Sample records for pattern classification system

  1. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  2. Pattern recognition and image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khalid J.; Eastwood, DeLyle

    1999-12-01

    Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.

  3. Property Specification Patterns for intelligence building software

    NASA Astrophysics Data System (ADS)

    Chun, Seungsu

    2018-03-01

    In this paper, through the property specification pattern research for Modal MU(μ) logical aspects present a single framework based on the pattern of intelligence building software. In this study, broken down by state property specification pattern classification of Dwyer (S) and action (A) and was subdivided into it again strong (A) and weaknesses (E). Through these means based on a hierarchical pattern classification of the property specification pattern analysis of logical aspects Mu(μ) was applied to the pattern classification of the examples used in the actual model checker. As a result, not only can a more accurate classification than the existing classification systems were easy to create and understand the attributes specified.

  4. Pattern Classification of Endocervical Adenocarcinoma: Reproducibility and Review of Criteria

    PubMed Central

    Rutgers, Joanne K.L.; Roma, Andres; Park, Kay; Zaino, Richard J.; Johnson, Abbey; Alvarado, Isabel; Daya, Dean; Rasty, Golnar; Longacre, Teri; Ronnett, Brigitte; Silva, Elvio

    2017-01-01

    Previously, our international team proposed a 3-tiered pattern classification (Pattern Classification) system for endocervical adenocarcinoma of the usual type that correlates with nodal disease and recurrence. Pattern Classification- A have well demarcated glands lacking destructive stromal invasion or lymphovascular invasion (lymphovascular invasion), Pattern Classification- B show localized, limited destructive invasion arising from A-type glands, and Pattern Classification- C have diffuse destructive stromal invasion, significant (filling a 4× field) confluence, or solid architecture. 24 Pattern Classification-A, 22 Pattern Classification-B, 38 Pattern Classification-C from the tumor set used in the original description were chosen using the reference diagnosis (reference diagnosis) originally established. 1 H&E slide per case was reviewed by 7 gynecologic pathologists, 4 from the original study. Kappa statistics were prepared, and cases with discrepancies reviewed. We found a majority agreement with reference diagnosis in 81% of cases, with complete or near complete (6 of 7) agreement in 50%. Overall concordance was 74%. Overall Kappa (agreement among pathologists) was .488 (moderate agreement). Pattern Classification- B has lowest kappa, and agreement is not improved by combining B+C. 6 of 7 reviewers had substantial agreement by weighted kappas (>.6), with one reviewer accounting for the majority of cases under or overcalled by 2 tiers. Confluence filling a 4× field, labyrinthine glands, or solid architecture accounted for undercalling other reference diagnosis-C cases. Missing a few individually infiltrative cells was the most common cause of undercalling reference diagnosis- B. Small foci of inflamed, loose or desmoplastic stroma lacking infiltrative tumor cells in reference diagnosis-A appeared to account for those cases up-graded to Pattern Classification-B. In summary, an overall concordance of 74% indicates that the criteria can be reproducibly applied by gynecologic pathologists. Further refinement of criteria should allow use of this powerful classification system to delineate which cervical adenocarcinomas can be safely treated conservatively. PMID:27255163

  5. Formalization of the classification pattern: survey of classification modeling in information systems engineering.

    PubMed

    Partridge, Chris; de Cesare, Sergio; Mitchell, Andrew; Odell, James

    2018-01-01

    Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move toward formalization in part because it illustrates some of the barriers to formalization, including the formal complexity of the pattern and the ontological issues surrounding the "one and the many." Powersets are a way of characterizing the (complex) formal structure of the classification pattern, and their formalization has been extensively studied in mathematics since Cantor's work in the late nineteenth century. One can use this formalization to develop a useful benchmark. There are various communities within information systems engineering (ISE) that are gradually working toward a formalization of the classification pattern. However, for most of these communities, this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other information systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design, and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature, starting from the relevant theoretical works of the mathematical literature and gradually shifting focus to the ISE literature. The literature survey follows the evolution of ISE's understanding of how to formalize the classification pattern. The various proposals are assessed using the classical example of classification; the Linnaean taxonomy formalized using powersets as a benchmark for formal expressiveness. The broad conclusion of the survey is that (1) the ISE community is currently in the early stages of the process of understanding how to formalize the classification pattern, particularly in the requirements for expressiveness exemplified by powersets, and (2) that there is an opportunity to intervene and speed up the process of adoption by clarifying this expressiveness. Given the central place that the classification pattern has in domain modeling, this intervention has the potential to lead to significant improvements.

  6. Pattern Classifications Using Grover's and Ventura's Algorithms in a Two-qubits System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Radhey, Kishori; Rajput, B. S.

    2018-03-01

    Carrying out the classification of patterns in a two-qubit system by separately using Grover's and Ventura's algorithms on different possible superposition, it has been shown that the exclusion superposition and the phase-invariance superposition are the most suitable search states obtained from two-pattern start-states and one-pattern start-states, respectively, for the simultaneous classifications of patterns. The higher effectiveness of Grover's algorithm for large search states has been verified but the higher effectiveness of Ventura's algorithm for smaller data base has been contradicted in two-qubit systems and it has been demonstrated that the unknown patterns (not present in the concerned data-base) are classified more efficiently than the known ones (present in the data-base) in both the algorithms. It has also been demonstrated that different states of Singh-Rajput MES obtained from the corresponding self-single- pattern start states are the most suitable search states for the classification of patterns |00>,|01 >, |10> and |11> respectively on the second iteration of Grover's method or the first operation of Ventura's algorithm.

  7. Classification

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  8. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  9. Simultaneous classification of Oranges and Apples Using Grover's and Ventura' Algorithms in a Two-qubits System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Radhey, Kishori; Kumar, Sandeep

    2017-08-01

    In the present paper, simultaneous classification of Orange and Apple has been carried out using both Grover's iterative algorithm (Grover 1996) and Ventura's model (Ventura and Martinez, Inf. Sci. 124, 273-296, 2000) taking different superposition of two- pattern start state containing Orange and Apple both, one- pattern start state containing Apple as search state and another one- pattern start state containing Orange as search state. It has been shown that the exclusion superposition is the most suitable two- pattern search state for simultaneous classification of pattern associated with Apples and Oranges and the superposition of phase-invariance are the best choice as the respective search state based on one -pattern start-states in both Grover's and Ventura's methods of classifications of patterns.

  10. Correlation of AO and Lauge-Hansen classification systems for ankle fractures to the mechanism of injury.

    PubMed

    Rodriguez, Edward K; Kwon, John Y; Herder, Lindsay M; Appleton, Paul T

    2013-11-01

    Our aim was to assess whether the Lauge-Hansen (LH) and the Muller AO classification systems for ankle fractures radiographically correlate with in vivo injuries based on observed mechanism of injury. Videos of potential study candidates were reviewed on YouTube.com. Individuals were recruited for participation if the video could be classified by injury mechanism with a high likelihood of sustaining an ankle fracture. Corresponding injury radiographs were obtained. Injury mechanism was classified using the LH system as supination/external rotation (SER), supination/adduction (SAD), pronation/external rotation (PER), or pronation/abduction (PAB). Corresponding radiographs were classified by the LH system and the AO system. Thirty injury videos with their corresponding radiographs were collected. Of the video clips reviewed, 16 had SAD mechanisms and 14 had PER mechanisms. There were 26 ankle fractures, 3 nonfractures, and 1 subtalar dislocation. Twelve fractures with SAD mechanisms had corresponding SAD fracture patterns. Five PER mechanisms had PER fracture patterns. Eight PER mechanisms had SER fracture patterns and 1 had SAD fracture pattern. When the AO classification was used, all 12 SAD type injuries had a 44A type fracture, whereas the 14 PER injuries resulted in nine 44B fractures, two 44C fractures, and three 43A fractures. When injury video clips of ankle fractures were matched to their corresponding radiographs, the LH system was 65% (17/26) consistent in predicting fracture patterns from the deforming injury mechanism. When the AO classification system was used, consistency was 81% (21/26). The AO classification, despite its development as a purely radiographic system, correlated with in vivo injuries, as based on observed mechanism of injury, more closely than did the LH system. Level IV, case series.

  11. The clinical outcomes of deep gray matter injury in children with cerebral palsy in relation with brain magnetic resonance imaging.

    PubMed

    Choi, Ja Young; Choi, Yoon Seong; Rha, Dong-Wook; Park, Eun Sook

    2016-08-01

    In the present study we investigated the nature and extent of clinical outcomes using various classifications and analyzed the relationship between brain magnetic resonance imaging (MRI) findings and the extent of clinical outcomes in children with cerebral palsy (CP) with deep gray matter injury. The deep gray matter injuries of 69 children were classified into hypoxic ischemic encephalopathy (HIE) and kernicterus patterns. HIE patterns were divided into four groups (I-IV) based on severity. Functional classification was investigated using the gross motor function classification system-expanded and revised, manual ability classification system, communication function classification system, and tests of cognitive function, and other associated problems. The severity of HIE pattern on brain MRI was strongly correlated with the severity of clinical outcomes in these various domains. Children with a kernicterus pattern showed a wide range of clinical outcomes in these areas. Children with severe HIE are at high risk of intellectual disability (ID) or epilepsy and children with a kernicterus pattern are at risk of hearing impairment and/or ID. Grading severity of HIE pattern on brain MRI is useful for predicting overall outcomes. The clinical outcomes of children with a kernicterus pattern range widely from mild to severe. Delineation of the clinical outcomes of children with deep gray matter injury, which are a common abnormal brain MRI finding in children with CP, is necessary. The present study provides clinical outcomes for various domains in children with deep gray matter injury on brain MRI. The deep gray matter injuries were divided into two major groups; HIE and kernicterus patterns. Our study showed that severity of HIE pattern on brain MRI was strongly associated with the severity of impairments in gross motor function, manual ability, communication function, and cognition. These findings suggest that severity of HIE pattern can be useful for predicting the severity of impairments. Conversely, children with a kernicterus pattern showed a wide range of clinical outcomes in various domains. Children with severe HIE pattern are at high risk of ID or epilepsy and children with kernicterus pattern are at risk of hearing impairment or ID. The strength of our study was the assessment of clinical outcomes after 3 years of age using standardized classification systems in various domains in children with deep gray matter injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data

    PubMed Central

    Batal, Iyad; Valizadegan, Hamed; Cooper, Gregory F.; Hauskrecht, Milos

    2013-01-01

    We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the Minimal Predictive Temporal Patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems. PMID:25309815

  13. A new precipitation and meteorological drought climatology based on weather patterns

    NASA Astrophysics Data System (ADS)

    Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.

    2017-12-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.

  14. Classification of crystal structure using a convolutional neural network

    PubMed Central

    Park, Woon Bae; Chung, Jiyong; Sohn, Keemin; Pyo, Myoungho

    2017-01-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds. PMID:28875035

  15. Classification of crystal structure using a convolutional neural network.

    PubMed

    Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun

    2017-07-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

  16. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning.

    PubMed

    Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni

    2015-11-11

    Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%.

  17. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning

    PubMed Central

    Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni

    2015-01-01

    Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%. PMID:26569250

  18. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    PubMed

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  19. Integration of Chinese medicine with Western medicine could lead to future medicine: molecular module medicine.

    PubMed

    Zhang, Chi; Zhang, Ge; Chen, Ke-ji; Lu, Ai-ping

    2016-04-01

    The development of an effective classification method for human health conditions is essential for precise diagnosis and delivery of tailored therapy to individuals. Contemporary classification of disease systems has properties that limit its information content and usability. Chinese medicine pattern classification has been incorporated with disease classification, and this integrated classification method became more precise because of the increased understanding of the molecular mechanisms. However, we are still facing the complexity of diseases and patterns in the classification of health conditions. With continuing advances in omics methodologies and instrumentation, we are proposing a new classification approach: molecular module classification, which is applying molecular modules to classifying human health status. The initiative would be precisely defining the health status, providing accurate diagnoses, optimizing the therapeutics and improving new drug discovery strategy. Therefore, there would be no current disease diagnosis, no disease pattern classification, and in the future, a new medicine based on this classification, molecular module medicine, could redefine health statuses and reshape the clinical practice.

  20. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  1. A Novel Fiber Optic Based Surveillance System for Prevention of Pipeline Integrity Threats.

    PubMed

    Tejedor, Javier; Macias-Guarasa, Javier; Martins, Hugo F; Piote, Daniel; Pastor-Graells, Juan; Martin-Lopez, Sonia; Corredera, Pedro; Gonzalez-Herraez, Miguel

    2017-02-12

    This paper presents a novel surveillance system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level and applies a system combination strategy for pattern classification. The contextual information at the feature level is based on the tandem approach (using feature representations produced by discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different temporal contexts. The system combination strategy is based on a posterior combination of likelihoods computed from different pattern classification processes. The system operates in two different modes: (1) machine + activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being conducted is. In comparison with a previous system based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information improves the results for each individual class in both operational modes, as well as the overall classification accuracy, with statistically-significant improvements.

  2. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  3. A Challenge to Change: Necessary Changes in the Library Classification System for the Chicago Public Schools.

    ERIC Educational Resources Information Center

    Williams, Florence M.

    This report addresses the feasibility of changing the classification of library materials in the Chicago Public School libraries from the Dewey Decimal classification system (DDC) to the Library of Congress system (LC), thus patterning the city school libraries after the Chicago Public Library and strengthening the existing close relationship…

  4. Patterns of Use of an Agent-Based Model and a System Dynamics Model: The Application of Patterns of Use and the Impacts on Learning Outcomes

    ERIC Educational Resources Information Center

    Thompson, Kate; Reimann, Peter

    2010-01-01

    A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…

  5. Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum

    NASA Astrophysics Data System (ADS)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.; Renero-Carrillo, F.

    2015-11-01

    This paper presents a novel approach to characterize and identify patterns of temperature in thermographic images of the human foot plant in support of early diagnosis and follow-up of diabetic patients. Composed feature vectors based on 3D morphological pattern spectrum (pecstrum) and relative position, allow the system to quantitatively characterize and discriminate non-diabetic (control) and diabetic (DM) groups. Non-linear classification using neural networks is used for that purpose. A classification rate of 94.33% in average was obtained with the composed feature extraction process proposed in this paper. Performance evaluation and obtained results are presented.

  6. Real-time detection and classification of anomalous events in streaming data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferragut, Erik M.; Goodall, John R.; Iannacone, Michael D.

    2016-04-19

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The events can be displayed to a user in user-defined groupings in an animated fashion. The system can include a plurality of anomaly detectors that together implement an algorithm to identify low probability events and detect atypical traffic patterns. The atypical traffic patterns can then be classified as being of interest or not. In one particular example, in a network environment, the classification can be whether the network traffic is malicious or not.

  7. A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation.

    PubMed

    Cong, Rui; Li, Jing; Guo, Song

    2017-02-01

    To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color pattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in breast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.

  8. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  9. MRI classification system (MRICS) for children with cerebral palsy: development, reliability, and recommendations.

    PubMed

    Himmelmann, Kate; Horber, Veronka; De La Cruz, Javier; Horridge, Karen; Mejaski-Bosnjak, Vlatka; Hollody, Katalin; Krägeloh-Mann, Ingeborg

    2017-01-01

    To develop and evaluate a classification system for magnetic resonance imaging (MRI) findings of children with cerebral palsy (CP) that can be used in CP registers. The classification system was based on pathogenic patterns occurring in different periods of brain development. The MRI classification system (MRICS) consists of five main groups: maldevelopments, predominant white matter injury, predominant grey matter injury, miscellaneous, and normal findings. A detailed manual for the descriptions of these patterns was developed, including test cases (www.scpenetwork.eu/en/my-scpe/rtm/neuroimaging/cp-neuroimaging/). A literature review was performed and MRICS was compared with other classification systems. An exercise was carried out to check applicability and interrater reliability. Professionals working with children with CP or in CP registers were invited to participate in the exercise and chose to classify either 18 MRIs or MRI reports of children with CP. Classification systems in the literature were compatible with MRICS and harmonization possible. Interrater reliability was found to be good overall (k=0.69; 0.54-0.82) among the 41 participants and very good (k=0.81; 0.74-0.92) using the classification based on imaging reports. Surveillance of Cerebral Palsy in Europe (SCPE) proposes the MRICS as a reliable tool. Together with its manual it is simple to apply for CP registers. © 2016 Mac Keith Press.

  10. Application of Classification Methods for Forecasting Mid-Term Power Load Patterns

    NASA Astrophysics Data System (ADS)

    Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho

    Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  11. A Novel Classification System for Injuries After Electronic Cigarette Explosions.

    PubMed

    Patterson, Scott B; Beckett, Allison R; Lintner, Alicia; Leahey, Carly; Greer, Ashley; Brevard, Sidney B; Simmons, Jon D; Kahn, Steven A

    Electronic cigarettes (e-cigarettes) contain lithium batteries that have been known to explode and/or cause fires that have resulted in burn injury. The purpose of this article is to present a case study, review injuries caused by e-cigarettes, and present a novel classification system from the newly emerging patterns of burns. A case study was presented and online media reports for e-cigarette burns were queried with search terms "e-cigarette burns" and "electronic cigarette burns." The reports and injury patterns were tabulated. Analysis was then performed to create a novel classification system based on the distinct injury patterns seen in the study. Two patients were seen at our regional burn center after e-cigarette burns. One had an injury to his thigh and penis that required operative intervention after ignition of this device in his pocket. The second had a facial burn and corneal abrasions when the device exploded while he was inhaling vapor. The Internet search and case studies resulted in 26 cases for evaluation. The burn patterns were divided in direct injury from the device igniting and indirect injury when the device caused a house or car fire. A numerical classification was created: direct injury: type 1 (hand injury) 7 cases, type 2 (face injury) 8 cases, type 3 (waist/groin injury) 11 cases, and type 5a (inhalation injury from using device) 2 cases; indirect injury: type 4 (house fire injury) 7 cases and type 5b (inhalation injury from fire started by the device) 4 cases. Multiple e-cigarette injuries are occurring in the United States and distinct patterns of burns are emerging. The classification system developed in this article will aid in further study and future regulation of these dangerous devices.

  12. Automated classification of articular cartilage surfaces based on surface texture.

    PubMed

    Stachowiak, G P; Stachowiak, G W; Podsiadlo, P

    2006-11-01

    In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.

  13. Selective classification for improved robustness of myoelectric control under nonideal conditions.

    PubMed

    Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S

    2011-06-01

    Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.

  14. Stygoregions – a promising approach to a bioregional classification of groundwater systems

    PubMed Central

    Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen

    2012-01-01

    Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698

  15. FHR patterns that become significant in connection with ST waveform changes and metabolic acidosis at birth.

    PubMed

    Rosén, Karl G; Norén, Håkan; Carlsson, Ann

    2018-04-18

    Recent developments have produced new CTG classification systems and the question is to what extent these may affect the model of FHR + ST interpretation? The two new systems (FIGO2015 and SSOG2017) classify FHR + ST events differently from the current CTG classification system used in the STAN interpretation algorithm (STAN2007). Identify the predominant FHR patterns in connection with ST events in cases of cord artery metabolic acidosis missed by the different CTG classification systems. Indicate to what extent STAN clinical guidelines could be modified enhancing the sensitivity. Provide a pathophysiological rationale. Forty-four cases with umbilical cord artery metabolic acidosis were retrieved from a European multicenter database. Significant FHR + ST events were evaluated post hoc in consensus by an expert panel. Eighteen cases were not identified as in need of intervention and regarded as negative in the sensitivity analysis. In 12 cases, ST changes occurred but the CTG was regarded as reassuring. Visual analysis of the FHR + ST tracings revealed specific FHR patterns: Conclusion: These findings indicate FHR + ST analysis may be undertaken regardless of CTG classification system provided there is a more physiologically oriented approach to FHR assessment in connection with an ST event.

  16. Interrater reliability of a Pilates movement-based classification system.

    PubMed

    Yu, Kwan Kenny; Tulloch, Evelyn; Hendrick, Paul

    2015-01-01

    To determine the interrater reliability for identification of a specific movement pattern using a Pilates Classification system. Videos of 5 subjects performing specific movement tasks were sent to raters trained in the DMA-CP classification system. Ninety-six raters completed the survey. Interrater reliability for the detection of a directional bias was excellent (Pi = 0.92, and K(free) = 0.89). Interrater reliability for classifying an individual into a specific subgroup was moderate (Pi = 0.64, K(free) = 0.55) however raters who had completed levels 1-4 of the DMA-CP training and reported using the assessment daily demonstrated excellent reliability (Pi = 0.89 and K(free) = 0.87). The reliability of the classification system demonstrated almost perfect agreement in determining the existence of a specific movement pattern and classifying into a subgroup for experienced raters. There was a trend for greater reliability associated with increased levels of training and experience of the raters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hybrid approach for robust diagnostics of cutting tools

    NASA Astrophysics Data System (ADS)

    Ramamurthi, K.; Hough, C. L., Jr.

    1994-03-01

    A new multisensor based hybrid technique has been developed for robust diagnosis of cutting tools. The technique combines the concepts of pattern classification and real-time knowledge based systems (RTKBS) and draws upon their strengths; learning facility in the case of pattern classification and a higher level of reasoning in the case of RTKBS. It eliminates some of their major drawbacks: false alarms or delayed/lack of diagnosis in case of pattern classification and tedious knowledge base generation in case of RTKBS. It utilizes a dynamic distance classifier, developed upon a new separability criterion and a new definition of robust diagnosis for achieving these benefits. The promise of this technique has been proven concretely through an on-line diagnosis of drill wear. Its suitability for practical implementation is substantiated by the use of practical, inexpensive, machine-mounted sensors and low-cost delivery systems.

  18. A subject-independent pattern-based Brain-Computer Interface

    PubMed Central

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  19. A Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical Data: An Approach for Building Effective Clinical Decision-Making System.

    PubMed

    Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan

    2016-01-01

    Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.

  20. Lissencephaly: expanded imaging and clinical classification

    PubMed Central

    Di Donato, Nataliya; Chiari, Sara; Mirzaa, Ghayda M.; Aldinger, Kimberly; Parrini, Elena; Olds, Carissa; Barkovich, A. James; Guerrini, Renzo; Dobyns, William B.

    2017-01-01

    Lissencephaly (“smooth brain”, LIS) is a malformation of cortical development associated with deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. The LIS spectrum includes agyria, pachygyria, and subcortical band heterotopia. Our first classification of LIS and subcortical band heterotopia (SBH) was developed to distinguish between the first two genetic causes of LIS – LIS1 (PAFAH1B1) and DCX. However, progress in molecular genetics has led to identification of 19 LIS-associated genes, leaving the existing classification system insufficient to distinguish the increasingly diverse patterns of LIS. To address this challenge, we reviewed clinical, imaging and molecular data on 188 patients with LIS-SBH ascertained during the last five years, and reviewed selected archival data on another ~1,400 patients. Using these data plus published reports, we constructed a new imaging based classification system with 21 recognizable patterns that reliably predict the most likely causative genes. These patterns do not correlate consistently with the clinical outcome, leading us to also develop a new scale useful for predicting clinical severity and outcome. Taken together, our work provides new tools that should prove useful for clinical management and genetic counselling of patients with LIS-SBH (imaging and severity based classifications), and guidance for prioritizing and interpreting genetic testing results (imaging based classification). PMID:28440899

  1. Invasive endocervical adenocarcinoma: proposal for a new pattern-based classification system with significant clinical implications: a multi-institutional study.

    PubMed

    Diaz De Vivar, Andrea; Roma, Andres A; Park, Kay J; Alvarado-Cabrero, Isabel; Rasty, Golnar; Chanona-Vilchis, Jose G; Mikami, Yoshiki; Hong, Sung R; Arville, Brent; Teramoto, Norihiro; Ali-Fehmi, Rouba; Rutgers, Joanne K L; Tabassum, Farah; Barbuto, Denise; Aguilera-Barrantes, Irene; Shaye-Brown, Alexandra; Daya, Dean; Silva, Elvio G

    2013-11-01

    The management of endocervical adenocarcinoma is largely based on tumor size and depth of invasion (DOI); however, DOI is difficult to measure accurately. The surgical treatment includes resection of regional lymph nodes, even though most lymph nodes are negative and lymphadenectomies can cause significant morbidity. We have investigated alternative parameters to better identify patients at risk of node metastases. Cases of invasive endocervical adenocarcinoma from 12 institutions were reviewed, and clinical/pathologic features assessed: patients' age, tumor size, DOI, differentiation, lymph-vascular invasion, lymph node metastases, recurrences, and stage. Cases were classified according to a new pattern-based system into Pattern A (well-demarcated glands), B (early destructive stromal invasion arising from well-demarcated glands), and C (diffuse destructive invasion). In total, 352 cases (FIGO Stages I-IV) were identified. Patients' age ranged from 20 to 83 years (mean 45), DOI ranged from 0.2 to 27 mm (mean 6.73), and lymph-vascular invasion was present in 141 cases. Forty-nine (13.9%) demonstrated lymph node metastases. Using this new system, 73 patients (20.7%) with Pattern A tumors (all Stage I) were identified. None had lymph node metastases and/or recurrences. Ninety patients (25.6%) had Pattern B tumors, of which 4 (4.4%) had positive nodes; whereas 189 (53.7%) had Pattern C tumors, of which 45 (23.8%) had metastatic nodes. The proposed classification system can spare 20.7% of patients (Pattern A) of unnecessary lymphadenectomy. Patients with Pattern B rarely present with positive nodes. An aggressive approach is justified in patients with Pattern C. This classification system is simple, easy to apply, and clinically significant.

  2. Dead simple OWL design patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osumi-Sutherland, David; Courtot, Melanie; Balhoff, James P.

    Bio-ontologies typically require multiple axes of classification to support the needs of their users. Development of such ontologies can only be made scalable and sustainable by the use of inference to automate classification via consistent patterns of axiomatization. Many bio-ontologies originating in OBO or OWL follow this approach. These patterns need to be documented in a form that requires minimal expertise to understand and edit and that can be validated and applied using any of the various programmatic approaches to working with OWL ontologies. We describe a system, Dead Simple OWL Design Patterns (DOS-DPs), which fulfills these requirements, illustrating themore » system with examples from the Gene Ontology. In conclusion, the rapid adoption of DOS-DPs by multiple ontology development projects illustrates both the ease-of use and the pressing need for the simple design pattern system we have developed.« less

  3. Dead simple OWL design patterns

    DOE PAGES

    Osumi-Sutherland, David; Courtot, Melanie; Balhoff, James P.; ...

    2017-06-05

    Bio-ontologies typically require multiple axes of classification to support the needs of their users. Development of such ontologies can only be made scalable and sustainable by the use of inference to automate classification via consistent patterns of axiomatization. Many bio-ontologies originating in OBO or OWL follow this approach. These patterns need to be documented in a form that requires minimal expertise to understand and edit and that can be validated and applied using any of the various programmatic approaches to working with OWL ontologies. We describe a system, Dead Simple OWL Design Patterns (DOS-DPs), which fulfills these requirements, illustrating themore » system with examples from the Gene Ontology. In conclusion, the rapid adoption of DOS-DPs by multiple ontology development projects illustrates both the ease-of use and the pressing need for the simple design pattern system we have developed.« less

  4. Cognitive approaches for patterns analysis and security applications

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Ogiela, Lidia

    2017-08-01

    In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.

  5. Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease

    NASA Astrophysics Data System (ADS)

    Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi

    2009-02-01

    Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.

  6. 42 CFR 412.620 - Patient classification system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... weighting factors to reflect changes in— (1) Treatment patterns; (2) Technology; (3) Number of discharges... 42 Public Health 2 2013-10-01 2013-10-01 false Patient classification system. 412.620 Section 412... rehabilitation facilities into mutually exclusive case-mix groups. (2) For purposes of this subpart, case-mix...

  7. 42 CFR 412.620 - Patient classification system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... weighting factors to reflect changes in— (1) Treatment patterns; (2) Technology; (3) Number of discharges... 42 Public Health 2 2012-10-01 2012-10-01 false Patient classification system. 412.620 Section 412... rehabilitation facilities into mutually exclusive case-mix groups. (2) For purposes of this subpart, case-mix...

  8. 42 CFR 412.620 - Patient classification system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... weighting factors to reflect changes in— (1) Treatment patterns; (2) Technology; (3) Number of discharges... 42 Public Health 2 2014-10-01 2014-10-01 false Patient classification system. 412.620 Section 412... rehabilitation facilities into mutually exclusive case-mix groups. (2) For purposes of this subpart, case-mix...

  9. A new precipitation and drought climatology based on weather patterns.

    PubMed

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  10. Improved GART neural network model for pattern classification and rule extraction with application to power systems.

    PubMed

    Yap, Keem Siah; Lim, Chee Peng; Au, Mau Teng

    2011-12-01

    Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.

  11. Increasing CAD system efficacy for lung texture analysis using a convolutional network

    NASA Astrophysics Data System (ADS)

    Tarando, Sebastian Roberto; Fetita, Catalin; Faccinetto, Alex; Brillet, Pierre-Yves

    2016-03-01

    The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. For the large majority of CAD systems, such classification relies on a two-dimensional analysis of axial CT images. In a previously developed CAD system, we proposed a fully-3D approach exploiting a multi-scale morphological analysis which showed good performance in detecting diseased areas, but with a major drawback consisting of sometimes overestimating the pathological areas and mixing different type of lung patterns. This paper proposes a combination of the existing CAD system with the classification outcome provided by a convolutional network, specifically tuned-up, in order to increase the specificity of the classification and the confidence to diagnosis. The advantage of using a deep learning approach is a better regularization of the classification output (because of a deeper insight into a given pathological class over a large series of samples) where the previous system is extra-sensitive due to the multi-scale response on patient-specific, localized patterns. In a preliminary evaluation, the combined approach was tested on a 10 patient database of various lung pathologies, showing a sharp increase of true detections.

  12. Sunspot Pattern Classification using PCA and Neural Networks (Poster)

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Thompson, D. E.; Slater, G. L.

    2005-01-01

    The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.

  13. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    PubMed

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.

  14. Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

    PubMed Central

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718

  15. AAAS: Automated Affirmative Action System. General Description, Phase 1.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC. TACTICS Management Information Systems Directorate.

    This document describes phase 1 of the Automated Affirmative Action System (AAAS) of the Tuskegee Institute, which was designed to organize an inventory of any patterns of job classification and assignment identifiable by sex or minority group; any job classification or organizational unit where women and minorities are not employed or are…

  16. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    NASA Technical Reports Server (NTRS)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  17. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  18. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  19. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  20. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at smaller scales using locally available data.

  1. Domain Drivers in the Modularization of FLOSS Systems

    NASA Astrophysics Data System (ADS)

    Capiluppi, Andrea

    The classification of software systems into types has been achieved in the past by observing both their specifications and behavioral patterns: the SPE classification, for instance, and its further supplements and refinements, has identified the S-type (i.e., fully specified), the P-type (i.e., specified but dependent on the context) and the E-type (i.e., addressing evolving problems) among the software systems.

  2. Classification of cancerous cells based on the one-class problem approach

    NASA Astrophysics Data System (ADS)

    Murshed, Nabeel A.; Bortolozzi, Flavio; Sabourin, Robert

    1996-03-01

    One of the most important factors in reducing the effect of cancerous diseases is the early diagnosis, which requires a good and a robust method. With the advancement of computer technologies and digital image processing, the development of a computer-based system has become feasible. In this paper, we introduce a new approach for the detection of cancerous cells. This approach is based on the one-class problem approach, through which the classification system need only be trained with patterns of cancerous cells. This reduces the burden of the training task by about 50%. Based on this approach, a computer-based classification system is developed, based on the Fuzzy ARTMAP neural networks. Experimental results were performed using a set of 542 patterns taken from a sample of breast cancer. Results of the experiment show 98% correct identification of cancerous cells and 95% correct identification of non-cancerous cells.

  3. Acoustic transient classification with a template correlation processor.

    PubMed

    Edwards, R T

    1999-10-01

    I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.

  4. Evaluation of modified crystal violet chromoendoscopy procedure using new mucosal pit pattern classification for detection of Barrett's dysplastic lesions.

    PubMed

    Yuki, T; Amano, Y; Kushiyama, Y; Takahashi, Y; Ose, T; Moriyama, I; Fukuhara, H; Ishimura, N; Koshino, K; Furuta, K; Ishihara, S; Adachi, K; Kinoshita, Y

    2006-05-01

    Pit pattern diagnosis is important for endoscopic detection of dysplastic Barrett's lesions, though using magnification endoscopy can be difficult and laborious. We investigated the usefulness of a modified crystal violet chromoendoscopy procedure and utilised a new pit pattern classification for diagnosis of dysplastic Barrett's lesions. A total of 1,030 patients suspected of having a columnar lined oesophagus were examined, of whom 816 demonstrated a crystal violet-stained columnar lined oesophagus. The early group of patients underwent 0.05% crystal violet chromoendoscopy, while the later group was examined using 0.03% crystal violet with 3.0% acetate. A targeted biopsy of the columnar lined oesophagus was performed using crystal violet staining after making a diagnosis of closed or open type pit pattern with a newly proposed system of classification. The relationship between type of pit pattern and histologically identified dysplastic Barrett's lesions was evaluated. Dysplastic Barrett's lesions were identified in biopsy samples with an open type pit pattern with a sensitivity of 96.0%. Further, Barrett's mucosa with the intestinal predominant mucin phenotype was closely associated with the open type pit pattern (sensitivity 81.9%, specificity 95.6%). The new pit pattern classification for diagnosis of Barrett's mucosa was found to be useful for identification of cases with dysplastic lesions and possible malignant potential using a crystal violet chromoendoscopic procedure.

  5. Ground truth management system to support multispectral scanner /MSS/ digital analysis

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.; Ungar, S. G.

    1977-01-01

    A computerized geographic information system for management of ground truth has been designed and implemented to relate MSS classification results to in situ observations. The ground truth system transforms, generalizes and rectifies ground observations to conform to the pixel size and shape of high resolution MSS aircraft data. These observations can then be aggregated for comparison to lower resolution sensor data. Construction of a digital ground truth array allows direct pixel by pixel comparison between classification results of MSS data and ground truth. By making comparisons, analysts can identify spatial distribution of error within the MSS data as well as usual figures of merit for the classifications. Use of the ground truth system permits investigators to compare a variety of environmental or anthropogenic data, such as soil color or tillage patterns, with classification results and allows direct inclusion of such data into classification operations. To illustrate the system, examples from classification of simulated Thematic Mapper data for agricultural test sites in North Dakota and Kansas are provided.

