features, or in other words characteristic functions, are e.g. the sonogram bands, instantaneous frequency, instantaneous bandwidth or centroid time. In this study we apply continuous Hidden Semi-Markov Models (HSMM), an extension of continuous HMM. The duration probability of a HMM is an exponentially decaying function of the time, which is not a realistic representation of the duration of an earthquake. In contrast HSMM use Gaussians as duration probabilities, which results in an more adequate model. The HSMM detection and classification system is running online as an EARTHWORM module at the Bavarian Earthquake Service. Here the signals that are to be classified simply differ in epicentral distance. This makes it possible to easily decide whether a classification is correct or wrong and thus allows to better evaluate the advantages and disadvantages of the proposed algorithm. The evaluation is based on several month long continuous data and the results are additionally compared to the previously published discrete HMM, continuous HMM and a classic STA/LTA. The intermediate evaluation results are very promising.

  8. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    PubMed

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mapping Crop Patterns in Central US Agricultural Systems from 2000 to 2014 Based on Landsat Data: To What Degree Does Fusing MODIS Data Improve Classification Accuracies?

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.

    2015-12-01

    Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.

  10. Cloud classification from satellite data using a fuzzy sets algorithm: A polar example

    NASA Technical Reports Server (NTRS)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1988-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  11. MRM-Lasso: A Sparse Multiview Feature Selection Method via Low-Rank Analysis.

    PubMed

    Yang, Wanqi; Gao, Yang; Shi, Yinghuan; Cao, Longbing

    2015-11-01

    Learning about multiview data involves many applications, such as video understanding, image classification, and social media. However, when the data dimension increases dramatically, it is important but very challenging to remove redundant features in multiview feature selection. In this paper, we propose a novel feature selection algorithm, multiview rank minimization-based Lasso (MRM-Lasso), which jointly utilizes Lasso for sparse feature selection and rank minimization for learning relevant patterns across views. Instead of simply integrating multiple Lasso from view level, we focus on the performance of sample-level (sample significance) and introduce pattern-specific weights into MRM-Lasso. The weights are utilized to measure the contribution of each sample to the labels in the current view. In addition, the latent correlation across different views is successfully captured by learning a low-rank matrix consisting of pattern-specific weights. The alternating direction method of multipliers is applied to optimize the proposed MRM-Lasso. Experiments on four real-life data sets show that features selected by MRM-Lasso have better multiview classification performance than the baselines. Moreover, pattern-specific weights are demonstrated to be significant for learning about multiview data, compared with view-specific weights.

  12. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.

    PubMed

    Heinsfeld, Anibal Sólon; Franco, Alexandre Rosa; Craddock, R Cameron; Buchweitz, Augusto; Meneguzzi, Felipe

    2018-01-01

    The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.

  13. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  14. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam

    2017-12-01

    This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.

  15. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  16. Proteomic patterns for classification of ovarian cancer and CTCL serum samples utilizing peak pairs indicative of post-translational modifications.

    PubMed

    Liu, Chenwei; Shea, Nancy; Rucker, Sally; Harvey, Linda; Russo, Paul; Saul, Richard; Lopez, Mary F; Mikulskis, Alvydas; Kuzdzal, Scott; Golenko, Eva; Fishman, David; Vonderheid, Eric; Booher, Susan; Cowen, Edward W; Hwang, Sam T; Whiteley, Gordon R

    2007-11-01

    Proteomic patterns as a potential diagnostic technology has been well established for several cancer conditions and other diseases. The use of machine learning techniques such as decision trees, neural networks, genetic algorithms, and other methods has been the basis for pattern determination. Cancer is known to involve signaling pathways that are regulated through PTM of proteins. These modifications are also detectable with high confidence using high-resolution MS. We generated data using a prOTOF mass spectrometer on two sets of patient samples: ovarian cancer and cutaneous t-cell lymphoma (CTCL) with matched normal samples for each disease. Using the knowledge of mass shifts caused by common modifications, we built models using peak pairs and compared this to a conventional technique using individual peaks. The results for each disease showed that a small number of peak pairs gave classification equal to or better than the conventional technique that used multiple individual peaks. This simple peak picking technique could be used to guide identification of important peak pairs involved in the disease process.

  17. Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations

    PubMed Central

    Kaplan, Jonas T.; Man, Kingson; Greening, Steven G.

    2015-01-01

    Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC), and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application. PMID:25859202

  18. A fingerprint classification algorithm based on combination of local and global information

    NASA Astrophysics Data System (ADS)

    Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu

    2011-12-01

    Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.

  19. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology

    PubMed Central

    Stisen, Simon

    2017-01-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics. PMID:28558050

  20. Classification of the intention to generate a shoulder versus elbow torque by means of a time frequency synthesized spatial patterns BCI algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Yao, Jun; Dewald, Julius P. A.

    2005-12-01

    In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.

  1. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  2. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    PubMed

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adaptive statistical pattern classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.

    1975-01-01

    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.

  4. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  5. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659

  6. Rule Extraction Based on Extreme Learning Machine and an Improved Ant-Miner Algorithm for Transient Stability Assessment.

    PubMed

    Li, Yang; Li, Guoqing; Wang, Zhenhao

    2015-01-01

    In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA) methods, a new rule extraction method based on extreme learning machine (ELM) and an improved Ant-miner (IAM) algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system--the southern power system of Hebei province.

  7. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    NASA Astrophysics Data System (ADS)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  8. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  9. Research on aviation unsafe incidents classification with improved TF-IDF algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang

    2016-05-01

    The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.

  10. Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance

    NASA Astrophysics Data System (ADS)

    Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi

    2017-11-01

    K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).

  11. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  12. Functional classification of pulmonary hypertension in children: Report from the PVRI pediatric taskforce, Panama 2011.

    PubMed

    Lammers, Astrid E; Adatia, Ian; Cerro, Maria Jesus Del; Diaz, Gabriel; Freudenthal, Alexandra Heath; Freudenthal, Franz; Harikrishnan, S; Ivy, Dunbar; Lopes, Antonio A; Raj, J Usha; Sandoval, Julio; Stenmark, Kurt; Haworth, Sheila G

    2011-08-02

    The members of the Pediatric Task Force of the Pulmonary Vascular Research Institute (PVRI) were aware of the need to develop a functional classification of pulmonary hypertension in children. The proposed classification follows the same pattern and uses the same criteria as the Dana Point pulmonary hypertension specific classification for adults. Modifications were necessary for children, since age, physical growth and maturation influences the way in which the functional effects of a disease are expressed. It is essential to encapsulate a child's clinical status, to make it possible to review progress with time as he/she grows up, as consistently and as objectively as possible. Particularly in younger children we sought to include objective indicators such as thriving, need for supplemental feeds and the record of school or nursery attendance. This helps monitor the clinical course of events and response to treatment over the years. It also facilitates the development of treatment algorithms for children. We present a consensus paper on a functional classification system for children with pulmonary hypertension, discussed at the Annual Meeting of the PVRI in Panama City, February 2011.

  13. Analysis of the hand vein pattern for people recognition

    NASA Astrophysics Data System (ADS)

    Castro-Ortega, R.; Toxqui-Quitl, C.; Cristóbal, G.; Marcos, J. Victor; Padilla-Vivanco, A.; Hurtado Pérez, R.

    2015-09-01

    The shape of the hand vascular pattern contains useful and unique features that can be used for identifying and authenticating people, with applications in access control, medicine and financial services. In this work, an optical system for the image acquisition of the hand vascular pattern is implemented. It consists of a CCD camera with sensitivity in the IR and a light source with emission in the 880 nm. The IR radiation interacts with the desoxyhemoglobin, hemoglobin and water present in the blood of the veins, making possible to see the vein pattern underneath skin. The segmentation of the Region Of Interest (ROI) is achieved using geometrical moments locating the centroid of an image. For enhancement of the vein pattern we use the technique of Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE). In order to remove unnecessary information such as body hair and skinfolds, a low pass filter is implemented. A method based on geometric moments is used to obtain the invariant descriptors of the input images. The classification task is achieved using Artificial Neural Networks (ANN) and K-Nearest Neighbors (K-nn) algorithms. Experimental results using our database show a percentage of correct classification, higher of 86.36% with ANN for 912 images of 38 people with 12 versions each one.

  14. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE PAGES

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.; ...

    2017-01-04

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  15. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  16. New FIGO and Swedish intrapartum cardiotocography classification systems incorporated in the fetal ECG ST analysis (STAN) interpretation algorithm: agreements and discrepancies in cardiotocography classification and evaluation of significant ST events.

    PubMed

    Olofsson, Per; Norén, Håkan; Carlsson, Ann

    2018-02-01

    The updated intrapartum cardiotocography (CTG) classification system by FIGO in 2015 (FIGO2015) and the FIGO2015-approached classification by the Swedish Society of Obstetricians and Gynecologist in 2017 (SSOG2017) are not harmonized with the fetal ECG ST analysis (STAN) algorithm from 2007 (STAN2007). The study aimed to reveal homogeneity and agreement between the systems in classifying CTG and ST events, and relate them to maternal and perinatal outcomes. Among CTG traces with ST events, 100 traces originally classified as normal, 100 as suspicious and 100 as pathological were randomly selected from a STAN database and classified by two experts in consensus. Homogeneity and agreement statistics between the CTG classifications were performed. Maternal and perinatal outcomes were evaluated in cases with clinically hidden ST data (n = 151). A two-tailed p < 0.05 was regarded as significant. For CTG classes, the heterogeneity was significant between the old and new systems, and agreements were moderate to strong (proportion of agreement, kappa index 0.70-0.86). Between the new classifications, heterogeneity was significant and agreements strong (0.90, 0.92). For significant ST events, heterogeneities were significant and agreements moderate to almost perfect (STAN2007 vs. FIGO2015 0.86, 0.72; STAN2007 vs. SSOG2017 0.92, 0.84; FIGO2015 vs. SSOG2017 0.94, 0.87). Significant ST events occurred more often combined with STAN2007 than with FIGO2015 classification, but not with SSOG2017; correct identification of adverse outcomes was not significantly different between the systems. There are discrepancies in the classification of CTG patterns and significant ST events between the old and new systems. The clinical relevance of the findings remains to be shown. © 2017 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).

  17. CNN universal machine as classificaton platform: an art-like clustering algorithm.

    PubMed

    Bálya, David

    2003-12-01

    Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.

  18. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  19. A cluster pattern algorithm for the analysis of multiparametric cell assays.

    PubMed

    Kaufman, Menachem; Bloch, David; Zurgil, Naomi; Shafran, Yana; Deutsch, Mordechai

    2005-09-01

    The issue of multiparametric analysis of complex single cell assays of both static and flow cytometry (SC and FC, respectively) has become common in recent years. In such assays, the analysis of changes, applying common statistical parameters and tests, often fails to detect significant differences between the investigated samples. The cluster pattern similarity (CPS) measure between two sets of gated clusters is based on computing the difference between their density distribution functions' set points. The CPS was applied for the discrimination between two observations in a four-dimensional parameter space. The similarity coefficient (r) ranges between 0 (perfect similarity) to 1 (dissimilar). Three CPS validation tests were carried out: on the same stock samples of fluorescent beads, yielding very low r's (0, 0.066); and on two cell models: mitogenic stimulation of peripheral blood mononuclear cells (PBMC), and apoptosis induction in Jurkat T cell line by H2O2. In both latter cases, r indicated similarity (r < 0.23) within the same group, and dissimilarity (r > 0.48) otherwise. This classification and algorithm approach offers a measure of similarity between samples. It relies on the multidimensional pattern of the sample parameters. The algorithm compensates for environmental drifts in this apparatus and assay; it also may be applied to more than four dimensions.

  20. A Survey on Sentiment Classification in Face Recognition

    NASA Astrophysics Data System (ADS)

    Qian, Jingyu

    2018-01-01

    Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.