  6. The Surprising Persistence of Biglan's Classification Scheme

    ERIC Educational Resources Information Center

    Simpson, Adrian

    2017-01-01

    Within higher education systems, different institutions deliver different patterns of disciplines. A simple analysis of the structure of that pattern of disciplines across institutions in one higher education system uncovers a surprising relationship. That is, the key dimensions which describe that structure align nearly perfectly with dimensions…

  7. Synoptic typing: interdisciplinary application methods with three practical hydroclimatological examples

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Leathers, D. J.; Levia, D. F.

    2017-05-01

    Synoptic classification is a methodology that represents diverse atmospheric variables and allows researchers to relate large-scale atmospheric circulation patterns to regional- and small-scale terrestrial processes. Synoptic classification has often been applied to questions concerning the surface environment. However, full applicability has been under-utilized to date, especially in disciplines such as hydroclimatology, which are intimately linked to atmospheric inputs. This paper aims to (1) outline the development of a daily synoptic calendar for the Mid-Atlantic (USA), (2) define seasonal synoptic patterns occurring in the region, and (3) provide hydroclimatological examples whereby the cascading response of precipitation characteristics, soil moisture, and streamflow are explained by synoptic classification. Together, achievement of these objectives serves as a guide for development and use of a synoptic calendar for hydroclimatological studies. In total 22 unique synoptic types were identified, derived from a combination of 12 types occurring in the winter (DJF), 13 in spring (MAM), 9 in summer (JJA), and 11 in autumn (SON). This includes six low pressure systems, four high pressure systems, one cold front, three north/northwest flow regimes, three south/southwest flow regimes, and five weakly defined regimes. Pairwise comparisons indicated that 84.3 % had significantly different rainfall magnitudes, 86.4 % had different rainfall durations, and 84.7 % had different rainfall intensities. The largest precipitation-producing classifications were not restricted to low pressure systems, but rather to patterns with access to moisture sources from the Atlantic Ocean and easterly (on-shore) winds, which transport moisture inland. These same classifications resulted in comparable rates of soil moisture recharge and streamflow discharge, illustrating the applicability of synoptic classification for a range of hydroclimatological research objectives.

  8. A Study of Hand Back Skin Texture Patterns for Personal Identification and Gender Classification

    PubMed Central

    Xie, Jin; Zhang, Lei; You, Jane; Zhang, David; Qu, Xiaofeng

    2012-01-01

    Human hand back skin texture (HBST) is often consistent for a person and distinctive from person to person. In this paper, we study the HBST pattern recognition problem with applications to personal identification and gender classification. A specially designed system is developed to capture HBST images, and an HBST image database was established, which consists of 1,920 images from 80 persons (160 hands). An efficient texton learning based method is then presented to classify the HBST patterns. First, textons are learned in the space of filter bank responses from a set of training images using the l1 -minimization based sparse representation (SR) technique. Then, under the SR framework, we represent the feature vector at each pixel over the learned dictionary to construct a representation coefficient histogram. Finally, the coefficient histogram is used as skin texture feature for classification. Experiments on personal identification and gender classification are performed by using the established HBST database. The results show that HBST can be used to assist human identification and gender classification. PMID:23012512

  9. REQUIREMENTS PATTERNS FOR FORMAL CONTRACTS IN ARCHITECTURAL ANALYSIS AND DESIGN LANGUAGE (AADL) MODELS

    DTIC Science & Technology

    2017-04-17

    Cyberphysical Systems, Formal Methods , Requirements Patterns, AADL, Assume Guarantee Reasoning Environment 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...5 3. Methods , Assumptions, and Procedures...Rockwell Collins has been addressing these challenges by developing compositional reasoning methods that permit the verification of systems that exceed

  10. Food Classification Systems Based on Food Processing: Significance and Implications for Policies and Actions: A Systematic Literature Review and Assessment.

    PubMed

    Moubarac, Jean-Claude; Parra, Diana C; Cannon, Geoffrey; Monteiro, Carlos A

    2014-06-01

    This paper is the first to make a systematic review and assessment of the literature that attempts methodically to incorporate food processing into classification of diets. The review identified 1276 papers, of which 110 were screened and 21 studied, derived from five classification systems. This paper analyses and assesses the five systems, one of which has been devised and developed by a research team that includes co-authors of this paper. The quality of the five systems is assessed and scored according to how specific, coherent, clear, comprehensive and workable they are. Their relevance to food, nutrition and health, and their use in various settings, is described. The paper shows that the significance of industrial food processing in shaping global food systems and supplies and thus dietary patterns worldwide, and its role in the pandemic of overweight and obesity, remains overlooked and underestimated. Once food processing is systematically incorporated into food classifications, they will be more useful in assessing and monitoring dietary patterns. Food classification systems that emphasize industrial food processing, and that define and distinguish relevant different types of processing, will improve understanding of how to prevent and control overweight, obesity and related chronic non-communicable diseases, and also malnutrition. They will also be a firmer basis for rational policies and effective actions designed to protect and improve public health at all levels from global to local.

  11. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns

    PubMed Central

    Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske

    2013-01-01

    A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851

  12. A new precipitation and drought climatology based on weather patterns

    PubMed Central

    Fowler, Hayley J.; Kilsby, Christopher G.; Neal, Robert

    2017-01-01

    ABSTRACT Weather‐pattern, or weather‐type, classifications are a valuable tool in many applications as they characterize the broad‐scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather‐pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI‐based drought months. The new weather‐pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation‐based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra‐pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification‐based analyses in the UK. PMID:29456290

  13. How should children with speech sound disorders be classified? A review and critical evaluation of current classification systems.

    PubMed

    Waring, R; Knight, R

    2013-01-01

    Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of theoretically differing classification systems have been proposed based on either an aetiological (medical) approach, a descriptive-linguistic approach or a processing approach. To describe and review the supporting evidence, and to provide a critical evaluation of the current childhood SSD classification systems. Descriptions of the major specific approaches to classification are reviewed and research papers supporting the reliability and validity of the systems are evaluated. Three specific paediatric SSD classification systems; the aetiologic-based Speech Disorders Classification System, the descriptive-linguistic Differential Diagnosis system, and the processing-based Psycholinguistic Framework are identified as potentially useful in classifying children with SSD into homogeneous subgroups. The Differential Diagnosis system has a growing body of empirical support from clinical population studies, across language error pattern studies and treatment efficacy studies. The Speech Disorders Classification System is currently a research tool with eight proposed subgroups. The Psycholinguistic Framework is a potential bridge to linking cause and surface level speech errors. There is a need for a universally agreed-upon classification system that is useful to clinicians and researchers. The resulting classification system needs to be robust, reliable and valid. A universal classification system would allow for improved tailoring of treatments to subgroups of SSD which may, in turn, lead to improved treatment efficacy. © 2012 Royal College of Speech and Language Therapists.

  14. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  15. Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection

    PubMed Central

    Schwab, David J.; Houk, James C.

    2015-01-01

    This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider. PMID:26696840

  16. Classifications of Acute Scaphoid Fractures: A Systematic Literature Review.

    PubMed

    Ten Berg, Paul W; Drijkoningen, Tessa; Strackee, Simon D; Buijze, Geert A

    2016-05-01

    Background In the lack of consensus, surgeon-based preference determines how acute scaphoid fractures are classified. There is a great variety of classification systems with considerable controversies. Purposes The purpose of this study was to provide an overview of the different classification systems, clarifying their subgroups and analyzing their popularity by comparing citation indexes. The intention was to improve data comparison between studies using heterogeneous fracture descriptions. Methods We performed a systematic review of the literature based on a search of medical literature from 1950 to 2015, and a manual search using the reference lists in relevant book chapters. Only original descriptions of classifications of acute scaphoid fractures in adults were included. Popularity was based on citation index as reported in the databases of Web of Science (WoS) and Google Scholar. Articles that were cited <10 times in WoS were excluded. Results Our literature search resulted in 308 potentially eligible descriptive reports of which 12 reports met the inclusion criteria. We distinguished 13 different (sub) classification systems based on (1) fracture location, (2) fracture plane orientation, and (3) fracture stability/displacement. Based on citations numbers, the Herbert classification was most popular, followed by the Russe and Mayo classifications. All classification systems were based on plain radiography. Conclusions Most classification systems were based on fracture location, displacement, or stability. Based on the controversy and limited reliability of current classification systems, suggested research areas for an updated classification include three-dimensional fracture pattern etiology and fracture fragment mobility assessed by dynamic imaging.

  17. Application of local binary pattern and human visual Fibonacci texture features for classification different medical images

    NASA Astrophysics Data System (ADS)

    Sanghavi, Foram; Agaian, Sos

    2017-05-01

    The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.

  18. A hierarchical framework of aquatic ecological units in North America (Nearctic Zone).

    Treesearch

    James R. Maxwell; Clayton J. Edwards; Mark E. Jensen; Steven J. Paustian; Harry Parrott; Donley M. Hill

    1995-01-01

    Proposes a framework for classifying and mapping aquatic systems at various scales using ecologically significant physical and biological criteria. Classification and mapping concepts follow tenets of hierarchical theory, pattern recognition, and driving variables. Criteria are provided for the hierarchical classification and mapping of aquatic ecological units of...

  19. Clinical Application of Six Current Classification Systems for Iatrogenic Bile Duct Injuries after Cholecystectomy.

    PubMed

    Velidedeoglu, Mehmet; Arikan, Akif Enes; Uludag, Sezgin Server; Olgun, Deniz Cebi; Kilic, Fahrettin; Kapan, Metin

    2015-05-01

    Due to being a severe complication, iatrogenic bile duct injury is still a challenging issue for surgeons in gallbladder surgery. However, a commonly accepted classification describing the type of injury has not been available yet. This study aims to evaluate ability of six current classification systems to discriminate bile duct injury patterns. Twelve patients, who were referred to our clinic because of iatrogenic bile duct injury after laparoscopic cholecystectomy were reviewed retrospectively. We described type of injury for each patient according to current six different classifications. 9 patients underwent definitive biliary reconstruction. Bismuth, Strasberg-Bismuth, Stewart-Way and Neuhaus classifications do not consider vascular involvement, Siewert system does, but only for the tangential lesions without structural loss of duct and lesion with a structural defect of hepatic or common bile duct. Siewert, Neuhaus and Stewart-Way systems do not discriminate between lesions at or above bifurcation of the hepatic duct. The Hannover classification may resolve the missing aspects of other systems by describing additional vascular involvement and location of the lesion at or above bifurcation.

  20. On a production system using default reasoning for pattern classification

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Lowe, Carlyle M.

    1990-01-01

    This paper addresses an unconventional application of a production system to a problem involving belief specialization. The production system reduces a large quantity of low-level descriptions into just a few higher-level descriptions that encompass the problem space in a more tractable fashion. This classification process utilizes a set of descriptions generated by combining the component hierarchy of a physical system with the semantics of the terminology employed in its operation. The paper describes an application of this process in a program, constructed in C and CLIPS, that classifies signatures of electromechanical system configurations. The program compares two independent classifications, describing the actual and expected system configurations, in order to generate a set of contradictions between the two.

  1. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  2. Correlation-based pattern recognition for implantable defibrillators.

    PubMed Central

    Wilkins, J.

    1996-01-01

    An estimated 300,000 Americans die each year from cardiac arrhythmias. Historically, drug therapy or surgery were the only treatment options available for patients suffering from arrhythmias. Recently, implantable arrhythmia management devices have been developed. These devices allow abnormal cardiac rhythms to be sensed and corrected in vivo. Proper arrhythmia classification is critical to selecting the appropriate therapeutic intervention. The classification problem is made more challenging by the power/computation constraints imposed by the short battery life of implantable devices. Current devices utilize heart rate-based classification algorithms. Although easy to implement, rate-based approaches have unacceptably high error rates in distinguishing supraventricular tachycardia (SVT) from ventricular tachycardia (VT). Conventional morphology assessment techniques used in ECG analysis often require too much computation to be practical for implantable devices. In this paper, a computationally-efficient, arrhythmia classification architecture using correlation-based morphology assessment is presented. The architecture classifies individuals heart beats by assessing similarity between an incoming cardiac signal vector and a series of prestored class templates. A series of these beat classifications are used to make an overall rhythm assessment. The system makes use of several new results in the field of pattern recognition. The resulting system achieved excellent accuracy in discriminating SVT and VT. PMID:8947674

  3. Asynchronous Data-Driven Classification of Weapon Systems

    DTIC Science & Technology

    2009-10-01

    Classification of Weapon SystemsF Xin Jin† Kushal Mukherjee† Shalabh Gupta† Asok Ray † Shashi Phoha† Thyagaraju Damarla‡ xuj103@psu.edu kum162@psu.edu szg107...Orlando, FL. [8] A. Ray , “Symbolic dynamic analysis of complex systems for anomaly detection,” Signal Processing, vol. 84, no. 7, pp. 1115–1130, July...2004. [9] S. Gupta and A. Ray , “Symbolic dynamic filtering for data-driven pat- tern recognition,” PATTERN RECOGNITION: Theory and Application

  4. Feature extraction via KPCA for classification of gait patterns.

    PubMed

    Wu, Jianning; Wang, Jue; Liu, Li

    2007-06-01

    Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

  5. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    PubMed

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. [Characteristic study on village landscape patterns in Sichuan Basin hilly region based on high resolution IKONOS remote sensing].

    PubMed

    Li, Shoucheng; Liu, Wenquan; Cheng, Xu; Ellis, Erle C

    2005-10-01

    To realize the landscape programming of agro-ecosystem management, landscape-stratification can provide us the best understanding of landscape ecosystem at very detailed scales. For this purpose, the village landscapes in densely populated Jintang and Jianyang Counties of Sichuan Basin hilly region were mapped from high resolution (1 m) IKONOS satellite imagery by using a standardized 4 level ecological landscape classification and mapping system in a regionally-representative sample of five 500 x 500 m2 landscape quadrats (sample plots). Based on these maps, the spatial patterns were analyzed by landscape indicators, which demonstrated a large variety of landscape types or ecotopes across the village landscape of this region, with diversity indexes ranging from 1.08 to 2.26 at different levels of the landscape classification system. The richness indices ranged from 42.2% to 58.6 %, except that for the landcover at 85 %. About 12.5 % of the ecotopes were distributed in the same way in each landscape sample, and the remaining 87.5% were distributed differently. The landscape fragmentation indices varied from 2.93 to 4.27 across sample plots, and from 2.86 to 5.63 across classification levels. The population density and the road and hamlet areas had strong linear correlations with some landscape indicators, and especially, the correlation coefficients of hamlet areas with fractal indexes and fragmental dimensions were 0.957* and 0.991**, respectively. The differences in most landscape pattern indices across sample plots and landscape classes were statistically significant, indicating that cross-scale mapping and classification of village landscapes could provide more detailed information on landscape patterns than those from a single level of classification.

  7. Artificial neural network detects human uncertainty

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  8. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  10. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  11. Deep learning application: rubbish classification with aid of an android device

    NASA Astrophysics Data System (ADS)

    Liu, Sijiang; Jiang, Bo; Zhan, Jie

    2017-06-01

    Deep learning is a very hot topic currently in pattern recognition and artificial intelligence researches. Aiming at the practical problem that people usually don't know correct classifications some rubbish should belong to, based on the powerful image classification ability of the deep learning method, we have designed a prototype system to help users to classify kinds of rubbish. Firstly the CaffeNet Model was adopted for our classification network training on the ImageNet dataset, and the trained network was deployed on a web server. Secondly an android app was developed for users to capture images of unclassified rubbish, upload images to the web server for analyzing backstage and retrieve the feedback, so that users can obtain the classification guide by an android device conveniently. Tests on our prototype system of rubbish classification show that: an image of one single type of rubbish with origin shape can be better used to judge its classification, while an image containing kinds of rubbish or rubbish with changed shape may fail to help users to decide rubbish's classification. However, the system still shows promising auxiliary function for rubbish classification if the network training strategy can be optimized further.

  12. Mapping Crop Patterns in Central US Agricultural Systems from 2000 to 2014 Based on Landsat Data: To What Degree Does Fusing MODIS Data Improve Classification Accuracies?

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.

    2015-12-01

    Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.

  13. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  14. A classification of ecological boundaries

    USGS Publications Warehouse

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  15. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    PubMed

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Pattern classification using charge transfer devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.

  17. Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern.

    PubMed

    Cheng, Jiao; Jin, Jing; Wang, Xingyu

    2017-01-01

    Brain-computer interface (BCI) systems allow users to communicate with the external world by recognizing the brain activity without the assistance of the peripheral motor nervous system. P300-based BCI is one of the most common used BCI systems that can obtain high classification accuracy and information transfer rate (ITR). Face stimuli can result in large event-related potentials and improve the performance of P300-based BCI. However, previous studies on face stimuli focused mainly on the effect of various face types (i.e., face expression, face familiarity, and multifaces) on the BCI performance. Studies on the influence of face transparency differences are scarce. Therefore, we investigated the effect of semitransparent face pattern (STF-P) (the subject could see the target character when the stimuli were flashed) and traditional face pattern (F-P) (the subject could not see the target character when the stimuli were flashed) on the BCI performance from the transparency perspective. Results showed that STF-P obtained significantly higher classification accuracy and ITR than those of F-P ( p < 0.05).

  18. Information analysis of a spatial database for ecological land classification

    NASA Technical Reports Server (NTRS)

    Davis, Frank W.; Dozier, Jeff

    1990-01-01

    An ecological land classification was developed for a complex region in southern California using geographic information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification was ecologically reasonable and performed well when tested with higher quality data from the region.

  19. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals

    PubMed Central

    Rana, Mohit; Prasad, Vinod A.; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha

    2016-01-01

    Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. PMID:27467528

  20. Optimizing Input/Output Using Adaptive File System Policies

    NASA Technical Reports Server (NTRS)

    Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.

    1996-01-01

    Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.

  1. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  2. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  3. Comparing the predictive value of the pelvic ring injury classification systems by Tile and by Young and Burgess.

    PubMed

    Osterhoff, Georg; Scheyerer, Max J; Fritz, Yannick; Bouaicha, Samy; Wanner, Guido A; Simmen, Hans-Peter; Werner, Clément M L

    2014-04-01

    Radiology-based classifications of pelvic ring injuries and their relevance for the prognosis of morbidity and mortality are disputed in the literature. The purpose of this study was to evaluate potential differences between the pelvic ring injury classification systems by Tile and by Young and Burgess with regard to their predictive value on mortality, transfusion/infusion requirement and concomitant injuries. Two-hundred-and-eighty-five consecutive patients with pelvic ring fractures were analyzed for mortality within 30 days after admission, number of blood units and total volume of fluid infused during the first 24h after trauma, the Abbreviated Injury Severity (AIS) scores for head, chest, spine, abdomen and extremities as a function of the Tile and the Young-Burgess classifications. There was no significant relationship between occurrence of death and fracture pattern but a significant relationship between fracture pattern and need for blood units/total fluid volume for Tile (p<.001/p<.001) and Young-Burgess (p<.001/p<.001). In both classifications, open book fractures were associated with more fluid requirement and more severe injuries of the abdomen, spine and extremities (p<.05). When divided into the larger subgroups "partially stable" and "unstable", unstable fractures were associated with a higher mortality rate in the Young-Burgess system (p=.036). In both classifications, patients with unstable fractures required significantly more blood transfusions (p<.001) and total fluid infusion (p<.001) and higher AIS scores. In this first direct comparison of both classifications, we found no clinical relevant differences with regard to their predictive value on mortality, transfusion/infusion requirement and concomitant injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.

    PubMed

    Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A

    2011-04-01

    Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.

  5. Classification of time series patterns from complex dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately,more » the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.« less

  6. Compensatory neurofuzzy model for discrete data classification in biomedical

    NASA Astrophysics Data System (ADS)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  7. Applying deep neural networks to HEP job classification

    NASA Astrophysics Data System (ADS)

    Wang, L.; Shi, J.; Yan, X.

    2015-12-01

    The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision.

  8. Entropic One-Class Classifiers.

    PubMed

    Livi, Lorenzo; Sadeghian, Alireza; Pedrycz, Witold

    2015-12-01

    The one-class classification problem is a well-known research endeavor in pattern recognition. The problem is also known under different names, such as outlier and novelty/anomaly detection. The core of the problem consists in modeling and recognizing patterns belonging only to a so-called target class. All other patterns are termed nontarget, and therefore, they should be recognized as such. In this paper, we propose a novel one-class classification system that is based on an interplay of different techniques. Primarily, we follow a dissimilarity representation-based approach; we embed the input data into the dissimilarity space (DS) by means of an appropriate parametric dissimilarity measure. This step allows us to process virtually any type of data. The dissimilarity vectors are then represented by weighted Euclidean graphs, which we use to determine the entropy of the data distribution in the DS and at the same time to derive effective decision regions that are modeled as clusters of vertices. Since the dissimilarity measure for the input data is parametric, we optimize its parameters by means of a global optimization scheme, which considers both mesoscopic and structural characteristics of the data represented through the graphs. The proposed one-class classifier is designed to provide both hard (Boolean) and soft decisions about the recognition of test patterns, allowing an accurate description of the classification process. We evaluate the performance of the system on different benchmarking data sets, containing either feature-based or structured patterns. Experimental results demonstrate the effectiveness of the proposed technique.

  9. Classification of Farmland Landscape Structure in Multiple Scales

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  10. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    PubMed

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  11. Tone classification of syllable-segmented Thai speech based on multilayer perception

    NASA Astrophysics Data System (ADS)

    Satravaha, Nuttavudh; Klinkhachorn, Powsiri; Lass, Norman

    2002-05-01

    Thai is a monosyllabic tonal language that uses tone to convey lexical information about the meaning of a syllable. Thus to completely recognize a spoken Thai syllable, a speech recognition system not only has to recognize a base syllable but also must correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system. Thai has five distinctive tones (``mid,'' ``low,'' ``falling,'' ``high,'' and ``rising'') and each tone is represented by a single fundamental frequency (F0) pattern. However, several factors, including tonal coarticulation, stress, intonation, and speaker variability, affect the F0 pattern of a syllable in continuous Thai speech. In this study, an efficient method for tone classification of syllable-segmented Thai speech, which incorporates the effects of tonal coarticulation, stress, and intonation, as well as a method to perform automatic syllable segmentation, were developed. Acoustic parameters were used as the main discriminating parameters. The F0 contour of a segmented syllable was normalized by using a z-score transformation before being presented to a tone classifier. The proposed system was evaluated on 920 test utterances spoken by 8 speakers. A recognition rate of 91.36% was achieved by the proposed system.

  12. Optical Neural Classification Of Binary Patterns

    NASA Astrophysics Data System (ADS)

    Gustafson, Steven C.; Little, Gordon R.

    1988-05-01

    Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.

  13. Pattern Analysis of Suicide Mortality Surveillance Data in Urban South Africa

    ERIC Educational Resources Information Center

    Burrows, Stephanie; Laflamme, Lucie

    2008-01-01

    The typical circumstances of suicide occurrence in post-apartheid urban South Africa are described. Data comprise suicide cases from all geographical locations (urban municipalities) where an injury surveillance system has full coverage. Typical patterns were identified by means of a classification technique applied to eight variables descriptive…

  14. ISE-based sensor array system for classification of foodstuffs

    NASA Astrophysics Data System (ADS)

    Ciosek, Patrycja; Sobanski, Tomasz; Augustyniak, Ewa; Wróblewski, Wojciech

    2006-01-01

    A system composed of an array of polymeric membrane ion-selective electrodes and a pattern recognition block—a so-called 'electronic tongue'—was used for the classification of liquid samples: milk, fruit juice and tonic. The task of this system was to automatically recognize a brand of the product. To analyze the measurement set-up responses various non-parametric classifiers such as k-nearest neighbours, a feedforward neural network and a probabilistic neural network were used. In order to enhance the classification ability of the system, standard model solutions of salts were measured (in order to take into account any variation in time of the working parameters of the sensors). This system was capable of recognizing the brand of the products with accuracy ranging from 68% to 100% (in the case of the best classifier).

  15. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.

  16. Towards automated human gait disease classification using phase space representation of intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Patra, Sayantani; Pratiher, Souvik

    2017-06-01

    A novel analytical methodology for segregating healthy and neurological disorders from gait patterns is proposed by employing a set of oscillating components called intrinsic mode functions (IMF's). These IMF's are generated by the Empirical Mode Decomposition of the gait time series and the Hilbert transformed analytic signal representation forms the complex plane trace of the elliptical shaped analytic IMFs. The area measure and the relative change in the centroid position of the polygon formed by the Convex Hull of these analytic IMF's are taken as the discriminative features. Classification accuracy of 79.31% with Ensemble learning based Adaboost classifier validates the adequacy of the proposed methodology for a computer aided diagnostic (CAD) system for gait pattern identification. Also, the efficacy of several potential biomarkers like Bandwidth of Amplitude Modulation and Frequency Modulation IMF's and it's Mean Frequency from the Fourier-Bessel expansion from each of these analytic IMF's has been discussed for its potency in diagnosis of gait pattern identification and classification.

  17. Acromioclavicular joint dislocations: radiological correlation between Rockwood classification system and injury patterns in human cadaver species.

    PubMed

    Eschler, Anica; Rösler, Klaus; Rotter, Robert; Gradl, Georg; Mittlmeier, Thomas; Gierer, Philip

    2014-09-01

    The classification system of Rockwood and Young is a commonly used classification for acromioclavicular joint separations subdividing types I-VI. This classification hypothesizes specific lesions to anatomical structures (acromioclavicular and coracoclavicular ligaments, capsule, attached muscles) leading to the injury. In recent literature, our understanding for anatomical correlates leading to the radiological-based Rockwood classification is questioned. The goal of this experimental-based investigation was to approve the correlation between the anatomical injury pattern and the Rockwood classification. In four human cadavers (seven shoulders), the acromioclavicular and coracoclavicular ligaments were transected stepwise. Radiological correlates were recorded (Zanca view) with 15-kg longitudinal tension applied at the wrist. The resulting acromio- and coracoclavicular distances were measured. Radiographs after acromioclavicular ligament transection showed joint space enlargement (8.6 ± 0.3 vs. 3.1 ± 0.5 mm, p < 0.05) and no significant change in coracoclavicular distance (10.4 ± 0.9 vs. 10.0 ± 0.8 mm). According to the Rockwood classification only type I and II lesions occurred. After additional coracoclavicular ligament cut, the acromioclavicular joint space width increased to 16.7 ± 2.7 vs. 8.6 ± 0.3 mm, p < 0.05. The mean coracoclavicular distance increased to 20.6 ± 2.1 mm resulting in type III-V lesions concerning the Rockwood classification. Trauma with intact coracoclavicular ligaments did not result in acromioclavicular joint lesions higher than Rockwood type I and II. The clinical consequence for reconstruction of low-grade injuries might be a solely surgical approach for the acromioclavicular ligaments or conservative treatment. High-grade injuries were always based on additional structural damage to the coracoclavicular ligaments. Rockwood type V lesions occurred while muscle attachments were intact.

  18. An Intelligent Pattern Recognition System Based on Neural Network and Wavelet Decomposition for Interpretation of Heart Sounds

    DTIC Science & Technology

    2001-10-25

    wavelet decomposition of signals and classification using neural network. Inputs to the system are the heart sound signals acquired by a stethoscope in a...Proceedings. pp. 415–418, 1990. [3] G. Ergun, “An intelligent diagnostic system for interpretation of arterpartum fetal heart rate tracings based on ANNs and...AN INTELLIGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF HEART SOUNDS I. TURKOGLU1, A

  19. Topographic, bioclimatic, and vegetation characteristics of three ecoregion classification systems in North America: Comparisons along continent-wide transects

    USGS Publications Warehouse

    Thompson, R.S.; Shafer, S.L.; Anderson, K.H.; Strickland, L.E.; Pelltier, R.T.; Bartlein, P.J.; Kerwin, M.W.

    2005-01-01

    Ecoregion classification systems are increasingly used for policy and management decisions, particularly among conservation and natural resource managers. A number of ecoregion classification systems are currently available, with each system defining ecoregions using different classification methods and different types of data. As a result, each classification system describes a unique set of ecoregions. To help potential users choose the most appropriate ecoregion system for their particular application, we used three latitudinal transects across North America to compare the boundaries and environmental characteristics of three ecoregion classification systems [Ku??chler, World Wildlife Fund (WWF), and Bailey]. A variety of variables were used to evaluate the three systems, including woody plant species richness, normalized difference in vegetation index (NDVI), and bioclimatic variables (e.g., mean temperature of the coldest month) along each transect. Our results are dominated by geographic patterns in temperature, which are generally aligned north-south, and in moisture, which are generally aligned east-west. In the west, the dramatic changes in physiography, climate, and vegetation impose stronger controls on ecoregion boundaries than in the east. The Ku??chler system has the greatest number of ecoregions on all three transects, but does not necessarily have the highest degree of internal consistency within its ecoregions with regard to the bioclimatic and species richness data. In general, the WWF system appears to track climatic and floristic variables the best of the three systems, but not in all regions on all transects. ?? 2005 Springer Science+Business Media, Inc.

  20. Dissimilarity representations in lung parenchyma classification

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; de Bruijne, Marleen

    2009-02-01

    A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).

  1. Pattern formation, logistics, and maximum path probability

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are sufficiently strong interpretations of the second law of thermodynamics to define the approach to and the nature of patterned stable steady states. For many pattern-forming systems these principles define quantifiable stable states as maxima or minima (or both) in the dissipation. An elementary statistical-mechanical proof is offered. To turn the argument full circle, the transformations of the partitions and classes which are predicated upon such minimax entropic paths can through digital modeling be directly identified with the syntactic and inferential elements of deductive logic. It follows therefore that all self-organizing or pattern-forming systems which possess stable steady states approach these states according to the imperatives of formal logic, the optimum pattern with its rich endowment of equivalence relations representing the central theorem of the associated calculus. Logic is thus ``the stuff of the universe,'' and biological evolution with its culmination in the human brain is the most significant example of all the irreversible pattern-forming processes. We thus conclude with a few remarks on the relevance of the contribution to the theory of evolution and to research on artificial intelligence.

  2. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  3. A novel approach to describing and detecting performance anti-patterns

    NASA Astrophysics Data System (ADS)

    Sheng, Jinfang; Wang, Yihan; Hu, Peipei; Wang, Bin

    2017-08-01

    Anti-pattern, as an extension to pattern, describes a widely used poor solution which can bring negative influence to application systems. Aiming at the shortcomings of the existing anti-pattern descriptions, an anti-pattern description method based on first order predicate is proposed. This method synthesizes anti-pattern forms and symptoms, which makes the description more accurate and has good scalability and versatility as well. In order to improve the accuracy of anti-pattern detection, a Bayesian classification method is applied in validation for detection results, which can reduce false negatives and false positives of anti-pattern detection. Finally, the proposed approach in this paper is applied to a small e-commerce system, the feasibility and effectiveness of the approach is demonstrated further through experiments.

  4. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Ecosystem classifications based on summer and winter conditions.

    PubMed

    Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q

    2013-04-01

    Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.

  6. Iris indexing based on local intensity order pattern

    NASA Astrophysics Data System (ADS)

    Emerich, Simina; Malutan, Raul; Crisan, Septimiu; Lefkovits, Laszlo

    2017-03-01

    In recent years, iris biometric systems have increased in popularity and have been proven that are capable of handling large-scale databases. The main advantage of these systems is accuracy and reliability. A proper iris patterns classification is expected to reduce the matching time in huge databases. This paper presents an iris indexing technique based on Local Intensity Order Pattern. The performance of the present approach is evaluated on UPOL database and is compared with other recent systems designed for iris indexing. The results illustrate the potential of the proposed method for large scale iris identification.

  7. Land classification of south-central Iowa from computer enhanced images

    NASA Technical Reports Server (NTRS)

    Lucas, J. R.; Taranik, J. V.; Billingsley, F. C. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Enhanced LANDSAT imagery was most useful for land classification purposes, because these images could be photographically printed at large scales such as 1:63,360. The ability to see individual picture elements was no hindrance as long as general image patterns could be discerned. Low cost photographic processing systems for color printings have proved to be effective in the utilization of computer enhanced LANDSAT products for land classification purposes. The initial investment for this type of system was very low, ranging from $100 to $200 beyond a black and white photo lab. The technical expertise can be acquired from reading a color printing and processing manual.

  8. Practice patterns when treating patients with low back pain: a survey of physical therapists.

    PubMed

    Davies, Claire; Nitz, Arthur J; Mattacola, Carl G; Kitzman, Patrick; Howell, Dana; Viele, Kert; Baxter, David; Brockopp, Dorothy

    2014-08-01

    Low back pain (LBP), is a common musculoskeletal problem, affecting 75-85% of adults in their lifetime. Direct costs of LBP in the USA were estimated over 85 billion dollars in 2005 resulting in a significant economic burden for the healthcare system. LBP classification systems and outcome measures are available to guide physical therapy assessments and intervention. However, little is known about which, if any, physical therapists use in clinical practice. The purpose of this study was to identify the use of and barriers to LBP classification systems and outcome measures among physical therapists in one state. A mixed methods study using a cross-sectional cohort design with descriptive qualitative methods was performed. A survey collected both quantitative and qualitative data relevant to classification systems and outcome measures used by physical therapists working with patients with LBP. Physical therapists responded using classification systems designed to direct treatment predominantly. The McKenzie method was the most frequent approach to classify LBP. Barriers to use of classification systems and outcome measures were lack of knowledge, too limiting and time. Classification systems are being used for decision-making in physical therapy practice for patients with LBP. Lack of knowledge and training seems to be the main barrier to the use of classification systems in practice. The Oswestry Disability Index and Numerical Pain Scale were the most commonly used outcome measures. The main barrier to their use was lack of time. Continuing education and reading the literature were identified as important tools to teach evidence-based practice to physical therapists in practice.

  9. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression.

    PubMed

    Horst, Fabian; Eekhoff, Alexander; Newell, Karl M; Schöllhorn, Wolfgang I

    2017-01-01

    Traditionally, gait analysis has been centered on the idea of average behavior and normality. On one hand, clinical diagnoses and therapeutic interventions typically assume that average gait patterns remain constant over time. On the other hand, it is well known that all our movements are accompanied by a certain amount of variability, which does not allow us to make two identical steps. The purpose of this study was to examine changes in the intra-individual gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours). Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within one day (duration between two subsequent sessions from 10 to 90 mins). For each trial, time-continuous ground reaction forces and lower body joint angles were measured. A supervised learning model using a kernel-based discriminant regression was applied for classifying sessions within individual gait patterns. Discernable characteristics of intra-individual gait patterns could be distinguished between repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-classification of ground reaction forces and lower body joint angles, respectively. Furthermore, the one-on-one-classification showed that increasing classification rates go along with increasing time durations between two sessions and indicate that changes of gait patterns appear at different time-scales. Discernable characteristics between repeated sessions indicate continuous intrinsic changes in intra-individual gait patterns and suggest a predominant role of deterministic processes in human motor control and learning. Natural changes of gait patterns without any externally induced injury or intervention may reflect continuous adaptations of the motor system over several time-scales. Accordingly, the modelling of walking by means of average gait patterns that are assumed to be near constant over time needs to be reconsidered in the context of these findings, especially towards more individualized and situational diagnoses and therapy.

  10. Network-based high level data classification.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-06-01

    Traditional supervised data classification considers only physical features (e.g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

  11. In-vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  12. Development of a reproducible method for determining quantity of water and its configuration in a marsh landscape

    USGS Publications Warehouse

    Suir, Glenn M.; Evers, D. Elaine; Steyer, Gregory D.; Sasser, Charles E.

    2013-01-01

    Coastal Louisiana is a dynamic and ever-changing landscape. From 1956 to 2010, over 3,734 km2 of Louisiana's coastal wetlands have been lost due to a combination of natural and human-induced activities. The resulting landscape constitutes a mosaic of conditions from highly deteriorated to relatively stable with intact landmasses. Understanding how and why coastal landscapes change over time is critical to restoration and rehabilitation efforts. Historically, changes in marsh pattern (i.e., size and spatial distribution of marsh landmasses and water bodies) have been distinguished using visual identification by individual researchers. Difficulties associated with this approach include subjective interpretation, uncertain reproducibility, and laborious techniques. In order to minimize these limitations, this study aims to expand existing tools and techniques via a computer-based method, which uses geospatial technologies for determining shifts in landscape patterns. Our method is based on a raster framework and uses landscape statistics to develop conditions and thresholds for a marsh classification scheme. The classification scheme incorporates land and water classified imagery and a two-part classification system: (1) ratio of water to land, and (2) configuration and connectivity of water within wetland landscapes to evaluate changes in marsh patterns. This analysis system can also be used to trace trajectories in landscape patterns through space and time. Overall, our method provides a more automated means of quantifying landscape patterns and may serve as a reliable landscape evaluation tool for future investigations of wetland ecosystem processes in the northern Gulf of Mexico.

  13. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.

    PubMed

    Rasouli, Mahdi; Chen, Yi; Basu, Arindam; Kukreja, Sunil L; Thakor, Nitish V

    2018-04-01

    Despite significant advances in computational algorithms and development of tactile sensors, artificial tactile sensing is strikingly less efficient and capable than the human tactile perception. Inspired by efficiency of biological systems, we aim to develop a neuromorphic system for tactile pattern recognition. We particularly target texture recognition as it is one of the most necessary and challenging tasks for artificial sensory systems. Our system consists of a piezoresistive fabric material as the sensor to emulate skin, an interface that produces spike patterns to mimic neural signals from mechanoreceptors, and an extreme learning machine (ELM) chip to analyze spiking activity. Benefiting from intrinsic advantages of biologically inspired event-driven systems and massively parallel and energy-efficient processing capabilities of the ELM chip, the proposed architecture offers a fast and energy-efficient alternative for processing tactile information. Moreover, it provides the opportunity for the development of low-cost tactile modules for large-area applications by integration of sensors and processing circuits. We demonstrate the recognition capability of our system in a texture discrimination task, where it achieves a classification accuracy of 92% for categorization of ten graded textures. Our results confirm that there exists a tradeoff between response time and classification accuracy (and information transfer rate). A faster decision can be achieved at early time steps or by using a shorter time window. This, however, results in deterioration of the classification accuracy and information transfer rate. We further observe that there exists a tradeoff between the classification accuracy and the input spike rate (and thus energy consumption). Our work substantiates the importance of development of efficient sparse codes for encoding sensory data to improve the energy efficiency. These results have a significance for a wide range of wearable, robotic, prosthetic, and industrial applications.

  14. Parametric classification of handvein patterns based on texture features

    NASA Astrophysics Data System (ADS)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  15. The ITE Land classification: Providing an environmental stratification of Great Britain.

    PubMed

    Bunce, R G; Barr, C J; Gillespie, M K; Howard, D C

    1996-01-01

    The surface of Great Britain (GB) varies continuously in land cover from one area to another. The objective of any environmentally based land classification is to produce classes that match the patterns that are present by helping to define clear boundaries. The more appropriate the analysis and data used, the better the classes will fit the natural patterns. The observation of inter-correlations between ecological factors is the basis for interpreting ecological patterns in the field, and the Institute of Terrestrial Ecology (ITE) Land Classification formalises such subjective ideas. The data inevitably comprise a large number of factors in order to describe the environment adequately. Single factors, such as altitude, would only be useful on a national basis if they were the only dominant causative agent of ecological variation.The ITE Land Classification has defined 32 environmental categories called 'land classes', initially based on a sample of 1-km squares in Great Britain but subsequently extended to all 240 000 1-km squares. The original classification was produced using multivariate analysis of 75 environmental variables. The extension to all squares in GB was performed using a combination of logistic discrimination and discriminant functions. The classes have provided a stratification for successive ecological surveys, the results of which have characterised the classes in terms of botanical, zoological and landscape features.The classification has also been applied to integrate diverse datasets including satellite imagery, soils and socio-economic information. A variety of models have used the structure of the classification, for example to show potential land use change under different economic conditions. The principal data sets relevant for planning purposes have been incorporated into a user-friendly computer package, called the 'Countryside Information System'.

  16. Using Gaussian mixture models to detect and classify dolphin whistles and pulses.

    PubMed

    Peso Parada, Pablo; Cardenal-López, Antonio

    2014-06-01

    In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.

  17. Idiopathic interstitial pneumonias and emphysema: detection and classification using a texture-discriminative approach

    NASA Astrophysics Data System (ADS)

    Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.

    2012-03-01

    Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.

  18. Comparing Features for Classification of MEG Responses to Motor Imagery.

    PubMed

    Halme, Hanna-Leena; Parkkonen, Lauri

    2016-01-01

    Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio-spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system.

  19. Attribute-Level and Pattern-Level Classification Consistency and Accuracy Indices for Cognitive Diagnostic Assessment

    ERIC Educational Resources Information Center

    Wang, Wenyi; Song, Lihong; Chen, Ping; Meng, Yaru; Ding, Shuliang

    2015-01-01

    Classification consistency and accuracy are viewed as important indicators for evaluating the reliability and validity of classification results in cognitive diagnostic assessment (CDA). Pattern-level classification consistency and accuracy indices were introduced by Cui, Gierl, and Chang. However, the indices at the attribute level have not yet…

  20. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  1. Differentiation of several interstitial lung disease patterns in HRCT images using support vector machine: role of databases on performance

    NASA Astrophysics Data System (ADS)

    Kale, Mandar; Mukhopadhyay, Sudipta; Dash, Jatindra K.; Garg, Mandeep; Khandelwal, Niranjan

    2016-03-01

    Interstitial lung disease (ILD) is complicated group of pulmonary disorders. High Resolution Computed Tomography (HRCT) considered to be best imaging technique for analysis of different pulmonary disorders. HRCT findings can be categorised in several patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Nodular, Normal etc. based on their texture like appearance. Clinician often find it difficult to diagnosis these pattern because of their complex nature. In such scenario computer-aided diagnosis system could help clinician to identify patterns. Several approaches had been proposed for classification of ILD patterns. This includes computation of textural feature and training /testing of classifier such as artificial neural network (ANN), support vector machine (SVM) etc. In this paper, wavelet features are calculated from two different ILD database, publically available MedGIFT ILD database and private ILD database, followed by performance evaluation of ANN and SVM classifiers in terms of average accuracy. It is found that average classification accuracy by SVM is greater than ANN where trained and tested on same database. Investigation continued further to test variation in accuracy of classifier when training and testing is performed with alternate database and training and testing of classifier with database formed by merging samples from same class from two individual databases. The average classification accuracy drops when two independent databases used for training and testing respectively. There is significant improvement in average accuracy when classifiers are trained and tested with merged database. It infers dependency of classification accuracy on training data. It is observed that SVM outperforms ANN when same database is used for training and testing.

  2. Location Management in Distributed Mobile Environments

    DTIC Science & Technology

    1994-09-01

    carried out to evaluate the performanceof di erent static strategies for various communica-tion and mobility patterns. Simulation results indi-cate...results ofsimulations carried out to evaluate the performanceof proposed static location management strategies forvarious call and mobility patterns...Systems, Austin, Sept. 1994. U.S. Government or Federal Rights License 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  3. Classification and Sequential Pattern Analysis for Improving Managerial Efficiency and Providing Better Medical Service in Public Healthcare Centers

    PubMed Central

    Chung, Sukhoon; Rhee, Hyunsill; Suh, Yongmoo

    2010-01-01

    Objectives This study sought to find answers to the following questions: 1) Can we predict whether a patient will revisit a healthcare center? 2) Can we anticipate diseases of patients who revisit the center? Methods For the first question, we applied 5 classification algorithms (decision tree, artificial neural network, logistic regression, Bayesian networks, and Naïve Bayes) and the stacking-bagging method for building classification models. To solve the second question, we performed sequential pattern analysis. Results We determined: 1) In general, the most influential variables which impact whether a patient of a public healthcare center will revisit it or not are personal burden, insurance bill, period of prescription, age, systolic pressure, name of disease, and postal code. 2) The best plain classification model is dependent on the dataset. 3) Based on average of classification accuracy, the proposed stacking-bagging method outperformed all traditional classification models and our sequential pattern analysis revealed 16 sequential patterns. Conclusions Classification models and sequential patterns can help public healthcare centers plan and implement healthcare service programs and businesses that are more appropriate to local residents, encouraging them to revisit public health centers. PMID:21818426

  4. A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area

    USGS Publications Warehouse

    McCabe, Gregory J.

    1990-01-01

    A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.

  5. Low-cost real-time automatic wheel classification system

    NASA Astrophysics Data System (ADS)

    Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria

    1992-11-01

    This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.

  6. Speech variability effects on recognition accuracy associated with concurrent task performance by pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.

  7. Classification of Partial Discharge Measured under Different Levels of Noise Contamination.

    PubMed

    Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.

  8. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  9. Choice of probe tone and classification of trace patterns in tympanometry undertaken in early infancy.

    PubMed

    Baldwin, Margaret

    2006-07-01

    Tympanometry using 226 Hz, 678 Hz, and 1000 Hz probe tones was undertaken on two groups of babies, age 2 to 21 weeks. A group of 104 babies with normal ABR thresholds or TEOAEs were compared with a second group of 107 babies who had evidence of temporary conductive hearing loss based on the findings of a test battery, which included air and bone conduction ABR. The tympanograms were classified by Method 1, a simple visual classification system, and Method 2, adapted from a system described by Marchant et al (1986). The majority of tympanograms recorded in both groups using the 226 Hz probe tone were 'normal' Type A, with no significant difference in middle ear pressure or static admittance. However, both classification methods demonstrated significant differences between the two groups using the higher frequency probe tones, with Method 2 being the preferred system of classification. Tympanometry using 226 Hz is invalid below 21 weeks and 1000 Hz is the frequency of choice.

  10. How automated image analysis techniques help scientists in species identification and classification?

    PubMed

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  11. Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls

    NASA Technical Reports Server (NTRS)

    Anastasiadis, Stergios

    1991-01-01

    Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.

  12. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives

    PubMed Central

    Audigé, Laurent; Cornelius, Carl-Peter; Ieva, Antonio Di; Prein, Joachim

    2014-01-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387

  13. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives.

    PubMed

    Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim

    2014-12-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal.

  14. Fuzzy logic based on-line fault detection and classification in transmission line.

    PubMed

    Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam

    2016-01-01

    This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.

  15. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline

    PubMed Central

    Fan, Yong; Batmanghelich, Nematollah; Clark, Chris M.; Davatzikos, Christos

    2010-01-01

    Spatial patterns of brain atrophy in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) were measured via methods of computational neuroanatomy. These patterns were spatially complex and involved many brain regions. In addition to the hippocampus and the medial temporal lobe gray matter, a number of other regions displayed significant atrophy, including orbitofrontal and medial-prefrontal grey matter, cingulate (mainly posterior), insula, uncus, and temporal lobe white matter. Approximately 2/3 of the MCI group presented patterns of atrophy that overlapped with AD, whereas the remaining 1/3 overlapped with cognitively normal individuals, thereby indicating that some, but not all, MCI patients have significant and extensive brain atrophy in this cohort of MCI patients. Importantly, the group with AD-like patterns presented much higher rate of MMSE decline in follow-up visits; conversely, pattern classification provided relatively high classification accuracy (87%) of the individuals that presented relatively higher MMSE decline within a year from baseline. High-dimensional pattern classification, a nonlinear multivariate analysis, provided measures of structural abnormality that can potentially be useful for individual patient classification, as well as for predicting progression and examining multivariate relationships in group analyses. PMID:18053747

  16. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. The Immune System as a Model for Pattern Recognition and Classification

    PubMed Central

    Carter, Jerome H.

    2000-01-01

    Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961

  18. Associations among hydrologic classifications and fish traits to support environmental flow standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Bevelhimer, Mark S; Frimpong, Dr. Emmanuel A,

    2014-01-01

    Classification systems are valuable to ecological management in that they organize information into consolidated units thereby providing efficient means to achieve conservation objectives. Of the many ways classifications benefit management, hypothesis generation has been discussed as the most important. However, in order to provide templates for developing and testing ecologically relevant hypotheses, classifications created using environmental variables must be linked to ecological patterns. Herein, we develop associations between a recent US hydrologic classification and fish traits in order to form a template for generating flow ecology hypotheses and supporting environmental flow standard development. Tradeoffs in adaptive strategies for fish weremore » observed across a spectrum of stable, perennial flow to unstable intermittent flow. In accordance with theory, periodic strategists were associated with stable, predictable flow, whereas opportunistic strategists were more affiliated with intermittent, variable flows. We developed linkages between the uniqueness of hydrologic character and ecological distinction among classes, which may translate into predictions between losses in hydrologic uniqueness and ecological community response. Comparisons of classification strength between hydrologic classifications and other frameworks suggested that spatially contiguous classifications with higher regionalization will tend to explain more variation in ecological patterns. Despite explaining less ecological variation than other frameworks, we contend that hydrologic classifications are still useful because they provide a conceptual linkage between hydrologic variation and ecological communities to support flow ecology relationships. Mechanistic associations among fish traits and hydrologic classes support the presumption that environmental flow standards should be developed uniquely for stream classes and ecological communities, therein.« less

  19. Elbow instability: Are we able to classify it? Review of the literature and proposal of an all-inclusive classification system.

    PubMed

    Marinelli, A; Guerra, E; Rotini, R

    2016-12-01

    In the recent years, considerable improvements have come in biomechanical knowledge about the role of elbow stabilizers. In particular, the complex interactions among the different stabilizers when injured at the same time have been better understood. Anyway, uncertainties about both nomenclature and classification still exist in the definition of the different patterns of instability. The authors examine the literature of the last 130 years about elbow instability classification, analyzing the intuitions and the value of each of them. However, because of the lack of a satisfactory classification, in 2015 a working group has been created inside SICSeG (Italian Society of Shoulder and Elbow Surgery) with the aim of defining an exhaustive classification as simple, complete and reproducible as possible. A new all-inclusive elbow instability classification is proposed. This classification considers two main parameters: timing (acute and chronic forms) and involved stabilizers (simple and complex forms), and four secondary parameters: etiology (traumatic, rheumatic, congenital…), the involved joint (radius and ulna as a single unit articulating with the humerus or the proximal radio-ulnar joint), the degree of displacement (dislocation or subluxation) and the mechanism of instability or dislocation (PLRI, PMRI, direct axial loading, pure varus or valgus stress). This classification is at the same time complete enough to include all the instability patterns and practical enough to be effectively used in the clinical practice. This classification can help in defining a shared language, can improve our understanding of the disorder, reduce misunderstanding of diagnosis and improve comparison among different case series.

  20. Classification of spontaneous EEG signals in migraine

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; De Carlo, F.; de Tommaso, M.; Lucente, M.

    2007-08-01

    We set up a classification system able to detect patients affected by migraine without aura, through the analysis of their spontaneous EEG patterns. First, the signals are characterized by means of wavelet-based features, than a supervised neural network is used to classify the multichannel data. For the feature extraction, scale-dependent and scale-independent methods are considered with a variety of wavelet functions. Both the approaches provide very high and almost comparable classification performances. A complete separation of the two groups is obtained when the data are plotted in the plane spanned by two suitable neural outputs.

  1. Style consistent classification of isogenous patterns.

    PubMed

    Sarkar, Prateek; Nagy, George

    2005-01-01

    In many applications of pattern recognition, patterns appear together in groups (fields) that have a common origin. For example, a printed word is usually a field of character patterns printed in the same font. A common origin induces consistency of style in features measured on patterns. The features of patterns co-occurring in a field are statistically dependent because they share the same, albeit unknown, style. Style constrained classifiers achieve higher classification accuracy by modeling such dependence among patterns in a field. Effects of style consistency on the distributions of field-features (concatenation of pattern features) can be modeled by hierarchical mixtures. Each field derives from a mixture of styles, while, within a field, a pattern derives from a class-style conditional mixture of Gaussians. Based on this model, an optimal style constrained classifier processes entire fields of patterns rendered in a consistent but unknown style. In a laboratory experiment, style constrained classification reduced errors on fields of printed digits by nearly 25 percent over singlet classifiers. Longer fields favor our classification method because they furnish more information about the underlying style.

  2. Multiple Scale Landscape Pattern Index Interpretation for the Persistent Monitoring of Land-Cover and Land-Use

    NASA Astrophysics Data System (ADS)

    Spivey, Alvin J.

    Mapping land-cover land-use change (LCLUC) over regional and continental scales, and long time scales (years and decades), can be accomplished using thematically identified classification maps of a landscape---a LCLU class map. Observations of a landscape's LCLU class map pattern can indicate the most relevant process, like hydrologic or ecologic function, causing landscape scale environmental change. Quantified as Landscape Pattern Metrics (LPM), emergent landscape patterns act as Landscape Indicators (LI) when physically interpreted. The common mathematical approach to quantifying observed landscape scale pattern is to have LPM measure how connected a class exists within the landscape, through nonlinear local kernel operations of edges and gradients in class maps. Commonly applied kernel-based LPM that consistently reveal causal processes are Dominance, Contagion, and Fractal Dimension. These kernel-based LPM can be difficult to interpret. The emphasis on an image pixel's edge by gradient operations and dependence on an image pixel's existence according to classification accuracy limit the interpretation of LPM. For example, the Dominance and Contagion kernel-based LPM very similarly measure how connected a landscape is. Because of this, their reported edge measurements of connected pattern correlate strongly, making their results ambiguous. Additionally, each of these kernel-based LPM are unscalable when comparing class maps from separate imaging system sensor scenarios that change the image pixel's edge position (i.e. changes in landscape extent, changes in pixel size, changes in orientation, etc), and can only interpret landscape pattern as accurately as the LCLU map classification will allow. This dissertation discusses the reliability of common LPM in light of imaging system effects such as: algorithm classification likelihoods, LCLU classification accuracy due to random image sensor noise, and image scale. A description of an approach to generating well behaved LPM through a Fourier system analysis of the entire class map, or any subset of the class map (e.g. the watershed) is the focus of this work. The Fourier approach provides four improvements for LPM. First, the approach reduces any correlation between metrics by developing them within an independent (i.e. orthogonal) Fourier vector space; a Fourier vector space that includes relevant physically representative parameters ( i.e. between class Euclidean distance). Second, accounting for LCLU classification accuracy the LPM measurement precision and measurement accuracy are reported. Third, the mathematics of this approach makes it possible to compare image data captured at separate pixel resolutions or even from separate landscape scenes. Fourth, Fourier interpreted landscape pattern measurement can be a measure of the entire landscape shape, of individual landscape cover change, or as exchanges between class map subsets by operating on the entire class map, subset of class map, or separate subsets of class map[s] respectively. These LCLUC LPM are examined along the 1991-1992 and 2000-2001 records of National Land Cover Database Landsat data products. Those LPM results are used in a predictive fecal coliform model at the South Carolina watershed level in the context of past (validation study) change. Finally, the proposed LPM ability to be used as ecologically relevant environmental indicators is tested by correlating metrics with other, well known LI that consistently reveal causal processes in the literature.

  3. Robust pattern decoding in shape-coded structured light

    NASA Astrophysics Data System (ADS)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  4. Mapping the Natchez Trace Parkway

    USGS Publications Warehouse

    Rangoonwala, Amina; Bannister, Terri; Ramsey, Elijah W.

    2011-01-01

    Based on a National Park Service (NPS) landcover classification, a landcover map of the 715-km (444-mile) NPS Natchez Trace Parkway (hereafter referred to as the "Parkway") was created. The NPS landcover classification followed National Vegetation Classification (NVC) protocols. The landcover map, which extended the initial landcover classification to the entire Parkway, was based on color-infrared photography converted to 1-m raster-based digital orthophoto quarter quadrangles, according to U.S. Geological Survey mapping standards. Our goal was to include as many alliance classes as possible in the Parkway landcover map. To reach this goal while maintaining a consistent and quantifiable map product throughout the Parkway extent, a mapping strategy was implemented based on the migration of class-based spectral textural signatures and the congruent progressive refinement of those class signatures along the Parkway. Progressive refinement provided consistent mapping by evaluating the spectral textural distinctiveness of the alliance-association classes, and where necessary, introducing new map classes along the Parkway. By following this mapping strategy, the use of raster-based image processing and geographic information system analyses for the map production provided a quantitative and reproducible product. Although field-site classification data were severely limited, the combination of spectral migration of class membership along the Parkway and the progressive classification strategy produced an organization of alliances that was internally highly consistent. The organization resulted from the natural patterns or alignments of spectral variance and the determination of those spectral patterns that were compositionally similar in the dominant species as NVC alliances. Overall, the mapped landcovers represented the existent spectral textural patterns that defined and encompassed the complex variety of compositional alliances and associations of the Parkway. Based on that mapped representation, forests dominate the Parkway landscape. Grass is the second largest Parkway land cover, followed by scrub-shrub and shrubland classes and pine plantations. The map provides a good representation of the landcover patterns and their changes over the extent of the Parkway, south to north.

  5. Comments on classification of uranium resources

    USGS Publications Warehouse

    Masters, Charles D.

    1978-01-01

    National resource assessments are intended to give some insight into future possibilities for the recovery of a desired resource. The resource numbers themselves only useful when related to economically controlled factors, such as industry capability as reflected in rated of production, rates of discovery, and technology development. To that end, it is useful to divide the resource base into component parts to which appropriate econometrics can be applied. A system of resource reporting adhering to these principles has been agreed to by the two major resource agencies in Government, the U>S. Geological Survey and the U.S. Bureau of Mines (USGS Bulletin 1450-A). Conceptually, then, a plan for resource reporting has been devised, and all resource reporting by these two agencies follows the agreed-upon pattern. Though conceptual agreement has been reached, each commodity has its own peculiar data problems; hence an operational definition to fit the conceptual pattern must be evolved for each mineral. Coal is the only commodity to date for which an operational agreement has been reached (USGS Bulletin 1450-B), but the basic essentials of an operational classification within the guideline of Bulletin 1450-A have been reported for oil and gas in USGS circular 725. The basic classification system is now well established and received general endorsement by Resources for the Future in a study of mineral resource classification systems prepared for the the Electric Power Research Institute (Schanz, 1976), and with respect to coal by the International Energy Agency.

  6. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  7. New developments in demographic targeting--the implications of 1991.

    PubMed

    Humby, C R

    1989-01-01

    This paper examines benefits that systems such as ACORN, a demographic marketing system that classifies neighborhoods, offer today and monitors some of the trends. It then considers the impact of the 1992 UK census and gives a view of what marketeers can expect in the next 5 years. Neighborhood classifications represent a summary of the consumption patterns of a set of neighbors. If we could reach individuals based on the current life stage the gains to be had would be as great again as that offered by the neighborhood classifications themselves. The greatest weakness of all the neighborhood-based systems is their inability to target at life stage or age.

  8. Intra- and interobserver agreement in the classification and treatment of distal third clavicle fractures.

    PubMed

    Bishop, Julie Y; Jones, Grant L; Lewis, Brian; Pedroza, Angela

    2015-04-01

    In treatment of distal third clavicle fractures, the Neer classification system, based on the location of the fracture in relation to the coracoclavicular ligaments, has traditionally been used to determine fracture pattern stability. To determine the intra- and interobserver reliability in the classification of distal third clavicle fractures via standard plain radiographs and the intra- and interobserver agreement in the preferred treatment of these fractures. Cohort study (Diagnosis); Level of evidence, 3. Thirty radiographs of distal clavicle fractures were randomly selected from patients treated for distal clavicle fractures between 2006 and 2011. The radiographs were distributed to 22 shoulder/sports medicine fellowship-trained orthopaedic surgeons. Fourteen surgeons responded and took part in the study. The evaluators were asked to measure the size of the distal fragment, classify the fracture pattern as stable or unstable, assign the Neer classification, and recommend operative versus nonoperative treatment. The radiographs were reordered and redistributed 3 months later. Inter- and intrarater agreement was determined for the distal fragment size, stability of the fracture, Neer classification, and decision to operate. Single variable logistic regression was performed to determine what factors could most accurately predict the decision for surgery. Interrater agreement was fair for distal fragment size, moderate for stability, fair for Neer classification, slight for type IIB and III fractures, and moderate for treatment approach. Intrarater agreement was moderate for distal fragment size categories (κ = 0.50, P < .001) and Neer classification (κ = 0.42, P < .001) and substantial for stable fracture (κ = 0.65, P < .001) and decision to operate (κ = 0.65, P < .001). Fracture stability was the best predictor of treatment, with 89% accuracy (P < .001). Fracture stability determination and the decision to operate had the highest interobserver agreement. Fracture stability was the key determinant of treatment, rather than the Neer classification system or the size of the distal fragment. © 2015 The Author(s).

  9. Ventricular beat classifier using fractal number clustering.

    PubMed

    Bakardjian, H

    1992-09-01

    A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.

  10. Phenomenology and classification of dystonia: a consensus update

    PubMed Central

    Albanese, Alberto; Bhatia, Kailash; Bressman, Susan B.; DeLong, Mahlon R.; Fahn, Stanley; Fung, Victor S.C.; Hallett, Mark; Jankovic, Joseph; Jinnah, H.A.; Klein, Christine; Lang, Anthony E.; Mink, Jonathan W.; Teller, Jan K.

    2013-01-01

    This report describes the consensus outcome of an international panel consisting of investigators with years of experience in this field that reviewed the definition and classification of dystonia. Agreement was obtained based on a consensus development methodology during three in-person meetings and manuscript review by mail. Dystonia is defined as a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Dystonic movements are typically patterned and twisting, and may be tremulous. Dystonia is often initiated or worsened by voluntary action and associated with overflow muscle activation. Dystonia is classified along two axes: clinical characteristics, including age at onset, body distribution, temporal pattern and associated features (additional movement disorders or neurological features), and etiology, which includes nervous system pathology and inheritance. The clinical characteristics fall into several specific dystonia syndromes that help to guide diagnosis and treatment. We provide here a new general definition of dystonia and propose a new classification. We encourage clinicians and researchers to use these innovative definition and classification and test them in the clinical setting on a variety of patients with dystonia. PMID:23649720

  11. HVM die yield improvement as a function of DRSEM ADC

    NASA Astrophysics Data System (ADS)

    Maheshwary, Sonu; Haas, Terry; McGarvey, Steve

    2010-03-01

    Given the current manufacturing technology roadmap and the competitiveness of the global semiconductor manufacturing environment in conjunction with the semiconductor manufacturing market dynamics, the market place continues to demand a reduced die manufacturing cost. This continuous pressure on lowering die cost in turn drives an aggressive yield learning curve, a key component of which is defect reduction of manufacturing induced anomalies. In order to meet and even exceed line and die yield targets there is a need to revamp defect classification strategies and place a greater emphasize on increasing the accuracy and purity of the Defect Review Scanning Electron Microscope (DRSEM) Automated Defect Classification (ADC) results while placing less emphasis on the ADC results of patterned/un-patterned wafer inspection systems. The increased emphasis on DRSEM ADC results allows for a high degree of automation and consistency in the classification data and eliminates variance induced by the manufacturing staff. This paper examines the use of SEM based Auto Defect Classification in a high volume manufacturing environment as a key driver in the reduction of defect limited yields.

  12. An embedded face-classification system for infrared images on an FPGA

    NASA Astrophysics Data System (ADS)

    Soto, Javier E.; Figueroa, Miguel

    2014-10-01

    We present a face-classification architecture for long-wave infrared (IR) images implemented on a Field Programmable Gate Array (FPGA). The circuit is fast, compact and low power, can recognize faces in real time and be embedded in a larger image-processing and computer vision system operating locally on an IR camera. The algorithm uses Local Binary Patterns (LBP) to perform feature extraction on each IR image. First, each pixel in the image is represented as an LBP pattern that encodes the similarity between the pixel and its neighbors. Uniform LBP codes are then used to reduce the number of patterns to 59 while preserving more than 90% of the information contained in the original LBP representation. Then, the image is divided into 64 non-overlapping regions, and each region is represented as a 59-bin histogram of patterns. Finally, the algorithm concatenates all 64 regions to create a 3,776-bin spatially enhanced histogram. We reduce the dimensionality of this histogram using Linear Discriminant Analysis (LDA), which improves clustering and enables us to store an entire database of 53 subjects on-chip. During classification, the circuit applies LBP and LDA to each incoming IR image in real time, and compares the resulting feature vector to each pattern stored in the local database using the Manhattan distance. We implemented the circuit on a Xilinx Artix-7 XC7A100T FPGA and tested it with the UCHThermalFace database, which consists of 28 81 x 150-pixel images of 53 subjects in indoor and outdoor conditions. The circuit achieves a 98.6% hit ratio, trained with 16 images and tested with 12 images of each subject in the database. Using a 100 MHz clock, the circuit classifies 8,230 images per second, and consumes only 309mW.

  13. Aesthetics-based classification of geological structures in outcrops for geotourism purposes: a tentative proposal

    NASA Astrophysics Data System (ADS)

    Mikhailenko, Anna V.; Nazarenko, Olesya V.; Ruban, Dmitry A.; Zayats, Pavel P.

    2017-03-01

    The current growth in geotourism requires an urgent development of classifications of geological features on the basis of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e., non-geological) classifications are necessary to take into account visions and attitudes of visitors.

  14. Skylab

    NASA Image and Video Library

    1973-01-01

    This EREP photograph of the Uncompahgre Plateau area of Colorado illustrates the land use classification using the hierarchical numbering system to depict land forms and vegetative patterns. The numerator is a three-digit number with decimal components identifying the vegetation analog or land use conditions. The denominator uses a three-component decimal system for landscape characterization.

  15. A Pilot Standard National Course Classification System for Secondary Education.

    ERIC Educational Resources Information Center

    Bradby, Denise; And Others

    This publication is the culmination of a major effort to help establish a common terminology, descriptions, and coding structure for course information at the secondary level of education. There had previously been no standard system for collecting, maintaining, reporting, and exchanging comparable information about student course taking patterns.…

  16. Variations In Predicted Employment-related Tripmaking Caused By Alternate Systems Of Job Classification

    DOT National Transportation Integrated Search

    1997-01-01

    The purposes of this paper are to describe how the locational patterns of jobs, and the arrival time of home-to-work trips, vary according to the system used to classify jobs. SEMCOG has obtained a special cross-tabulation of 1990 census data on work...

  17. The road to 11th edition of the International Classification of Diseases: trajectories of scientific consensus and contested science in the classification of intellectual disability/intellectual developmental disorders.

    PubMed

    Salvador-Carulla, Luis; Bertelli, Marco; Martinez-Leal, Rafael

    2018-03-01

    To increase the expert knowledge-base on intellectual developmental disorders (IDDs) by investigating the typology trajectories of consensus formation in the classification systems up to the 11th edition of the International Classification of Diseases (ICD-11). This expert review combines an analysis of key recent literature and the revision of the consensus formation and contestation in the expert committees contributing to the classification systems since the 1950s. Historically two main approaches have contributed to the development of this knowledge-base: a neurodevelopmental-clinical approach and a psychoeducational-social approach. These approaches show a complex interaction throughout the history of IDD and have had a diverse influence on its classification. Although in theory Diagnostic and Statistical Manual (DSM)-5 and ICD adhere to the neurodevelopmental-clinical model, the new definition in the ICD-11 follows a restrictive normality approach to intellectual quotient and to the measurement of adaptive behaviour. On the contrary DSM-5 is closer to the recommendations made by the WHO 'Working Group on Mental Retardation' for ICD-11 for an integrative approach. A cyclical pattern of consensus formation has been identified in IDD. The revision of the three major classification systems in the last decade has increased the terminological and conceptual variability and the overall scientific contestation on IDD.

  18. Image-based fall detection and classification of a user with a walking support system

    NASA Astrophysics Data System (ADS)

    Taghvaei, Sajjad; Kosuge, Kazuhiro

    2017-10-01

    The classification of visual human action is important in the development of systems that interact with humans. This study investigates an image-based classification of the human state while using a walking support system to improve the safety and dependability of these systems.We categorize the possible human behavior while utilizing a walker robot into eight states (i.e., sitting, standing, walking, and five falling types), and propose two different methods, namely, normal distribution and hidden Markov models (HMMs), to detect and recognize these states. The visual feature for the state classification is the centroid position of the upper body, which is extracted from the user's depth images. The first method shows that the centroid position follows a normal distribution while walking, which can be adopted to detect any non-walking state. The second method implements HMMs to detect and recognize these states. We then measure and compare the performance of both methods. The classification results are employed to control the motion of a passive-type walker (called "RT Walker") by activating its brakes in non-walking states. Thus, the system can be used for sit/stand support and fall prevention. The experiments are performed with four subjects, including an experienced physiotherapist. Results show that the algorithm can be adapted to the new user's motion pattern within 40 s, with a fall detection rate of 96.25% and state classification rate of 81.0%. The proposed method can be implemented to other abnormality detection/classification applications that employ depth image-sensing devices.