  1. Defining and quantifying users' mental Imagery-based BCI skills: a first step.

    PubMed

    Lotte, Fabien; Jeunet, Camille

    2018-05-17

    While promising for many applications, Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are still scarcely used outside laboratories, due to a poor reliability. It is thus necessary to study and fix this reliability issue. Doing so requires the use of appropriate reliability metrics to quantify both the classification algorithm and the BCI user's performances. So far, Classification Accuracy (CA) is the typical metric used for both aspects. However, we argue in this paper that CA is a poor metric to study BCI users' skills. Here, we propose a definition and new metrics to quantify such BCI skills for Mental Imagery (MI) BCIs, independently of any classification algorithm. Approach: We first show in this paper that CA is notably unspecific, discrete, training data and classifier dependent, and as such may not always reflect successful self-modulation of EEG patterns by the user. We then propose a definition of MI-BCI skills that reflects how well the user can self-modulate EEG patterns, and thus how well he could control an MI-BCI. Finally, we propose new performance metrics, classDis, restDist and classStab that specifically measure how distinct and stable the EEG patterns produced by the user are, independently of any classifier. Main results: By re-analyzing EEG data sets with such new metrics, we indeed confirmed that CA may hide some increase in MI-BCI skills or hide the user inability to self-modulate a given EEG pattern. On the other hand, our new metrics could reveal such skill improvements as well as identify when a mental task performed by a user was no different than rest EEG. Significance: Our results showed that when studying MI-BCI users' skills, CA should be used with care, and complemented with metrics such as the new ones proposed. Our results also stressed the need to redefine BCI user training by considering the different BCI subskills and their measures. To promote the complementary use of our new metrics, we provide the Matlab code to compute them for free and open-source. © 2018 IOP Publishing Ltd.

  2. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    PubMed

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  3. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  4. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  5. Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury?

    PubMed

    Iselin, Greg; Le Brocque, Robyne; Kenardy, Justin; Anderson, Vicki; McKinlay, Lynne

    2010-10-01

    Controversy surrounds the classification of posttraumatic stress disorder (PTSD), particularly in children and adolescents with traumatic brain injury (TBI). In these populations, it is difficult to differentiate TBI-related organic memory loss from dissociative amnesia. Several alternative PTSD classification algorithms have been proposed for use with children. This paper investigates DSM-IV-TR and alternative PTSD classification algorithms, including and excluding the dissociative amnesia item, in terms of their ability to predict psychosocial function following pediatric TBI. A sample of 184 children aged 6-14 years were recruited following emergency department presentation and/or hospital admission for TBI. PTSD was assessed via semi-structured clinical interview (CAPS-CA) with the child at 3 months post-injury. Psychosocial function was assessed using the parent report CHQ-PF50. Two alternative classification algorithms, the PTSD-AA and 2 of 3 algorithms, reached statistical significance. While the inclusion of the dissociative amnesia item increased prevalence rates across algorithms, it generally resulted in weaker associations with psychosocial function. The PTSD-AA algorithm appears to have the strongest association with psychosocial function following TBI in children and adolescents. Removing the dissociative amnesia item from the diagnostic algorithm generally results in improved validity. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Applying matching pursuit decomposition time-frequency processing to UGS footstep classification

    NASA Astrophysics Data System (ADS)

    Larsen, Brett W.; Chung, Hugh; Dominguez, Alfonso; Sciacca, Jacob; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Allee, David R.

    2013-06-01

    The challenge of rapid footstep detection and classification in remote locations has long been an important area of study for defense technology and national security. Also, as the military seeks to create effective and disposable unattended ground sensors (UGS), computational complexity and power consumption have become essential considerations in the development of classification techniques. In response to these issues, a research project at the Flexible Display Center at Arizona State University (ASU) has experimented with footstep classification using the matching pursuit decomposition (MPD) time-frequency analysis method. The MPD provides a parsimonious signal representation by iteratively selecting matched signal components from a pre-determined dictionary. The resulting time-frequency representation of the decomposed signal provides distinctive features for different types of footsteps, including footsteps during walking or running activities. The MPD features were used in a Bayesian classification method to successfully distinguish between the different activities. The computational cost of the iterative MPD algorithm was reduced, without significant loss in performance, using a modified MPD with a dictionary consisting of signals matched to cadence temporal gait patterns obtained from real seismic measurements. The classification results were demonstrated with real data from footsteps under various conditions recorded using a low-cost seismic sensor.

  7. Maximum Margin Clustering of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2013-09-01

    In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.

  8. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  9. Emotional State Classification in Virtual Reality Using Wearable Electroencephalography

    NASA Astrophysics Data System (ADS)

    Suhaimi, N. S.; Teo, J.; Mountstephens, J.

    2018-03-01

    This paper presents the classification of emotions on EEG signals. One of the key issues in this research is the lack of mental classification using VR as the medium to stimulate emotion. The approach towards this research is by using K-nearest neighbor (KNN) and Support Vector Machine (SVM). Firstly, each of the participant will be required to wear the EEG headset and recording their brainwaves when they are immersed inside the VR. The data points are then marked if they showed any physical signs of emotion or by observing the brainwave pattern. Secondly, the data will then be tested and trained with KNN and SVM algorithms. The accuracy achieved from both methods were approximately 82% throughout the brainwave spectrum (α, β, γ, δ, θ). These methods showed promising results and will be further enhanced using other machine learning approaches in VR stimulus.

  10. Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls

    NASA Technical Reports Server (NTRS)

    Anastasiadis, Stergios

    1991-01-01

    Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.

  11. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  12. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  13. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  14. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

    PubMed

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark

    2007-12-01

    To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

  15. Automatic identification of bird targets with radar via patterns produced by wing flapping.

    PubMed

    Zaugg, Serge; Saporta, Gilbert; van Loon, Emiel; Schmaljohann, Heiko; Liechti, Felix

    2008-09-06

    Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.

  16. Detection of anomalous events

    DOEpatents

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  17. Performance of resonant radar target identification algorithms using intra-class weighting functions

    NASA Astrophysics Data System (ADS)

    Mustafa, A.

    The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.

  18. A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification

    NASA Astrophysics Data System (ADS)

    He, Hui; Yu, Xianchuan

    2005-10-01

    In this paper a performance comparison of a variety of data preprocessing algorithms in remote sensing image classification is presented. These selected algorithms are principal component analysis (PCA) and three different independent component analyses, ICA (Fast-ICA (Aapo Hyvarinen, 1999), Kernel-ICA (KCCA and KGV (Bach & Jordan, 2002), EFFICA (Aiyou Chen & Peter Bickel, 2003). These algorithms were applied to a remote sensing imagery (1600×1197), obtained from Shunyi, Beijing. For classification, a MLC method is used for the raw and preprocessed data. The results show that classification with the preprocessed data have more confident results than that with raw data and among the preprocessing algorithms, ICA algorithms improve on PCA and EFFICA performs better than the others. The convergence of these ICA algorithms (for data points more than a million) are also studied, the result shows EFFICA converges much faster than the others. Furthermore, because EFFICA is a one-step maximum likelihood estimate (MLE) which reaches asymptotic Fisher efficiency (EFFICA), it computers quite small so that its demand of memory come down greatly, which settled the "out of memory" problem occurred in the other algorithms.

  19. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.

    PubMed

    Fleury, Anthony; Vacher, Michel; Noury, Norbert

    2010-03-01

    By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.

  20. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  1. Classification of deaths in women with human immunodeficiency virus/acquired immunodeficiency syndrome in pregnancy and childbirth.

    PubMed

    Brayner, Manuella Coutinho; Alves, Sandra Valongueiro

    2017-01-01

    To reclassify deaths of women infected with the human immunodeficiency virus/acquired immunodeficiency syndrome in pregnancy and childbirth in the State of Pernambuco, Brazil, from 2000 to 2010. A descriptive exploratory study, developed from the following steps: translation to Portuguese of the item "HIV and aids" of the United Nations document "The WHO application of ICD-10 to deaths during pregnancy, childbirth and the puerperium: DCI MM 2012"; development of a classification algorithm of deaths of women living with the human immunodeficiency virus/acquired immunodeficiency syndrome in pregnancy and childbirth; and reclassification of deaths by a group of experts. Among the 25 reclassified deaths, 12 were due to human immunodeficiency virus/acquired immunodeficiency syndrome, and pregnancy condition was coexisting; 9 were reclassified as indirect maternal death, with O98.7 code, proposed by the World Health Organization; 2 as direct/indirect maternal death; and 2 were considered indeterminate. The reclassification showed a possible pattern of change in maternal mortality, since most of the deaths were attributed to the virus and may lead to a reduction in deaths from maternal causes. The algorithm will subsidize the use of the new classification of maternal death and human immunodeficiency virus/acquired immunodeficiency syndrome.

  2. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Mapping burned areas using dense time-series of Landsat data

    USGS Publications Warehouse

    Hawbaker, Todd J.; Vanderhoof, Melanie; Beal, Yen-Ju G.; Takacs, Joshua; Schmidt, Gail L.; Falgout, Jeff T.; Williams, Brad; Brunner, Nicole M.; Caldwell, Megan K.; Picotte, Joshua J.; Howard, Stephen M.; Stitt, Susan; Dwyer, John L.

    2017-01-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the BAECV products mapped 32% and 88% more burned area, respectively. However, the BAECV products found less burned area than the GFED in regions with frequent agricultural fires. Compared to the MTBS data, the BAECV products identified 31% more burned area in the West, 312% more in the Great Plains, and 233% more in the East. Most pixels in the MTBS data were detected by the BAECV, regardless of burn severity. The BAECV products document patterns of fire similar to those in the GFED but also showed patterns of fire that are not well characterized by the existing MTBS data. We anticipate the BAECV products will be useful to studies that seek to understand past patterns of fire occurrence, the drivers that created them, and the impacts fires have on natural and human systems.

  4. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    ERIC Educational Resources Information Center

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  5. Classification

    NASA Astrophysics Data System (ADS)

    Oza, Nikunj

    2012-03-01

    A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. A set of training examples— examples with known output values—is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate’s measurements. The generalization performance of a learned model (how closely the target outputs and the model’s predicted outputs agree for patterns that have not been presented to the learning algorithm) would provide an indication of how well the model has learned the desired mapping. More formally, a classification learning algorithm L takes a training set T as its input. The training set consists of |T| examples or instances. It is assumed that there is a probability distribution D from which all training examples are drawn independently—that is, all the training examples are independently and identically distributed (i.i.d.). The ith training example is of the form (x_i, y_i), where x_i is a vector of values of several features and y_i represents the class to be predicted.* In the sunspot classification example given above, each training example would represent one sunspot’s classification (y_i) and the corresponding set of measurements (x_i). The output of a supervised learning algorithm is a model h that approximates the unknown mapping from the inputs to the outputs. In our example, h would map from the sunspot measurements to the type of sunspot. We may have a test set S—a set of examples not used in training that we use to test how well the model h predicts the outputs on new examples. Just as with the examples in T, the examples in S are assumed to be independent and identically distributed (i.i.d.) draws from the distribution D. We measure the error of h on the test set as the proportion of test cases that h misclassifies: 1/|S| Sigma(x,y union S)[I(h(x)!= y)] where I(v) is the indicator function—it returns 1 if v is true and 0 otherwise. In our sunspot classification example, we would identify additional examples of sunspots that were not used in generating the model, and use these to determine how accurate the model is—the fraction of the test samples that the model classifies correctly. An example of a classification model is the decision tree shown in Figure 23.1. We will discuss the decision tree learning algorithm in more detail later—for now, we assume that, given a training set with examples of sunspots, this decision tree is derived. This can be used to classify previously unseen examples of sunpots. For example, if a new sunspot’s inputs indicate that its "Group Length" is in the range 10-15, then the decision tree would classify the sunspot as being of type “E,” whereas if the "Group Length" is "NULL," the "Magnetic Type" is "bipolar," and the "Penumbra" is "rudimentary," then it would be classified as type "C." In this chapter, we will add to the above description of classification problems. We will discuss decision trees and several other classification models. In particular, we will discuss the learning algorithms that generate these classification models, how to use them to classify new examples, and the strengths and weaknesses of these models. We will end with pointers to further reading on classification methods applied to astronomy data.

  6. Benchmarking protein classification algorithms via supervised cross-validation.

    PubMed

    Kertész-Farkas, Attila; Dhir, Somdutta; Sonego, Paolo; Pacurar, Mircea; Netoteia, Sergiu; Nijveen, Harm; Kuzniar, Arnold; Leunissen, Jack A M; Kocsor, András; Pongor, Sándor

    2008-04-24

    Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.

  7. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods

    NASA Astrophysics Data System (ADS)

    Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.

    2018-05-01

    This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.

  8. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  9. Biclustering Learning of Trading Rules.

    PubMed

    Huang, Qinghua; Wang, Ting; Tao, Dacheng; Li, Xuelong

    2015-10-01

    Technical analysis with numerous indicators and patterns has been regarded as important evidence for making trading decisions in financial markets. However, it is extremely difficult for investors to find useful trading rules based on numerous technical indicators. This paper innovatively proposes the use of biclustering mining to discover effective technical trading patterns that contain a combination of indicators from historical financial data series. This is the first attempt to use biclustering algorithm on trading data. The mined patterns are regarded as trading rules and can be classified as three trading actions (i.e., the buy, the sell, and no-action signals) with respect to the maximum support. A modified K nearest neighborhood ( K -NN) method is applied to classification of trading days in the testing period. The proposed method [called biclustering algorithm and the K nearest neighbor (BIC- K -NN)] was implemented on four historical datasets and the average performance was compared with the conventional buy-and-hold strategy and three previously reported intelligent trading systems. Experimental results demonstrate that the proposed trading system outperforms its counterparts and will be useful for investment in various financial markets.

  10. Photometric Supernova Classification with Machine Learning

    NASA Astrophysics Data System (ADS)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  11. A probabilistic approach to segmentation and classification of neoplasia in uterine cervix images using color and geometric features

    NASA Astrophysics Data System (ADS)

    Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron

    2005-04-01

    Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.

  12. A comparison of algorithms for inference and learning in probabilistic graphical models.

    PubMed

    Frey, Brendan J; Jojic, Nebojsa

    2005-09-01

    Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.

  13. Pattern Recognition and Size Prediction of Microcalcification Based on Physical Characteristics by Using Digital Mammogram Images.

    PubMed

    Jothilakshmi, G R; Raaza, Arun; Rajendran, V; Sreenivasa Varma, Y; Guru Nirmal Raj, R

    2018-06-05

    Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical characteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical characteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered input image as normal or abnormal with the help of only two physical characteristics. This proposed algorithm exhibits a classification accuracy of 99%.

  14. Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study

    PubMed Central

    Guerra, Luis; McGarry, Laura M; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2011-01-01

    In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical GABAergic interneurons, the problem to discern among different cell types is particularly difficult and better methods are needed to perform objective classifications. Here we explore the use of supervised classification algorithms to classify neurons based on their morphological features, using a database of 128 pyramidal cells and 199 interneurons from mouse neocortex. To evaluate the performance of different algorithms we used, as a “benchmark,” the test to automatically distinguish between pyramidal cells and interneurons, defining “ground truth” by the presence or absence of an apical dendrite. We compared hierarchical clustering with a battery of different supervised classification algorithms, finding that supervised classifications outperformed hierarchical clustering. In addition, the selection of subsets of distinguishing features enhanced the classification accuracy for both sets of algorithms. The analysis of selected variables indicates that dendritic features were most useful to distinguish pyramidal cells from interneurons when compared with somatic and axonal morphological variables. We conclude that supervised classification algorithms are better matched to the general problem of distinguishing neuronal cell types when some information on these cell groups, in our case being pyramidal or interneuron, is known a priori. As a spin-off of this methodological study, we provide several methods to automatically distinguish neocortical pyramidal cells from interneurons, based on their morphologies. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 71–82, 2011 PMID:21154911

  15. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  16. Performance of Activity Classification Algorithms in Free-living Older Adults

    PubMed Central

    Sasaki, Jeffer Eidi; Hickey, Amanda; Staudenmayer, John; John, Dinesh; Kent, Jane A.; Freedson, Patty S.

    2015-01-01

    Purpose To compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Methods Thirty-five older adults (21F and 14M ; 70.8 ± 4.9 y) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (dominant hip, wrist, and ankle). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore the GT3X+ in free-living settings and were directly observed for 2-3 hours. Time- and frequency- domain features from acceleration signals of each monitor were used to train Random Forest (RF) and Support Vector Machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on lab data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20 s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Results Overall classification accuracy rates for the algorithms developed from lab data were between 49% (wrist) to 55% (ankle) for the SVMLab algorithms, and 49% (wrist) to 54% (ankle) for RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Conclusion Our algorithms developed on free-living accelerometer data were more accurate in classifying activity type in free-living older adults than our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine-learning algorithms in older adults. PMID:26673129

  17. Performance of Activity Classification Algorithms in Free-Living Older Adults.

    PubMed

    Sasaki, Jeffer Eidi; Hickey, Amanda M; Staudenmayer, John W; John, Dinesh; Kent, Jane A; Freedson, Patty S

    2016-05-01

    The objective of this study is to compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Thirty-five older adults (21 females and 14 males, 70.8 ± 4.9 yr) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (in the dominant hip, wrist, and ankle; ActiGraph, LLC, Pensacola, FL). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore GT3X+ in free-living settings and were directly observed for 2-3 h. Time- and frequency-domain features from acceleration signals of each monitor were used to train random forest (RF) and support vector machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on laboratory data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20-s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Overall classification accuracy rates for the algorithms developed from laboratory data were between 49% (wrist) and 55% (ankle) for the SVMLab algorithms and 49% (wrist) to 54% (ankle) for the RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Our algorithms developed on free-living accelerometer data were more accurate in classifying the activity type in free-living older adults than those on our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine learning algorithms in older adults.

  18. [Artificial intelligence in sleep analysis (ARTISANA)--modelling visual processes in sleep classification].

    PubMed

    Schwaibold, M; Schöller, B; Penzel, T; Bolz, A

    2001-05-01

    We describe a novel approach to the problem of automated sleep stage recognition. The ARTISANA algorithm mimics the behaviour of a human expert visually scoring sleep stages (Rechtschaffen and Kales classification). It comprises a number of interacting components that imitate the stepwise approach of the human expert, and artificial intelligence components. On the basis of parameters extracted at 1-s intervals from the signal curves, artificial neural networks recognize the incidence of typical patterns, e.g. delta activity or K complexes. This is followed by a rule interpretation stage that identifies the sleep stage with the aid of a neuro-fuzzy system while taking account of the context. Validation studies based on the records of 8 patients with obstructive sleep apnoea have confirmed the potential of this approach. Further features of the system include the transparency of the decision-taking process, and the flexibility of the option for expanding the system to cover new patterns and criteria.

  19. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades

    PubMed Central

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean

    2017-01-01

    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes. PMID:29104245

  20. Classifier utility modeling and analysis of hypersonic inlet start/unstart considering training data costs

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen

    2011-11-01

    Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.

  1. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.

    PubMed

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean

    2017-11-01

    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.

  2. HIV classification using the coalescent theory

    PubMed Central

    Bulla, Ingo; Schultz, Anne-Kathrin; Schreiber, Fabian; Zhang, Ming; Leitner, Thomas; Korber, Bette; Morgenstern, Burkhard; Stanke, Mario

    2010-01-01

    Motivation: Existing coalescent models and phylogenetic tools based on them are not designed for studying the genealogy of sequences like those of HIV, since in HIV recombinants with multiple cross-over points between the parental strains frequently arise. Hence, ambiguous cases in the classification of HIV sequences into subtypes and circulating recombinant forms (CRFs) have been treated with ad hoc methods in lack of tools based on a comprehensive coalescent model accounting for complex recombination patterns. Results: We developed the program ARGUS that scores classifications of sequences into subtypes and recombinant forms. It reconstructs ancestral recombination graphs (ARGs) that reflect the genealogy of the input sequences given a classification hypothesis. An ARG with maximal probability is approximated using a Markov chain Monte Carlo approach. ARGUS was able to distinguish the correct classification with a low error rate from plausible alternative classifications in simulation studies with realistic parameters. We applied our algorithm to decide between two recently debated alternatives in the classification of CRF02 of HIV-1 and find that CRF02 is indeed a recombinant of Subtypes A and G. Availability: ARGUS is implemented in C++ and the source code is available at http://gobics.de/software Contact: ibulla@uni-goettingen.de Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:20400454

  3. Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions.

    PubMed

    Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo

    2014-06-01

    In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    PubMed Central

    Zhao, Changbo; Li, Guo-Zheng; Wang, Chengjun; Niu, Jinling

    2015-01-01

    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification. PMID:26246834

  5. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie; Frey, R.

    2008-01-01

    Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.

  6. Patients classification on weaning trials using neural networks and wavelet transform.

    PubMed

    Arizmendi, Carlos; Viviescas, Juan; González, Hernando; Giraldo, Beatriz

    2014-01-01

    The determination of the optimal time of the patients in weaning trial process from mechanical ventilation, between patients capable of maintaining spontaneous breathing and patients that fail to maintain spontaneous breathing, is a very important task in intensive care unit. Wavelet Transform (WT) and Neural Networks (NN) techniques were applied in order to develop a classifier for the study of patients on weaning trial process. The respiratory pattern of each patient was characterized through different time series. Genetic Algorithms (GA) and Forward Selection were used as feature selection techniques. A classification performance of 77.00±0.06% of well classified patients, was obtained using a NN and GA combination, with only 6 variables of the 14 initials.

  7. Outcome Prediction in Pneumonia Induced ALI/ARDS by Clinical Features and Peptide Patterns of BALF Determined by Mass Spectrometry

    PubMed Central

    Frenzel, Jochen; Gessner, Christian; Sandvoss, Torsten; Hammerschmidt, Stefan; Schellenberger, Wolfgang; Sack, Ulrich; Eschrich, Klaus; Wirtz, Hubert

    2011-01-01

    Background Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. Methodology/Principal Findings A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. Conclusions/Significance MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS. PMID:21991318

  8. Outcome prediction in pneumonia induced ALI/ARDS by clinical features and peptide patterns of BALF determined by mass spectrometry.

    PubMed

    Frenzel, Jochen; Gessner, Christian; Sandvoss, Torsten; Hammerschmidt, Stefan; Schellenberger, Wolfgang; Sack, Ulrich; Eschrich, Klaus; Wirtz, Hubert

    2011-01-01

    Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS.

  9. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses.

    PubMed

    Bansal, Ravi; Staib, Lawrence H; Laine, Andrew F; Hao, Xuejun; Xu, Dongrong; Liu, Jun; Weissman, Myrna; Peterson, Bradley S

    2012-01-01

    Diagnoses using imaging-based measures alone offer the hope of improving the accuracy of clinical diagnosis, thereby reducing the costs associated with incorrect treatments. Previous attempts to use brain imaging for diagnosis, however, have had only limited success in diagnosing patients who are independent of the samples used to derive the diagnostic algorithms. We aimed to develop a classification algorithm that can accurately diagnose chronic, well-characterized neuropsychiatric illness in single individuals, given the availability of sufficiently precise delineations of brain regions across several neural systems in anatomical MR images of the brain. We have developed an automated method to diagnose individuals as having one of various neuropsychiatric illnesses using only anatomical MRI scans. The method employs a semi-supervised learning algorithm that discovers natural groupings of brains based on the spatial patterns of variation in the morphology of the cerebral cortex and other brain regions. We used split-half and leave-one-out cross-validation analyses in large MRI datasets to assess the reproducibility and diagnostic accuracy of those groupings. In MRI datasets from persons with Attention-Deficit/Hyperactivity Disorder, Schizophrenia, Tourette Syndrome, Bipolar Disorder, or persons at high or low familial risk for Major Depressive Disorder, our method discriminated with high specificity and nearly perfect sensitivity the brains of persons who had one specific neuropsychiatric disorder from the brains of healthy participants and the brains of persons who had a different neuropsychiatric disorder. Although the classification algorithm presupposes the availability of precisely delineated brain regions, our findings suggest that patterns of morphological variation across brain surfaces, extracted from MRI scans alone, can successfully diagnose the presence of chronic neuropsychiatric disorders. Extensions of these methods are likely to provide biomarkers that will aid in identifying biological subtypes of those disorders, predicting disease course, and individualizing treatments for a wide range of neuropsychiatric illnesses.

  10. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  11. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  12. Multivariate Pattern Classification of Facial Expressions Based on Large-Scale Functional Connectivity.

    PubMed

    Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan

    2018-01-01

    It is an important question how human beings achieve efficient recognition of others' facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition.

  13. Multivariate Pattern Classification of Facial Expressions Based on Large-Scale Functional Connectivity

    PubMed Central

    Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan

    2018-01-01

    It is an important question how human beings achieve efficient recognition of others’ facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition. PMID:29615882

  14. Aircraft target detection algorithm based on high resolution spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing

    2018-03-01

    In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.

  15. Performance of Case-Based Reasoning Retrieval Using Classification Based on Associations versus Jcolibri and FreeCBR: A Further Validation Study

    NASA Astrophysics Data System (ADS)

    Aljuboori, Ahmed S.; Coenen, Frans; Nsaif, Mohammed; Parsons, David J.