  19. Noise tolerant dendritic lattice associative memories

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  20. Multivariate pattern classification reveals autonomic and experiential representations of discrete emotions.

    PubMed

    Kragel, Philip A; Labar, Kevin S

    2013-08-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. Multivariate Pattern Classification Reveals Autonomic and Experiential Representations of Discrete Emotions

    PubMed Central

    Kragel, Philip A.; LaBar, Kevin S.

    2013-01-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PMID:23527508

  2. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    PubMed Central

    Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.

    2017-01-01

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082

  3. An Expert System for Diagnosis of Sleep Disorder Using Fuzzy Rule-Based Classification Systems

    NASA Astrophysics Data System (ADS)

    Septem Riza, Lala; Pradini, Mila; Fitrajaya Rahman, Eka; Rasim

    2017-03-01

    Sleep disorder is an anomaly that could cause problems for someone’ sleeping pattern. Nowadays, it becomes an issue since people are getting busy with their own business and have no time to visit the doctors. Therefore, this research aims to develop a system used for diagnosis of sleep disorder using Fuzzy Rule-Based Classification System (FRBCS). FRBCS is a method based on the fuzzy set concepts. It consists of two steps: (i) constructing a model/knowledge involving rulebase and database, and (ii) prediction over new data. In this case, the knowledge is obtained from experts whereas in the prediction stage, we perform fuzzification, inference, and classification. Then, a platform implementing the method is built with a combination between PHP and the R programming language using the “Shiny” package. To validate the system that has been made, some experiments have been done using data from a psychiatric hospital in West Java, Indonesia. Accuracy of the result and computation time are 84.85% and 0.0133 seconds, respectively.

  4. A classification of marked hijaiyah letters' pronunciation using hidden Markov model

    NASA Astrophysics Data System (ADS)

    Wisesty, Untari N.; Mubarok, M. Syahrul; Adiwijaya

    2017-08-01

    Hijaiyah letters are the letters that arrange the words in Al Qur'an consisting of 28 letters. They symbolize the consonant sounds. On the other hand, the vowel sounds are symbolized by harokat/marks. Speech recognition system is a system used to process the sound signal to be data so that it can be recognized by computer. To build the system, some stages are needed i.e characteristics/feature extraction and classification. In this research, LPC and MFCC extraction method, K-Means Quantization vector and Hidden Markov Model classification are used. The data used are the 28 letters and 6 harakat with the total class of 168. After several are testing done, it can be concluded that the system can recognize the pronunciation pattern of marked hijaiyah letter very well in the training data with its highest accuracy of 96.1% using the feature of LPC extraction and 94% using the MFCC. Meanwhile, when testing system is used, the accuracy decreases up to 41%.

  5. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.

    PubMed

    Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J

    2017-07-28

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.

  6. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.

    PubMed

    Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa

    2015-01-01

    The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

  7. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System.

    PubMed

    Epstein, Jonathan I; Egevad, Lars; Amin, Mahul B; Delahunt, Brett; Srigley, John R; Humphrey, Peter A

    2016-02-01

    In November, 2014, 65 prostate cancer pathology experts, along with 17 clinicians including urologists, radiation oncologists, and medical oncologists from 19 different countries gathered in a consensus conference to update the grading of prostate cancer, last revised in 2005. The major conclusions were: (1) Cribriform glands should be assigned a Gleason pattern 4, regardless of morphology; (2) Glomeruloid glands should be assigned a Gleason pattern 4, regardless of morphology; (3) Grading of mucinous carcinoma of the prostate should be based on its underlying growth pattern rather than grading them all as pattern 4; and (4) Intraductal carcinoma of the prostate without invasive carcinoma should not be assigned a Gleason grade and a comment as to its invariable association with aggressive prostate cancer should be made. Regarding morphologies of Gleason patterns, there was clear consensus on: (1) Gleason pattern 4 includes cribriform, fused, and poorly formed glands; (2) The term hypernephromatoid cancer should not be used; (3) For a diagnosis of Gleason pattern 4, it needs to be seen at 10x lens magnification; (4) Occasional/seemingly poorly formed or fused glands between well-formed glands is insufficient for a diagnosis of pattern 4; (5) In cases with borderline morphology between Gleason pattern 3 and pattern 4 and crush artifacts, the lower grade should be favored; (6) Branched glands are allowed in Gleason pattern 3; (7) Small solid cylinders represent Gleason pattern 5; (8) Solid medium to large nests with rosette-like spaces should be considered to represent Gleason pattern 5; and (9) Presence of unequivocal comedonecrosis, even if focal is indicative of Gleason pattern 5. It was recognized by both pathologists and clinicians that despite the above changes, there were deficiencies with the Gleason system. The Gleason grading system ranges from 2 to 10, yet 6 is the lowest score currently assigned. When patients are told that they have a Gleason score 6 out of 10, it implies that their prognosis is intermediate and contributes to their fear of having a more aggressive cancer. Also, in the literature and for therapeutic purposes, various scores have been incorrectly grouped together with the assumption that they have a similar prognosis. For example, many classification systems consider Gleason score 7 as a single score without distinguishing 3+4 versus 4+3, despite studies showing significantly worse prognosis for the latter. The basis for a new grading system was proposed in 2013 by one of the authors (J.I.E.) based on data from Johns Hopkins Hospital resulting in 5 prognostically distinct Grade Groups. This new system was validated in a multi-institutional study of over 20,000 radical prostatectomy specimens, over 16,000 needle biopsy specimens, and over 5,000 biopsies followed by radiation therapy. There was broad (90%) consensus for the adoption of this new prostate cancer Grading system in the 2014 consensus conference based on: (1) the new classification provided more accurate stratification of tumors than the current system; (2) the classification simplified the number of grading categories from Gleason scores 2 to 10, with even more permutations based on different pattern combinations, to Grade Groups 1 to 5; (3) the lowest grade is 1 not 6 as in Gleason, with the potential to reduce overtreatment of indolent cancer; and (4) the current modified Gleason grading, which forms the basis for the new grade groups, bears little resemblance to the original Gleason system. The new grades would, for the foreseeable future, be used in conjunction with the Gleason system [ie. Gleason score 3+3=6 (Grade Group 1)]. The new grading system and the terminology Grade Groups 1-5 have also been accepted by the World Health Organization for the 2016 edition of Pathology and Genetics: Tumours of the Urinary System and Male Genital Organs.

  8. Site classification of ponderosa pine stands under stocking control in California

    Treesearch

    Robert F. Powers; William W. Oliver

    1978-01-01

    Existing systems for estimating site index of ponderosa pine (Pinus ponderosa Laws.) do not apply well to California stands where stocking is controlled. A more suitable system has been developed using trends in natural height growth, derived from stem analysis of dominant trees in California. This site index system produces polymorphic patterns of...

  9. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  10. [Artificial intelligence in sleep analysis (ARTISANA)--modelling visual processes in sleep classification].

    PubMed

    Schwaibold, M; Schöller, B; Penzel, T; Bolz, A

    2001-05-01

    We describe a novel approach to the problem of automated sleep stage recognition. The ARTISANA algorithm mimics the behaviour of a human expert visually scoring sleep stages (Rechtschaffen and Kales classification). It comprises a number of interacting components that imitate the stepwise approach of the human expert, and artificial intelligence components. On the basis of parameters extracted at 1-s intervals from the signal curves, artificial neural networks recognize the incidence of typical patterns, e.g. delta activity or K complexes. This is followed by a rule interpretation stage that identifies the sleep stage with the aid of a neuro-fuzzy system while taking account of the context. Validation studies based on the records of 8 patients with obstructive sleep apnoea have confirmed the potential of this approach. Further features of the system include the transparency of the decision-taking process, and the flexibility of the option for expanding the system to cover new patterns and criteria.

  11. Recognition of Arabic Sign Language Alphabet Using Polynomial Classifiers

    NASA Astrophysics Data System (ADS)

    Assaleh, Khaled; Al-Rousan, M.

    2005-12-01

    Building an accurate automatic sign language recognition system is of great importance in facilitating efficient communication with deaf people. In this paper, we propose the use of polynomial classifiers as a classification engine for the recognition of Arabic sign language (ArSL) alphabet. Polynomial classifiers have several advantages over other classifiers in that they do not require iterative training, and that they are highly computationally scalable with the number of classes. Based on polynomial classifiers, we have built an ArSL system and measured its performance using real ArSL data collected from deaf people. We show that the proposed system provides superior recognition results when compared with previously published results using ANFIS-based classification on the same dataset and feature extraction methodology. The comparison is shown in terms of the number of misclassified test patterns. The reduction in the rate of misclassified patterns was very significant. In particular, we have achieved a 36% reduction of misclassifications on the training data and 57% on the test data.

  12. KIPSE1: A Knowledge-based Interactive Problem Solving Environment for data estimation and pattern classification

    NASA Technical Reports Server (NTRS)

    Han, Chia Yung; Wan, Liqun; Wee, William G.

    1990-01-01

    A knowledge-based interactive problem solving environment called KIPSE1 is presented. The KIPSE1 is a system built on a commercial expert system shell, the KEE system. This environment gives user capability to carry out exploratory data analysis and pattern classification tasks. A good solution often consists of a sequence of steps with a set of methods used at each step. In KIPSE1, solution is represented in the form of a decision tree and each node of the solution tree represents a partial solution to the problem. Many methodologies are provided at each node to the user such that the user can interactively select the method and data sets to test and subsequently examine the results. Otherwise, users are allowed to make decisions at various stages of problem solving to subdivide the problem into smaller subproblems such that a large problem can be handled and a better solution can be found.

  13. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    NASA Astrophysics Data System (ADS)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.

  14. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    NASA Astrophysics Data System (ADS)

    Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert

    2005-12-01

    A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  15. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  16. Classification of Partial Discharge Measured under Different Levels of Noise Contamination

    PubMed Central

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953

  17. Mayo Clinic/Renal Pathology Society Consensus Report on Pathologic Classification, Diagnosis, and Reporting of GN.

    PubMed

    Sethi, Sanjeev; Haas, Mark; Markowitz, Glen S; D'Agati, Vivette D; Rennke, Helmut G; Jennette, J Charles; Bajema, Ingeborg M; Alpers, Charles E; Chang, Anthony; Cornell, Lynn D; Cosio, Fernando G; Fogo, Agnes B; Glassock, Richard J; Hariharan, Sundaram; Kambham, Neeraja; Lager, Donna J; Leung, Nelson; Mengel, Michael; Nath, Karl A; Roberts, Ian S; Rovin, Brad H; Seshan, Surya V; Smith, Richard J H; Walker, Patrick D; Winearls, Christopher G; Appel, Gerald B; Alexander, Mariam P; Cattran, Daniel C; Casado, Carmen Avila; Cook, H Terence; De Vriese, An S; Radhakrishnan, Jai; Racusen, Lorraine C; Ronco, Pierre; Fervenza, Fernando C

    2016-05-01

    Renal pathologists and nephrologists met on February 20, 2015 to establish an etiology/pathogenesis-based system for classification and diagnosis of GN, with a major aim of standardizing the kidney biopsy report of GN. On the basis of etiology/pathogenesis, GN is classified into the following five pathogenic types, each with specific disease entities: immune-complex GN, pauci-immune GN, antiglomerular basement membrane GN, monoclonal Ig GN, and C3 glomerulopathy. The pathogenesis-based classification forms the basis of the kidney biopsy report. To standardize the report, the diagnosis consists of a primary diagnosis and a secondary diagnosis. The primary diagnosis should include the disease entity/pathogenic type (if disease entity is not known) followed in order by pattern of injury (mixed patterns may be present); score/grade/class for disease entities, such as IgA nephropathy, lupus nephritis, and ANCA GN; and additional features as detailed herein. A pattern diagnosis as the sole primary diagnosis is not recommended. Secondary diagnoses should be reported separately and include coexisting lesions that do not form the primary diagnosis. Guidelines for the report format, light microscopy, immunofluorescence microscopy, electron microscopy, and ancillary studies are also provided. In summary, this consensus report emphasizes a pathogenesis-based classification of GN and provides guidelines for the standardized reporting of GN. Copyright © 2016 by the American Society of Nephrology.

  18. Computer-Aided Classification of Visual Ventilation Patterns in Patients with Chronic Obstructive Pulmonary Disease at Two-Phase Xenon-Enhanced CT

    PubMed Central

    Yoon, Soon Ho; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation. PMID:24843245

  19. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at two-phase xenon-enhanced CT.

    PubMed

    Yoon, Soon Ho; Goo, Jin Mo; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.

  20. A Spiking Neural Network System for Robust Sequence Recognition.

    PubMed

    Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2016-03-01

    This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

  1. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    NASA Technical Reports Server (NTRS)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation composition was noted in the change detection image.

  2. A novel single neuron perceptron with universal approximation and XOR computation properties.

    PubMed

    Lotfi, Ehsan; Akbarzadeh-T, M-R

    2014-01-01

    We propose a biologically motivated brain-inspired single neuron perceptron (SNP) with universal approximation and XOR computation properties. This computational model extends the input pattern and is based on the excitatory and inhibitory learning rules inspired from neural connections in the human brain's nervous system. The resulting architecture of SNP can be trained by supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine) pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP) with gradient decent backpropagation (GDBP) learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time, and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various problems such as in pattern recognition and classification.

  3. Integrated Remote Sensing Modalities for Classification at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Anderson, D.; Craven, J.

    2016-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.

  4. Comparing Features for Classification of MEG Responses to Motor Imagery

    PubMed Central

    Halme, Hanna-Leena; Parkkonen, Lauri

    2016-01-01

    Background Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. Methods MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio—spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. Results The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. Conclusions We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system. PMID:27992574

  5. Content Classification and Context-Based Retrieval System for E-Learning

    ERIC Educational Resources Information Center

    Mittal, Ankush; Krishnan, Pagalthivarthi V.; Altman, Edward

    2006-01-01

    A recent focus in web based learning systems has been the development of reusable learning materials that can be delivered as personalized courses depending of a number of factors such as the user's background, his/her learning preferences, current knowledge based on previous assessments, or previous browsing patterns. The student is often…

  6. Diagnosing and Managing Violence

    PubMed Central

    2011-01-01

    Available categorization systems for violence encountered in medical practice do not constitute optimal tools to guide management. In this article, 4 common patterns of violence across psychiatric diagnoses are described (defensive, dominance-defining, impulsive, and calculated) and management implications are considered. The phenomenologic and neurobiological rationale for a clinical classification system of violence is also presented. PMID:22295257

  7. Dance recognition system using lower body movement.

    PubMed

    Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C

    2014-02-01

    The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.

  8. Pax2 expression in simultaneously diagnosed WHO and EIN classification systems.

    PubMed

    Joiner, Amy K; Quick, Charles M; Jeffus, Susanne K

    2015-01-01

    PAX2 has been cited as a technically robust biomarker which nicely delineates precancerous lesions of the endometrium when the endometrial intraepithelial neoplasia (EIN) classification scheme is used. Its utility in distinguishing between atypical and nonatypical hyperplasia when applied within the 1994 World Health Organization classification system is questionable. The purpose of this study was to evaluate PAX2 in a side by side comparison of its staining patterns in a series of endometrial samples that were classified using both systems. A total of 108 precancerous endometrial cases were identified, of which 30 cases were deemed nonhyperplastic by consensus agreement and 11 cases lost the tissue of interest on deeper sections. The remaining 67 cases were categorized according to the 1994 World Health Organization criteria and EIN scheme by 2 gynecologic pathologists. PAX2 staining was scored in lesional tissue as normal or altered (lost, increased, or decreased) compared with nonlesional background. The most common pattern of alteration was complete loss of nuclear PAX2 staining (86.3%) followed by decreased staining (11.3%) and markedly increased staining (2.3%). PAX2 alterations correlated well with EIN diagnoses (33/36, 92%) compared with benign hyperplasia (2/13, 15%) but were less useful when the 1994 World Health Organization classification system was applied (PAX2 alteration in 22/25 (88%) of atypical hyperplasia cases versus 16/25 (64%) of nonatypical hyperplasia cases). Forty-five percent of follow-up hysterectomies with a previous PAX2-altered biopsy case harbored adenocarcinoma. In conclusion, PAX2 may be a helpful adjunct stain and training tool when the features of atypical hyperplasia/EIN are in question.

  9. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    PubMed

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  10. Development of a method of exposed characteristic points in activity pattern for rat behaviour classification

    NASA Astrophysics Data System (ADS)

    Stefko, Kamil; Bukowski, Tomasz; Urbański, Michał

    2012-03-01

    A fast method for visual inspection and classification of massive locomotor activity data registered from laboratory rats is presented. Positions in the home cage of one hundred rats have been constantly recorded during 90 day period using photodiodes and beam crossing method with use of custom build system. Direct inspection and comparison of classic form of actograms did not bring information for fast and easy recognition of anomalies in daily behavioural cycle. A method of obtaining fast and easy to compare locomotor activity pattern is presented. The key point of proposed method is exposition of characteristic points in the activity diagram. About 9000 actograms were inspected and classified for investigation with use of ANOVA.

  11. Sequenced subjective accents for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  12. Breathing Pattern Interpretation as an Alternative and Effective Voice Communication Solution.

    PubMed

    Elsahar, Yasmin; Bouazza-Marouf, Kaddour; Kerr, David; Gaur, Atul; Kaushik, Vipul; Hu, Sijung

    2018-05-15

    Augmentative and alternative communication (AAC) systems tend to rely on the interpretation of purposeful gestures for interaction. Existing AAC methods could be cumbersome and limit the solutions in terms of versatility. The study aims to interpret breathing patterns (BPs) to converse with the outside world by means of a unidirectional microphone and researches breathing-pattern interpretation (BPI) to encode messages in an interactive manner with minimal training. We present BP processing work with (1) output synthesized machine-spoken words (SMSW) along with single-channel Weiner filtering (WF) for signal de-noising, and (2) k -nearest neighbor ( k-NN ) classification of BPs associated with embedded dynamic time warping (DTW). An approved protocol to collect analogue modulated BP sets belonging to 4 distinct classes with 10 training BPs per class and 5 live BPs per class was implemented with 23 healthy subjects. An 86% accuracy of k-NN classification was obtained with decreasing error rates of 17%, 14%, and 11% for the live classifications of classes 2, 3, and 4, respectively. The results express a systematic reliability of 89% with increased familiarity. The outcomes from the current AAC setup recommend a durable engineering solution directly beneficial to the sufferers.

  13. Adaptive Classification of Landscape Process and Function: An Integration of Geoinformatics and Self-Organizing Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.

    2009-07-17

    The advanced geospatial information extraction and analysis capabilities of a Geographic Information System (GISs) and Artificial Neural Networks (ANNs), particularly Self-Organizing Maps (SOMs), provide a topology-preserving means for reducing and understanding complex data relationships in the landscape. The Adaptive Landscape Classification Procedure (ALCP) is presented as an adaptive and evolutionary capability where varying types of data can be assimilated to address different management needs such as hydrologic response, erosion potential, habitat structure, instrumentation placement, and various forecast or what-if scenarios. This paper defines how the evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight intomore » complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Establishing relationships among high-dimensional datasets through neurocomputing based pattern recognition methods can help 1) resolve large volumes of data into a structured and meaningful form; 2) provide an approach for inferring landscape processes in areas that have limited data available but exhibit similar landscape characteristics; and 3) discover the value of individual variables or groups of variables that contribute to specific processes in the landscape. Classification of hydrologic patterns in the landscape is demonstrated.« less

  14. Neural attractor network for application in visual field data classification.

    PubMed

    Fink, Wolfgang

    2004-07-07

    The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a 'counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available.

  15. Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis.

    PubMed

    Bhaduri, Aritra; Banerjee, Amitava; Roy, Subhrajit; Kar, Sougata; Basu, Arindam

    2018-03-01

    We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.

  16. Learning viewpoint invariant object representations using a temporal coherence principle.

    PubMed

    Einhäuser, Wolfgang; Hipp, Jörg; Eggert, Julian; Körner, Edgar; König, Peter

    2005-07-01

    Invariant object recognition is arguably one of the major challenges for contemporary machine vision systems. In contrast, the mammalian visual system performs this task virtually effortlessly. How can we exploit our knowledge on the biological system to improve artificial systems? Our understanding of the mammalian early visual system has been augmented by the discovery that general coding principles could explain many aspects of neuronal response properties. How can such schemes be transferred to system level performance? In the present study we train cells on a particular variant of the general principle of temporal coherence, the "stability" objective. These cells are trained on unlabeled real-world images without a teaching signal. We show that after training, the cells form a representation that is largely independent of the viewpoint from which the stimulus is looked at. This finding includes generalization to previously unseen viewpoints. The achieved representation is better suited for view-point invariant object classification than the cells' input patterns. This property to facilitate view-point invariant classification is maintained even if training and classification take place in the presence of an--also unlabeled--distractor object. In summary, here we show that unsupervised learning using a general coding principle facilitates the classification of real-world objects, that are not segmented from the background and undergo complex, non-isomorphic, transformations.

  17. Movement imagery classification in EMOTIV cap based system by Naïve Bayes.

    PubMed

    Stock, Vinicius N; Balbinot, Alexandre

    2016-08-01

    Brain-computer interfaces (BCI) provide means of communications and control, in assistive technology, which do not require motor activity from the user. The goal of this study is to promote classification of two types of imaginary movements, left and right hands, in an EMOTIV cap based system, using the Naïve Bayes classifier. A preliminary analysis with respect to results obtained by other experiments in this field is also conducted. Processing of the electroencephalography (EEG) signals is done applying Common Spatial Pattern filters. The EPOC electrodes cap is used for EEG acquisition, in two test subjects, for two distinct trial formats. The channels picked are FC5, FC6, P7 and P8 of the 10-20 system, and a discussion about the differences of using C3, C4, P3 and P4 positions is proposed. Dataset 3 of the BCI Competition II is also analyzed using the implemented algorithms. The maximum classification results for the proposed experiment and for the BCI Competition dataset were, respectively, 79% and 85% The conclusion of this study is that the picked positions for electrodes may be applied for BCI systems with satisfactory classification rates.

  18. Technical support for creating an artificial intelligence system for feature extraction and experimental design

    NASA Technical Reports Server (NTRS)

    Glick, B. J.

    1985-01-01

    Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.

  19. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.

    PubMed

    Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi

    2016-09-01

    The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.

  20. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition Based Myoelectric Control

    PubMed Central

    Scheme, Erik; Englehart, Kevin

    2013-01-01

    The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224

  1. New FIGO and Swedish intrapartum cardiotocography classification systems incorporated in the fetal ECG ST analysis (STAN) interpretation algorithm: agreements and discrepancies in cardiotocography classification and evaluation of significant ST events.

    PubMed

    Olofsson, Per; Norén, Håkan; Carlsson, Ann

    2018-02-01

    The updated intrapartum cardiotocography (CTG) classification system by FIGO in 2015 (FIGO2015) and the FIGO2015-approached classification by the Swedish Society of Obstetricians and Gynecologist in 2017 (SSOG2017) are not harmonized with the fetal ECG ST analysis (STAN) algorithm from 2007 (STAN2007). The study aimed to reveal homogeneity and agreement between the systems in classifying CTG and ST events, and relate them to maternal and perinatal outcomes. Among CTG traces with ST events, 100 traces originally classified as normal, 100 as suspicious and 100 as pathological were randomly selected from a STAN database and classified by two experts in consensus. Homogeneity and agreement statistics between the CTG classifications were performed. Maternal and perinatal outcomes were evaluated in cases with clinically hidden ST data (n = 151). A two-tailed p < 0.05 was regarded as significant. For CTG classes, the heterogeneity was significant between the old and new systems, and agreements were moderate to strong (proportion of agreement, kappa index 0.70-0.86). Between the new classifications, heterogeneity was significant and agreements strong (0.90, 0.92). For significant ST events, heterogeneities were significant and agreements moderate to almost perfect (STAN2007 vs. FIGO2015 0.86, 0.72; STAN2007 vs. SSOG2017 0.92, 0.84; FIGO2015 vs. SSOG2017 0.94, 0.87). Significant ST events occurred more often combined with STAN2007 than with FIGO2015 classification, but not with SSOG2017; correct identification of adverse outcomes was not significantly different between the systems. There are discrepancies in the classification of CTG patterns and significant ST events between the old and new systems. The clinical relevance of the findings remains to be shown. © 2017 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).

  2. A true real-time, on-line security system for waterborne pathogen surveillance

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David L.

    2008-04-01

    Over the past several years many advances have been made to monitor potable water systems for toxic threats. However, the need for real-time, on-line systems to detect the malicious introduction of deadly pathogens still exists. Municipal water distribution systems, government facilities and buildings, and high profile public events remain vulnerable to terrorist-related biological contamination. After years of research and development, an instrument using multi-angle light scattering (MALS) technology has been introduced to achieve on-line, real-time detection and classification of a waterborne pathogen event. The MALS system utilizes a continuous slip stream of water passing through a flow cell in the instrument. A laser beam, focused perpendicular to the water flow, strikes particles as they pass through the beam generating unique light scattering patterns that are captured by photodetectors. Microorganisms produce patterns termed 'bio-optical signatures' which are comparable to fingerprints. By comparing these bio-optical signatures to an on-board database of microorganism patterns, detection and classification occurs within minutes. If a pattern is not recognized, it is classified as an 'unknown' and the unidentified contaminant is registered as a potential threat. In either case, if the contaminant exceeds a customer's threshold, the system will immediately alert personnel to the contamination event while extracting a sample for confirmation. The system, BioSentry TM, developed by JMAR Technologies is now field-tested and commercially available. BioSentry is cost effective, uses no reagents, operates remotely, and can be used for continuous microbial surveillance in many water treatment environments. Examples of HLS installations will be presented along with data from the US EPA NHSRC Testing and Evaluation Facility.

  3. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    PubMed

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  4. A survey of the dummy face and human face stimuli used in BCI paradigm.

    PubMed

    Chen, Long; Jin, Jing; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2015-01-15

    It was proved that the human face stimulus were superior to the flash only stimulus in BCI system. However, human face stimulus may lead to copyright infringement problems and was hard to be edited according to the requirement of the BCI study. Recently, it was reported that facial expression changes could be done by changing a curve in a dummy face which could obtain good performance when it was applied to visual-based P300 BCI systems. In this paper, four different paradigms were presented, which were called dummy face pattern, human face pattern, inverted dummy face pattern and inverted human face pattern, to evaluate the performance of the dummy faces stimuli compared with the human faces stimuli. The key point that determined the value of dummy faces in BCI systems were whether dummy faces stimuli could obtain as good performance as human faces stimuli. Online and offline results of four different paradigms would have been obtained and comparatively analyzed. Online and offline results showed that there was no significant difference among dummy faces and human faces in ERPs, classification accuracy and information transfer rate when they were applied in BCI systems. Dummy faces stimuli could evoke large ERPs and obtain as high classification accuracy and information transfer rate as the human faces stimuli. Since dummy faces were easy to be edited and had no copyright infringement problems, it would be a good choice for optimizing the stimuli of BCI systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Weather patterns as a downscaling tool - evaluating their skill in stratifying local climate variables

    NASA Astrophysics Data System (ADS)

    Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    The use of a weather pattern based approach for downscaling of coarse, gridded atmospheric data, as usually obtained from the output of general circulation models (GCM), allows for investigating the impact of anthropogenic greenhouse gas emissions on fluxes and state variables of the hydrological cycle such as e.g. on runoff in large river catchments. Here we aim at attributing changes in high flows in the Rhine catchment to anthropogenic climate change. Therefore we run an objective classification scheme (simulated annealing and diversified randomisation - SANDRA, available from the cost733 classification software) on ERA20C reanalyses data and apply the established classification to GCMs from the CMIP5 project. After deriving weather pattern time series from GCM runs using forcing from all greenhouse gases (All-Hist) and using natural greenhouse gas forcing only (Nat-Hist), a weather generator will be employed to obtain climate data time series for the hydrological model. The parameters of the weather pattern classification (i.e. spatial extent, number of patterns, classification variables) need to be selected in a way that allows for good stratification of the meteorological variables that are of interest for the hydrological modelling. We evaluate the skill of the classification in stratifying meteorological data using a multi-variable approach. This allows for estimating the stratification skill for all meteorological variables together, not separately as usually done in existing similar work. The advantage of the multi-variable approach is to properly account for situations where e.g. two patterns are associated with similar mean daily temperature, but one pattern is dry while the other one is related to considerable amounts of precipitation. Thus, the separation of these two patterns would not be justified when considering temperature only, but is perfectly reasonable when accounting for precipitation as well. Besides that, the weather patterns derived from reanalyses data should be well represented in the All-Hist GCM runs in terms of e.g. frequency, seasonality, and persistence. In this contribution we show how to select the most appropriate weather pattern classification and how the classes derived from it are reflected in the GCMs.

  6. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.

    PubMed

    de Moura, Karina de O A; Balbinot, Alexandre

    2018-05-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.

  7. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System

    PubMed Central

    Balbinot, Alexandre

    2018-01-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. PMID:29723994

  8. Subject-Adaptive Real-Time Sleep Stage Classification Based on Conditional Random Field

    PubMed Central

    Luo, Gang; Min, Wanli

    2007-01-01

    Sleep staging is the pattern recognition task of classifying sleep recordings into sleep stages. This task is one of the most important steps in sleep analysis. It is crucial for the diagnosis and treatment of various sleep disorders, and also relates closely to brain-machine interfaces. We report an automatic, online sleep stager using electroencephalogram (EEG) signal based on a recently-developed statistical pattern recognition method, conditional random field, and novel potential functions that have explicit physical meanings. Using sleep recordings from human subjects, we show that the average classification accuracy of our sleep stager almost approaches the theoretical limit and is about 8% higher than that of existing systems. Moreover, for a new subject snew with limited training data Dnew, we perform subject adaptation to improve classification accuracy. Our idea is to use the knowledge learned from old subjects to obtain from Dnew a regulated estimate of CRF’s parameters. Using sleep recordings from human subjects, we show that even without any Dnew, our sleep stager can achieve an average classification accuracy of 70% on snew. This accuracy increases with the size of Dnew and eventually becomes close to the theoretical limit. PMID:18693884

  9. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  10. Phenomenology and classification of dystonia: a consensus update.

    PubMed

    Albanese, Alberto; Bhatia, Kailash; Bressman, Susan B; Delong, Mahlon R; Fahn, Stanley; Fung, Victor S C; Hallett, Mark; Jankovic, Joseph; Jinnah, Hyder A; Klein, Christine; Lang, Anthony E; Mink, Jonathan W; Teller, Jan K

    2013-06-15

    This report describes the consensus outcome of an international panel consisting of investigators with years of experience in this field that reviewed the definition and classification of dystonia. Agreement was obtained based on a consensus development methodology during 3 in-person meetings and manuscript review by mail. Dystonia is defined as a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Dystonic movements are typically patterned and twisting, and may be tremulous. Dystonia is often initiated or worsened by voluntary action and associated with overflow muscle activation. Dystonia is classified along 2 axes: clinical characteristics, including age at onset, body distribution, temporal pattern and associated features (additional movement disorders or neurological features); and etiology, which includes nervous system pathology and inheritance. The clinical characteristics fall into several specific dystonia syndromes that help to guide diagnosis and treatment. We provide here a new general definition of dystonia and propose a new classification. We encourage clinicians and researchers to use these innovative definition and classification and test them in the clinical setting on a variety of patients with dystonia. © 2013 Movement Disorder Society. © 2013 Movement Disorder Society.

  11. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  12. [Automation in surgery: a systematical approach].

    PubMed

    Strauss, G; Meixensberger, J; Dietz, A; Manzey, D

    2007-04-01

    Surgical assistance systems permit a misalignment from the purely manual to an assisted activity of the surgeon (automation). Automation defines a system, that partly or totally fulfils function, those was carried out before totally or partly by the user. The organization of surgical assistance systems following application (planning, simulation, intraoperative navigation and visualization) or technical configuration of the system (manipulator, robot) is not suitable for a description of the interaction between user (surgeon) and the system. The available work has the goal of providing a classification for the degree of the automation of surgical interventions and describing by examples. The presented classification orients itself at pre-working from the Human-Factors-Sciences. As a condition for an automation of a surgical intervention applies that an assumption of a task, which was alone assigned so far to the surgeon takes place via the system. For both reference objects (humans and machine) the condition passively or actively comes into consideration. Besides can be classified according to which functions are taken over during a selected function division by humans and/or the surgical assistance system. Three functional areas were differentiated: "information acquisition and -analysis", "decision making and action planning" as well as "execution of the surgical action". From this results a classification of pre- and intraoperative surgical assist systems in six categories, which represent different automation degrees. The classification pattern is described and illustrated on the basis of surgical of examples.

  13. Classification of US hydropower dams by their modes of operation

    DOE PAGES

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  14. Classification of US hydropower dams by their modes of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  15. Diagnostic Classification of Schizophrenia Patients on the Basis of Regional Reward-Related fMRI Signal Patterns

    PubMed Central

    Koch, Stefan P.; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian; Sterzer, Philipp

    2015-01-01

    Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way. PMID:25799236

  16. Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: Classification of Stromal Development

    PubMed Central

    Sertel, O.; Kong, J.; Shimada, H.; Catalyurek, U.V.; Saltz, J.H.; Gurcan, M.N.

    2009-01-01

    We are developing a computer-aided prognosis system for neuroblastoma (NB), a cancer of the nervous system and one of the most malignant tumors affecting children. Histopathological examination is an important stage for further treatment planning in routine clinical diagnosis of NB. According to the International Neuroblastoma Pathology Classification (the Shimada system), NB patients are classified into favorable and unfavorable histology based on the tissue morphology. In this study, we propose an image analysis system that operates on digitized H&E stained whole-slide NB tissue samples and classifies each slide as either stroma-rich or stroma-poor based on the degree of Schwannian stromal development. Our statistical framework performs the classification based on texture features extracted using co-occurrence statistics and local binary patterns. Due to the high resolution of digitized whole-slide images, we propose a multi-resolution approach that mimics the evaluation of a pathologist such that the image analysis starts from the lowest resolution and switches to higher resolutions when necessary. We employ an offine feature selection step, which determines the most discriminative features at each resolution level during the training step. A modified k-nearest neighbor classifier is used to determine the confidence level of the classification to make the decision at a particular resolution level. The proposed approach was independently tested on 43 whole-slide samples and provided an overall classification accuracy of 88.4%. PMID:20161324

  17. Bloodstain pattern classification: Accuracy, effect of contextual information and the role of analyst characteristics.

    PubMed

    Osborne, Nikola K P; Taylor, Michael C; Healey, Matthew; Zajac, Rachel

    2016-03-01

    It is becoming increasingly apparent that contextual information can exert a considerable influence on decisions about forensic evidence. Here, we explored accuracy and contextual influence in bloodstain pattern classification, and how these variables might relate to analyst characteristics. Thirty-nine bloodstain pattern analysts with varying degrees of experience each completed measures of compliance, decision-making style, and need for closure. Analysts then examined a bloodstain pattern without any additional contextual information, and allocated votes to listed pattern types according to favoured and less favoured classifications. Next, if they believed it would assist with their classification, analysts could request items of contextual information - from commonly encountered sources of information in bloodstain pattern analysis - and update their vote allocation. We calculated a shift score for each item of contextual information based on vote reallocation. Almost all forms of contextual information influenced decision-making, with medical findings leading to the highest shift scores. Although there was a small positive association between shift scores and the degree to which analysts displayed an intuitive decision-making style, shift scores did not vary meaningfully as a function of experience or the other characteristics measured. Almost all of the erroneous classifications were made by novice analysts. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity.

    PubMed

    Schwieger, Wilhelm; Machoke, Albert Gonche; Weissenberger, Tobias; Inayat, Amer; Selvam, Thangaraj; Klumpp, Michael; Inayat, Alexandra

    2016-06-13

    'Hierarchy' is a property which can be attributed to a manifold of different immaterial systems, such as ideas, items and organisations or material ones like biological systems within living organisms or artificial, man-made constructions. The property 'hierarchy' is mainly characterised by a certain ordering of individual elements relative to each other, often in combination with a certain degree of branching. Especially mass-flow related systems in the natural environment feature special hierarchically branched patterns. This review is a survey into the world of hierarchical systems with special focus on hierarchically porous zeolite materials. A classification of hierarchical porosity is proposed based on the flow distribution pattern within the respective pore systems. In addition, this review might serve as a toolbox providing several synthetic and post-synthetic strategies to prepare zeolitic or zeolite containing material with tailored hierarchical porosity. Very often, such strategies with their underlying principles were developed for improving the performance of the final materials in different technical applications like adsorptive or catalytic processes. In the present review, besides on the hierarchically porous all-zeolite material, special focus is laid on the preparation of zeolitic composite materials with hierarchical porosity capable to face the demands of industrial application.

  19. Patterns of Negotiation

    NASA Astrophysics Data System (ADS)

    Sood, Suresh; Pattinson, Hugh

    Traditionally, face-to-face negotiations in the real world have not been looked at as a complex systems interaction of actors resulting in a dynamic and potentially emergent system. If indeed negotiations are an outcome of a dynamic interaction of simpler behavior just as with a complex system, we should be able to see the patterns contributing to the complexities of a negotiation under study. This paper and the supporting research sets out to show B2B (business-to-business) negotiations as complex systems of interacting actors exhibiting dynamic and emergent behavior. This paper discusses the exploratory research based on negotiation simulations in which a large number of business students participate as buyers and sellers. The student interactions are captured on video and a purpose built research method attempts to look for patterns of interactions between actors using visualization techniques traditionally reserved to observe the algorithmic complexity of complex systems. Students are videoed negotiating with partners. Each video is tagged according to a recognized classification and coding scheme for negotiations. The classification relates to the phases through which any particular negotiation might pass, such as laughter, aggression, compromise, and so forth — through some 30 possible categories. Were negotiations more or less successful if they progressed through the categories in different ways? Furthermore, does the data depict emergent pathway segments considered to be more or less successful? This focus on emergence within the data provides further strong support for face-to-face (F2F) negotiations to be construed as complex systems.

  20. A Novel Approach to the Identification of Compromised Pulmonary Systems in Smokers by Exploiting Tidal Breathing Patterns.

    PubMed

    Rakshit, Raj; Khasnobish, Anwesha; Chowdhury, Arijit; Sinharay, Arijit; Pal, Arpan; Chakravarty, Tapas

    2018-04-25

    Smoking causes unalterable physiological abnormalities in the pulmonary system. This is emerging as a serious threat worldwide. Unlike spirometry, tidal breathing does not require subjects to undergo forceful breathing maneuvers and is progressing as a new direction towards pulmonary health assessment. The aim of the paper is to evaluate whether tidal breathing signatures can indicate deteriorating adult lung condition in an otherwise healthy person. If successful, such a system can be used as a pre-screening tool for all people before some of them need to undergo a thorough clinical checkup. This work presents a novel systematic approach to identify compromised pulmonary systems in smokers from acquired tidal breathing patterns. Tidal breathing patterns are acquired during restful breathing of adult participants. Thereafter, physiological attributes are extracted from the acquired tidal breathing signals. Finally, a unique classification approach of locally weighted learning with ridge regression (LWL-ridge) is implemented, which handles the subjective variations in tidal breathing data without performing feature normalization. The LWL-ridge classifier recognized compromised pulmonary systems in smokers with an average classification accuracy of 86.17% along with a sensitivity of 80% and a specificity of 92%. The implemented approach outperformed other variants of LWL as well as other standard classifiers and generated comparable results when applied on an external cohort. This end-to-end automated system is suitable for pre-screening people routinely for early detection of lung ailments as a preventive measure in an infrastructure-agnostic way.

  1. Diagnosis and treatment of movement system impairment syndromes.

    PubMed

    Sahrmann, Shirley; Azevedo, Daniel C; Dillen, Linda Van

    Diagnoses and treatments based on movement system impairment syndromes were developed to guide physical therapy treatment. This masterclass aims to describe the concepts on that are the basis of the syndromes and treatment and to provide the current research on movement system impairment syndromes. The conceptual basis of the movement system impairment syndromes is that sustained alignment in a non-ideal position and repeated movements in a specific direction are thought to be associated with several musculoskeletal conditions. Classification into movement system impairment syndromes and treatment has been described for all body regions. The classification involves interpreting data from standardized tests of alignments and movements. Treatment is based on correcting the impaired alignment and movement patterns as well as correcting the tissue adaptations associated with the impaired alignment and movement patterns. The reliability and validity of movement system impairment syndromes have been partially tested. Although several case reports involving treatment using the movement system impairment syndromes concept have been published, efficacy of treatment based on movement system impairment syndromes has not been tested in randomized controlled trials, except in people with chronic low back pain. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  3. Some sequential, distribution-free pattern classification procedures with applications

    NASA Technical Reports Server (NTRS)

    Poage, J. L.

    1971-01-01

    Some sequential, distribution-free pattern classification techniques are presented. The decision problem to which the proposed classification methods are applied is that of discriminating between two kinds of electroencephalogram responses recorded from a human subject: spontaneous EEG and EEG driven by a stroboscopic light stimulus at the alpha frequency. The classification procedures proposed make use of the theory of order statistics. Estimates of the probabilities of misclassification are given. The procedures were tested on Gaussian samples and the EEG responses.

  4. Quantifying Performance Bias in Label Fusion

    DTIC Science & Technology

    2012-08-21

    detect ), may provide the end-user with the means to appropriately adjust the performance and optimal thresholds for performance by fusing legacy systems...boolean combination of classification systems in ROC space: An application to anomaly detection with HMMs. Pattern Recognition, 43(8), 2732-2752. 10...Shamsuddin, S. (2009). An overview of neural networks use in anomaly intrusion detection systems. Paper presented at the Research and Development (SCOReD

  5. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns.

    PubMed

    Iakovidis, Dimitris K; Keramidas, Eystratios G; Maroulis, Dimitris

    2010-09-01

    This paper proposes a novel approach for thyroid ultrasound pattern representation. Considering that texture and echogenicity are correlated with thyroid malignancy, the proposed approach encodes these sonographic features via a noise-resistant representation. This representation is suitable for the discrimination of nodules of high malignancy risk from normal thyroid parenchyma. The material used in this study includes a total of 250 thyroid ultrasound patterns obtained from 75 patients in Greece. The patterns are represented by fused vectors of fuzzy features. Ultrasound texture is represented by fuzzy local binary patterns, whereas echogenicity is represented by fuzzy intensity histograms. The encoded thyroid ultrasound patterns are discriminated by support vector classifiers. The proposed approach was comprehensively evaluated using receiver operating characteristics (ROCs). The results show that the proposed fusion scheme outperforms previous thyroid ultrasound pattern representation methods proposed in the literature. The best classification accuracy was obtained with a polynomial kernel support vector machine, and reached 97.5% as estimated by the area under the ROC curve. The fusion of fuzzy local binary patterns and fuzzy grey-level histogram features is more effective than the state of the art approaches for the representation of thyroid ultrasound patterns and can be effectively utilized for the detection of nodules of high malignancy risk in the context of an intelligent medical system. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Evaluation and integration of disparate classification systems for clefts of the lip

    PubMed Central

    Wang, Kathie H.; Heike, Carrie L.; Clarkson, Melissa D.; Mejino, Jose L. V.; Brinkley, James F.; Tse, Raymond W.; Birgfeld, Craig B.; Fitzsimons, David A.; Cox, Timothy C.

    2014-01-01

    Orofacial clefting is a common birth defect with wide phenotypic variability. Many systems have been developed to classify cleft patterns to facilitate diagnosis, management, surgical treatment, and research. In this review, we examine the rationale for different existing classification schemes and determine their inter-relationships, as well as strengths and deficiencies for subclassification of clefts of the lip. The various systems differ in how they describe and define attributes of cleft lip (CL) phenotypes. Application and analysis of the CL classifications reveal discrepancies that may result in errors when comparing studies that use different systems. These inconsistencies in terminology, variable levels of subclassification, and ambiguity in some descriptions may confound analyses and impede further research aimed at understanding the genetics and etiology of clefts, development of effective treatment options for patients, as well as cross-institutional comparisons of outcome measures. Identification and reconciliation of discrepancies among existing systems is the first step toward creating a common standard to allow for a more explicit interpretation that will ultimately lead to a better understanding of the causes and manifestations of phenotypic variations in clefting. PMID:24860508

  7. Digital processing of satellite imagery application to jungle areas of Peru

    NASA Technical Reports Server (NTRS)

    Pomalaza, J. C. (Principal Investigator); Pomalaza, C. A.; Espinoza, J.

    1976-01-01

    The author has identified the following significant results. The use of clustering methods permits the development of relatively fast classification algorithms that could be implemented in an inexpensive computer system with limited amount of memory. Analysis of CCTs using these techniques can provide a great deal of detail permitting the use of the maximum resolution of LANDSAT imagery. Potential cases were detected in which the use of other techniques for classification using a Gaussian approximation for the distribution functions can be used with advantage. For jungle areas, channels 5 and 7 can provide enough information to delineate drainage patterns, swamp and wet areas, and make a reasonable broad classification of forest types.

  8. An eye tracking study of bloodstain pattern analysts during pattern classification.

    PubMed

    Arthur, R M; Hoogenboom, J; Green, R D; Taylor, M C; de Bruin, K G

    2018-05-01

    Bloodstain pattern analysis (BPA) is the forensic discipline concerned with the classification and interpretation of bloodstains and bloodstain patterns at the crime scene. At present, it is unclear exactly which stain or pattern properties and their associated values are most relevant to analysts when classifying a bloodstain pattern. Eye tracking technology has been widely used to investigate human perception and cognition. Its application to forensics, however, is limited. This is the first study to use eye tracking as a tool for gaining access to the mindset of the bloodstain pattern expert. An eye tracking method was used to follow the gaze of 24 bloodstain pattern analysts during an assigned task of classifying a laboratory-generated test bloodstain pattern. With the aid of an automated image-processing methodology, the properties of selected features of the pattern were quantified leading to the delineation of areas of interest (AOIs). Eye tracking data were collected for each AOI and combined with verbal statements made by analysts after the classification task to determine the critical range of values for relevant diagnostic features. Eye-tracking data indicated that there were four main regions of the pattern that analysts were most interested in. Within each region, individual elements or groups of elements that exhibited features associated with directionality, size, colour and shape appeared to capture the most interest of analysts during the classification task. The study showed that the eye movements of trained bloodstain pattern experts and their verbal descriptions of a pattern were well correlated.

  9. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    PubMed

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. An evaluation of object-oriented image analysis techniques to identify motorized vehicle effects in semi-arid to arid ecosystems of the American West

    USGS Publications Warehouse

    Mladinich, C.

    2010-01-01

    Human disturbance is a leading ecosystem stressor. Human-induced modifications include transportation networks, areal disturbances due to resource extraction, and recreation activities. High-resolution imagery and object-oriented classification rather than pixel-based techniques have successfully identified roads, buildings, and other anthropogenic features. Three commercial, automated feature-extraction software packages (Visual Learning Systems' Feature Analyst, ENVI Feature Extraction, and Definiens Developer) were evaluated by comparing their ability to effectively detect the disturbed surface patterns from motorized vehicle traffic. Each package achieved overall accuracies in the 70% range, demonstrating the potential to map the surface patterns. The Definiens classification was more consistent and statistically valid. Copyright ?? 2010 by Bellwether Publishing, Ltd. All rights reserved.

  11. ABCD classification system: a novel classification for subaxial cervical spine injuries.

    PubMed

    Shousha, Mootaz

    2014-04-20

    The classification system was derived through a retrospective analysis of 73 consecutive cases of subaxial cervical spine injury as well as thorough literature review. To define a new classification system for subaxial cervical spine injuries. There exist several methods to classify subaxial cervical spine injuries but no single system has emerged as clearly superior to the others. On the basis of a 2-column anatomical model, the first part of the proposed classification is an anatomical description of the injury. It delivers the information whether the injury is bony, ligamentous, or a combined one. The first 4 alphabetical letters have been used for simplicity. Each column is represented by an alphabetical letter from A to D. Each letter has a radiological meaning (A = Absent injury, B = Bony lesion, C = Combined bony and ligamentous, D = Disc or ligamentous injury).The second part of the classification is represented by 3 modifiers. These are the neurological status of the patient (N), the degree of spinal canal stenosis (S), and the degree of instability (I). For simplicity, each modifier was graded in an ascending pattern of severity from zero to 2. The last part is optional and denotes which radiological examination has been used to define the injury type. The new ABCD classification was applicable for all patients. The most common type was anterior ligamentous and posterior combined injury "DC" (37.9%), followed by "DD" injury in 12% of the cases. Through this work a new classification for cervical spine injuries is proposed. The aim is to establish criteria for a common language in description of cervical injuries aiming for simplification, especially for junior residents. Each letter and each sign has a meaning to deliver the largest amount of information. Both the radiological as well as the clinical data are represented in this scheme. However, further evaluation of this classification is needed. 3.

  12. Deep processing activates the medial temporal lobe in young but not in old adults.

    PubMed

    Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees

    2003-11-01

    Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.

  13. Refined 4-group classification of left ventricular hypertrophy based on ventricular concentricity and volume dilatation outlines distinct noninvasive hemodynamic profiles in a large contemporary echocardiographic population.

    PubMed

    Barbieri, Andrea; Rossi, Andrea; Gaibazzi, Nicola; Erlicher, Andrea; Mureddu, Gian Francesco; Frattini, Silvia; Faden, Giacomo; Manicardi, Marcella; Beraldi, Monica; Agostini, Francesco; Lazzarini, Valentina; Moreo, Antonella; Temporelli, Pier Luigi; Faggiano, Pompilio

    2018-05-23

    Left ventricular hypertrophy (LVH) may reflect a wide variety of physiologic and pathologic conditions. Thus, it can be misleading to consider all LVH to be homogenous or similar. Refined 4-group classification of LVH based on ventricular concentricity and dilatation may be identified. To determine whether the 4-group classification of LVH identified distinct phenotypes, we compared their association with various noninvasive markers of cardiac stress. Cohort of unselected adult outpatients referred to a seven tertiary care echocardiographic laboratory for any indication in a 2-week period. We evaluated the LV geometric patterns using validated echocardiographic indexation methods and partition values. Standard echocardiography was performed in 1137 consecutive subjects, and LVH was found in 42%. The newly proposed 4-group classification of LVH was applicable in 88% of patients. The most common pattern resulted in concentric LVH (19%). The worst functional and hemodynamic profile was associated with eccentric LVH and those with mixed LVH had a higher prevalence of reduced EF than those with concentric LVH (P < .001 for all). The new 4-group classification of LVH system showed distinct differences in cardiac function and noninvasive hemodynamics allowing clinicians to distinguish different LV hemodynamic stress adaptations in patients with LVH. © 2018 Wiley Periodicals, Inc.

  14. Breast density characterization using texton distributions.

    PubMed

    Petroudi, Styliani; Brady, Michael

    2011-01-01

    Breast density has been shown to be one of the most significant risks for developing breast cancer, with women with dense breasts at four to six times higher risk. The Breast Imaging Reporting and Data System (BI-RADS) has a four class classification scheme that describes the different breast densities. However, there is great inter and intra observer variability among clinicians in reporting a mammogram's density class. This work presents a novel texture classification method and its application for the development of a completely automated breast density classification system. The new method represents the mammogram using textons, which can be thought of as the building blocks of texture under the operational definition of Leung and Malik as clustered filter responses. The new proposed method characterizes the mammographic appearance of the different density patterns by evaluating the texton spatial dependence matrix (TDSM) in the breast region's corresponding texton map. The TSDM is a texture model that captures both statistical and structural texture characteristics. The normalized TSDM matrices are evaluated for mammograms from the different density classes and corresponding texture models are established. Classification is achieved using a chi-square distance measure. The fully automated TSDM breast density classification method is quantitatively evaluated on mammograms from all density classes from the Oxford Mammogram Database. The incorporation of texton spatial dependencies allows for classification accuracy reaching over 82%. The breast density classification accuracy is better using texton TSDM compared to simple texton histograms.

  15. Beyond Information Retrieval: Ways To Provide Content in Context.

    ERIC Educational Resources Information Center

    Wiley, Deborah Lynne

    1998-01-01

    Provides an overview of information retrieval from mainframe systems to Web search engines; discusses collaborative filtering, data extraction, data visualization, agent technology, pattern recognition, classification and clustering, and virtual communities. Argues that rather than huge data-storage centers and proprietary software, we need…

  16. Maximum likelihood estimation of label imperfections and its use in the identification of mislabeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.

  17. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.

    PubMed

    Kim, Eunwoo; Park, HyunWook

    2017-02-01

    The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.

  18. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition

    NASA Astrophysics Data System (ADS)

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-01

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  19. Classification of damage in structural systems using time series analysis and supervised and unsupervised pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; de Lautour, Oliver R.

    2010-04-01

    Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.

  20. Position Between Trunk and Pelvis During Gait Depending on the Gross Motor Function Classification System.

    PubMed

    Sanz-Mengibar, Jose Manuel; Altschuck, Natalie; Sanchez-de-Muniain, Paloma; Bauer, Christian; Santonja-Medina, Fernando

    2017-04-01

    To understand whether there is a trunk postural control threshold in the sagittal plane for the transition between the Gross Motor Function Classification System (GMFCS) levels measured with 3-dimensional gait analysis. Kinematics from 97 children with spastic bilateral cerebral palsy from spine angles according to Plug-In Gait model (Vicon) were plotted relative to their GMFCS level. Only average and minimum values of the lumbar spine segment correlated with GMFCS levels. Maximal values at loading response correlated independently with age at all functional levels. Average and minimum values were significant when analyzing age in combination with GMFCS level. There are specific postural control patterns in the average and minimum values for the position between trunk and pelvis in the sagittal plane during gait, for the transition among GMFCS I-III levels. Higher classifications of gross motor skills correlate with more extended spine angles.

  1. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  2. Individual Patient Diagnosis of AD and FTD via High-Dimensional Pattern Classification of MRI

    PubMed Central

    Davatzikos, C.; Resnick, S. M.; Wu, X.; Parmpi, P.; Clark, C. M.

    2008-01-01

    The purpose of this study is to determine the diagnostic accuracy of MRI-based high-dimensional pattern classification in differentiating between patients with Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and healthy controls, on an individual patient basis. MRI scans of 37 patients with AD and 37 age-matched cognitively normal elderly individuals, as well as 12 patients with FTD and 12 age-matched cognitively normal elderly individuals, were analyzed using voxel-based analysis and high-dimensional pattern classification. Diagnostic sensitivity and specificity of spatial patterns of regional brain atrophy found to be characteristic of AD and FTD were determined via cross-validation and via split-sample methods. Complex spatial patterns of relatively reduced brain volumes were identified, including temporal, orbitofrontal, parietal and cingulate regions, which were predominantly characteristic of either AD or FTD. These patterns provided 100% diagnostic accuracy, when used to separate AD or FTD from healthy controls. The ability to correctly distinguish AD from FTD averaged 84.3%. All estimates of diagnostic accuracy were determined via cross-validation. In conclusion, AD- and FTD-specific patterns of brain atrophy can be detected with high accuracy using high-dimensional pattern classification of MRI scans obtained in a typical clinical setting. PMID:18474436

  3. Refining Time-Activity Classification of Human Subjects Using the Global Positioning System.

    PubMed

    Hu, Maogui; Li, Wei; Li, Lianfa; Houston, Douglas; Wu, Jun

    2016-01-01

    Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations.

  4. Dissociating mental states related to doing nothing by means of fMRI pattern classification.

    PubMed

    Kühn, Simone; Bodammer, Nils Christian; Brass, Marcel

    2010-12-01

    Most juridical systems recognize intentional non-actions - the failure to render assistance - as intentional acts by regarding them as in principle culpable. This raises the fundamental question whether intentional non-actions can be distinguished from simply not doing anything. Classical GLM analysis on functional magnetic resonance imaging (fMRI) data reveals that not doing anything is associated with resting state brain areas whereas intentionally non-acting is associated with brain activity in left inferior parietal lobe and left dorsal premotor cortex. By means of pattern classification we quantify the accuracy with which we can distinguish these two mental states on the basis of brain activity. In order to identify brain regions that harbour a distributed, overlapping representation of voluntary non-actions and the decision not to act we performed pattern classification on brain areas that did not appear in the GLM contrasts. The prediction rate is not reduced and we show that the prediction relies mostly on brain areas that have been associated with action production and motor imagery as supplementary motor area, right inferior frontal gyrus and right middle temporal area (V5/MT). Hence our data support the implicit assumption of legal practice that voluntary non-action shares important features with overt voluntary action. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  6. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  7. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  8. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials.

    PubMed

    Finke, Mareike; Billinger, Martin; Büchner, Andreas

    Cochlear implants (CIs) restore hearing to the profoundly deaf by direct electrical stimulation of the auditory nerve. To provide an optimal electrical stimulation pattern the CI must be individually fitted to each CI user. To date, CI fitting is primarily based on subjective feedback from the user. However, not all CI users are able to provide such feedback, for example, small children. This study explores the possibility of using the electroencephalogram (EEG) to objectively determine if CI users are able to hear differences in tones presented to them, which has potential applications in CI fitting or closed loop systems. Deviant and standard stimuli were presented to 12 CI users in an active auditory oddball paradigm. The EEG was recorded in two sessions and classification of the EEG data was performed with shrinkage linear discriminant analysis. Also, the impact of CI artifact removal on classification performance and the possibility to reuse a trained classifier in future sessions were evaluated. Overall, classification performance was above chance level for all participants although performance varied considerably between participants. Also, artifacts were successfully removed from the EEG without impairing classification performance. Finally, reuse of the classifier causes only a small loss in classification performance. Our data provide first evidence that EEG can be automatically classified on single-trial basis in CI users. Despite the slightly poorer classification performance over sessions, classifier and CI artifact correction appear stable over successive sessions. Thus, classifier and artifact correction weights can be reused without repeating the set-up procedure in every session, which makes the technique easier applicable. With our present data, we can show successful classification of event-related cortical potential patterns in CI users. In the future, this has the potential to objectify and automate parts of CI fitting procedures.

  9. Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-08-01

    One objective of the present study was to evaluate the performance of support vector machine (SVM)-based image classification technique with the maximum likelihood classification (MLC) technique for a rapidly changing landscape of an open-cast mine. The other objective was to assess the change in land use pattern due to coal mining from 2006 to 2016. Assessing the change in land use pattern accurately is important for the development and monitoring of coalfields in conjunction with sustainable development. For the present study, Landsat 5 Thematic Mapper (TM) data of 2006 and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data of 2016 of a part of Jharia Coalfield, Dhanbad, India, were used. The SVM classification technique provided greater overall classification accuracy when compared to the MLC technique in classifying heterogeneous landscape with limited training dataset. SVM exceeded MLC in handling a difficult challenge of classifying features having near similar reflectance on the mean signature plot, an improvement of over 11 % was observed in classification of built-up area, and an improvement of 24 % was observed in classification of surface water using SVM; similarly, the SVM technique improved the overall land use classification accuracy by almost 6 and 3 % for Landsat 5 and Landsat 8 images, respectively. Results indicated that land degradation increased significantly from 2006 to 2016 in the study area. This study will help in quantifying the changes and can also serve as a basis for further decision support system studies aiding a variety of purposes such as planning and management of mines and environmental impact assessment.

  10. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  11. Mapping the Diversity among Runaways: A Descriptive Multivariate Analysis of Selected Social Psychological Background Conditions.

    ERIC Educational Resources Information Center

    Brennan, Tim

    1980-01-01

    A review of prior classification systems of runaways is followed by a descriptive taxonomy of runaways developed using cluster-analytic methods. The empirical types illustrate patterns of weakness in bonds between runaways and families, schools, or peer relationships. (Author)

  12. General method of pattern classification using the two-domain theory

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E. (Inventor)

    1993-01-01

    Human beings judge patterns (such as images) by complex mental processes, some of which may not be known, while computing machines extract features. By representing the human judgements with simple measurements and reducing them and the machine extracted features to a common metric space and fitting them by regression, the judgements of human experts rendered on a sample of patterns may be imposed on a pattern population to provide automatic classification.

  13. General method of pattern classification using the two-domain theory

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E. (Inventor)

    1990-01-01

    Human beings judge patterns (such as images) by complex mental processes, some of which may not be known, while computing machines extract features. By representing the human judgements with simple measurements and reducing them and the machine extracted features to a common metric space and fitting them by regression, the judgements of human experts rendered on a sample of patterns may be imposed on a pattern population to provide automatic classification.

  14. The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.

    PubMed

    Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T

    2011-09-30

    Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Integrating remote sensing and terrain data in forest fire modeling

    NASA Astrophysics Data System (ADS)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.

  16. Protein classification using sequential pattern mining.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2006-01-01

    Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.

  17. Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad

    2017-01-01

    Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

  18. A Bio Medical Waste Identification and Classification Algorithm Using Mltrp and Rvm.

    PubMed

    Achuthan, Aravindan; Ayyallu Madangopal, Vasumathi

    2016-10-01

    We aimed to extract the histogram features for text analysis and, to classify the types of Bio Medical Waste (BMW) for garbage disposal and management. The given BMW was preprocessed by using the median filtering technique that efficiently reduced the noise in the image. After that, the histogram features of the filtered image were extracted with the help of proposed Modified Local Tetra Pattern (MLTrP) technique. Finally, the Relevance Vector Machine (RVM) was used to classify the BMW into human body parts, plastics, cotton and liquids. The BMW image was collected from the garbage image dataset for analysis. The performance of the proposed BMW identification and classification system was evaluated in terms of sensitivity, specificity, classification rate and accuracy with the help of MATLAB. When compared to the existing techniques, the proposed techniques provided the better results. This work proposes a new texture analysis and classification technique for BMW management and disposal. It can be used in many real time applications such as hospital and healthcare management systems for proper BMW disposal.

  19. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  20. Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity.

    PubMed

    Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm

    2008-01-01

    There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.

  1. A new texture descriptor based on local micro-pattern for detection of architectural distortion in mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Moraes, Diego R.; Reche, Gustavo A.; Borges, Lucas R.; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2017-03-01

    This paper presents a new local micro-pattern texture descriptor for the detection of Architectural Distortion (AD) in digital mammography images. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automatic detection of AD, but their performance are still unsatisfactory. The proposed descriptor, Local Mapped Pattern (LMP), is a generalization of the Local Binary Pattern (LBP), which is considered one of the most powerful feature descriptor for texture classification in digital images. Compared to LBP, the LMP descriptor captures more effectively the minor differences between the local image pixels. Moreover, LMP is a parametric model which can be optimized for the desired application. In our work, the LMP performance was compared to the LBP and four Haralick's texture descriptors for the classification of 400 regions of interest (ROIs) extracted from clinical mammograms. ROIs were selected and divided into four classes: AD, normal tissue, microcalcifications and masses. Feature vectors were used as input to a multilayer perceptron neural network, with a single hidden layer. Results showed that LMP is a good descriptor to distinguish AD from other anomalies in digital mammography. LMP performance was slightly better than the LBP and comparable to Haralick's descriptors (mean classification accuracy = 83%).

  2. An inter-comparison of similarity-based methods for organisation and classification of groundwater hydrographs

    NASA Astrophysics Data System (ADS)

    Haaf, Ezra; Barthel, Roland

    2018-04-01

    Classification and similarity based methods, which have recently received major attention in the field of surface water hydrology, namely through the PUB (prediction in ungauged basins) initiative, have not yet been applied to groundwater systems. However, it can be hypothesised, that the principle of "similar systems responding similarly to similar forcing" applies in subsurface hydrology as well. One fundamental prerequisite to test this hypothesis and eventually to apply the principle to make "predictions for ungauged groundwater systems" is efficient methods to quantify the similarity of groundwater system responses, i.e. groundwater hydrographs. In this study, a large, spatially extensive, as well as geologically and geomorphologically diverse dataset from Southern Germany and Western Austria was used, to test and compare a set of 32 grouping methods, which have previously only been used individually in local-scale studies. The resulting groupings are compared to a heuristic visual classification, which serves as a baseline. A performance ranking of these classification methods is carried out and differences in homogeneity of grouping results were shown, whereby selected groups were related to hydrogeological indices and geological descriptors. This exploratory empirical study shows that the choice of grouping method has a large impact on the object distribution within groups, as well as on the homogeneity of patterns captured in groups. The study provides a comprehensive overview of a large number of grouping methods, which can guide researchers when attempting similarity-based groundwater hydrograph classification.

  3. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  4. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.

    PubMed

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-06

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  5. Biometric Authentication for Gender Classification Techniques: A Review

    NASA Astrophysics Data System (ADS)

    Mathivanan, P.; Poornima, K.

    2017-12-01

    One of the challenging biometric authentication applications is gender identification and age classification, which captures gait from far distance and analyze physical information of the subject such as gender, race and emotional state of the subject. It is found that most of the gender identification techniques have focused only with frontal pose of different human subject, image size and type of database used in the process. The study also classifies different feature extraction process such as, Principal Component Analysis (PCA) and Local Directional Pattern (LDP) that are used to extract the authentication features of a person. This paper aims to analyze different gender classification techniques that help in evaluating strength and weakness of existing gender identification algorithm. Therefore, it helps in developing a novel gender classification algorithm with less computation cost and more accuracy. In this paper, an overview and classification of different gender identification techniques are first presented and it is compared with other existing human identification system by means of their performance.

  6. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  7. Comparative study of classification algorithms for immunosignaturing data

    PubMed Central

    2012-01-01

    Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data. Results We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy. Conclusions ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties. PMID:22720696

  8. VTOL shipboard letdown guidance system analysis

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    Alternative letdown guidance strategies are examined for landing of a VTOL aircraft onboard a small aviation ship under adverse environmental conditions. Off line computer simulation of shipboard landing task is utilized for assessing the relative merits of the proposed guidance schemes. The touchdown performance of a nominal constant rate of descent (CROD) letdown strategy serves as a benchmark for ranking the performance of the alternative letdown schemes. Analysis of ship motion time histories indicates the existence of an alternating sequence of quiescent and rough motions called lulls and swells. A real time algorithms lull/swell classification based upon ship motion pattern features is developed. The classification algorithm is used to command a go/no go signal to indicate the initiation and termination of an acceptable landing window. Simulation results show that such a go/no go pattern based letdown guidance strategy improves touchdown performance.

  9. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  10. HEp-2 cell image classification method based on very deep convolutional networks with small datasets

    NASA Astrophysics Data System (ADS)

    Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping

    2017-07-01

    Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.

  11. Earthquake-Related Injuries in the Pediatric Population: A Systematic Review

    PubMed Central

    Jacquet, Gabrielle A.; Hansoti, Bhakti; Vu, Alexander; Bayram, Jamil D.

    2013-01-01

    Background: Children are a special population, particularly susceptible to injury. Registries for various injury types in the pediatric population are important, not only for epidemiological purposes but also for their implications on intervention programs. Although injury registries already exist, there is no uniform injury classification system for traumatic mass casualty events such as earthquakes. Objective: To systematically review peer-reviewed literature on the patterns of earthquake-related injuries in the pediatric population. Methods: On May 14, 2012, the authors performed a systematic review of literature from 1950 to 2012 indexed in Pubmed, EMBASE, Scopus, Web of Science, and Cochrane Library. Articles written in English, providing a quantitative description of pediatric injuries were included. Articles focusing on other types of disasters, geological, surgical, conceptual, psychological, indirect injuries, injury complications such as wound infections and acute kidney injury, case reports, reviews, and non-English articles were excluded. Results: A total of 2037 articles were retrieved, of which only 10 contained quantitative earthquake-related pediatric injury data. All studies were retrospective, had different age categorization, and reported injuries heterogeneously. Only 2 studies reported patterns of injury for all pediatric patients, including patients admitted and discharged. Seven articles described injuries by anatomic location, 5 articles described injuries by type, and 2 articles described injuries using both systems. Conclusions: Differences in age categorization of pediatric patients, and in the injury classification system make quantifying the burden of earthquake-related injuries in the pediatric population difficult. A uniform age categorization and injury classification system are paramount for drawing broader conclusions, enhancing disaster preparation for future disasters, and decreasing morbidity and mortality. PMID:24761308

  12. Label-free detection and identification of waterborne parasites using a microfluidic multi-angle laser scattering system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Limei; Lei, Lei; Li, Feng

    2017-10-01

    A microfluidic-based multi-angle laser scattering (MALS) system capable of acquiring scattering patterns of a single particle is designed and demonstrated. The system includes a sheathless nozzle microfluidic glass chip, and an on-chip MALS unit being in alignment with the nozzle exit in the chip. The size and relative refractive indices (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.002 by comparing the experimental scattering patterns with theoretical ones. We measured scattering patterns of waterborne parasites i.e., Cryptosporidium parvum (C.parvum) and Giardia lamblia (G. lamblia), and some other representative species suspended in deionized water at a maximum flow rate of 12 μL/min, and a maximum of 3000 waterborne parasites can be identified within one minute with a mean accuracy higher than 96% by classification of distinctive scattering patterns using a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free detection of waterborne parasites and other biological contaminants.