    2018-05-01

    Case-Based Reasoning (CBR) plays a major role in expert system research. However, a critical problem can be met when a CBR system retrieves incorrect cases. Class Association Rules (CARs) have been utilized to offer a potential solution in a previous work. The aim of this paper was to perform further validation of Case-Based Reasoning using a Classification based on Association Rules (CBRAR) to enhance the performance of Similarity Based Retrieval (SBR). The CBRAR strategy uses a classed frequent pattern tree algorithm (FP-CAR) in order to disambiguate wrongly retrieved cases in CBR. The research reported in this paper makes contributions to both fields of CBR and Association Rules Mining (ARM) in that full target cases can be extracted from the FP-CAR algorithm without invoking P-trees and union operations. The dataset used in this paper provided more efficient results when the SBR retrieves unrelated answers. The accuracy of the proposed CBRAR system outperforms the results obtained by existing CBR tools such as Jcolibri and FreeCBR.

  16. The software application and classification algorithms for welds radiograms analysis

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Grzywacz, B.; Lopato, P.; Misztal, L.; Napierała, L.; Piekarczyk, B.; Pietrusewicz, T.; Psuj, G.

    2013-01-01

    The paper presents a software implementation of an Intelligent System for Radiogram Analysis (ISAR). The system has to support radiologists in welds quality inspection. The image processing part of software with a graphical user interface and a welds classification part are described with selected classification results. Classification was based on a few algorithms: an artificial neural network, a k-means clustering, a simplified k-means and a rough sets theory.

  17. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.

    PubMed

    de Moura, Karina de O A; Balbinot, Alexandre

    2018-05-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.

  18. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System

    PubMed Central

    Balbinot, Alexandre

    2018-01-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. PMID:29723994

  19. Android Malware Classification Using K-Means Clustering Algorithm

    NASA Astrophysics Data System (ADS)

    Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah

    2017-08-01

    Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.

  20. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations

    NASA Astrophysics Data System (ADS)

    Huang, Ding-jiang; Ivanova, Nataliya M.

    2016-02-01

    In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.

  1. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  2. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  3. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models tomore » curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.« less

  4. Large-area settlement pattern recognition from Landsat-8 data

    NASA Astrophysics Data System (ADS)

    Wieland, Marc; Pittore, Massimiliano

    2016-09-01

    The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.

  5. Searching for patterns in remote sensing image databases using neural networks

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.

  6. Classification of Odours for Mobile Robots Using an Ensemble of Linear Classifiers

    NASA Astrophysics Data System (ADS)

    Trincavelli, Marco; Coradeschi, Silvia; Loutfi, Amy

    2009-05-01

    This paper investigates the classification of odours using an electronic nose mounted on a mobile robot. The samples are collected as the robot explores the environment. Under such conditions, the sensor response differs from typical three phase sampling processes. In this paper, we focus particularly on the classification problem and how it is influenced by the movement of the robot. To cope with these influences, an algorithm consisting of an ensemble of classifiers is presented. Experimental results show that this algorithm increases classification performance compared to other traditional classification methods.

  7. Value Focused Thinking Applications to Supervised Pattern Classification With Extensions to Hyperspectral Anomaly Detection Algorithms

    DTIC Science & Technology

    2015-03-26

    performing. All reasonable permutations of factors will be used to develop a multitude of unique combinations. These combinations are considered different...are seen below (Duda et al., 2001). Entropy impurity: () = −�P�ωj�log2P(ωj) j (9) Gini impurity: () =�()�� = 1 2 ∗ [1...proportion of one class to another approaches 0.5, the impurity measure reaches its maximum, which for Entropy is 1.0, while it is 0.5 for Gini and

  8. Neurofeedback Training for BCI Control

    NASA Astrophysics Data System (ADS)

    Neuper, Christa; Pfurtscheller, Gert

    Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].

  9. Water quality assessment with emphasis in parameter optimisation using pattern recognition methods and genetic algorithm.

    PubMed

    Sotomayor, Gonzalo; Hampel, Henrietta; Vázquez, Raúl F

    2018-03-01

    A non-supervised (k-means) and a supervised (k-Nearest Neighbour in combination with genetic algorithm optimisation, k-NN/GA) pattern recognition algorithms were applied for evaluating and interpreting a large complex matrix of water quality (WQ) data collected during five years (2008, 2010-2013) in the Paute river basin (southern Ecuador). 21 physical, chemical and microbiological parameters collected at 80 different WQ sampling stations were examined. At first, the k-means algorithm was carried out to identify classes of sampling stations regarding their associated WQ status by considering three internal validation indexes, i.e., Silhouette coefficient, Davies-Bouldin and Caliński-Harabasz. As a result, two WQ classes were identified, representing low (C1) and high (C2) pollution. The k-NN/GA algorithm was applied on the available data to construct a classification model with the two WQ classes, previously defined by the k-means algorithm, as the dependent variables and the 21 physical, chemical and microbiological parameters being the independent ones. This algorithm led to a significant reduction of the multidimensional space of independent variables to only nine, which are likely to explain most of the structure of the two identified WQ classes. These parameters are, namely, electric conductivity, faecal coliforms, dissolved oxygen, chlorides, total hardness, nitrate, total alkalinity, biochemical oxygen demand and turbidity. Further, the land use cover of the study basin revealed a very good agreement with the WQ spatial distribution suggested by the k-means algorithm, confirming the credibility of the main results of the used WQ data mining approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    PubMed

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Data fusion for target tracking and classification with wireless sensor network

    NASA Astrophysics Data System (ADS)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  12. The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Kassomenos, P.; Philipp, A.

    2011-08-01

    In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights are derived and tested similarly. All results exploit a physical interpretation by adapting the environment-to-circulation approach, providing more detailed information on specific synoptic conditions prevailing on days with high surface ozone concentrations. This research does not intend to bring forward a favourite classification methodology or construct a statistical ozone forecasting tool but should be seen as an introduction to the possibilities of the cost733class software. It this respect, the results presented here can provide a basic user support for the cost733class software and the development of a more user- or application-specific CTC approach.

  13. Lossless Compression of Classification-Map Data

    NASA Technical Reports Server (NTRS)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  14. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Luo, Shuqian

    2010-11-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  15. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve.

    PubMed

    Xu, Lili; Luo, Shuqian

    2010-01-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  16. Fast clustering algorithm for large ECG data sets based on CS theory in combination with PCA and K-NN methods.

    PubMed

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.

  17. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.

    PubMed

    Ozcift, Akin; Gulten, Arif

    2011-12-01

    Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Justification of Fuzzy Declustering Vector Quantization Modeling in Classification of Genotype-Image Phenotypes

    NASA Astrophysics Data System (ADS)

    Ng, Theam Foo; Pham, Tuan D.; Zhou, Xiaobo

    2010-01-01

    With the fast development of multi-dimensional data compression and pattern classification techniques, vector quantization (VQ) has become a system that allows large reduction of data storage and computational effort. One of the most recent VQ techniques that handle the poor estimation of vector centroids due to biased data from undersampling is to use fuzzy declustering-based vector quantization (FDVQ) technique. Therefore, in this paper, we are motivated to propose a justification of FDVQ based hidden Markov model (HMM) for investigating its effectiveness and efficiency in classification of genotype-image phenotypes. The performance evaluation and comparison of the recognition accuracy between a proposed FDVQ based HMM (FDVQ-HMM) and a well-known LBG (Linde, Buzo, Gray) vector quantization based HMM (LBG-HMM) will be carried out. The experimental results show that the performances of both FDVQ-HMM and LBG-HMM are almost similar. Finally, we have justified the competitiveness of FDVQ-HMM in classification of cellular phenotype image database by using hypotheses t-test. As a result, we have validated that the FDVQ algorithm is a robust and an efficient classification technique in the application of RNAi genome-wide screening image data.

  19. Automatically measuring the effect of strategy drawing features on pupils' handwriting and gender

    NASA Astrophysics Data System (ADS)

    Tabatabaey-Mashadi, Narges; Sudirman, Rubita; Guest, Richard M.; Khalid, Puspa Inayat

    2013-12-01

    Children's dynamic drawing strategies have been recently recognized as indicators of handwriting ability. However the influence of each feature in predicting handwriting is unknown due to lack of a measuring system. An automated measuring algorithm suitable for psychological assessment and non-subjective scoring is presented here. Using the weight vector and classification rate of a machine learning algorithm, an overall feature's effect is calculated which is comparable in different groupings. In this study thirteen previously detected drawing strategy features are measured for their influence on handwriting and gender. Features are extracted from drawing a triangle, Beery VMI and Bender Gestalt tangent patterns. Samples are related to 203 pupils (77 below average writers, and 101 female). The results show that the number of strokes in drawing the triangle pattern plays a major role in both groupings; however Left Tendency flag feature is affected by children's handwriting about 2.5 times greater than their gender. Experiments indicate that different forms of a feature sometimes show different influences.

  20. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  1. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  2. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  3. Pet fur color and texture classification

    NASA Astrophysics Data System (ADS)

    Yen, Jonathan; Mukherjee, Debarghar; Lim, SukHwan; Tretter, Daniel

    2007-01-01

    Object segmentation is important in image analysis for imaging tasks such as image rendering and image retrieval. Pet owners have been known to be quite vocal about how important it is to render their pets perfectly. We present here an algorithm for pet (mammal) fur color classification and an algorithm for pet (animal) fur texture classification. Per fur color classification can be applied as a necessary condition for identifying the regions in an image that may contain pets much like the skin tone classification for human flesh detection. As a result of the evolution, fur coloration of all mammals is caused by a natural organic pigment called Melanin and Melanin has only very limited color ranges. We have conducted a statistical analysis and concluded that mammal fur colors can be only in levels of gray or in two colors after the proper color quantization. This pet fur color classification algorithm has been applied for peteye detection. We also present here an algorithm for animal fur texture classification using the recently developed multi-resolution directional sub-band Contourlet transform. The experimental results are very promising as these transforms can identify regions of an image that may contain fur of mammals, scale of reptiles and feather of birds, etc. Combining the color and texture classification, one can have a set of strong classifiers for identifying possible animals in an image.

  4. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  5. Multiclass cancer diagnosis using tumor gene expression signatures

    DOE PAGES

    Ramaswamy, S.; Tamayo, P.; Rifkin, R.; ...

    2001-12-11

    The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a supportmore » vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (9%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.« less

  6. Exploring Genome-Wide Expression Profiles Using Machine Learning Techniques.

    PubMed

    Kebschull, Moritz; Papapanou, Panos N

    2017-01-01

    Although contemporary high-throughput -omics methods produce high-dimensional data, the resulting wealth of information is difficult to assess using traditional statistical procedures. Machine learning methods facilitate the detection of additional patterns, beyond the mere identification of lists of features that differ between groups.Here, we demonstrate the utility of (1) supervised classification algorithms in class validation, and (2) unsupervised clustering in class discovery. We use data from our previous work that described the transcriptional profiles of gingival tissue samples obtained from subjects suffering from chronic or aggressive periodontitis (1) to test whether the two diagnostic entities were also characterized by differences on the molecular level, and (2) to search for a novel, alternative classification of periodontitis based on the tissue transcriptomes.Using machine learning technology, we provide evidence for diagnostic imprecision in the currently accepted classification of periodontitis, and demonstrate that a novel, alternative classification based on differences in gingival tissue transcriptomes is feasible. The outlined procedures allow for the unbiased interrogation of high-dimensional datasets for characteristic underlying classes, and are applicable to a broad range of -omics data.

  7. Joint sparse coding based spatial pyramid matching for classification of color medical image.

    PubMed

    Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin

    2015-04-01

    Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A Bio Medical Waste Identification and Classification Algorithm Using Mltrp and Rvm.

    PubMed

    Achuthan, Aravindan; Ayyallu Madangopal, Vasumathi

    2016-10-01

    We aimed to extract the histogram features for text analysis and, to classify the types of Bio Medical Waste (BMW) for garbage disposal and management. The given BMW was preprocessed by using the median filtering technique that efficiently reduced the noise in the image. After that, the histogram features of the filtered image were extracted with the help of proposed Modified Local Tetra Pattern (MLTrP) technique. Finally, the Relevance Vector Machine (RVM) was used to classify the BMW into human body parts, plastics, cotton and liquids. The BMW image was collected from the garbage image dataset for analysis. The performance of the proposed BMW identification and classification system was evaluated in terms of sensitivity, specificity, classification rate and accuracy with the help of MATLAB. When compared to the existing techniques, the proposed techniques provided the better results. This work proposes a new texture analysis and classification technique for BMW management and disposal. It can be used in many real time applications such as hospital and healthcare management systems for proper BMW disposal.