  13. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  14. Benzodiazepine Use Among Low Back Pain Patients Concurrently Prescribed Opioids in the Military Health System

    DTIC Science & Technology

    2017-08-27

    release. Distributibn is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF~ 17. LIMITATION OF 18 ...chronic pain, there are high rates ( 18 -38%) of concurrent opioid and benzo prescribing. These high-risk prescribing patterns have contributed to the

  15. Low back related leg pain: an investigation of construct validity of a new classification system.

    PubMed

    Schäfer, Axel G M; Hall, Toby M; Rolke, Roman; Treede, Rolf-Detlef; Lüdtke, Kerstin; Mallwitz, Joachim; Briffa, Kathryn N

    2014-01-01

    Leg pain is associated with back pain in 25-65% of all cases and classified as somatic referred pain or radicular pain. However, distinction between the two may be difficult as different pathomechanisms may cause similar patterns of pain. Therefore a pathomechanism based classification system was proposed, with four distinct hierarchical and mutually exclusive categories: Neuropathic Sensitization (NS) comprising major features of neuropathic pain with sensory sensitization; Denervation (D) arising from significant axonal compromise; Peripheral Nerve Sensitization (PNS) with marked nerve trunk mechanosensitivity; and Musculoskeletal (M) with pain referred from musculoskeletal structures. To investigate construct validity of the classification system. Construct validity was investigated by determining the relationship of nerve functioning with subgroups of patients and asymptomatic controls. Thus somatosensory profiles of subgroups of patients with low back related leg pain (LBRLP) and healthy controls were determined by a comprehensive quantitative sensory test (QST) protocol. It was hypothesized that subgroups of patients and healthy controls would show differences in QST profiles relating to underlying pathomechanisms. 77 subjects with LBRLP were recruited and classified in one of the four groups. Additionally, 18 age and gender matched asymptomatic controls were measured. QST revealed signs of pain hypersensitivity in group NS and sensory deficits in group D whereas Groups PNS and M showed no significant differences when compared to the asymptomatic group. These findings support construct validity for two of the categories of the new classification system, however further research is warranted to achieve construct validation of the classification system as a whole.

  16. A thyroid nodule classification method based on TI-RADS

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yang, Yang; Peng, Bo; Chen, Qin

    2017-07-01

    Thyroid Imaging Reporting and Data System(TI-RADS) is a valuable tool for differentiating the benign and the malignant thyroid nodules. In clinic, doctors can determine the extent of being benign or malignant in terms of different classes by using TI-RADS. Classification represents the degree of malignancy of thyroid nodules. TI-RADS as a classification standard can be used to guide the ultrasonic doctor to examine thyroid nodules more accurately and reliably. In this paper, we aim to classify the thyroid nodules with the help of TI-RADS. To this end, four ultrasound signs, i.e., cystic and solid, echo pattern, boundary feature and calcification of thyroid nodules are extracted and converted into feature vectors. Then semi-supervised fuzzy C-means ensemble (SS-FCME) model is applied to obtain the classification results. The experimental results demonstrate that the proposed method can help doctors diagnose the thyroid nodules effectively.

  17. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.

    PubMed

    Siu, Ho Chit; Shah, Julie A; Stirling, Leia A

    2016-10-25

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces.

  18. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    PubMed Central

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  19. New classification of geometric ventricular patterns in severe aortic stenosis: Could it be clinically useful?

    PubMed

    Di Nora, Concetta; Cervesato, Eugenio; Cosei, Iulian; Ravasel, Andreea; Popescu, Bogdan A; Zito, Concetta; Carerj, Scipione; Antonini-Canterin, Francesco; Popescu, Andreea C

    2018-04-16

    In severe aortic stenosis, different left ventricle (LV) remodeling patterns as a response to pressure overload have distinct hemodynamic profiles, cardiac function, and outcomes. The most common classification considers LV relative wall thickness and LV mass index to create 4 different groups. A new classification including also end-diastolic volume index has been recently proposed. To describe the prevalence of the newly identified remodeling patterns in patients with severe aortic stenosis and to evaluate their clinical relevance according to symptoms. We analyzed 286 consecutive patients with isolated severe aortic stenosis. Current guidelines were used for echocardiographic evaluation. Symptoms were defined as the presence of angina, syncope, or NYHA class III-IV. The mean age was 75 ± 9 years, 156 patients (54%) were men, while 158 (55%) were symptomatic. According to the new classification, the most frequent remodeling pattern was concentric hypertrophy (57.3%), followed by mixed (18.9%) and dilated hypertrophy (8.4%). There were no patients with eccentric remodeling; only 4 patients had a normalLV geometry. Symptomatic patients showed significantly more mixed hypertrophy (P < .05), while the difference regarding the prevalence of the other patterns was not statistically significant. When we analyzed the distribution of the classic 4 patterns stratified by the presence of symptoms, however, we did not find a significant difference (P = .157). The new classification had refined the description of different cardiac geometric phenotypes that develop as a response to pressure overload. It might be superior to the classic 4 patterns in terms of association with symptoms. © 2018 Wiley Periodicals, Inc.

  20. Capability of Using Clinical Care Classification System to Represent Nursing Practice in Acute Setting in Taiwan

    PubMed Central

    Feng, Rung-Chuang; Tseng, Kuan-Jui; Yan, Hsiu-Fang; Huang, Hsiu-Ya; Chang, Polun

    2012-01-01

    This study examines the capability of the Clinical Care Classification (CCC) system to represent nursing record data in a medical center in Taiwan. Nursing care records were analyzed using the process of knowledge discovery in data sets. The study data set included all the nursing care plan records from December 1998 to October 2008, totaling 2,060,214 care plan documentation entries. Results show that 75.42% of the documented diagnosis terms could be mapped using the CCC system. A total of 21 established nursing diagnoses were recommended to be added into the CCC system. Results show that one-third of the assessment and care tasks were provided by nursing professionals. This study shows that the CCC system is useful for identifying patterns in nursing practices and can be used to construct a nursing database in the acute setting. PMID:24199066

  1. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.

    2011-09-01

    We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.

  2. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

    PubMed Central

    Sellers, Eric W.; Wang, Xingyu

    2013-01-01

    Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331

  3. [Identification and genetic variability of annatto genotypes (Bixa orellana L.) by means of hydrosoluble proteins and isoenzymes].

    PubMed

    Medina, A M; Michelangeli, C; Ramis, C; Díaz, A

    2001-01-01

    In order to identify and to determine the genetic variability of 36 annatto genotypes (Bixa orellana L.) collected in five Venezuelan regions (Oriente, Centro, Llanos, Andes and Amazonas) and in Brazil, hydrosoluble protein patterns as well as specific isozyme patterns (alpha-esterase, beta-esterase and peroxidase) were studied using extracts of germinated annatto seeds with radicles of 10 to 15 mm long. Each electrophoretic system allowed genotype discrimination by means of unique banding patterns: both the hydrosoluble protein and the electrophoretic system of beta-esterase with nine banding patterns each; whilst alpha-esterase and peroxidase discriminated eight and three genotypes, respectively. On the other hand, a combination of all the systems permitted a greater discrimination since 34 out of 36 genotypes could be distinguished. Eight mayor groups were formed that showed high levels of genetic diversity (40 to 60%) with no association between geographic and genetic distances, probably because of human influence in the aleatory distribution of this crop. Results obtained indicated that using electrophoretic banding patterns, a classification system could be established for identification and genetic variability purposes in this species.

  4. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    NASA Technical Reports Server (NTRS)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  5. Scanning electron microscope automatic defect classification of process induced defects

    NASA Astrophysics Data System (ADS)

    Wolfe, Scott; McGarvey, Steve

    2017-03-01

    With the integration of high speed Scanning Electron Microscope (SEM) based Automated Defect Redetection (ADR) in both high volume semiconductor manufacturing and Research and Development (R and D), the need for reliable SEM Automated Defect Classification (ADC) has grown tremendously in the past few years. In many high volume manufacturing facilities and R and D operations, defect inspection is performed on EBeam (EB), Bright Field (BF) or Dark Field (DF) defect inspection equipment. A comma separated value (CSV) file is created by both the patterned and non-patterned defect inspection tools. The defect inspection result file contains a list of the inspection anomalies detected during the inspection tools' examination of each structure, or the examination of an entire wafers surface for non-patterned applications. This file is imported into the Defect Review Scanning Electron Microscope (DRSEM). Following the defect inspection result file import, the DRSEM automatically moves the wafer to each defect coordinate and performs ADR. During ADR the DRSEM operates in a reference mode, capturing a SEM image at the exact position of the anomalies coordinates and capturing a SEM image of a reference location in the center of the wafer. A Defect reference image is created based on the Reference image minus the Defect image. The exact coordinates of the defect is calculated based on the calculated defect position and the anomalies stage coordinate calculated when the high magnification SEM defect image is captured. The captured SEM image is processed through either DRSEM ADC binning, exporting to a Yield Analysis System (YAS), or a combination of both. Process Engineers, Yield Analysis Engineers or Failure Analysis Engineers will manually review the captured images to insure that either the YAS defect binning is accurately classifying the defects or that the DRSEM defect binning is accurately classifying the defects. This paper is an exploration of the feasibility of the utilization of a Hitachi RS4000 Defect Review SEM to perform Automatic Defect Classification with the objective of the total automated classification accuracy being greater than human based defect classification binning when the defects do not require multiple process step knowledge for accurate classification. The implementation of DRSEM ADC has the potential to improve the response time between defect detection and defect classification. Faster defect classification will allow for rapid response to yield anomalies that will ultimately reduce the wafer and/or the die yield.

  6. On the recognition of complex structures: Computer software using artificial intelligence applied to pattern recognition

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.

    1974-01-01

    An approach to simultaneous interpretation of objects in complex structures so as to maximize a combined utility function is presented. Results of the application of a computer software system to assign meaning to regions in a segmented image based on the principles described in this paper and on a special interactive sequential classification learning system, which is referenced, are demonstrated.

  7. Classification of skin cancer images using local binary pattern and SVM classifier

    NASA Astrophysics Data System (ADS)

    Adjed, Faouzi; Faye, Ibrahima; Ababsa, Fakhreddine; Gardezi, Syed Jamal; Dass, Sarat Chandra

    2016-11-01

    In this paper, a classification method for melanoma and non-melanoma skin cancer images has been presented using the local binary patterns (LBP). The LBP computes the local texture information from the skin cancer images, which is later used to compute some statistical features that have capability to discriminate the melanoma and non-melanoma skin tissues. Support vector machine (SVM) is applied on the feature matrix for classification into two skin image classes (malignant and benign). The method achieves good classification accuracy of 76.1% with sensitivity of 75.6% and specificity of 76.7%.

  8. A comparison of blood vessel features and local binary patterns for colorectal polyp classification

    NASA Astrophysics Data System (ADS)

    Gross, Sebastian; Stehle, Thomas; Behrens, Alexander; Auer, Roland; Aach, Til; Winograd, Ron; Trautwein, Christian; Tischendorf, Jens

    2009-02-01

    Colorectal cancer is the third leading cause of cancer deaths in the United States of America for both women and men. By means of early detection, the five year survival rate can be up to 90%. Polyps can to be grouped into three different classes: hyperplastic, adenomatous, and carcinomatous polyps. Hyperplastic polyps are benign and are not likely to develop into cancer. Adenomas, on the other hand, are known to grow into cancer (adenoma-carcinoma sequence). Carcinomas are fully developed cancers and can be easily distinguished from adenomas and hyperplastic polyps. A recent narrow band imaging (NBI) study by Tischendorf et al. has shown that hyperplastic polyps and adenomas can be discriminated by their blood vessel structure. We designed a computer-aided system for the differentiation between hyperplastic and adenomatous polyps. Our development aim is to provide the medical practitioner with an additional objective interpretation of the available image data as well as a confidence measure for the classification. We propose classification features calculated on the basis of the extracted blood vessel structure. We use the combined length of the detected blood vessels, the average perimeter of the vessels and their average gray level value. We achieve a successful classification rate of more than 90% on 102 polyps from our polyp data base. The classification results based on these features are compared to the results of Local Binary Patterns (LBP). The results indicate that the implemented features are superior to LBP.

  9. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

    PubMed Central

    Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André

    2016-01-01

    The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646

  10. Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition

    PubMed Central

    Koutsouleris, Nikolaos; Meisenzahl, Eva M.; Davatzikos, Christos; Bottlender, Ronald; Frodl, Thomas; Scheuerecker, Johanna; Schmitt, Gisela; Zetzsche, Thomas; Decker, Petra; Reiser, Maximilian; Möller, Hans-Jürgen; Gaser, Christian

    2014-01-01

    Context Identification of individuals at high risk of developing psychosis has relied on prodromal symptomatology. Recently, machine learning algorithms have been successfully used for magnetic resonance imaging–based diagnostic classification of neuropsychiatric patient populations. Objective To determine whether multivariate neuroanatomical pattern classification facilitates identification of individuals in different at-risk mental states (ARMS) of psychosis and enables the prediction of disease transition at the individual level. Design Multivariate neuroanatomical pattern classification was performed on the structural magnetic resonance imaging data of individuals in early or late ARMS vs healthy controls (HCs). The predictive power of the method was then evaluated by categorizing the baseline imaging data of individuals with transition to psychosis vs those without transition vs HCs after 4 years of clinical follow-up. Classification generalizability was estimated by cross-validation and by categorizing an independent cohort of 45 new HCs. Setting Departments of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany. Participants The first classification analysis included 20 early and 25 late at-risk individuals and 25 matched HCs. The second analysis consisted of 15 individuals with transition, 18 without transition, and 17 matched HCs. Main Outcome Measures Specificity, sensitivity, and accuracy of classification. Results The 3-group, cross-validated classification accuracies of the first analysis were 86% (HCs vs the rest), 91% (early at-risk individuals vs the rest), and 86% (late at-risk individuals vs the rest). The accuracies in the second analysis were 90% (HCs vs the rest), 88% (individuals with transition vs the rest), and 86% (individuals without transition vs the rest). Independent HCs were correctly classified in 96% (first analysis) and 93% (second analysis) of cases. Conclusions Different ARMSs and their clinical outcomes may be reliably identified on an individual basis by assessing patterns of whole-brain neuroanatomical abnormalities. These patterns may serve as valuable biomarkers for the clinician to guide early detection in the prodromal phase of psychosis. PMID:19581561

  11. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    PubMed

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  12. Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients.

    PubMed

    Lim, Jeong Uk; Lee, Jae Ha; Kim, Ju Sang; Hwang, Yong Il; Kim, Tae-Hyung; Lim, Seong Yong; Yoo, Kwang Ha; Jung, Ki-Suck; Kim, Young Kyoon; Rhee, Chin Kook

    2017-01-01

    A low body mass index (BMI) is associated with increased mortality and low health-related quality of life in patients with COPD. The Asia-Pacific classification of BMI has a lower cutoff for overweight and obese categories compared to the World Health Organization (WHO) classification. The present study assessed patients with COPD among different BMI categories according to two BMI classification systems: WHO and Asia-Pacific. Patients with COPD aged 40 years or older from the Korean COPD Subtype Study cohort were selected for evaluation. We enrolled 1,462 patients. Medical history including age, sex, St George's Respiratory Questionnaire (SGRQ-C), the modified Medical Research Council (mMRC) dyspnea scale, and post-bronchodilator forced expiratory volume in 1 second (FEV 1 ) were evaluated. Patients were categorized into different BMI groups according to the two BMI classification systems. FEV 1 and the diffusing capacity of the lung for carbon monoxide (DLCO) percentage revealed an inverse "U"-shaped pattern as the BMI groups changed from underweight to obese when WHO cutoffs were applied. When Asia-Pacific cutoffs were applied, FEV 1 and DLCO (%) exhibited a linearly ascending relationship as the BMI increased, and the percentage of patients in the overweight and obese groups linearly decreased with increasing severity of the Global Initiative for Chronic Obstructive Lung Disease criteria. From the underweight to the overweight groups, SGRQ-C and mMRC had a decreasing relationship in both the WHO and Asia-Pacific classifications. The prevalence of comorbidities in the different BMI groups showed similar trends in both BMI classifications systems. The present study demonstrated that patients with COPD who have a high BMI have better pulmonary function and health-related quality of life and reduced dyspnea symptoms. Furthermore, the Asia-Pacific BMI classification more appropriately reflects the correlation of obesity and disease manifestation in Asian COPD patients than the WHO classification.

  13. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  14. Ecoregions as a level of ecological analysis

    USGS Publications Warehouse

    Wright, R.G.; Murray, M.P.; Merrill, T.

    1998-01-01

    There have been many attempts to classify geographic areas into zones of similar characteristics. Recent focus has been on ecoregions. We examined how well the boundaries of the most commonly used ecoregion classifications for the US matched the boundaries of existing vegetation cover mapped at three levels of classification, fine, mid- and coarse scale. We analyzed ecoregions in Idaho, Oregon and Washington. The results were similar among the two ecoregion classifications. For both ecoregion delineations and all three vegetation classifications, the patterns of existing vegetation did not correspond well with the patterns of ecoregions. Most vegetation types had a small proportion of their total area in a given ecoregion. There was also no dominance by one or more vegetation types in any ecoregion and contrary to our hypothesis, the level of congruence of vegetation patterns with ecoregion boundaries decreased as the level of classification became more general. The implications of these findings on the use of ecoregions as a planning tool and in the development of land conservation efforts are discussed.

  15. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia

    PubMed Central

    Kim, Junghoe; Calhoun, Vince D.; Shim, Eunsoo; Lee, Jong-Hwan

    2015-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. PMID:25987366

  16. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size,more » anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78.8% classification accuracy and outperformed the WND-CHARM system (64.2%). Conclusions: The SDM is well suited for the classification of TB texture images in knee OA detection and may be useful for the texture classification of medical images in general.« less

  17. Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.

    PubMed

    Lee, Dongha; Jang, Changwon; Park, Hae-Jeong

    2015-03-01

    Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A developmental and genetic classification for midbrain-hindbrain malformations

    PubMed Central

    Millen, Kathleen J.; Dobyns, William B.

    2009-01-01

    Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered. PMID:19933510

  19. Evaluating the NOAA Coastal and Marine Ecological Classification Standard in estuarine systems: A Columbia River Estuary case study

    NASA Astrophysics Data System (ADS)

    Keefer, Matthew L.; Peery, Christopher A.; Wright, Nancy; Daigle, William R.; Caudill, Christopher C.; Clabough, Tami S.; Griffith, David W.; Zacharias, Mark A.

    2008-06-01

    A common first step in conservation planning and resource management is to identify and classify habitat types, and this has led to a proliferation of habitat classification systems. Ideally, classifications should be scientifically and conceptually rigorous, with broad applicability across spatial and temporal scales. Successful systems will also be flexible and adaptable, with a framework and supporting lexicon accessible to users from a variety of disciplines and locations. A new, continental-scale classification system for coastal and marine habitats—the Coastal and Marine Ecological Classification Standard (CMECS)—is currently being developed for North America by NatureServe and the National Oceanic and Atmospheric Administration (NOAA). CMECS is a nested, hierarchical framework that applies a uniform set of rules and terminology across multiple habitat scales using a combination of oceanographic (e.g. salinity, temperature), physiographic (e.g. depth, substratum), and biological (e.g. community type) criteria. Estuaries are arguably the most difficult marine environments to classify due to large spatio-temporal variability resulting in rapidly shifting benthic and water column conditions. We simultaneously collected data at eleven subtidal sites in the Columbia River Estuary (CRE) in fall 2004 to evaluate whether the estuarine component of CMECS could adequately classify habitats across several scales for representative sites within the estuary spanning a range of conditions. Using outputs from an acoustic Doppler current profiler (ADCP), CTD (conductivity, temperature, depth) sensor, and PONAR (benthic dredge) we concluded that the CMECS hierarchy provided a spatially explicit framework in which to integrate multiple parameters to define macro-habitats at the 100 m 2 to >1000 m 2 scales, or across several tiers of the CMECS system. The classification's strengths lie in its nested, hierarchical structure and in the development of a standardized, yet flexible classification lexicon. The application of the CMECS to other estuaries in North America should therefore identify similar habitat types at similar scales as we identified in the CRE. We also suggest that the CMECS could be improved by refining classification thresholds to better reflect ecological processes, by direct integration of temporal variability, and by more explicitly linking physical and biological processes with habitat patterns.

  20. Analysis of the hand vein pattern for people recognition

    NASA Astrophysics Data System (ADS)

    Castro-Ortega, R.; Toxqui-Quitl, C.; Cristóbal, G.; Marcos, J. Victor; Padilla-Vivanco, A.; Hurtado Pérez, R.

    2015-09-01

    The shape of the hand vascular pattern contains useful and unique features that can be used for identifying and authenticating people, with applications in access control, medicine and financial services. In this work, an optical system for the image acquisition of the hand vascular pattern is implemented. It consists of a CCD camera with sensitivity in the IR and a light source with emission in the 880 nm. The IR radiation interacts with the desoxyhemoglobin, hemoglobin and water present in the blood of the veins, making possible to see the vein pattern underneath skin. The segmentation of the Region Of Interest (ROI) is achieved using geometrical moments locating the centroid of an image. For enhancement of the vein pattern we use the technique of Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE). In order to remove unnecessary information such as body hair and skinfolds, a low pass filter is implemented. A method based on geometric moments is used to obtain the invariant descriptors of the input images. The classification task is achieved using Artificial Neural Networks (ANN) and K-Nearest Neighbors (K-nn) algorithms. Experimental results using our database show a percentage of correct classification, higher of 86.36% with ANN for 912 images of 38 people with 12 versions each one.

  1. Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing-A Cost-Effective Approach.

    PubMed

    Jiang, Nanfeng; Song, Weiran; Wang, Hui; Guo, Gongde; Liu, Yuanyuan

    2018-05-23

    As the expectation for higher quality of life increases, consumers have higher demands for quality food. Food authentication is the technical means of ensuring food is what it says it is. A popular approach to food authentication is based on spectroscopy, which has been widely used for identifying and quantifying the chemical components of an object. This approach is non-destructive and effective but expensive. This paper presents a computer vision-based sensor system for food authentication, i.e., differentiating organic from non-organic apples. This sensor system consists of low-cost hardware and pattern recognition software. We use a flashlight to illuminate apples and capture their images through a diffraction grating. These diffraction images are then converted into a data matrix for classification by pattern recognition algorithms, including k -nearest neighbors ( k -NN), support vector machine (SVM) and three partial least squares discriminant analysis (PLS-DA)- based methods. We carry out experiments on a reasonable collection of apple samples and employ a proper pre-processing, resulting in a highest classification accuracy of 94%. Our studies conclude that this sensor system has the potential to provide a viable solution to empower consumers in food authentication.

  2. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    PubMed

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  3. Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal Cancer Detection

    PubMed Central

    Regeling, Bianca; Thies, Boris; Gerstner, Andreas O. H.; Westermann, Stephan; Müller, Nina A.; Bendix, Jörg; Laffers, Wiebke

    2016-01-01

    Hyperspectral imaging (HSI) is increasingly gaining acceptance in the medical field. Up until now, HSI has been used in conjunction with rigid endoscopy to detect cancer in vivo. The logical next step is to pair HSI with flexible endoscopy, since it improves access to hard-to-reach areas. While the flexible endoscope’s fiber optic cables provide the advantage of flexibility, they also introduce an interfering honeycomb-like pattern onto images. Due to the substantial impact this pattern has on locating cancerous tissue, it must be removed before the HS data can be further processed. Thereby, the loss of information is to minimize avoiding the suppression of small-area variations of pixel values. We have developed a system that uses flexible endoscopy to record HS cubes of the larynx and designed a special filtering technique to remove the honeycomb-like pattern with minimal loss of information. We have confirmed its feasibility by comparing it to conventional filtering techniques using an objective metric and by applying unsupervised and supervised classifications to raw and pre-processed HS cubes. Compared to conventional techniques, our method successfully removes the honeycomb-like pattern and considerably improves classification performance, while preserving image details. PMID:27529255

  4. Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal Cancer Detection.

    PubMed

    Regeling, Bianca; Thies, Boris; Gerstner, Andreas O H; Westermann, Stephan; Müller, Nina A; Bendix, Jörg; Laffers, Wiebke

    2016-08-13

    Hyperspectral imaging (HSI) is increasingly gaining acceptance in the medical field. Up until now, HSI has been used in conjunction with rigid endoscopy to detect cancer in vivo. The logical next step is to pair HSI with flexible endoscopy, since it improves access to hard-to-reach areas. While the flexible endoscope's fiber optic cables provide the advantage of flexibility, they also introduce an interfering honeycomb-like pattern onto images. Due to the substantial impact this pattern has on locating cancerous tissue, it must be removed before the HS data can be further processed. Thereby, the loss of information is to minimize avoiding the suppression of small-area variations of pixel values. We have developed a system that uses flexible endoscopy to record HS cubes of the larynx and designed a special filtering technique to remove the honeycomb-like pattern with minimal loss of information. We have confirmed its feasibility by comparing it to conventional filtering techniques using an objective metric and by applying unsupervised and supervised classifications to raw and pre-processed HS cubes. Compared to conventional techniques, our method successfully removes the honeycomb-like pattern and considerably improves classification performance, while preserving image details.

  5. Optimization of Classification Strategies of Acetowhite Temporal Patterns towards Improving Diagnostic Performance of Colposcopy

    PubMed Central

    Acosta-Mesa, Héctor Gabriel; Cruz-Ramírez, Nicandro; Hernández-Jiménez, Rodolfo

    2017-01-01

    Efforts have been being made to improve the diagnostic performance of colposcopy, trying to help better diagnose cervical cancer, particularly in developing countries. However, improvements in a number of areas are still necessary, such as the time it takes to process the full digital image of the cervix, the performance of the computing systems used to identify different kinds of tissues, and biopsy sampling. In this paper, we explore three different, well-known automatic classification methods (k-Nearest Neighbors, Naïve Bayes, and C4.5), in addition to different data models that take full advantage of this information and improve the diagnostic performance of colposcopy based on acetowhite temporal patterns. Based on the ROC and PRC area scores, the k-Nearest Neighbors and discrete PLA representation performed better than other methods. The values of sensitivity, specificity, and accuracy reached using this method were 60% (95% CI 50–70), 79% (95% CI 71–86), and 70% (95% CI 60–80), respectively. The acetowhitening phenomenon is not exclusive to high-grade lesions, and we have found acetowhite temporal patterns of epithelial changes that are not precancerous lesions but that are similar to positive ones. These findings need to be considered when developing more robust computing systems in the future. PMID:28744318

  6. Mapping, classification, and spatial variation of hardbottom habitats in the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kingon, Kelly

    This dissertation starts by evaluating the applicability of using a commercially available, cost-effective, sidescan sonar system to detect benthic habitats, in particular hardbottom habitats, in the nearshore northeastern Gulf of Mexico. To illustrate the capability of low-cost devices in mapping benthic habitats, I tested the Humminbird 997c SI unit marketed to fishermen at a cost of approximately 2,000. Methodological approaches to effectively capture and process the Humminbird sidescan imagery were developed. Humminbird sidescan data from three sites were compared to overlapping sidescan imagery acquired by the National Marine Fisheries Service using a standard, much more expensive (˜20,000) Marine Sonic system. This analysis verified that the classification results of sand and hardbottom habitats based on data collected using the Humminbird sidescan system were similar to those produced using the traditional and more expensive Marine Sonic sidescan equipment. Thirty-three sites in total were then mapped with the Humminbird system and sampled using dive surveys. Seascape pattern metrics were calculated from the classified Humminbird sidescan maps. The dive survey data included measurements of the geomorphology, physical attributes of the water column (e.g. temperature, depth, and visibility), and coverage and heights of the benthic biota. The coverage and heights of the biota were compared to the geomorphology, seascape, and water column variables to identify patterns in the distribution and community composition of the sessile organisms. Within the study area, visibility was found to vary with longitude. Sites in the east showed higher visibility than sites in the west and this may be driving the community patterns that were identified. Relationships were identified between the four most abundant taxa (sponges, hard corals, brown algae, and red algae) and the geomorphology, physical, and seascape variables. However, the relationships were often complicated and the biota did not strictly follow gradients or boundaries in substrate or geoform (physical feature or landform), even though these features are often used to classify habitats and biotopes. The percent cover of rock was a significant geomorphology variable for red algae and hard coral coverage while geoforms were related to the heights of sponges and brown algae. Seascape metrics also had significant effects on the sessile biota particularly related to patch edges, heterogeneity, core areas, nearest neighbor distances, and the percent cover of hardbottom. Despite the fact that sessile organisms do not move much, if at all following their planktonic larval stage, the surrounding seascape contributes to the patterns we see in their distribution, coverage, and heights. The third chapter focuses on applying a new classification standard to the benthic habitats in the nearshore northeastern Gulf of Mexico. The United States Geological Survey (USGS) has a standardized system for classifying terrestrial and aquatic habitats found across the U.S. which has been in place for almost 40 years. This classification standard does not include marine and most coastal habitats. Therefore, marine researchers developed a number of classification systems for coastal and marine habitats relevant to their local or regional studies in U.S. waters. A national standardized method for classifying marine and coastal habitats was not adopted until recently. The Coastal and Marine Ecological Classification Standard (CMECS) developed by the Federal Geographic Data Committee was approved last year and is intended to fill the gap in U.S. marine habitat classification standards. Since the classification standard is in its infancy, it has not been applied in many geographic areas. My third chapter is the first study to apply the CMECS to the benthic habitats in the nearshore northeastern Gulf of Mexico off the coast of northwest Florida. Hardbottom and sand habitats are characteristic of this area. In the previous chapter, the underwater surveys revealed that the dominant taxa at the sites within the study area were hard corals, sponges, and macroalgae. I used CMECS to broadly classify the sites where the surveys were completed. I found that habitat heterogeneity and a wide variety of environmental characteristics influenced the distribution of taxa at the local scale. This made applying CMECS at scales finer than the composite study area unfeasible without major modifications. CMECS worked well for classifying the broad scale in this region but was not appropriate for classifying complex fine-scale biotopes. (Abstract shortened by UMI.)

  7. An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images.

    PubMed

    Shanthi, C; Pappa, N

    2017-05-01

    Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Automatic identification of bird targets with radar via patterns produced by wing flapping.

    PubMed

    Zaugg, Serge; Saporta, Gilbert; van Loon, Emiel; Schmaljohann, Heiko; Liechti, Felix

    2008-09-06

    Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.

  9. The Effect of Involuntary Motor Activity on Myoelectric Pattern Recognition: A Case Study with Chronic Stroke Patients

    PubMed Central

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping

    2013-01-01

    This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192

  10. Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification

    PubMed Central

    Xi, Jinxiang; Zhao, Weizhong; Yuan, Jiayao Eddie; Kim, JongWon; Si, Xiuhua; Xu, Xiaowei

    2015-01-01

    Background Each lung structure exhales a unique pattern of aerosols, which can be used to detect and monitor lung diseases non-invasively. The challenges are accurately interpreting the exhaled aerosol fingerprints and quantitatively correlating them to the lung diseases. Objective and Methods In this study, we presented a paradigm of an exhaled aerosol test that addresses the above two challenges and is promising to detect the site and severity of lung diseases. This paradigm consists of two steps: image feature extraction using sub-regional fractal analysis and data classification using a support vector machine (SVM). Numerical experiments were conducted to evaluate the feasibility of the breath test in four asthmatic lung models. A high-fidelity image-CFD approach was employed to compute the exhaled aerosol patterns under different disease conditions. Findings By employing the 10-fold cross-validation method, we achieved 100% classification accuracy among four asthmatic models using an ideal 108-sample dataset and 99.1% accuracy using a more realistic 324-sample dataset. The fractal-SVM classifier has been shown to be robust, highly sensitive to structural variations, and inherently suitable for investigating aerosol-disease correlations. Conclusion For the first time, this study quantitatively linked the exhaled aerosol patterns with their underlying diseases and set the stage for the development of a computer-aided diagnostic system for non-invasive detection of obstructive respiratory diseases. PMID:26422016

  11. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  12. Bath salts and synthetic cathinones: An emerging designer drug phenomenon

    PubMed Central

    German, Christopher L.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    The synthetic cathinones are an emerging class of designer drugs abused for psychostimulant and hallucinogenic effects similar to cocaine, methylenedioxymethamphetamine (MDMA), or other amphetamines. Abuse of synthetic cathinones, frequently included in products sold as ‘bath salts’, became prevalent in early 2009, leading to legislative classification throughout Europe in 2010 and schedule I classification within the United States in 2011. Recent pre-clinical and clinical studies indicate dysregulation of central monoamine systems are a principal mechanism of synthetic cathinone action and presumably underlie the behavioral effects and abuse liability associated with these drugs. This review provides insight into the development of synthetic cathinones as substances of abuse, current patterns of their abuse, known mechanisms of their action and toxicology, and the benefits and drawbacks of their classification. PMID:23911668

  13. A novel collaborative representation and SCAD based classification method for fibrosis and inflammatory activity analysis of chronic hepatitis C

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxin; Chen, Tingting; Li, Yan; Zhu, Nenghui; Qiu, Xuan

    2018-03-01

    In order to analysis the fibrosis stage and inflammatory activity grade of chronic hepatitis C, a novel classification method based on collaborative representation (CR) with smoothly clipped absolute deviation penalty (SCAD) penalty term, called CR-SCAD classifier, is proposed for pattern recognition. After that, an auto-grading system based on CR-SCAD classifier is introduced for the prediction of fibrosis stage and inflammatory activity grade of chronic hepatitis C. The proposed method has been tested on 123 clinical cases of chronic hepatitis C based on serological indexes. Experimental results show that the performance of the proposed method outperforms the state-of-the-art baselines for the classification of fibrosis stage and inflammatory activity grade of chronic hepatitis C.

  14. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Predicting plant species diversity in a longleaf pine landscape

    Treesearch

    L. Katherine Kirkman; P. Charles Goebel; Brian J. Palik; Larry T. West

    2004-01-01

    In this study, we used a hierarchical, multifactor ecological classification system to examine how spatial patterns of biodiversity develop in one of the most species-rich ecosystems in North America, the fire-maintained longleaf pine-wiregrass ecosystem and associated depressional wetlands and riparian forests. Our goal was to determine which landscape features are...

  16. Moving through the Organization: A Field Study Assessment of the Patron System.

    ERIC Educational Resources Information Center

    DeWine, Sue; And Others

    A study examined the communication patterns of the mentor-protege relationship and its impact on the organizational advancement of women. In-depth interviews were conducted with 30 women representing two broad job classifications--professional (those in business for themselves) and corporate/organizational (those who were part of some business…

  17. Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review

    PubMed Central

    Gander, Manuela; Buchheim, Anna

    2015-01-01

    In recent years research on physiological response and frontal electroencephalographic (EEG) asymmetry in different patterns of infant and adult attachment has increased. We review research findings regarding associations between attachment classifications and frontal EEG asymmetry, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenocortical axis (HPA). Studies indicate that insecure attachment is related to a heightened adrenocortical activity, heart rate and skin conductance in response to stress, which is consistent with the hypothesis that attachment insecurity leads to impaired emotion regulation. Research on frontal EEG asymmetry also shows a clear difference in the emotional arousal between the attachment groups evidenced by specific frontal asymmetry changes. Furthermore, we discuss neurophysiological evidence of attachment organization and present up-to-date findings of EEG-research with adults. Based on the overall patterns of results presented in this article we identify some major areas of interest and directions for future research. PMID:25745393

  18. Multiscale patterns in the diversity and organization of benthic intertidal fauna among French Atlantic estuaries

    NASA Astrophysics Data System (ADS)

    Blanchet, Hugues; Gouillieux, Benoît; Alizier, Sandrine; Amouroux, Jean-Michel; Bachelet, Guy; Barillé, Anne-Laure; Dauvin, Jean-Claude; de Montaudouin, Xavier; Derolez, Valérie; Desroy, Nicolas; Grall, Jacques; Grémare, Antoine; Hacquebart, Pascal; Jourde, Jérôme; Labrune, Céline; Lavesque, Nicolas; Meirland, Alain; Nebout, Thiebaut; Olivier, Frédéric; Pelaprat, Corine; Ruellet, Thierry; Sauriau, Pierre-Guy; Thorin, Sébastien

    2014-07-01

    Based on a parallel sampling conducted during autumn 2008, a comparative study of the intertidal benthic macrofauna among 10 estuarine systems located along the Channel and Atlantic coasts of France was performed in order to assess the level of fauna similarity among these sites and to identify possible environmental factors involved in the observed pattern at both large (among sites) and smaller (benthic assemblages) scales. More precisely this study focused on unraveling the observed pattern of intertidal benthic fauna composition and diversity observed at among-site scale by exploring both biotic and abiotic factors acting at the among- and within-site scales. Results showed a limited level of similarity at the among-site level in terms of intertidal benthic fauna composition and diversity. The observed pattern did not fit with existing transitional water classification methods based on fish or benthic assemblages developed in the frame of the European Water Framework Directive (WFD). More particularly, the coastal plain estuaries displayed higher among-site similarity compared to ria systems. These coastal plain estuaries were characterized by higher influence of river discharge, lower communication with the ocean and high suspended particulate matter levels. On the other hand, the ria-type systems were more dissimilar and different from the coastal plain estuaries. The level of similarity among estuaries was mainly linked to the relative extent of the intertidal "Scrobicularia plana-Cerastoderma edule" and "Tellina tenuis" or "Venus" communities as a possible consequence of salinity regime, suspended matter concentrations and fine particles supply with consequences on the trophic functioning, structure and organization of benthic fauna. Despite biogeographical patterns, the results also suggest that, in the context of the WFD, these estuaries should only be compared on the basis of the most common intertidal habitat occurring throughout all estuarine systems and that the EUNIS biotope classification might be used for this purpose. In addition, an original inverse relation between γ-diversity and area was shown; however, its relevance might be questioned.

  19. A low-cost machine vision system for the recognition and sorting of small parts

    NASA Astrophysics Data System (ADS)

    Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.

    2018-04-01

    An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.

  20. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 2, March/April 2010

    DTIC Science & Technology

    2010-04-01

    SDLC phase. 4. Developing secure software depends on understanding the operational con- text in which it will be used. This con- text includes... its development . BSI leverages the Common Weakness Enumeration (CWE) and the Common Attack Pattern Enumeration and Classification (CAPEC) efforts. To...system integrators providing sys- tems (both IT and warfighting) to the Concept Refinement Technology Development System Development and

  1. Genie: An Inference Engine with Applications to Vulnerability Analysis.

    DTIC Science & Technology

    1986-06-01

    Stanford Artifcial intelligence Laboratory, 1976. 15 D. A. Waterman and F. Hayes-Roth, eds. Pattern-Directed Inference Systems. Academic Press, Inc...Continue an reverse aide It nlecessary mid Identify by block rnmbor) ; f Expert Systems Artificial Intelligence % Vulnerability Analysis Knowledge...deduction it is used wherever possible in data -driven mode (forward chaining). Production rules - JIM 0 g79OOFMV55@S I INCLASSTpnF SECURITY CLASSIFICATION OF

  2. A robust probabilistic collaborative representation based classification for multimodal biometrics

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli

    2018-04-01

    Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.

  3. A new set of wavelet- and fractals-based features for Gleason grading of prostate cancer histopathology images

    NASA Astrophysics Data System (ADS)

    Mosquera Lopez, Clara; Agaian, Sos

    2013-02-01

    Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.

  4. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  5. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  6. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  7. Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds

    NASA Astrophysics Data System (ADS)

    Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert

    2014-06-01

    Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.

  8. Changing the diagnostic criteria for myocardial infarction in patients with a suspected heart attack affects the measurement of 30 day mortality but not long term survival

    PubMed Central

    Packham, C; Gray, D; Weston, C; Large, A; Silcocks, P; Hampton, J

    2002-01-01

    Objectives: To explore the effects of alternative methods of defining myocardial infarction on the numbers and survival patterns of patients identified as having sustained a confirmed myocardial infarct. Design: An inclusive historical cohort of patients admitted with a suspected heart attack. Patients were recoded from raw clinical data (collected at the index admission) to the epidemiological definitions of myocardial infarction used by the Nottingham heart attack register (NHAR), the World Health Organization (MONICA), and the UK heart attack study. Setting: Single health district. Patients: The NHAR identified all patients admitted in 1992 with suspected myocardial infarction. Outcome measures: Survival at 30 days and four year postdischarge. Results: 2739 patients were identified, of whom 90% survived to discharge. Recoding increased the numbers of patients defined as having confirmed myocardial infarction from 26% under the original NHAR classification to 69%, depending on the classification system used. In confirmed myocardial infarction, subsequent 30 day survival from admission varied from 77–86% depending on the classification system; four year survival after discharge was not affected. The distribution of important prognostic variables differed significantly between groups of patients with confirmed myocardial infarction defined by different systems. Patients with suspected but unconfirmed myocardial infarction under all classification systems had a worse postdischarge mortality. Conclusions: The classification system used had a substantial effect on the numbers of patients identified as having had a myocardial infarct, and on the 30 day survival. There were significant numbers of patients with more atypical presentations, not labelled as myocardial infarction, who did badly following discharge. More research is needed on these patients. PMID:12231586

  9. Automatic classification of background EEG activity in healthy and sick neonates

    NASA Astrophysics Data System (ADS)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  10. Perceptrons and Pattern Recognition

    DTIC Science & Technology

    1967-09-01

    invariant ~isual patterns. Rosenblatt, F •. , !t_i~ip_les of Neurodynamics , Spartan Books, 1962. Introg~ces and discusses many parallel-network...classification ;of the patterns -th~selves, and their r~ cognition by per~eptrons. It· would b~ too much to ask for an absolute classification of "patt~’""’ls...function-of the level of existing cognitive structure. 0.5 Seductive Aspects of Perceptro~a, II: Parallel Computation The perceptron was conceived

  11. Foot-strike pattern and performance in a marathon.

    PubMed

    Kasmer, Mark E; Liu, Xue-Cheng; Roberts, Kyle G; Valadao, Jason M

    2013-05-01

    To determine prevalence of heel strike in a midsize city marathon, if there is an association between foot-strike classification and race performance, and if there is an association between foot-strike classification and gender. Foot-strike classification (forefoot, midfoot, heel, or split strike), gender, and rank (position in race) were recorded at the 8.1-km mark for 2112 runners at the 2011 Milwaukee Lakefront Marathon. 1991 runners were classified by foot-strike pattern, revealing a heel-strike prevalence of 93.67% (n = 1865). A significant difference between foot-strike classification and performance was found using a Kruskal-Wallis test (P < .0001), with more elite performers being less likely to heel strike. No significant difference between foot-strike classification and gender was found using a Fisher exact test. In addition, subgroup analysis of the 126 non-heel strikers found no significant difference between shoe wear and performance using a Kruskal-Wallis test. The high prevalence of heel striking observed in this study reflects the foot-strike pattern of most mid-distance to long-distance runners and, more important, may predict their injury profile based on the biomechanics of a heel-strike running pattern. This knowledge can help clinicians appropriately diagnose, manage, and train modifications of injured runners.

  12. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    PubMed Central

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6∼8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3∼5 pattern classes considering the trade-off between time consumption and classification rate. PMID:22736979

  13. Similarity-dissimilarity plot for visualization of high dimensional data in biomedical pattern classification.

    PubMed

    Arif, Muhammad

    2012-06-01

    In pattern classification problems, feature extraction is an important step. Quality of features in discriminating different classes plays an important role in pattern classification problems. In real life, pattern classification may require high dimensional feature space and it is impossible to visualize the feature space if the dimension of feature space is greater than four. In this paper, we have proposed a Similarity-Dissimilarity plot which can project high dimensional space to a two dimensional space while retaining important characteristics required to assess the discrimination quality of the features. Similarity-dissimilarity plot can reveal information about the amount of overlap of features of different classes. Separable data points of different classes will also be visible on the plot which can be classified correctly using appropriate classifier. Hence, approximate classification accuracy can be predicted. Moreover, it is possible to know about whom class the misclassified data points will be confused by the classifier. Outlier data points can also be located on the similarity-dissimilarity plot. Various examples of synthetic data are used to highlight important characteristics of the proposed plot. Some real life examples from biomedical data are also used for the analysis. The proposed plot is independent of number of dimensions of the feature space.

  14. Recurrent Coupling Improves Discrimination of Temporal Spike Patterns

    PubMed Central

    Yuan, Chun-Wei; Leibold, Christian

    2012-01-01

    Despite the ubiquitous presence of recurrent synaptic connections in sensory neuronal systems, their general functional purpose is not well understood. A recent conceptual advance has been achieved by theories of reservoir computing in which recurrent networks have been proposed to generate short-term memory as well as to improve neuronal representation of the sensory input for subsequent computations. Here, we present a numerical study on the distinct effects of inhibitory and excitatory recurrence in a canonical linear classification task. It is found that both types of coupling improve the ability to discriminate temporal spike patterns as compared to a purely feed-forward system, although in different ways. For a large class of inhibitory networks, the network’s performance is optimal as long as a fraction of roughly 50% of neurons per stimulus is active in the resulting population code. Thereby the contribution of inactive neurons to the neural code is found to be even more informative than that of the active neurons, generating an inherent robustness of classification performance against temporal jitter of the input spikes. Excitatory couplings are found to not only produce a short-term memory buffer but also to improve linear separability of the population patterns by evoking more irregular firing as compared to the purely inhibitory case. As the excitatory connectivity becomes more sparse, firing becomes more variable, and pattern separability improves. We argue that the proposed paradigm is particularly well-suited as a conceptual framework for processing of sensory information in the auditory pathway. PMID:22586392

  15. Neuromuscular disease classification system

    NASA Astrophysics Data System (ADS)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  16. Moisture source classification of heavy precipitation events in Switzerland in the last 130 years (1871-2011)

    NASA Astrophysics Data System (ADS)

    Aemisegger, Franziska; Piaget, Nicolas

    2017-04-01

    A new weather-system oriented classification framework of extreme precipitation events leading to large-scale floods in Switzerland is presented on this poster. Thirty-six high impact floods in the last 130 years are assigned to three representative categories of atmospheric moisture origin and transport patterns. The methodology underlying this moisture source classification combines information of the airmass history in the twenty days preceding the precipitation event with humidity variations along the large-scale atmospheric transport systems in a Lagrangian approach. The classification scheme is defined using the 33-year ERA-Interim reanalysis dataset (1979-2011) and is then applied to the Twentieth Century Reanalysis (1871-2011) extreme precipitation events as well as the 36 selected floods. The three defined categories are characterised by different dominant moisture uptake regions including the North Atlantic, the Mediterranean and continental Europe. Furthermore, distinct anomalies in the large-scale atmospheric flow are associated with the different categories. The temporal variations in the relative importance of the three categories over the last 130 years provides new insights into the impact of changing climate conditions on the dynamical mechanisms leading to heavy precipitation in Switzerland.

  17. The DTW-based representation space for seismic pattern classification

    NASA Astrophysics Data System (ADS)

    Orozco-Alzate, Mauricio; Castro-Cabrera, Paola Alexandra; Bicego, Manuele; Londoño-Bonilla, John Makario

    2015-12-01

    Distinguishing among the different seismic volcanic patterns is still one of the most important and labor-intensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias by using automatic classification techniques. In this context, a core but often overlooked issue is the choice of an appropriate representation of the data to be classified. Recently, it has been suggested that using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the relational information contained in the dissimilarities to derive highly discriminant vector spaces, where any classifier can be used. According to that motivation, this paper investigates the suitability of a dynamic time warping (DTW) dissimilarity-based vector representation for the classification of seismic patterns. Results show the usefulness of such a representation in the seismic pattern classification scenario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm such as the proper selection of representation sets and the combination of different dissimilarity representations that might be available for the same data.

  18. Refining Time-Activity Classification of Human Subjects Using the Global Positioning System

    PubMed Central

    Hu, Maogui; Li, Wei; Li, Lianfa; Houston, Douglas; Wu, Jun

    2016-01-01

    Background Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. Methods Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. Results Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. Conclusions The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations. PMID:26919723

  19. Structure-based classification and ontology in chemistry

    PubMed Central

    2012-01-01

    Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research. PMID:22480202

  20. Cloud Classification in Polar and Desert Regions and Smoke Classification from Biomass Burning Using a Hierarchical Neural Network

    NASA Technical Reports Server (NTRS)

    Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald

    1996-01-01

    This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.

  1. Principles of soil mapping of a megalopolis with St. Petersburg as an example

    NASA Astrophysics Data System (ADS)

    Aparin, B. F.; Sukhacheva, E. Yu.

    2014-07-01

    For the first time, a soil map of St. Petersburg has been developed on a scale of 1 : 50000 using MicroStation V8i software. The legend to this map contains more than 60 mapping units. The classification of urban soils and information on the soil cover patterns are principally new elements of this legend. New concepts of the urbanized soil space and urbopedocombinations have been suggested for soil mapping of urban territories. The typification of urbopedocombinations in St. Petersburg has been performed on the basis of data on the geometry and composition of the polygons of soils and nonsoil formations. The ratio between the areas of soils and nonsoil formations and their spatial distribution patterns have been used to distinguish between six types of the urbanized soil space. The principles of classification of the soils of urban territories have been specified, and a separate order of pedo-allochthonous soils has been suggested for inclusion into the Classification and Diagnostic System of Russian Soils (2004). Six types of pedo-allochthonous soils have been distinguished on the basis of data on their humus and organic horizons and the character of the underlying mineral substrate.

  2. Data Analytics for Smart Parking Applications.

    PubMed

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-09-23

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.

  3. Data Analytics for Smart Parking Applications

    PubMed Central

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-01-01

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset. PMID:27669259

  4. A fuzzy decision tree for fault classification.

    PubMed

    Zio, Enrico; Baraldi, Piero; Popescu, Irina C

    2008-02-01

    In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.

  5. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  6. A scheme for a flexible classification of dietary and health biomarkers.

    PubMed

    Gao, Qian; Praticò, Giulia; Scalbert, Augustin; Vergères, Guy; Kolehmainen, Marjukka; Manach, Claudine; Brennan, Lorraine; Afman, Lydia A; Wishart, David S; Andres-Lacueva, Cristina; Garcia-Aloy, Mar; Verhagen, Hans; Feskens, Edith J M; Dragsted, Lars O

    2017-01-01

    Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.

  7. Functional classification of pulmonary hypertension in children: Report from the PVRI pediatric taskforce, Panama 2011.

    PubMed

    Lammers, Astrid E; Adatia, Ian; Cerro, Maria Jesus Del; Diaz, Gabriel; Freudenthal, Alexandra Heath; Freudenthal, Franz; Harikrishnan, S; Ivy, Dunbar; Lopes, Antonio A; Raj, J Usha; Sandoval, Julio; Stenmark, Kurt; Haworth, Sheila G

    2011-08-02

    The members of the Pediatric Task Force of the Pulmonary Vascular Research Institute (PVRI) were aware of the need to develop a functional classification of pulmonary hypertension in children. The proposed classification follows the same pattern and uses the same criteria as the Dana Point pulmonary hypertension specific classification for adults. Modifications were necessary for children, since age, physical growth and maturation influences the way in which the functional effects of a disease are expressed. It is essential to encapsulate a child's clinical status, to make it possible to review progress with time as he/she grows up, as consistently and as objectively as possible. Particularly in younger children we sought to include objective indicators such as thriving, need for supplemental feeds and the record of school or nursery attendance. This helps monitor the clinical course of events and response to treatment over the years. It also facilitates the development of treatment algorithms for children. We present a consensus paper on a functional classification system for children with pulmonary hypertension, discussed at the Annual Meeting of the PVRI in Panama City, February 2011.

  8. A Visual Basic program to plot sediment grain-size data on ternary diagrams

    USGS Publications Warehouse

    Poppe, L.J.; Eliason, A.H.

    2008-01-01

    Sedimentologic datasets are typically large and compiled into tables or databases, but pure numerical information can be difficult to understand and interpret. Thus, scientists commonly use graphical representations to reduce complexities, recognize trends and patterns in the data, and develop hypotheses. Of the graphical techniques, one of the most common methods used by sedimentologists is to plot the basic gravel, sand, silt, and clay percentages on equilateral triangular diagrams. This means of presenting data is simple and facilitates rapid classification of sediments and comparison of samples.The original classification scheme developed by Shepard (1954) used a single ternary diagram with sand, silt, and clay in the corners and 10 categories to graphically show the relative proportions among these three grades within a sample. This scheme, however, did not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme was later modified by the addition of a second ternary diagram with two categories to account for gravel and gravelly sediment (Schlee, 1973). The system devised by Folk (1954, 1974)\\ is also based on two triangular diagrams, but it has 21 categories and uses the term mud (defined as silt plus clay). Patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of the highest current velocity at the time of deposition as is the maximum grain size of the detritus that is available; Shepard's classification scheme emphasizes the ratios of sand, silt, and clay because they reflect sorting and reworking (Poppe et al., 2005).The program described herein (SEDPLOT) generates verbal equivalents and ternary diagrams to characterize sediment grain-size distributions. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The inputs for the sediment fractions are percentages of gravel, sand, silt, and clay in the Wentworth (1922) grade scale, and the program permits the user to select output in either the Shepard (1954) classification scheme, modified as described above, or the Folk (1954, 1974) scheme. Users select options primarily with mouse-click events and through interactive dialogue boxes. This program is intended as a companion to other Visual Basic software we have developed to process sediment data (Poppe et al., 2003, 2004).

  9. Spatially aggregated multiclass pattern classification in functional MRI using optimally selected functional brain areas.

    PubMed

    Zheng, Weili; Ackley, Elena S; Martínez-Ramón, Manel; Posse, Stefan

    2013-02-01

    In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Qualitative pattern classification of shear wave elastography for breast masses: how it correlates to quantitative measurements.

    PubMed

    Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae

    2013-12-01

    To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21-88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P<0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5-89.8% to 100.0%, while specificity was significantly improved: 62.5-81.7% to 13.9% (P<0.001). Area under the ROC curve (Az) did not show significant differences between grayscale US to US combined to SWE (P>0.05). Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Computer-implemented land use classification with pattern recognition software and ERTS digital data. [Mississippi coastal plains

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1974-01-01

    Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.

  12. How well do the rosgen classification and associated "natural channel design" methods integrate and quantify fluvial processes and channel response?

    USGS Publications Warehouse

    Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D.; Rhoads, B.; Grant, G.; Fitzpatrick, F.; Juracek, K.; McPhillips, M.; MacBroom, J.

    2005-01-01

    Over the past 10 years the Rosgen classification system and its associated methods of "natural channel design" have become synonymous (to many without prior knowledge of the field) with the term "stream restoration" and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely, and perhaps dominantly adopted by governmental agencies, particularly those funding restoration projects. For example, in a request for proposals for the restoration of Trout Creek in Montana, the Natural Resources Conservation Service required "experience in the use and application of a stream classification system and its implementation." Similarly, classification systems have been used in evaluation guides for riparian areas and U.S. Forest Service management plans. Most notably, many highly trained geomorphologists and hydraulic engineers are often held suspect, or even thought incorrect, if their approach does not include reference to or application of a classification system. This, combined with the para-professional training provided by some involved in "natural channel design" empower individuals and groups with limited backgrounds in stream and watershed sciences to engineer wholesale re-patterning of stream reaches using 50-year old technology that was never intended for engineering design. At Level I, the Rosgen classification system consists of eight or nine major stream types, based on hydraulic-geometry relations and four other measures of channel shape to distinguish the dimensions of alluvial stream channels as a function of the bankfull stage. Six classes of the particle size of the boundary sediments are used to further sub-divide each of the major stream types, resulting in 48 or 54 stream types. Aside from the difficulty in identifying bankfull stage, particularly in incising channels, and the issue of sampling from two distinct populations (beds and banks) to classify the boundary sediments, the classification provides a consistent and reproducible means for practitioners to describe channel morphology although difficulties have been encountered in lower-gradient stream systems. Use of the scheme to communicate between users or as a conceptual model, however, has not justified its use for engineering design or for predicting river behavior; its use for designing mitigation projects, therefore, seems beyond its technical scope. Copyright ASCE 2005.

  13. Diagnosis-related groups for stroke in Europe: patient classification and hospital reimbursement in 11 countries.

    PubMed

    Peltola, Mikko; Quentin, Wilm

    2013-01-01

    Diagnosis-related groups (DRGs) are increasingly being used for various purposes in many countries. However, there are no studies comparing different DRG systems in the care of stroke. As part of the EuroDRG project, researchers from 11 countries (i.e. Austria, England, Estonia, Finland, France, Germany, Ireland, the Netherlands, Poland, Sweden and Spain) compared how their DRG systems deal with stroke patients. The study aims to assist clinicians and national authorities to optimize their DRG systems. National or regional databases were used to identify hospital cases with a diagnosis of stroke. DRG classification algorithms and indicators of resource consumption were compared for those DRGs that individually represent at least 1% of stroke cases. In addition, standardized case vignettes were defined, and quasi prices according to national DRG-based hospital payment systems were ascertained. European DRG systems vary widely: they classify stroke patients according to different sets of variables (between 1 and 7 classification variables) into diverging numbers of DRGs (between 1 and 10 DRGs). In 6 of the countries more than half of the patients are concentrated within a single DRG. The countries' systems also vary with respect to the evaluation of different kinds of stroke patients. The most complex DRG is considered 3.8 times more resource intensive than an index case in Finland. By contrast, in England, the DRG system does not account for complex cases. Comparisons of quasi prices for the case vignettes show that hypothetical payments for the index case amount to only EUR 907 in Poland but to EUR 7,881 in Ireland. Large variations in the classification of stroke patients raise concerns whether all systems rely on the most appropriate classification variables and whether the DRGs adequately reflect differences in the complexity of treating different groups of patients. Learning from other DRG systems may help in improving the national systems. Clinicians and national DRG authorities should consider how other countries' DRG systems classify stroke patients in order to optimize their DRG system and to ensure fair and appropriate reimbursement. In future, quantitative research is needed to verify whether the most important determinants of cost are considered in different patient classification systems, and whether differences between systems reflect country-specific differences in treatment patterns and, most importantly, what influence they have on patient outcomes. Copyright © 2013 S. Karger AG, Basel.

  14. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.

    PubMed

    Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan

    2016-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages.

    PubMed

    Okumura, Eiichiro; Kawashita, Ikuo; Ishida, Takayuki

    2017-08-01

    It is difficult for radiologists to classify pneumoconiosis from category 0 to category 3 on chest radiographs. Therefore, we have developed a computer-aided diagnosis (CAD) system based on a three-stage artificial neural network (ANN) method for classification based on four texture features. The image database consists of 36 chest radiographs classified as category 0 to category 3. Regions of interest (ROIs) with a matrix size of 32 × 32 were selected from chest radiographs. We obtained a gray-level histogram, histogram of gray-level difference, gray-level run-length matrix (GLRLM) feature image, and gray-level co-occurrence matrix (GLCOM) feature image in each ROI. For ROI-based classification, the first ANN was trained with each texture feature. Next, the second ANN was trained with output patterns obtained from the first ANN. Finally, we obtained a case-based classification for distinguishing among four categories with the third ANN method. We determined the performance of the third ANN by receiver operating characteristic (ROC) analysis. The areas under the ROC curve (AUC) of the highest category (severe pneumoconiosis) case and the lowest category (early pneumoconiosis) case were 0.89 ± 0.09 and 0.84 ± 0.12, respectively. The three-stage ANN with four texture features showed the highest performance for classification among the four categories. Our CAD system would be useful for assisting radiologists in classification of pneumoconiosis from category 0 to category 3.

  16. Improving Generalization Based on l1-Norm Regularization for EEG-Based Motor Imagery Classification

    PubMed Central

    Zhao, Yuwei; Han, Jiuqi; Chen, Yushu; Sun, Hongji; Chen, Jiayun; Ke, Ang; Han, Yao; Zhang, Peng; Zhang, Yi; Zhou, Jin; Wang, Changyong

    2018-01-01

    Multichannel electroencephalography (EEG) is widely used in typical brain-computer interface (BCI) systems. In general, a number of parameters are essential for a EEG classification algorithm due to redundant features involved in EEG signals. However, the generalization of the EEG method is often adversely affected by the model complexity, considerably coherent with its number of undetermined parameters, further leading to heavy overfitting. To decrease the complexity and improve the generalization of EEG method, we present a novel l1-norm-based approach to combine the decision value obtained from each EEG channel directly. By extracting the information from different channels on independent frequency bands (FB) with l1-norm regularization, the method proposed fits the training data with much less parameters compared to common spatial pattern (CSP) methods in order to reduce overfitting. Moreover, an effective and efficient solution to minimize the optimization object is proposed. The experimental results on dataset IVa of BCI competition III and dataset I of BCI competition IV show that, the proposed method contributes to high classification accuracy and increases generalization performance for the classification of MI EEG. As the training set ratio decreases from 80 to 20%, the average classification accuracy on the two datasets changes from 85.86 and 86.13% to 84.81 and 76.59%, respectively. The classification performance and generalization of the proposed method contribute to the practical application of MI based BCI systems. PMID:29867307

  17. Classification of neck movement patterns related to whiplash-associated disorders using neural networks.

    PubMed

    Grip, Helena; Ohberg, Fredrik; Wiklund, Urban; Sterner, Ylva; Karlsson, J Stefan; Gerdle, Björn

    2003-12-01

    This paper presents a new method for classification of neck movement patterns related to Whiplash-associated disorders (WAD) using a resilient backpropagation neural network (BPNN). WAD are a common diagnosis after neck trauma, typically caused by rear-end car accidents. Since physical injuries seldom are found with present imaging techniques, the diagnosis can be difficult to make. The active range of the neck is often visually inspected in patients with neck pain, but this is a subjective measure, and a more objective decision support system, that gives a reliable and more detailed analysis of neck movement pattern, is needed. The objective of this study was to evaluate the predictive ability of a BPNN, using neck movement variables as input. Three-dimensional (3-D) neck movement data from 59 subjects with WAD and 56 control subjects were collected with a ProReflex system. Rotation angle and angle velocity were calculated using the instantaneous helical axis method and motion variables were extracted. A principal component analysis was performed in order to reduce data and improve the BPNN performance. BPNNs with six hidden nodes had a predictivity of 0.89, a sensitivity of 0.90 and a specificity of 0.88, which are very promising results. This shows that neck movement analysis combined with a neural network could build the basis of a decision support system for classifying suspected WAD, even though further evaluation of the method is needed.

  18. Rice crop mapping and change prediction using multi-temporal satellite images in the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.

    2014-12-01

    The rice cropping systems in the Vietnamese Mekong Delta (VMD) has been undergoing major changes to cope with developing agro-economics, increasing population and changing climate. Information on rice cropping practices and changes in cropping systems is critical for policymakers to devise successful strategies to ensure food security and rice grain exports for the country. The primary objective of this research is to map rice cropping systems and predict future dynamics of rice cropping systems using the MODIS time-series data of 2002, 2006, and 2010. First, a phenology-based classification approach was applied for the classification and assessment of rice cropping systems in study region. Second, the Cellular Automata-Markov (CA-Markov) models was used to simulate the rice-cropping system map of VMD for 2010. The comparisons between the classification maps and the ground reference data indicated satisfactory results with overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2010. The simulated map of rice cropping system for 2010 was extrapolated by CA-Markov model based on the trend of rice cropping systems during 2002~2006. The comparison between predicted scenario and classification map for 2010 presents a reasonably closer agreement. In conclusion, the CA-Markov model performs a powerful tool for the dynamic modeling of changes in rice cropping systems, and the results obtained demonstrate that the approach produces satisfactory results in terms of accuracy, quantitative forecast and spatial pattern changes. Meanwhile, the projections of the future changes would provide useful inputs to the agricultural policy for effective management of the rice cropping practices in VMD.

  19. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  20. Hyperspectral image classification based on local binary patterns and PCANet

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  1. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  2. Multivariate pattern analysis of fMRI data reveals deficits in distributed representations in schizophrenia

    PubMed Central

    Yoon, Jong H.; Tamir, Diana; Minzenberg, Michael J.; Ragland, J. Daniel; Ursu, Stefan; Carter, Cameron S.

    2009-01-01

    Background Multivariate pattern analysis is an alternative method of analyzing fMRI data, which is capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed representations in schizophrenia. We also compared the results of this method with traditional GLM-based univariate analysis. Methods 19 schizophrenia and 15 control subjects viewed two runs of stimuli--exemplars of faces, scenes, objects, and scrambled images. To verify engagement with stimuli, subjects completed a 1-back matching task. A multi-voxel pattern classifier was trained to identify category-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of voxel-wise activity across runs evaluated variance over time in activity patterns. Results Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished classification accuracy in patients compared to controls, 59% and 72% respectively. In contrast, there was no group difference in GLM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups showed highly significant correlation between inter-run correlations and classification accuracy. Conclusions Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished task performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with univariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of non-specific factors driving these results. PMID:18822407

  3. Abnormal uterine bleeding unrelated to structural uterine abnormalities: management in the perimenopausal period.

    PubMed

    Sabbioni, Lorenzo; Zanetti, Isabella; Orlandini, Cinzia; Petraglia, Felice; Luisi, Stefano

    2017-02-01

    Abnormal uterine bleeding (AUB) is one of the commonest health problems encountered by women and a frequent phenomenon during menopausal transition. The clinical management of AUB must follow a standardized classification system to obtain the better diagnostic pathway and the optimal therapy. The PALM-COEIN classification system has been approved by the International Federation of Gynecology and Obstetrics (FIGO); it recognizes structural causes of AUB, which can be measured visually with imaging techniques or histopathology, and non-structural entities such as coagulopathies, ovulatory dysfunctions, endometrial and iatrogenic causes and disorders not yet classified. In this review we aim to evaluate the management of nonstructural causes of AUB during the menopausal transition, when commonly women experience changes in menstrual bleeding patterns and unexpected bleedings which affect their quality of life.

  4. Threat Based Risk Assessment for Enterprise Networks

    DTIC Science & Technology

    2016-02-15

    served as the program chair of the Research in Attacks, Intrusions , and Defenses workshop; the Neural Information Processing Systems (NIPS) annual...Threat- Based Risk Assessment for Enterprise Networks Richard P. Lippmann and James F. Riordan Protecting enterprise networks requires...include aids for the hearing impaired, speech recognition, pattern classification, neural networks , and cybersecurity. He has taught three courses

  5. Classification of Posture in Poststroke Upper Limb Spasticity: A Potential Decision Tool for Botulinum Toxin A Treatment?

    ERIC Educational Resources Information Center

    Hefter, Harald; Jost, Wolfgang H.; Reissig, Andrea; Zakine, Benjamin; Bakheit, Abdel Magid; Wissel, Jorg

    2012-01-01

    A significant percentage of patients suffering from a stroke involving motor-relevant central nervous system regions will develop a spastic movement disorder. Hyperactivity of different muscle combinations forces the limbs affected into abnormal postures or movement patterns. As muscular hyperactivity can effectively and safely be treated with…

  6. The Sources of Error in Spanish Writing.

    ERIC Educational Resources Information Center

    Justicia, Fernando; Defior, Sylvia; Pelegrina, Santiago; Martos, Francisco J.

    1999-01-01

    Determines the pattern of errors in Spanish spelling. Analyzes and proposes a classification system for the errors made by children in the initial stages of the acquisition of spelling skills. Finds the diverse forms of only 20 Spanish words produces 36% of the spelling errors in Spanish; and substitution is the most frequent type of error. (RS)

  7. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  8. Brief Report: Symptom Onset Patterns and Functional Outcomes in Young Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Shumway, Stacy; Thurm, Audrey; Swedo, Susan E.; Deprey, Lesley; Barnett, Lou Ann; Amaral, David G.; Rogers, Sally J.; Ozonoff, Sally

    2011-01-01

    This study examined the relationship between onset status and current functioning using a recently proposed onset classification system in 272 young children with autism spectrum disorder (ASD). Participants were classified into one of the following groups, based on parent report using the Autism Diagnostic Interview-Revised: Early Onset (symptoms…

  9. Effect of Adding McKenzie Syndrome, Centralization, Directional Preference, and Psychosocial Classification Variables to a Risk-Adjusted Model Predicting Functional Status Outcomes for Patients With Lumbar Impairments.