  9. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  10. Fusion of multiple quadratic penalty function support vector machines (QPFSVM) for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-08-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. The Quadratic Penalty Function Support Vector Machine (QPFSVM) algorithm to aid in the automated detection and classification of sea mines is introduced in this paper. The QPFSVM algorithm is easy to train, simple to implement, and robust to feature space dimension. Outputs of successive SVM algorithms are cascaded in stages (fused) to improve the Probability of Classification (Pc) and reduce the number of false alarms. Even though our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to fusion of any D/C problem (e.g., automated medical diagnosis or automatic target recognition for ballistic missile defense).

  11. The Optimization of Trained and Untrained Image Classification Algorithms for Use on Large Spatial Datasets

    NASA Technical Reports Server (NTRS)

    Kocurek, Michael J.

    2005-01-01

    The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.

  12. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  13. Parallel Implementation of the Wideband DOA Algorithm on the IBM Cell BE Processor

    DTIC Science & Technology

    2010-05-01

    Abstract—The Multiple Signal Classification ( MUSIC ) algorithm is a powerful technique for determining the Direction of Arrival (DOA) of signals...Broadband Engine Processor (Cell BE). The process of adapting the serial based MUSIC algorithm to the Cell BE will be analyzed in terms of parallelism and...using Multiple Signal Classification MUSIC algorithm [4] • Computation of Focus matrix • Computation of number of sources • Separation of Signal

  14. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates

    NASA Astrophysics Data System (ADS)

    Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico

    2014-08-01

    Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.

  15. A robust data scaling algorithm to improve classification accuracies in biomedical data.

    PubMed

    Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran

    2016-09-09

    Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.

  16. A hybrid clustering and classification approach for predicting crash injury severity on rural roads.

    PubMed

    Hasheminejad, Seyed Hessam-Allah; Zahedi, Mohsen; Hasheminejad, Seyed Mohammad Hossein

    2018-03-01

    As a threat for transportation system, traffic crashes have a wide range of social consequences for governments. Traffic crashes are increasing in developing countries and Iran as a developing country is not immune from this risk. There are several researches in the literature to predict traffic crash severity based on artificial neural networks (ANNs), support vector machines and decision trees. This paper attempts to investigate the crash injury severity of rural roads by using a hybrid clustering and classification approach to compare the performance of classification algorithms before and after applying the clustering. In this paper, a novel rule-based genetic algorithm (GA) is proposed to predict crash injury severity, which is evaluated by performance criteria in comparison with classification algorithms like ANN. The results obtained from analysis of 13,673 crashes (5600 property damage, 778 fatal crashes, 4690 slight injuries and 2605 severe injuries) on rural roads in Tehran Province of Iran during 2011-2013 revealed that the proposed GA method outperforms other classification algorithms based on classification metrics like precision (86%), recall (88%) and accuracy (87%). Moreover, the proposed GA method has the highest level of interpretation, is easy to understand and provides feedback to analysts.

  17. Application of artificial neural networks with backpropagation technique in the financial data

    NASA Astrophysics Data System (ADS)

    Jaiswal, Jitendra Kumar; Das, Raja

    2017-11-01

    The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.

  18. Evaluating data mining algorithms using molecular dynamics trajectories.

    PubMed

    Tatsis, Vasileios A; Tjortjis, Christos; Tzirakis, Panagiotis

    2013-01-01

    Molecular dynamics simulations provide a sample of a molecule's conformational space. Experiments on the mus time scale, resulting in large amounts of data, are nowadays routine. Data mining techniques such as classification provide a way to analyse such data. In this work, we evaluate and compare several classification algorithms using three data sets which resulted from computer simulations, of a potential enzyme mimetic biomolecule. We evaluated 65 classifiers available in the well-known data mining toolkit Weka, using 'classification' errors to assess algorithmic performance. Results suggest that: (i) 'meta' classifiers perform better than the other groups, when applied to molecular dynamics data sets; (ii) Random Forest and Rotation Forest are the best classifiers for all three data sets; and (iii) classification via clustering yields the highest classification error. Our findings are consistent with bibliographic evidence, suggesting a 'roadmap' for dealing with such data.

  19. Modified Mahalanobis Taguchi System for Imbalance Data Classification

    PubMed Central

    2017-01-01

    The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating Characteristics (ROC) curve and the theoretical optimal point named Modified Mahalanobis Taguchi System (MMTS). To validate the MMTS classification efficacy, it has been benchmarked with Support Vector Machines (SVMs), Naive Bayes (NB), Probabilistic Mahalanobis Taguchi Systems (PTM), Synthetic Minority Oversampling Technique (SMOTE), Adaptive Conformal Transformation (ACT), Kernel Boundary Alignment (KBA), Hidden Naive Bayes (HNB), and other improved Naive Bayes algorithms. MMTS outperforms the benchmarked algorithms especially when the imbalance ratio is greater than 400. A real life case study on manufacturing sector is used to demonstrate the applicability of the proposed model and to compare its performance with Mahalanobis Genetic Algorithm (MGA). PMID:28811820

  20. Two-dimensional wavelet analysis based classification of gas chromatogram differential mobility spectrometry signals.

    PubMed

    Zhao, Weixiang; Sankaran, Shankar; Ibáñez, Ana M; Dandekar, Abhaya M; Davis, Cristina E

    2009-08-04

    This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.

  1. Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    NASA Astrophysics Data System (ADS)

    Dieckman, Eric Allen

    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results.

  2. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  3. Automatic differentiation of melanoma and clark nevus skin lesions

    NASA Astrophysics Data System (ADS)

    LeAnder, R. W.; Kasture, A.; Pandey, A.; Umbaugh, S. E.

    2007-03-01

    Skin cancer is the most common form of cancer in the United States. Although melanoma accounts for just 11% of all types of skin cancer, it is responsible for most of the deaths, claiming more than 7910 lives annually. Melanoma is visually difficult for clinicians to differentiate from Clark nevus lesions which are benign. The application of pattern recognition techniques to these lesions may be useful as an educational tool for teaching physicians to differentiate lesions, as well as for contributing information about the essential optical characteristics that identify them. Purpose: This study sought to find the most effective features to extract from melanoma, melanoma in situ and Clark nevus lesions, and to find the most effective pattern-classification criteria and algorithms for differentiating those lesions, using the Computer Vision and Image Processing Tools (CVIPtools) software package. Methods: Due to changes in ambient lighting during the photographic process, color differences between images can occur. These differences were minimized by capturing dermoscopic images instead of photographic images. Differences in skin color between patients were minimized via image color normalization, by converting original color images to relative-color images. Relative-color images also helped minimize changes in color that occur due to changes in the photographic and digitization processes. Tumors in the relative-color images were segmented and morphologically filtered. Filtered, relative-color, tumor features were then extracted and various pattern-classification schemes were applied. Results: Experimentation resulted in four useful pattern classification methods, the best of which was an overall classification rate of 100% for melanoma and melanoma in situ (grouped) and 60% for Clark nevus. Conclusion: Melanoma and melanoma in situ have feature parameters and feature values that are similar enough to be considered one class of tumor that significantly differs from Clark nevus. Consequently, grouping melanoma and melanoma in situ together achieves the best results in classifying and automatically differentiating melanoma from Clark nevus lesions.

  4. Comments on new classification, treatment algorithm and prognosis-estimating systems for sigmoid volvulus and ileosigmoid knotting: necessity and utility.

    PubMed

    Aksungur, N; Korkut, E

    2018-05-24

    We read Atamanalp classification, treatment algorithm and prognosis-estimating systems for sigmoid volvulus (SV) and ileosigmoid knotting (ISK) in Colorectal Disease [1,2]. Our comments relate to necessity and utility of these new classification systems. Classification or staging systems are generally used in malignant or premalignant pathologies such as colorectal cancers [3] or polyps [4]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.

    PubMed

    Radüntz, T; Scouten, J; Hochmuth, O; Meffert, B

    2015-03-30

    Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Detection and classification of concealed weapons using a magnetometer-based portal

    NASA Astrophysics Data System (ADS)

    Kotter, Dale K.; Roybal, Lyle G.; Polk, Robert E.

    2002-08-01

    A concealed weapons detection technology was developed through the support of the National Institute of Justice (NIJ) to provide a non intrusive means for rapid detection, location, and archiving of data (including visual) of potential suspects and weapon threats. This technology, developed by the Idaho National Engineering and Environmental Laboratory (INEEL), has been applied in a portal style weapons detection system using passive magnetic sensors as its basis. This paper will report on enhancements to the weapon detection system to enable weapon classification and to discriminate threats from non-threats. Advanced signal processing algorithms were used to analyze the magnetic spectrum generated when a person passes through a portal. These algorithms analyzed multiple variables including variance in the magnetic signature from random weapon placement and/or orientation. They perform pattern recognition and calculate the probability that the collected magnetic signature correlates to a known database of weapon versus non-weapon responses. Neural networks were used to further discriminate weapon type and identify controlled electronic items such as cell phones and pagers. False alarms were further reduced by analyzing the magnetic detector response by using a Joint Time Frequency Analysis digital signal processing technique. The frequency components and power spectrum for a given sensor response were derived. This unique fingerprint provided additional information to aid in signal analysis. This technology has the potential to produce major improvements in weapon detection and classification.

  7. A Review on Data Stream Classification

    NASA Astrophysics Data System (ADS)

    Haneen, A. A.; Noraziah, A.; Wahab, Mohd Helmy Abd

    2018-05-01

    At this present time, the significance of data streams cannot be denied as many researchers have placed their focus on the research areas of databases, statistics, and computer science. In fact, data streams refer to some data points sequences that are found in order with the potential to be non-binding, which is generated from the process of generating information in a manner that is not stationary. As such the typical tasks of searching data have been linked to streams of data that are inclusive of clustering, classification, and repeated mining of pattern. This paper presents several data stream clustering approaches, which are based on density, besides attempting to comprehend the function of the related algorithms; both semi-supervised and active learning, along with reviews of a number of recent studies.

  8. Rapid classification of hippocampal replay content for real-time applications

    PubMed Central

    Liu, Daniel F.; Karlsson, Mattias P.; Frank, Loren M.; Eden, Uri T.

    2016-01-01

    Sharp-wave ripple (SWR) events in the hippocampus replay millisecond-timescale patterns of place cell activity related to the past experience of an animal. Interrupting SWR events leads to learning and memory impairments, but how the specific patterns of place cell spiking seen during SWRs contribute to learning and memory remains unclear. A deeper understanding of this issue will require the ability to manipulate SWR events based on their content. Accurate real-time decoding of SWR replay events requires new algorithms that are able to estimate replay content and the associated uncertainty, along with software and hardware that can execute these algorithms for biological interventions on a millisecond timescale. Here we develop an efficient estimation algorithm to categorize the content of replay from multiunit spiking activity. Specifically, we apply real-time decoding methods to each SWR event and then compute the posterior probability of the replay feature. We illustrate this approach by classifying SWR events from data recorded in the hippocampus of a rat performing a spatial memory task into four categories: whether they represent outbound or inbound trajectories and whether the activity is replayed forward or backward in time. We show that our algorithm can classify the majority of SWR events in a recording epoch within 20 ms of the replay onset with high certainty, which makes the algorithm suitable for a real-time implementation with short latencies to incorporate into content-based feedback experiments. PMID:27535369

  9. A novel evaluation of two related and two independent algorithms for eye movement classification during reading.

    PubMed

    Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V

    2018-05-15

    Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.

  10. Alzheimer's Disease Diagnosis in Individual Subjects using Structural MR Images: Validation Studies

    PubMed Central

    Vemuri, Prashanthi; Gunter, Jeffrey L.; Senjem, Matthew L.; Whitwell, Jennifer L.; Kantarci, Kejal; Knopman, David S.; Boeve, Bradley F.; Petersen, Ronald C.; Jack, Clifford R.

    2008-01-01

    OBJECTIVE To develop and validate a tool for Alzheimer's disease (AD) diagnosis in individual subjects using support vector machine (SVM) based classification of structural MR (sMR) images. BACKGROUND Libraries of sMR scans of clinically well characterized subjects can be harnessed for the purpose of diagnosing new incoming subjects. METHODS 190 patients with probable AD were age- and gender-matched with 190 cognitively normal (CN) subjects. Three different classification models were implemented: Model I uses tissue densities obtained from sMR scans to give STructural Abnormality iNDex (STAND)-score; and Models II and III use tissue densities as well as covariates (demographics and Apolipoprotein E genotype) to give adjusted-STAND (aSTAND)-score. Data from 140 AD and 140 CN were used for training. The SVM parameter optimization and training was done by four-fold cross validation. The remaining independent sample of 50 AD and 50 CN were used to obtain a minimally biased estimate of the generalization error of the algorithm. RESULTS The CV accuracy of Model II and Model III aSTAND-scores was 88.5% and 89.3% respectively and the developed models generalized well on the independent test datasets. Anatomic patterns best differentiating the groups were consistent with the known distribution of neurofibrillary AD pathology. CONCLUSIONS This paper presents preliminary evidence that application of SVM-based classification of an individual sMR scan relative to a library of scans can provide useful information in individual subjects for diagnosis of AD. Including demographic and genetic information in the classification algorithm slightly improves diagnostic accuracy. PMID:18054253

  11. Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics

    NASA Technical Reports Server (NTRS)

    Bankert, Richard L.; Mitrescu, Cristian; Miller, Steven D.; Wade, Robert H.

    2009-01-01

    Cloud-type classification based on multispectral satellite imagery data has been widely researched and demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research described here is a comparison of the classifier output from two very different algorithms applied to Geostationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm employs spectral channel thresholding and additional physically based tests. The second algorithm was developed through a supervised learning method with characteristic features of expertly labeled image samples used as training data for a 1-nearest-neighbor classification. The latter's ability to identify classes is also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean. Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other postprocessing system that combines the output from the two algorithms could provide the most reliable cloud-type classification.

  12. SVM classification of microaneurysms with imbalanced dataset based on borderline-SMOTE and data cleaning techniques

    NASA Astrophysics Data System (ADS)

    Wang, Qingjie; Xin, Jingmin; Wu, Jiayi; Zheng, Nanning

    2017-03-01

    Microaneurysms are the earliest clinic signs of diabetic retinopathy, and many algorithms were developed for the automatic classification of these specific pathology. However, the imbalanced class distribution of dataset usually causes the classification accuracy of true microaneurysms be low. Therefore, by combining the borderline synthetic minority over-sampling technique (BSMOTE) with the data cleaning techniques such as Tomek links and Wilson's edited nearest neighbor rule (ENN) to resample the imbalanced dataset, we propose two new support vector machine (SVM) classification algorithms for the microaneurysms. The proposed BSMOTE-Tomek and BSMOTE-ENN algorithms consist of: 1) the adaptive synthesis of the minority samples in the neighborhood of the borderline, and 2) the remove of redundant training samples for improving the efficiency of data utilization. Moreover, the modified SVM classifier with probabilistic outputs is used to divide the microaneurysm candidates into two groups: true microaneurysms and false microaneurysms. The experiments with a public microaneurysms database shows that the proposed algorithms have better classification performance including the receiver operating characteristic (ROC) curve and the free-response receiver operating characteristic (FROC) curve.

  13. Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.

    2011-01-01

    A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.

  14. Clustering performance comparison using K-means and expectation maximization algorithms.

    PubMed

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  15. Optimization of spectral bands for hyperspectral remote sensing of forest vegetation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Egor V.; Kozoderov, Vladimir V.

    2013-10-01

    Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.

  16. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort.

    PubMed

    Caminiti, Silvia Paola; Ballarini, Tommaso; Sala, Arianna; Cerami, Chiara; Presotto, Luca; Santangelo, Roberto; Fallanca, Federico; Vanoli, Emilia Giovanna; Gianolli, Luigi; Iannaccone, Sandro; Magnani, Giuseppe; Perani, Daniela

    2018-01-01

    In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. The multivariate logistic model identified FDG-PET "AD" SPM classification (Expβ = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4.55-70.46, p < 0.001). Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers.

  17. Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse.

    PubMed

    Garrard, Peter; Rentoumi, Vassiliki; Gesierich, Benno; Miller, Bruce; Gorno-Tempini, Maria Luisa

    2014-06-01

    Advances in automatic text classification have been necessitated by the rapid increase in the availability of digital documents. Machine learning (ML) algorithms can 'learn' from data: for instance a ML system can be trained on a set of features derived from written texts belonging to known categories, and learn to distinguish between them. Such a trained system can then be used to classify unseen texts. In this paper, we explore the potential of the technique to classify transcribed speech samples along clinical dimensions, using vocabulary data alone. We report the accuracy with which two related ML algorithms [naive Bayes Gaussian (NBG) and naive Bayes multinomial (NBM)] categorized picture descriptions produced by: 32 semantic dementia (SD) patients versus 10 healthy, age-matched controls; and SD patients with left- (n = 21) versus right-predominant (n = 11) patterns of temporal lobe atrophy. We used information gain (IG) to identify the vocabulary features that were most informative to each of these two distinctions. In the SD versus control classification task, both algorithms achieved accuracies of greater than 90%. In the right- versus left-temporal lobe predominant classification, NBM achieved a high level of accuracy (88%), but this was achieved by both NBM and NBG when the features used in the training set were restricted to those with high values of IG. The most informative features for the patient versus control task were low frequency content words, generic terms and components of metanarrative statements. For the right versus left task the number of informative lexical features was too small to support any specific inferences. An enriched feature set, including values derived from Quantitative Production Analysis (QPA) may shed further light on this little understood distinction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. An embedded implementation based on adaptive filter bank for brain-computer interface systems.

    PubMed

    Belwafi, Kais; Romain, Olivier; Gannouni, Sofien; Ghaffari, Fakhreddine; Djemal, Ridha; Ouni, Bouraoui

    2018-07-15

    Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy. This article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features. The proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7 W. Results show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost. Performing dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.

    PubMed

    Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J

    2016-03-01

    The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    NASA Astrophysics Data System (ADS)

    Johnston, K. B.; Peter, A. M.

    2017-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. This paper focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

  1. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    NASA Astrophysics Data System (ADS)

    Johnston, Kyle B.; Peter, Adrian M.

    2016-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. Our research focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

  2. Identifying predictive features in drug response using machine learning: opportunities and challenges.

    PubMed

    Vidyasagar, Mathukumalli

    2015-01-01

    This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.

  3. Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.

    PubMed

    Zhou, Pan; Lin, Zhouchen; Zhang, Chao

    2016-05-01

    Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.

  4. New approach to gallbladder ultrasonic images analysis and lesions recognition.

    PubMed

    Bodzioch, Sławomir; Ogiela, Marek R

    2009-03-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards detection of disease symptoms on processed images. First, in this paper, there is presented a new method of filtering gallbladder contours from USG images. A major stage in this filtration is to segment and section off areas occupied by the said organ. In most cases this procedure is based on filtration that plays a key role in the process of diagnosing pathological changes. Unfortunately ultrasound images present among the most troublesome methods of analysis owing to the echogenic inconsistency of structures under observation. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours. The algorithm is based on rank filtration, as well as on the analysis of histogram sections on tested organs. The second part concerns detecting lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. Usually the final stage is to make a diagnosis based on the detected symptoms. This last stage can be carried out through either dedicated expert systems or more classic pattern analysis approach like using rules to determine illness basing on detected symptoms. This paper discusses the pattern analysis algorithms for gallbladder image interpretation towards classification of the most frequent illness symptoms of this organ.

  5. Some remarks on using circulation classifications to evaluate circulation model and atmospheric reanalysis data

    NASA Astrophysics Data System (ADS)

    Stryhal, Jan; Huth, Radan

    2017-04-01

    Automated classifications of atmospheric circulation patterns represent a tool widely used for studying the circulation in both the real atmosphere, represented by atmospheric reanalyses, and in circulation model outputs. It is well known that the results of studies utilizing one of these methods are influenced by several subjective choices, of which one of the most crucial is the selection of the method itself. Authors of the present study used eight methods from the COST733 classification software (Grosswettertypes, two variants of Jenkinson-Collison, Lund, T-mode PCA with oblique rotation of principal components, k-medoids, k-means with differing starting partitions, and SANDRA) to assess the winter 1961-2000 daily sea level pressure patterns in five reanalysis datasets (ERA-40, NCEP-1, JRA-55, 20CRv2, and ERA-20C), as well as in the historical runs and 21st century projections of an ensemble of CMIP5 GCMs. The classification methods were quite consistent in displaying the strongest biases in GCM simulations. However, the results also showed that multiple classifications are required to quantify the biases in certain types of circulation (e.g., zonal circulation or blocking-like patterns). There was no sign that any method should have a tendency to over- or underestimate the biases in circulation type frequency. The bias found by a particular method for a particular domain clearly reflects the ability of the algorithm to detect groups of similar patterns within the data space, and whether these groups do or do not differ one dataset to another is to a large extend coincidental. There were, nevertheless, systematic differences between groups of methods that use some form of correlation to classify the patterns to circulation types (CTs) and those which use the Euclidean distance. The comparison of reanalyses, which was conducted over eight European domains, showed that there is even a weak negative correlation between the average differences of CT frequency found by cluster analysis methods on one hand, and the remaining methods on the other. This suggests that groups of different methods capture different kinds of errors and that averaging the results obtained by an ensemble of methods very likely leads to an underestimation of the errors actually present in the data.

  6. Neural net classification of liver ultrasonogram for quantitative evaluation of diffuse liver disease

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo

    1997-04-01

    There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.

  7. Multi-label spacecraft electrical signal classification method based on DBN and random forest

    PubMed Central

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479

  8. Multi-label spacecraft electrical signal classification method based on DBN and random forest.

    PubMed

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.

  9. Machine learning algorithms for meteorological event classification in the coastal area using in-situ data

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé

    2017-04-01

    The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.

  10. Attention Recognition in EEG-Based Affective Learning Research Using CFS+KNN Algorithm.

    PubMed

    Hu, Bin; Li, Xiaowei; Sun, Shuting; Ratcliffe, Martyn

    2018-01-01

    The research detailed in this paper focuses on the processing of Electroencephalography (EEG) data to identify attention during the learning process. The identification of affect using our procedures is integrated into a simulated distance learning system that provides feedback to the user with respect to attention and concentration. The authors propose a classification procedure that combines correlation-based feature selection (CFS) and a k-nearest-neighbor (KNN) data mining algorithm. To evaluate the CFS+KNN algorithm, it was test against CFS+C4.5 algorithm and other classification algorithms. The classification performance was measured 10 times with different 3-fold cross validation data. The data was derived from 10 subjects while they were attempting to learn material in a simulated distance learning environment. A self-assessment model of self-report was used with a single valence to evaluate attention on 3 levels (high, neutral, low). It was found that CFS+KNN had a much better performance, giving the highest correct classification rate (CCR) of % for the valence dimension divided into three classes.

  11. Burned areas for the conterminous U.S. from 1984 through 2015, an automated approach using dense time-series of Landsat data

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Vanderhoof, M.; Beal, Y. J. G.; Takacs, J. D.; Schmidt, G.; Falgout, J.; Brunner, N. M.; Caldwell, M. K.; Picotte, J. J.; Howard, S. M.; Stitt, S.; Dwyer, J. L.

    2016-12-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, many existing fire datasets in the United States are known to be incomplete and that complicates efforts to understand burned area patterns and introduces a large amount of uncertainty in efforts to identify their driving processes and impacts. Because of this, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables. To help meet this need, we developed a novel algorithm that automatically identifies burned areas in temporally-dense time series of Landsat image stacks to produce Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Outputs of the BAECV algorithm, generated for the conterminous United States for 1984 through 2015, consist of burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability, burn classification, and the Julian date of the first Landsat scene a burn was observed. The BAECV products document patterns of fire occurrence that are not well characterized by existing fire datasets in the United States. We anticipate that these data could help to better understand past patterns of fire occurrence, the drivers that created them, and the impacts fires had on natural and human systems.

  12. Methodology for the Evaluation of the Algorithms for Text Line Segmentation Based on Extended Binary Classification

    NASA Astrophysics Data System (ADS)

    Brodic, D.

    2011-01-01

    Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.

  13. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  14. Identification of Characteristic Motor Patterns Preceding Freezing of Gait in Parkinson’s Disease Using Wearable Sensors

    PubMed Central

    Palmerini, Luca; Rocchi, Laura; Mazilu, Sinziana; Gazit, Eran; Hausdorff, Jeffrey M.; Chiari, Lorenzo

    2017-01-01

    Freezing of gait (FOG) is a disabling symptom that is common among patients with advanced Parkinson’s disease (PD). External cues such as rhythmic auditory stimulation can help PD patients experiencing freezing to resume walking. Wearable systems for automatic freezing detection have been recently developed. However, these systems detect a FOG episode after it has happened. Instead, in this study, a new approach for the prediction of FOG (before it actually happens) is presented. Prediction of FOG might enable preventive cueing, reducing the likelihood that FOG will occur. Moreover, understanding the causes and circumstances of FOG is still an open research problem. Hence, a quantitative characterization of movement patterns just before FOG (the pre-FOG phase) is of great importance. In this study, wearable inertial sensors were used to identify and quantify the characteristics of gait during the pre-FOG phase and compare them with the characteristics of gait that do not precede FOG. The hypothesis of this study is based on the threshold-based model of FOG, which suggests that before FOG occurs, there is a degradation of the gait pattern. Eleven PD subjects were analyzed. Six features extracted from movement signals recorded by inertial sensors showed significant differences between gait and pre-FOG. A classification algorithm was developed in order to test if it is feasible to predict FOG (i.e., detect it before it happens). The aim of the classification procedure was to identify the pre-FOG phase. Results confirm that there is a degradation of gait occurring before freezing. Results also provide preliminary evidence on the feasibility of creating an automatic algorithm to predict FOG. Although some limitations are present, this study shows promising findings for characterizing and identifying pre-FOG patterns, another step toward a better understanding, prediction, and prevention of this disabling symptom. PMID:28855887

  15. Deep learning based classification of morphological patterns in RCM to guide noninvasive diagnosis of melanocytic lesions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Bozkurt, Alican; Ariafar, Setareh; Alessi-Fox, Christi A.; Gill, Melissa; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this study we present a deep learning based classification algorithm for discriminating morphological patterns that appear in RCM mosaics of melanocytic lesions collected at the dermal epidermal junction (DEJ). These patterns are classified into 6 distinct types in the literature: background, meshwork, ring, clod, mixed, and aspecific. Clinicians typically identify these morphological patterns by examination of their textural appearance at 10X magnification. To mimic this process we divided mosaics into smaller regions, which we call tiles, and classify each tile in a deep learning framework. We used previously acquired DEJ mosaics of lesions deemed clinically suspicious, from 20 different patients, which were then labelled according to those 6 types by 2 expert users. We tried three different approaches for classification, all starting with a publicly available convolutional neural network (CNN) trained on natural image, consisting of a series of convolutional layers followed by a series of fully connected layers: (1) We fine-tuned this network using training data from the dataset. (2) Instead, we added an additional fully connected layer before the output layer network and then re-trained only last two layers, (3) We used only the CNN convolutional layers as a feature extractor, encoded the features using a bag of words model, and trained a support vector machine (SVM) classifier. Sensitivity and specificity were generally comparable across the three methods, and in the same ranges as our previous work using SURF features with SVM . Approach (3) was less computationally intensive to train but more sensitive to unbalanced representation of the 6 classes in the training data. However we expect CNN performance to improve as we add more training data because both the features and the classifier are learned jointly from the data. *First two authors share first authorship.

  16. Machine Learning for Biological Trajectory Classification Applications

    NASA Technical Reports Server (NTRS)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  17. Data-driven advice for applying machine learning to bioinformatics problems

    PubMed Central

    Olson, Randal S.; La Cava, William; Mustahsan, Zairah; Varik, Akshay; Moore, Jason H.

    2017-01-01

    As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems. PMID:29218881

  18. Comparison of Algorithm-based Estimates of Occupational Diesel Exhaust Exposure to Those of Multiple Independent Raters in a Population-based Case–Control Study

    PubMed Central

    Friesen, Melissa C.

    2013-01-01

    Objectives: Algorithm-based exposure assessments based on patterns in questionnaire responses and professional judgment can readily apply transparent exposure decision rules to thousands of jobs quickly. However, we need to better understand how algorithms compare to a one-by-one job review by an exposure assessor. We compared algorithm-based estimates of diesel exhaust exposure to those of three independent raters within the New England Bladder Cancer Study, a population-based case–control study, and identified conditions under which disparities occurred in the assessments of the algorithm and the raters. Methods: Occupational diesel exhaust exposure was assessed previously using an algorithm and a single rater for all 14 983 jobs reported by 2631 study participants during personal interviews conducted from 2001 to 2004. Two additional raters independently assessed a random subset of 324 jobs that were selected based on strata defined by the cross-tabulations of the algorithm and the first rater’s probability assessments for each job, oversampling their disagreements. The algorithm and each rater assessed the probability, intensity and frequency of occupational diesel exhaust exposure, as well as a confidence rating for each metric. Agreement among the raters, their aggregate rating (average of the three raters’ ratings) and the algorithm were evaluated using proportion of agreement, kappa and weighted kappa (κw). Agreement analyses on the subset used inverse probability weighting to extrapolate the subset to estimate agreement for all jobs. Classification and Regression Tree (CART) models were used to identify patterns in questionnaire responses that predicted disparities in exposure status (i.e., unexposed versus exposed) between the first rater and the algorithm-based estimates. Results: For the probability, intensity and frequency exposure metrics, moderate to moderately high agreement was observed among raters (κw = 0.50–0.76) and between the algorithm and the individual raters (κw = 0.58–0.81). For these metrics, the algorithm estimates had consistently higher agreement with the aggregate rating (κw = 0.82) than with the individual raters. For all metrics, the agreement between the algorithm and the aggregate ratings was highest for the unexposed category (90–93%) and was poor to moderate for the exposed categories (9–64%). Lower agreement was observed for jobs with a start year <1965 versus ≥1965. For the confidence metrics, the agreement was poor to moderate among raters (κw = 0.17–0.45) and between the algorithm and the individual raters (κw = 0.24–0.61). CART models identified patterns in the questionnaire responses that predicted a fair-to-moderate (33–89%) proportion of the disagreements between the raters’ and the algorithm estimates. Discussion: The agreement between any two raters was similar to the agreement between an algorithm-based approach and individual raters, providing additional support for using the more efficient and transparent algorithm-based approach. CART models identified some patterns in disagreements between the first rater and the algorithm. Given the absence of a gold standard for estimating exposure, these patterns can be reviewed by a team of exposure assessors to determine whether the algorithm should be revised for future studies. PMID:23184256

  19. Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: comparison of oblique and orthogonal random forest algorithms

    NASA Astrophysics Data System (ADS)

    Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad

    2016-01-01

    In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.

  20. Preprocessing and meta-classification for brain-computer interfaces.

    PubMed

    Hammon, Paul S; de Sa, Virginia R

    2007-03-01

    A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.

  1. Comparison of different classification algorithms for underwater target discrimination.

    PubMed

    Li, Donghui; Azimi-Sadjadi, Mahmood R; Robinson, Marc

    2004-01-01

    Classification of underwater targets from the acoustic backscattered signals is considered here. Several different classification algorithms are tested and benchmarked not only for their performance but also to gain insight to the properties of the feature space. Results on a wideband 80-kHz acoustic backscattered data set collected for six different objects are presented in terms of the receiver operating characteristic (ROC) and robustness of the classifiers wrt reverberation.

  2. Analysis of miRNA expression profile based on SVM algorithm

    NASA Astrophysics Data System (ADS)

    Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian

    2018-05-01

    Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.

  3. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  4. Dance recognition system using lower body movement.

    PubMed

    Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C

    2014-02-01

    The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.

  5. A Recurrent Probabilistic Neural Network with Dimensionality Reduction Based on Time-series Discriminant Component Analysis.

    PubMed

    Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio

    2015-12-01

    This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.

  6. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.

    PubMed

    Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V

    2018-04-01

    Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.

  7. Fast Query-Optimized Kernel-Machine Classification

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; DeCoste, Dennis

    2004-01-01

    A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.

  8. Algorithms for Hyperspectral Endmember Extraction and Signature Classification with Morphological Dendritic Networks

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ritter, G.

    Accurate multispectral or hyperspectral signature classification is key to the nonimaging detection and recognition of space objects. Additionally, signature classification accuracy depends on accurate spectral endmember determination [1]. Previous approaches to endmember computation and signature classification were based on linear operators or neural networks (NNs) expressed in terms of the algebra (R, +, x) [1,2]. Unfortunately, class separation in these methods tends to be suboptimal, and the number of signatures that can be accurately classified often depends linearly on the number of NN inputs. This can lead to poor endmember distinction, as well as potentially significant classification errors in the presence of noise or densely interleaved signatures. In contrast to traditional CNNs, autoassociative morphological memories (AMM) are a construct similar to Hopfield autoassociatived memories defined on the (R, +, ?,?) lattice algebra [3]. Unlimited storage and perfect recall of noiseless real valued patterns has been proven for AMMs [4]. However, AMMs suffer from sensitivity to specific noise models, that can be characterized as erosive and dilative noise. On the other hand, the prior definition of a set of endmembers corresponds to material spectra lying on vertices of the minimum convex region covering the image data. These vertices can be characterized as morphologically independent patterns. It has further been shown that AMMs can be based on dendritic computation [3,6]. These techniques yield improved accuracy and class segmentation/separation ability in the presence of highly interleaved signature data. In this paper, we present a procedure for endmember determination based on AMM noise sensitivity, which employs morphological dendritic computation. We show that detected endmembers can be exploited by AMM based classification techniques, to achieve accurate signature classification in the presence of noise, closely spaced or interleaved signatures, and simulated camera optical distortions. In particular, we examine two critical cases: (1) classification of multiple closely spaced signatures that are difficult to separate using distance measures, and (2) classification of materials in simulated hyperspectral images of spaceborne satellites. In each case, test data are derived from a NASA database of space material signatures. Additional analysis pertains to computational complexity and noise sensitivity, which are superior to classical NN based techniques.

  9. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data

    PubMed Central

    Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J.

    2016-01-01

    Abstract Background: The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. Methods: We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women’s Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms—one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV—using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this “triangulation.” Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. Results: The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Conclusions: Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. PMID:26582243

  10. Measurement of the center edge angle and determination of the Severin classification using digital radiography, computer-assisted measurement tools, and a Severin algorithm: intraobserver and interobserver reliability revisited.

    PubMed

    Carroll, Kristen L; Murray, Kathleen A; MacLeod, Lynne M; Hennessey, Theresa A; Woiczik, Marcella R; Roach, James W

    2011-06-01

    Numerous studies underscore the poor intraobserver and interobserver reliability of both the center edge angle (CEA) and the Severin classification using plain film measurements. In this study, experienced observers applied a computer-assisted measurement program to determine the CEA in digital pelvic radiographs of adults who had been previously treated for dysplasia of the hip (DDH). Using a teaching aid/algorithm of the Severin classification, the observers then assigned a Severin rating to these hips. Intraobserver and interobserver errors were then calculated on both the CEA measurements and the Severin classifications. Four pediatric orthopaedic surgeons and 1 pediatric radiologist calculated the CEAs using the OrthoView TM planning system and then determined the Severin classification on 41 blinded digital pelvic radiographs. The radiographs were evaluated by each examiner twice, with evaluations separated by 2 months. All examiners reviewed a Severin classification algorithm before making their Severin assignments. The intraobserver and interobserver reliability for both the CEA and the Severin classification were calculated using the interclass correlation coefficients and Cohen and Fleiss κ scores, respectively. The intraobserver and interobserver reliability for CEA measurement was moderate to almost perfect. When we separated the Severin classification into 3 clinically relevant groups of good (Severin I and II), dysplastic (Severin III), and poor (Severin IV and above), our interobserver reliability neared almost perfect. The Severin classification is an extremely useful and oft-used radiographic measure for the success of DDH treatment. Our research found digital radiography, computer-aided measurement tools, the use of a Severin algorithm, and separating the Severin classification into 3 clinically relevant groups significantly increased the intraobserver and interobserver reliability of both the CEA and Severin classification. This finding will assist future studies using the CEA and Severin classification in the radiographic assessment of DDH treatment outcomes.

  11. Research on Optimization of GLCM Parameter in Cell Classification

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Kun; Hou, Jie; Hu, Xin-Hua

    2016-05-01

    Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.

  12. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  13. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  14. A Novel Segment-Based Approach for Improving Classification Performance of Transport Mode Detection.

    PubMed

    Guvensan, M Amac; Dusun, Burak; Can, Baris; Turkmen, H Irem

    2017-12-30

    Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people's daily activities including transportation types and duration by taking advantage of individual's smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.

  15. Applying FastSLAM to Articulated Rovers

    NASA Astrophysics Data System (ADS)

    Hewitt, Robert Alexander

    This thesis presents the navigation algorithms designed for use on Kapvik, a 30 kg planetary micro-rover built for the Canadian Space Agency; the simulations used to test the algorithm; and novel techniques for terrain classification using Kapvik's LIDAR (Light Detection And Ranging) sensor. Kapvik implements a six-wheeled, skid-steered, rocker-bogie mobility system. This warrants a more complicated kinematic model for navigation than a typical 4-wheel differential drive system. The design of a 3D navigation algorithm is presented that includes nonlinear Kalman filtering and Simultaneous Localization and Mapping (SLAM). A neural network for terrain classification is used to improve navigation performance. Simulation is used to train the neural network and validate the navigation algorithms. Real world tests of the terrain classification algorithm validate the use of simulation for training and the improvement to SLAM through the reduction of extraneous LIDAR measurements in each scan.

  16. Classical Statistics and Statistical Learning in Imaging Neuroscience

    PubMed Central

    Bzdok, Danilo

    2017-01-01

    Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques. PMID:29056896

  17. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less

  18. Biogeographic classification of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Fendereski, F.; Vogt, M.; Payne, M. R.; Lachkar, Z.; Gruber, N.; Salmanmahiny, A.; Hosseini, S. A.

    2014-11-01

    Like other inland seas, the Caspian Sea (CS) has been influenced by climate change and anthropogenic disturbance during recent decades, yet the scientific understanding of this water body remains poor. In this study, an eco-geographical classification of the CS based on physical information derived from space and in situ data is developed and tested against a set of biological observations. We used a two-step classification procedure, consisting of (i) a data reduction with self-organizing maps (SOMs) and (ii) a synthesis of the most relevant features into a reduced number of marine ecoregions using the hierarchical agglomerative clustering (HAC) method. From an initial set of 12 potential physical variables, 6 independent variables were selected for the classification algorithm, i.e., sea surface temperature (SST), bathymetry, sea ice, seasonal variation of sea surface salinity (DSSS), total suspended matter (TSM) and its seasonal variation (DTSM). The classification results reveal a robust separation between the northern and the middle/southern basins as well as a separation of the shallow nearshore waters from those offshore. The observed patterns in ecoregions can be attributed to differences in climate and geochemical factors such as distance from river, water depth and currents. A comparison of the annual and monthly mean Chl a concentrations between the different ecoregions shows significant differences (one-way ANOVA, P < 0.05). In particular, we found differences in phytoplankton phenology, with differences in the date of bloom initiation, its duration and amplitude between ecoregions. A first qualitative evaluation of differences in community composition based on recorded presence-absence patterns of 25 different species of plankton, fish and benthic invertebrate also confirms the relevance of the ecoregions as proxies for habitats with common biological characteristics.

  19. Bio-geographic classification of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Fendereski, F.; Vogt, M.; Payne, M. R.; Lachkar, Z.; Gruber, N.; Salmanmahiny, A.; Hosseini, S. A.

    2014-03-01

    Like other inland seas, the Caspian Sea (CS) has been influenced by climate change and anthropogenic disturbance during recent decades, yet the scientific understanding of this water body remains poor. In this study, an eco-geographical classification of the CS based on physical information derived from space and in-situ data is developed and tested against a set of biological observations. We used a two-step classification procedure, consisting of (i) a data reduction with self-organizing maps (SOMs) and (ii) a synthesis of the most relevant features into a reduced number of marine ecoregions using the Hierarchical Agglomerative Clustering (HAC) method. From an initial set of 12 potential physical variables, 6 independent variables were selected for the classification algorithm, i.e., sea surface temperature (SST), bathymetry, sea ice, seasonal variation of sea surface salinity (DSSS), total suspended matter (TSM) and its seasonal variation (DTSM). The classification results reveal a robust separation between the northern and the middle/southern basins as well as a separation of the shallow near-shore waters from those off-shore. The observed patterns in ecoregions can be attributed to differences in climate and geochemical factors such as distance from river, water depth and currents. A comparison of the annual and monthly mean Chl a concentrations between the different ecoregions shows significant differences (Kruskal-Wallis rank test, P < 0.05). In particular, we found differences in phytoplankton phenology, with differences in the date of bloom initiation, its duration and amplitude between ecoregions. A first qualitative evaluation of differences in community composition based on recorded presence-absence patterns of 27 different species of plankton, fish and benthic invertebrate also confirms the relevance of the ecoregions as proxies for habitats with common biological characteristics.

  20. Evaluation of registration, compression and classification algorithms. Volume 1: Results

    NASA Technical Reports Server (NTRS)

    Jayroe, R.; Atkinson, R.; Callas, L.; Hodges, J.; Gaggini, B.; Peterson, J.

    1979-01-01

    The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery.

  1. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    PubMed

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  2. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  3. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    NASA Astrophysics Data System (ADS)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  4. Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity.

    PubMed

    de Pierrefeu, Amicie; Fovet, Thomas; Hadj-Selem, Fouad; Löfstedt, Tommy; Ciuciu, Philippe; Lefebvre, Stephanie; Thomas, Pierre; Lopes, Renaud; Jardri, Renaud; Duchesnay, Edouard

    2018-04-01

    Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time-consuming. This article first proposes a machine-learning algorithm to automatically identify resting-state fMRI periods that precede hallucinations versus periods that do not. When applied to whole-brain fMRI data, state-of-the-art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech-related brain regions. The variation in transition-to-hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI-guided therapy for drug-resistant hallucinations, such as fMRI-based neurofeedback. © 2018 Wiley Periodicals, Inc.

  5. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.

  6. Classification of voting algorithms for N-version software

    NASA Astrophysics Data System (ADS)

    Tsarev, R. Yu; Durmuş, M. S.; Üstoglu, I.; Morozov, V. A.

    2018-05-01

    A voting algorithm in N-version software is a crucial component that evaluates the execution of each of the N versions and determines the correct result. Obviously, the result of the voting algorithm determines the outcome of the N-version software in general. Thus, the choice of the voting algorithm is a vital issue. A lot of voting algorithms were already developed and they may be selected for implementation based on the specifics of the analysis of input data. However, the voting algorithms applied in N-version software are not classified. This article presents an overview of classic and recent voting algorithms used in N-version software and the authors' classification of the voting algorithms. Moreover, the steps of the voting algorithms are presented and the distinctive features of the voting algorithms in Nversion software are defined.

  7. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

    NASA Astrophysics Data System (ADS)

    Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.

    2018-06-01

    Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.

  8. Contextual classification on a CDC Flexible Processor system. [for photomapped remote sensing data

    NASA Technical Reports Server (NTRS)

    Smith, B. W.; Siegel, H. J.; Swain, P. H.

    1981-01-01

    A potential hardware organization for the Flexible Processor Array is presented. An algorithm that implements a contextual classifier for remote sensing data analysis is given, along with uniprocessor classification algorithms. The Flexible Processor algorithm is provided, as are simulated timings for contextual classifiers run on the Flexible Processor Array and another system. The timings are analyzed for context neighborhoods of sizes three and nine.

  9. Classification of natural formations based on their optical characteristics using small volumes of samples

    NASA Astrophysics Data System (ADS)

    Abramovich, N. S.; Kovalev, A. A.; Plyuta, V. Y.

    1986-02-01

    A computer algorithm has been developed to classify the spectral bands of natural scenes on Earth according to their optical characteristics. The algorithm is written in FORTRAN-IV and can be used in spectral data processing programs requiring small data loads. The spectral classifications of some different types of green vegetable canopies are given in order to illustrate the effectiveness of the algorithm.

  10. Multiobjective GAs, quantitative indices, and pattern classification.

    PubMed

    Bandyopadhyay, Sanghamitra; Pal, Sankar K; Aruna, B

    2004-10-01

    The concept of multiobjective optimization (MOO) has been integrated with variable length chromosomes for the development of a nonparametric genetic classifier which can overcome the problems, like overfitting/overlearning and ignoring smaller classes, as faced by single objective classifiers. The classifier can efficiently approximate any kind of linear and/or nonlinear class boundaries of a data set using an appropriate number of hyperplanes. While designing the classifier the aim is to simultaneously minimize the number of misclassified training points and the number of hyperplanes, and to maximize the product of class wise recognition scores. The concepts of validation set (in addition to training and test sets) and validation functional are introduced in the multiobjective classifier for selecting a solution from a set of nondominated solutions provided by the MOO algorithm. This genetic classifier incorporates elitism and some domain specific constraints in the search process, and is called the CEMOGA-Classifier (constrained elitist multiobjective genetic algorithm based classifier). Two new quantitative indices, namely, the purity and minimal spacing, are developed for evaluating the performance of different MOO techniques. These are used, along with classification accuracy, required number of hyperplanes and the computation time, to compare the CEMOGA-Classifier with other related ones.

  11. A Machine Learning Approach to the Detection of Pilot's Reaction to Unexpected Events Based on EEG Signals

    PubMed Central

    Cyran, Krzysztof A.

    2018-01-01

    This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety. Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear Discriminant Analysis, k-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random Forests, and Artificial Neural Networks. PMID:29849544

  12. Posture recognition associated with lifting of heavy objects using Kinect and Adaboost

    NASA Astrophysics Data System (ADS)

    Raut, Sayli; Navaneethakrishna, M.; Ramakrishnan, S.

    2017-12-01

    Lifting of heavy objects is the common task in the industries. Recent statistics from the Bureau of Labour indicate, back injuries account for one of every five injuries in the workplace. Eighty per cent of these injuries occur to the lower back and are associated with manual materials handling tasks. According to the Industrial ergonomic safety manual, Squatting is the correct posture for lifting a heavy object. In this work, an attempt has been made to monitor posture of the workers during squat and stoop using 3D motion capture and machine learning techniques. For this, Microsoft Kinect V2 is used for capturing the depth data. Further, Dynamic Time Warping and Euclidian distance algorithms are used for extraction of features. Ada-boost algorithm is used for classification of stoop and squat. The results show that the 3D image data is large and complex to analyze. The application of nonlinear and linear metrics captures the variation in the lifting pattern. Additionally, the features extracted from this metric resulted in a classification accuracy of 85% and 81% respectively. This framework may be put-upon to alert the workers in the industrial ergonomic environments.

  13. A Semi-supervised Heat Kernel Pagerank MBO Algorithm for Data Classification

    DTIC Science & Technology

    2016-07-01

    financial predictions, etc. and is finding growing use in text mining studies. In this paper, we present an efficient algorithm for classification of high...video data, set of images, hyperspectral data, medical data, text data, etc. Moreover, the framework provides a way to analyze data whose different...also be incorporated. For text classification, one can use tfidf (term frequency inverse document frequency) to form feature vectors for each document

  14. An algorithm for the arithmetic classification of multilattices.

    PubMed

    Indelicato, Giuliana

    2013-01-01

    A procedure for the construction and the classification of monoatomic multilattices in arbitrary dimension is developed. The algorithm allows one to determine the location of the points of all monoatomic multilattices with a given symmetry, or to determine whether two assigned multilattices are arithmetically equivalent. This approach is based on ideas from integral matrix theory, in particular the reduction to the Smith normal form, and can be coded to provide a classification software package.

  15. Algorithmic Classification of Five Characteristic Types of Paraphasias.

    PubMed

    Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven

    2016-12-01

    This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.

  16. Transport on Riemannian manifold for functional connectivity-based classification.

    PubMed

    Ng, Bernard; Dressler, Martin; Varoquaux, Gaël; Poline, Jean Baptiste; Greicius, Michael; Thirion, Bertrand

    2014-01-01

    We present a Riemannian approach for classifying fMRI connectivity patterns before and after intervention in longitudinal studies. A fundamental difficulty with using connectivity as features is that covariance matrices live on the positive semi-definite cone, which renders their elements inter-related. The implicit independent feature assumption in most classifier learning algorithms is thus violated. In this paper, we propose a matrix whitening transport for projecting the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. We show on real data that our approach provides significantly higher classification accuracy than directly using Pearson's correlation. We further propose a non-parametric scheme for identifying significantly discriminative connections from classifier weights. Using this scheme, a number of neuroanatomically meaningful connections are found, whereas no significant connections are detected with pure permutation testing.

  17. A new set of wavelet- and fractals-based features for Gleason grading of prostate cancer histopathology images

    NASA Astrophysics Data System (ADS)

    Mosquera Lopez, Clara; Agaian, Sos

    2013-02-01

    Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.

  18. Property Specification Patterns for intelligence building software

    NASA Astrophysics Data System (ADS)

    Chun, Seungsu

    2018-03-01

    In this paper, through the property specification pattern research for Modal MU(μ) logical aspects present a single framework based on the pattern of intelligence building software. In this study, broken down by state property specification pattern classification of Dwyer (S) and action (A) and was subdivided into it again strong (A) and weaknesses (E). Through these means based on a hierarchical pattern classification of the property specification pattern analysis of logical aspects Mu(μ) was applied to the pattern classification of the examples used in the actual model checker. As a result, not only can a more accurate classification than the existing classification systems were easy to create and understand the attributes specified.

  19. GA(M)E-QSAR: a novel, fully automatic genetic-algorithm-(meta)-ensembles approach for binary classification in ligand-based drug design.

    PubMed

    Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann

    2012-09-24

    Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.

  20. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

Top