    PubMed

    Werneke, Mark W; Edmond, Susan; Deutscher, Daniel; Ward, Jason; Grigsby, David; Young, Michelle; McGill, Troy; McClenahan, Brian; Weinberg, Jon; Davidow, Amy L

    2016-09-01

    Study Design Retrospective cohort. Background Patient-classification subgroupings may be important prognostic factors explaining outcomes. Objectives To determine effects of adding classification variables (McKenzie syndrome and pain patterns, including centralization and directional preference; Symptom Checklist Back Pain Prediction Model [SCL BPPM]; and the Fear-Avoidance Beliefs Questionnaire subscales of work and physical activity) to a baseline risk-adjusted model predicting functional status (FS) outcomes. Methods Consecutive patients completed a battery of questionnaires that gathered information on 11 risk-adjustment variables. Physical therapists trained in Mechanical Diagnosis and Therapy methods classified each patient by McKenzie syndromes and pain pattern. Functional status was assessed at discharge by patient-reported outcomes. Only patients with complete data were included. Risk of selection bias was assessed. Prediction of discharge FS was assessed using linear stepwise regression models, allowing 13 variables to enter the model. Significant variables were retained in subsequent models. Model power (R(2)) and beta coefficients for model variables were estimated. Results Two thousand sixty-six patients with lumbar impairments were evaluated. Of those, 994 (48%), 10 (<1%), and 601 (29%) were excluded due to incomplete psychosocial data, McKenzie classification data, and missing FS at discharge, respectively. The final sample for analyses was 723 (35%). Overall R(2) for the baseline prediction FS model was 0.40. Adding classification variables to the baseline model did not result in significant increases in R(2). McKenzie syndrome or pain pattern explained 2.8% and 3.0% of the variance, respectively. When pain pattern and SCL BPPM were added simultaneously, overall model R(2) increased to 0.44. Although none of these increases in R(2) were significant, some classification variables were stronger predictors compared with some other variables included in the baseline model. Conclusion The small added prognostic capabilities identified when combining McKenzie or pain-pattern classifications with the SCL BPPM classification did not significantly improve prediction of FS outcomes in this study. Additional research is warranted to investigate the importance of classification variables compared with those used in the baseline model to maximize predictive power. Level of Evidence Prognosis, level 4. J Orthop Sports Phys Ther 2016;46(9):726-741. Epub 31 Jul 2016. doi:10.2519/jospt.2016.6266.

  10. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis.

    PubMed

    Sahm, Felix; Schrimpf, Daniel; Stichel, Damian; Jones, David T W; Hielscher, Thomas; Schefzyk, Sebastian; Okonechnikov, Konstantin; Koelsche, Christian; Reuss, David E; Capper, David; Sturm, Dominik; Wirsching, Hans-Georg; Berghoff, Anna Sophie; Baumgarten, Peter; Kratz, Annekathrin; Huang, Kristin; Wefers, Annika K; Hovestadt, Volker; Sill, Martin; Ellis, Hayley P; Kurian, Kathreena M; Okuducu, Ali Fuat; Jungk, Christine; Drueschler, Katharina; Schick, Matthias; Bewerunge-Hudler, Melanie; Mawrin, Christian; Seiz-Rosenhagen, Marcel; Ketter, Ralf; Simon, Matthias; Westphal, Manfred; Lamszus, Katrin; Becker, Albert; Koch, Arend; Schittenhelm, Jens; Rushing, Elisabeth J; Collins, V Peter; Brehmer, Stefanie; Chavez, Lukas; Platten, Michael; Hänggi, Daniel; Unterberg, Andreas; Paulus, Werner; Wick, Wolfgang; Pfister, Stefan M; Mittelbronn, Michel; Preusser, Matthias; Herold-Mende, Christel; Weller, Michael; von Deimling, Andreas

    2017-05-01

    The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Patient prognosis based on feature extraction, selection and classification of EEG periodic activity.

    PubMed

    Sánchez-González, Alain; García-Zapirain, Begoña; Maestro Saiz, Iratxe; Yurrebaso Santamaría, Izaskun

    2015-01-01

    Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients. Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.

  12. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  13. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  14. The Comprehensive AOCMF Classification System: Midface Fractures - Level 3 Tutorial

    PubMed Central

    Cornelius, Carl-Peter; Audigé, Laurent; Kunz, Christoph; Buitrago-Téllez, Carlos H.; Rudderman, Randal; Prein, Joachim

    2014-01-01

    This tutorial outlines the details of the AOCMF image-based classification system for fractures of the midface at the precision level 3. The topography of the different midface regions (central midface—upper central midface, intermediate central midface, lower central midface—incorporating the naso-orbito-ethmoid region; lateral midface—zygoma and zygomatic arch, palate) is subdivided in much greater detail than in level 2 going beyond the Le Fort fracture types and its analogs. The level 3 midface classification system is presented along with guidelines to precisely delineate the fracture patterns in these specific subregions. It is easy to plot common fracture entities, such as nasal and naso-orbito-ethmoid, and their variants due to the refined structural layout of the subregions. As a key attribute, this focused approach permits to document the occurrence of fragmentation (i.e., single vs. multiple fracture lines), displacement, and bone loss. Moreover, the preinjury dental state and the degree of alveolar atrophy in edentulous maxillary regions can be recorded. On the basis of these individual features, tooth injuries, periodontal trauma, and fracture involvement of the alveolar process can be assessed. Coding rules are given to set up a distinctive formula for typical midface fractures and their combinations. The instructions and illustrations are elucidated by a series of radiographic imaging examples. A critical appraisal of the design of this level 3 midface classification is made. PMID:25489392

  15. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  16. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon

    PubMed Central

    Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes – forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates. PMID:24127130

  17. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  18. [Dynamic changes of landscape pattern and hemeroby in Ximen Island wetland, Zhejiang Province, China].

    PubMed

    Xiao, Cui; Xie, Xue-Fen; Wu, Tao; Jiang, Guo-Jun; Bian, Hua-Jing; Xu, Wei

    2014-11-01

    Abstract: The hemeroby type classification system of Ximen Island wetland of Zhejiang Province was established based on the multiple datasets: SOPT-5 image data with a spatial resolution of 5 m in 2007 and 2010, its wetland land cover and land use status, the National Land Use Classification (on trail), and sea area use classification of marine industry standards as well as remote sensing data features. Meanwhile, the dynamic relationship between the landscape pattern and the degree of hemeroby in Ximen Island was investigated with the landscape indices and hemeroby index (HI) derived from the landscape pattern index and GIS spatial analysis. The results showed that the wetland landscape spatial heterogeneity, fragmentation and dominance index dropped, and the landscape shape index complexity was low. The human disturbance center developed from a dispersion type to a concentration type. The landscape type of the disturbance center was bare land and settlement. The HI rose up from the sea to the land. Settlement, wharf and traffic land had the highest HI. The HI of the mudflat cultivation, mudflats and raft-cultivation dramatically changed. Marine-terrestrial interlaced zone showed a low total HI with unstable characteristics. The number of patches declined of undisturbed, partially disturbed and completely disturbed landscapes. Mean patch areas of partially disturbed and completely disturbed landscapes increased, and that of the undisturbed decreased. Mean shape index of the undisturbed landscape decreased, while the partially disturbed and completely disturbed landscapes showed a trend of shape complication.

  19. Foot-strike pattern and performance in a marathon

    PubMed Central

    Kasmer, Mark E.; Liu, Xue-cheng; Roberts, Kyle G.; Valadao, Jason M.

    2016-01-01

    Purpose To: 1) determine prevalence of heel-strike in a mid-size city marathon, 2) determine if there is an association between foot-strike classification and race performance, and 3) determine if there is an association between foot-strike classification and gender. Methods Foot-strike classification (fore-foot strike, mid-foot strike, heel strike, or split-strike), gender, and rank (position in race) were recorded at the 8.1 kilometer (km) mark for 2,112 runners at the 2011 Milwaukee Lakefront Marathon. Results 1,991 runners were classified by foot-strike pattern, revealing a heel-strike prevalence of 93.67% (n=1,865). A significant difference between foot-strike classification and performance was found using a Kruskal-Wallis test (p < 0.0001), with more elite performers being less likely to heel-strike. No significant difference between foot-strike classification and gender was found using a Fisher’s exact test. Additionally, subgroup analysis of the 126 non-heel strikers found no significant difference between shoe wear and performance using a Kruskal-Wallis test. Conclusions The high prevalence of heel-striking observed in this study reflects the foot-strike pattern of the majority of mid- to long-distance runners and more importantly, may predict their injury profile based on the biomechanics of a heel strike running pattern. This knowledge can aid the clinician in the appropriate diagnosis, management, and training modifications of the injured runner. PMID:23006790

  20. [To represent needs of nursing care using nursing diagnoses: potentials and restrictions of the NANDA classification and ICNP].

    PubMed

    Schilder, Michael

    2005-03-01

    Nursing diagnoses represent individual reactions to existing or potential changes in one's state of health. They are result of a diagnostic process, which is part of the dynamic nursing care process in its whole. Thus, as a basis of nursing interventions diagnoses have to be proved continuously. The classification of the North American Nursing Diagnosis Association (NANDA) as well as the International Classification for Nursing Practice (ICNP) can be account to the international well-known classifications of nursing diagnoses. Comparing their structures, some fundamental differences between both classifications become obvious. While the NANDA classification represents a systematic structured body of nursing knowledge with regard to human health reactions patterns, the ICNP reflects a more comprehensive part of the nursing reality, since it also contains nursing interventions and outcomes. Until the latest changes by establishing the taxonomy II, NANDA diagnoses have primarily focused deficits. But in contrast to the diagnoses of the ICNP they also comprise etiological factors. To prove the applicability of both classifications to nursing practice, they have been applied to a case study of a female resident living in a nursing home. The results of analysis show that because of their different structures the NANDA classification and ICNP have their own possibilities and limitations in covering the resident's individual needs of nursing care. These characteristic potentials and restrictions have to be taken into account when one of the classification systems is going to be implemented into nursing practice.

  1. Self-organizing map (SOM) of space acceleration measurement system (SAMS) data.

    PubMed

    Sinha, A; Smith, A D

    1999-01-01

    In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.

  2. Self-organizing map (SOM) of space acceleration measurement system (SAMS) data

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Smith, A. D.

    1999-01-01

    In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.

  3. Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.

    PubMed

    Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M

    2015-08-01

    We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.

  4. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    NASA Astrophysics Data System (ADS)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.

  5. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.

    PubMed

    Mane, Vijay Mahadeo; Jadhav, D V

    2017-05-24

    Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.

  6. Histopathologic features in actinic cheilitis by the comparison of grading dysplasia systems.

    PubMed

    Pilati, Sfm; Bianco, B C; Vieira, Dsc; Modolo, F

    2017-03-01

    This study aimed to determine the histopathologic findings in actinic cheilitis (AC) and lip squamous cell carcinomas (LSCC) diagnosed at Federal University of Santa Catarina in order to attempt to predict the evolution from AC to LSCC based on the comparison of two dysplasia classification systems. Histopathologic features were evaluated according to the World Health Organization classification of dysplasia and binary system of classification. Also, in LSCC, pattern, stage of invasion, and degree of keratinization were evaluated. A total of 58 cases of AC and 70 cases of LSCC were studied, and data correlation was performed using statistical analysis. The presence of dyskeratosis and keratin pearls was found to be strongly associated with severe dysplasia and could represent higher proximity between the severe dysplasia in AC and LSCC. Also, changes related to the nuclei, such as hyperchromasia, nuclear pleomorphism, anisonucleosis, increase in the number and size of nucleoli, increased number of mitoses, and atypical mitoses, indicate progression in dysplasia spectrum. Knowledge of clinical and histological features of AC and LSCC leads to better understanding of factors possibly associated with malignant transformation of epithelial dysplasia. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  8. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  9. Methods for Monitoring the Detection of Multi-Temporal Land Use Change Through the Classification of Urban Areas

    NASA Astrophysics Data System (ADS)

    Alhaddad, B. I.; Burns, M. C.; Roca, J.

    2011-08-01

    Urban areas are complicated due to the mix of man-made features and natural features. A higher level of structural information plays an important role in land cover/use classification of urban areas. Additional spatial indicators have to be extracted based on structural analysis in order to understand and identify spatial patterns or the spatial organization of features, especially for man-made feature. It's very difficult to extract such spatial patterns by using only classification approaches. Clusters of urban patterns which are integral parts of other uses may be difficult to identify. A lot of public resources have been directed towards seeking to develop a standardized classification system and to provide as much compatibility as possible to ensure the widespread use of such categorized data obtained from remote sensor sources. In this paper different methods applied to understand the change in the land use areas by understanding and monitoring the change in urban areas and as its hard to apply those methods to classification results for high elements quantities, dusts and scratches (Roca and Alhaddad, 2005). This paper focuses on a methodology developed based relation between urban elements and how to join this elements in zones or clusters have commune behaviours such as form, pattern, size. The main objective is to convert urban class category in to various structure densities depend on conjunction of pixel and shortest distance between them, Delaunay triangulation has been widely used in spatial analysis and spatial modelling. To identify these different zones, a spatial density-based clustering technique was adopted. In highly urban zones, the spatial density of the pixels is high, while in sparsely areas the density of points is much lower. Once the groups of pixels are identified, the calculation of the boundaries of the areas containing each group of pixels defines the new regions indicate the different contains inside such as high or low urban areas. Multi-temporal datasets from 1986, 1995 and 2004 used to urban region centroid to be our reference in this study which allow us to follow the urban movement, increase and decrease by the time. Kernel Density function used to Calculates urban magnitude, Voronoi algorithm is proposed for deriving explicit boundaries between objects units. To test the approach, we selected a site in a suburban area in Barcelona Municipality, the Spain.

  10. Grid point extraction and coding for structured light system

    NASA Astrophysics Data System (ADS)

    Song, Zhan; Chung, Ronald

    2011-09-01

    A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.

  11. Pattern of Cortical Fracture following Corticotomy for Distraction Osteogenesis.

    PubMed

    Luvan, M; Kanthan, S R; Roshan, G; Saw, A

    2015-11-01

    Corticotomy is an essential procedure for deformity correction and there are many techniques described. However there is no proper classification of the fracture pattern resulting from corticotomies to enable any studies to be conducted. We performed a retrospective study of corticotomy fracture patterns in 44 patients (34 tibias and 10 femurs) performed for various indications. We identified four distinct fracture patterns, Type I through IV classification based on the fracture propagation following percutaneous corticotomy. Type I transverse fracture, Type II transverse fracture with a winglet, Type III presence of butterfly fragment and Type IV fracture propagation to a fixation point. No significant correlation was noted between the fracture pattern and the underlying pathology or region of corticotomy.

  12. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG.

    PubMed

    Roy, Rinku; Sikdar, Debdeep; Mahadevappa, Manjunatha; Kumar, C S

    2018-05-19

    A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with "one against one" multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future. The model to virtualise motor imagery based fingertip force prediction with inherent slippage correction for different grasp types ᅟ.

  13. Hepatic Arterial Configuration in Relation to the Segmental Anatomy of the Liver; Observations on MDCT and DSA Relevant to Radioembolization Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Leeuwen, Maarten S. van, E-mail: m.s.vanleeuwen@umcutrecht.nl; Lam, Marnix G. E. H., E-mail: m.lam@umcutrecht.nl

    PurposeCurrent anatomical classifications do not include all variants relevant for radioembolization (RE). The purpose of this study was to assess the individual hepatic arterial configuration and segmental vascularization pattern and to develop an individualized RE treatment strategy based on an extended classification.MethodsThe hepatic vascular anatomy was assessed on MDCT and DSA in patients who received a workup for RE between February 2009 and November 2012. Reconstructed MDCT studies were assessed to determine the hepatic arterial configuration (origin of every hepatic arterial branch, branching pattern and anatomical course) and the hepatic segmental vascularization territory of all branches. Aberrant hepatic arteries weremore » defined as hepatic arterial branches that did not originate from the celiac axis/CHA/PHA. Early branching patterns were defined as hepatic arterial branches originating from the celiac axis/CHA.ResultsThe hepatic arterial configuration and segmental vascularization pattern could be assessed in 110 of 133 patients. In 59 patients (54 %), no aberrant hepatic arteries or early branching was observed. Fourteen patients without aberrant hepatic arteries (13 %) had an early branching pattern. In the 37 patients (34 %) with aberrant hepatic arteries, five also had an early branching pattern. Sixteen different hepatic arterial segmental vascularization patterns were identified and described, differing by the presence of aberrant hepatic arteries, their respective vascular territory, and origin of the artery vascularizing segment four.ConclusionsThe hepatic arterial configuration and segmental vascularization pattern show marked individual variability beyond well-known classifications of anatomical variants. We developed an individualized RE treatment strategy based on an extended anatomical classification.« less

  14. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    NASA Astrophysics Data System (ADS)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  15. Triz in Mems

    NASA Astrophysics Data System (ADS)

    Apte, Prakash R.

    1999-11-01

    TRIZ is a Russian abbreviation. Genrich Altshuller developed it fifty years ago in the former Soviet Union. He examined thousands of inventions made in different technological systems and formulated a 'Theory of Inventive problem solving' (TRIZ). Altshuller's research of over fifty years on Creativity and Inventive Problem Solving has led to many different classifications, methods and tools of invention. Some of these are, Contradictions table, Level of inventions, Patterns in evolution of technological systems, ARIZ-Algorithm for Inventive Problem Solving, Diagnostic problem solving and Anticipatory Failure Determination. MEMS research consists of conceptual design, process technology and including of various Mechanical, ELectrical, Thermal, Magnetic, Acoustic and other effects. MEMS system s are now rapidly growing in complexity. Each system will thus follow one or more 'patterns of evolution' as given by Altshuller. This paper attempts to indicate how various TRIZ tools can be used in MEMS research activities.

  16. The Practice Pattern of Percutaneous Coronary Intervention in Korea: Based on Year 2014 Cohort of Korean Percutaneous Coronary Intervention (K-PCI) Registry.

    PubMed

    Gwon, Hyeon-Cheol; Jeon, Dong Woon; Kang, Hyun-Jae; Jang, Jae-Sik; Park, Duk-Woo; Shin, Dong-Ho; Moon, Keon-Woong; Kim, Jung-Sun; Kim, Juhan; Bae, Jang-Whan; Hur, Seung-Ho; Kim, Byung Ok; Choi, Donghoon; Han, Kyoo-Rok; Kim, Hyo-Soo

    2017-05-01

    Appropriate use criteria (AUC) was developed to improve the quality of percutaneous coronary intervention (PCI). However, these criteria should consider the current practice pattern in the country where they are being applied. The algorithm for the Korean PCI practice pattern (KP3) was developed by modifying the United States-derived AUC in expert consensus meetings. KP3 class A was defined as any strategy with evidence from randomized trials that was more conservative for PCI than medical therapy or coronary artery bypass graft (CABG). Class C was defined as any strategy with less evidence from randomized trials and more aggressive for PCI than medical therapy or CABG. Class B was defined as a strategy that was partly class A and partly class C. We applied the KP3 classification system to the Korean PCI registry. The KP3 class A was noted in 67.7% of patients, class B in 28.8%, and class C in 3.5%. The median proportion of class C cases per center was 2.0%. The distribution of KP3 classes varied significantly depending on clinical and angiographic characteristics. The proportion of KP3 class C cases per center was not significantly dependent on PCI volume, but rather on the percentage of ACS cases in each center. We report the current PCI practice pattern by applying the new KP3 classification in a nationwide PCI registry. The results should be interpreted carefully with due regard for the complex relationships between the determining variables and the healthcare system in Korea.

  17. Enriching User-Oriented Class Associations for Library Classification Schemes.

    ERIC Educational Resources Information Center

    Pu, Hsiao-Tieh; Yang, Chyan

    2003-01-01

    Explores the possibility of adding user-oriented class associations to hierarchical library classification schemes. Analyses a log of book circulation records from a university library in Taiwan and shows that classification schemes can be made more adaptable by analyzing circulation patterns of similar users. (Author/LRW)

  18. The Reliability of Classification Decisions for the Furtado-Gallagher Computerized Observational Movement Pattern Assessment System--FG-COMPASS

    ERIC Educational Resources Information Center

    Furtado, Ovande, Jr.; Gallagher, Jere D.

    2012-01-01

    Mastery of fundamental movement skills (FMS) is an important factor in preventing weight gain and increasing physical activity. To master FMS, performance evaluation is necessary. In this study, we investigated the reliability of a new observational assessment tool. In Phase I, 110 video clips of children performing five locomotor, and six…

  19. Hand Function in Relation to Brain Lesions and Corticomotor-Projection Pattern in Children with Unilateral Cerebral Palsy

    ERIC Educational Resources Information Center

    Holmstrom, Linda; Vollmer, Brigitte; Tedroff, Kristina; Islam, Mominul; Persson, Jonas Ke; Kits, Annika; Forssberg, Hans; Eliasson, Ann-Christin

    2010-01-01

    Aim: To investigate relationships between hand function, brain lesions, and corticomotor projections in children with unilateral cerebral palsy (CP). Method: The study included 17 children (nine males, eight females; mean age 11.4 [SD 2.4] range 7-16y), with unilateral CP at Gross Motor Function Classification System level I and Manual Ability…

  20. Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1985-01-01

    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.

  1. Dynamic stratification of the landscape of Mexico: analysis of vegetation patterns observed with multitemporal remotely sensed images

    Treesearch

    Franz Mora; Louis R. Iverson; Louis R. Iverson

    1997-01-01

    Rapid deforestation in Mexico, when coupled with poor access to current and consistent ecological information across the country underscores the need for an ecological classification system that can be readily updated as new data become available. In this study, regional vegetation resources in Mexico were evaluated using remotely sensed information. Multitemporal...

  2. Participatory Classification in a System for Assessing Multimodal Transportation Patterns

    DTIC Science & Technology

    2015-02-17

    Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm

  3. Determining bathymetric distributions of the eelgrass Zostera ...

    EPA Pesticide Factsheets

    Improved methods for determining bathymetric distributions of dominant intertidal plants throughout their estuarine range are needed. Zostera marina is a seagrass native to estuaries of the northeastern Pacific and many other sectors of the world ocean. The technique described here employed large format aerial photography using false color near-infrared film with digital image classification, and the production of digital bathymetric models of shallow estuaries such as those occurring in turbid waters of the Pacific Northwest USA. Application of geographic information system procedures to the eelgrass classifications and bathymetry distributions yielded digital bathymetric distributions based upon a very large number of observations. Similar bathymetric patterns were obtained for the three estuaries surveyed, and approximately 90% of the classified eelgrass occurred within the depth range -1.0 m to +1.0 m (MLLW). Comparison of these distributions with ground surveys of eelgrass lower depth limits indicated that the area of undetected subtidal eelgrass constituted 86% overall accuracy) in each estuary. The pattern of eelgrass in one estuary was distinctly different from those in the other two systems, illustrating the potential usefulness of this technique in exploring causative factors for such differences in estuarine intertidal vegetation distributions. Improved methods for determining bathymetric distributions of dominant intertidal plants throughout

  4. Portable bacterial identification system based on elastic light scatter patterns.

    PubMed

    Bae, Euiwon; Ying, Dawei; Kramer, Donald; Patsekin, Valery; Rajwa, Bartek; Holdman, Cheryl; Sturgis, Jennifer; Davisson, V Jo; Robinson, J Paul

    2012-08-28

    Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  5. Structural Pattern Recognition Techniques for Data Retrieval in Massive Fusion Databases

    NASA Astrophysics Data System (ADS)

    Vega, J.; Murari, A.; Rattá, G. A.; Castro, P.; Pereira, A.; Portas, A.

    2008-03-01

    Diagnostics of present day reactor class fusion experiments, like the Joint European Torus (JET), generate thousands of signals (time series and video images) in each discharge. There is a direct correspondence between the physical phenomena taking place in the plasma and the set of structural shapes (patterns) that they form in the signals: bumps, unexpected amplitude changes, abrupt peaks, periodic components, high intensity zones or specific edge contours. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behavior, i.e. discharges with "similar" patterns. Pattern recognition techniques are efficient tools to search for similar structural forms within the database in a fast an intelligent way. To this end, classification systems must be developed to be used as indexation methods to directly fetch the more similar patterns.

  6. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.

    PubMed

    Kumar, Shiu; Mamun, Kabir; Sharma, Alok

    2017-12-01

    Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    PubMed

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  8. Novel Strength Test Battery to Permit Evidence-Based Paralympic Classification

    PubMed Central

    Beckman, Emma M.; Newcombe, Peter; Vanlandewijck, Yves; Connick, Mark J.; Tweedy, Sean M.

    2014-01-01

    Abstract Ordinal-scale strength assessment methods currently used in Paralympic athletics classification prevent the development of evidence-based classification systems. This study evaluated a battery of 7, ratio-scale, isometric tests with the aim of facilitating the development of evidence-based methods of classification. This study aimed to report sex-specific normal performance ranges, evaluate test–retest reliability, and evaluate the relationship between the measures and body mass. Body mass and strength measures were obtained from 118 participants—63 males and 55 females—ages 23.2 years ± 3.7 (mean ± SD). Seventeen participants completed the battery twice to evaluate test–retest reliability. The body mass–strength relationship was evaluated using Pearson correlations and allometric exponents. Conventional patterns of force production were observed. Reliability was acceptable (mean intraclass correlation = 0.85). Eight measures had moderate significant correlations with body size (r = 0.30–61). Allometric exponents were higher in males than in females (mean 0.99 vs 0.30). Results indicate that this comprehensive and parsimonious battery is an important methodological advance because it has psychometric properties critical for the development of evidence-based classification. Measures were interrelated with body size, indicating further research is required to determine whether raw measures require normalization in order to be validly applied in classification. PMID:25068950

  9. Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.

    PubMed

    Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya

    2018-01-01

    One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the algorithm and the subsequent conducting of the experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Similarity-Dissimilarity Competition in Disjunctive Classification Tasks

    PubMed Central

    Mathy, Fabien; Haladjian, Harry H.; Laurent, Eric; Goldstone, Robert L.

    2013-01-01

    Typical disjunctive artificial classification tasks require participants to sort stimuli according to rules such as “x likes cars only when black and coupe OR white and SUV.” For categories like this, increasing the salience of the diagnostic dimensions has two simultaneous effects: increasing the distance between members of the same category and increasing the distance between members of opposite categories. Potentially, these two effects respectively hinder and facilitate classification learning, leading to competing predictions for learning. Increasing saliency may lead to members of the same category to be considered less similar, while the members of separate categories might be considered more dissimilar. This implies a similarity-dissimilarity competition between two basic classification processes. When focusing on sub-category similarity, one would expect more difficult classification when members of the same category become less similar (disregarding the increase of between-category dissimilarity); however, the between-category dissimilarity increase predicts a less difficult classification. Our categorization study suggests that participants rely more on using dissimilarities between opposite categories than finding similarities between sub-categories. We connect our results to rule- and exemplar-based classification models. The pattern of influences of within- and between-category similarities are challenging for simple single-process categorization systems based on rules or exemplars. Instead, our results suggest that either these processes should be integrated in a hybrid model, or that category learning operates by forming clusters within each category. PMID:23403979

  11. Smart watch RSSI localization and refinement for behavioral classification using laser-SLAM for mapping and fingerprinting.

    PubMed

    Carlson, Jay D; Mittek, Mateusz; Parkison, Steven A; Sathler, Pedro; Bayne, David; Psota, Eric T; Perez, Lance C; Bonasera, Stephen J

    2014-01-01

    As a first step toward building a smart home behavioral monitoring system capable of classifying a wide variety of human behavior, a wireless sensor network (WSN) system is presented for RSSI localization. The low-cost, non-intrusive system uses a smart watch worn by the user to broadcast data to the WSN, where the strength of the radio signal is evaluated at each WSN node to localize the user. A method is presented that uses simultaneous localization and mapping (SLAM) for system calibration, providing automated fingerprinting associating the radio signal strength patterns to the user's location within the living space. To improve the accuracy of localization, a novel refinement technique is introduced that takes into account typical movement patterns of people within their homes. Experimental results demonstrate that the system is capable of providing accurate localization results in a typical living space.

  12. Intelligent web image retrieval system

    NASA Astrophysics Data System (ADS)

    Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook

    2001-07-01

    Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.

  13. Clinical classification of age-related macular degeneration.

    PubMed

    Ferris, Frederick L; Wilkinson, C P; Bird, Alan; Chakravarthy, Usha; Chew, Emily; Csaky, Karl; Sadda, SriniVas R

    2013-04-01

    To develop a clinical classification system for age-related macular degeneration (AMD). Evidence-based investigation, using a modified Delphi process. Twenty-six AMD experts, 1 neuro-ophthalmologist, 2 committee chairmen, and 1 methodologist. Each committee member completed an online assessment of statements summarizing current AMD classification criteria, indicating agreement or disagreement with each statement on a 9-step scale. The group met, reviewed the survey results, discussed the important components of a clinical classification system, and defined new data analyses needed to refine a classification system. After the meeting, additional data analyses from large studies were provided to the committee to provide risk estimates related to the presence of various AMD lesions. Delphi review of the 9-item set of statements resulting from the meeting. Consensus was achieved in generating a basic clinical classification system based on fundus lesions assessed within 2 disc diameters of the fovea in persons older than 55 years. The committee agreed that a single term, age-related macular degeneration, should be used for the disease. Persons with no visible drusen or pigmentary abnormalities should be considered to have no signs of AMD. Persons with small drusen (<63 μm), also termed drupelets, should be considered to have normal aging changes with no clinically relevant increased risk of late AMD developing. Persons with medium drusen (≥ 63-<125 μm), but without pigmentary abnormalities thought to be related to AMD, should be considered to have early AMD. Persons with large drusen or with pigmentary abnormalities associated with at least medium drusen should be considered to have intermediate AMD. Persons with lesions associated with neovascular AMD or geographic atrophy should be considered to have late AMD. Five-year risks of progressing to late AMD are estimated to increase approximately 100 fold, ranging from a 0.5% 5-year risk for normal aging changes to a 50% risk for the highest intermediate AMD risk group. The proposed basic clinical classification scale seems to be of value in predicting the risk of late AMD. Incorporating consistent nomenclature into the practice patterns of all eye care providers may improve communication and patient care. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Mining disease fingerprints from within genetic pathways.

    PubMed

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.

  15. Mining Disease Fingerprints From Within Genetic Pathways

    PubMed Central

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411

  16. Cognitive context detection in UAS operators using eye-gaze patterns on computer screens

    NASA Astrophysics Data System (ADS)

    Mannaru, Pujitha; Balasingam, Balakumar; Pattipati, Krishna; Sibley, Ciara; Coyne, Joseph

    2016-05-01

    In this paper, we demonstrate the use of eye-gaze metrics of unmanned aerial systems (UAS) operators as effective indices of their cognitive workload. Our analyses are based on an experiment where twenty participants performed pre-scripted UAS missions of three different difficulty levels by interacting with two custom designed graphical user interfaces (GUIs) that are displayed side by side. First, we compute several eye-gaze metrics, traditional eye movement metrics as well as newly proposed ones, and analyze their effectiveness as cognitive classifiers. Most of the eye-gaze metrics are computed by dividing the computer screen into "cells". Then, we perform several analyses in order to select metrics for effective cognitive context classification related to our specific application; the objective of these analyses are to (i) identify appropriate ways to divide the screen into cells; (ii) select appropriate metrics for training and classification of cognitive features; and (iii) identify a suitable classification method.

  17. E-Nose Vapor Identification Based on Dempster-Shafer Fusion of Multiple Classifiers

    NASA Technical Reports Server (NTRS)

    Li, Winston; Leung, Henry; Kwan, Chiman; Linnell, Bruce R.

    2005-01-01

    Electronic nose (e-nose) vapor identification is an efficient approach to monitor air contaminants in space stations and shuttles in order to ensure the health and safety of astronauts. Data preprocessing (measurement denoising and feature extraction) and pattern classification are important components of an e-nose system. In this paper, a wavelet-based denoising method is applied to filter the noisy sensor measurements. Transient-state features are then extracted from the denoised sensor measurements, and are used to train multiple classifiers such as multi-layer perceptions (MLP), support vector machines (SVM), k nearest neighbor (KNN), and Parzen classifier. The Dempster-Shafer (DS) technique is used at the end to fuse the results of the multiple classifiers to get the final classification. Experimental analysis based on real vapor data shows that the wavelet denoising method can remove both random noise and outliers successfully, and the classification rate can be improved by using classifier fusion.

  18. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  19. Review of Land Use and Land Cover Change research progress

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei

    2018-02-01

    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  20. Pattern classification by memristive crossbar circuits using ex situ and in situ training.

    PubMed

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B

    2013-01-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  1. Pattern classification by memristive crossbar circuits using ex situ and in situ training

    NASA Astrophysics Data System (ADS)

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B.

    2013-06-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  2. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns

    PubMed Central

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191

  3. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    PubMed

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  4. Autonomic specificity of basic emotions: evidence from pattern classification and cluster analysis.

    PubMed

    Stephens, Chad L; Christie, Israel C; Friedman, Bruce H

    2010-07-01

    Autonomic nervous system (ANS) specificity of emotion remains controversial in contemporary emotion research, and has received mixed support over decades of investigation. This study was designed to replicate and extend psychophysiological research, which has used multivariate pattern classification analysis (PCA) in support of ANS specificity. Forty-nine undergraduates (27 women) listened to emotion-inducing music and viewed affective films while a montage of ANS variables, including heart rate variability indices, peripheral vascular activity, systolic time intervals, and electrodermal activity, were recorded. Evidence for ANS discrimination of emotion was found via PCA with 44.6% of overall observations correctly classified into the predicted emotion conditions, using ANS variables (z=16.05, p<.001). Cluster analysis of these data indicated a lack of distinct clusters, which suggests that ANS responses to the stimuli were nomothetic and stimulus-specific rather than idiosyncratic and individual-specific. Collectively these results further confirm and extend support for the notion that basic emotions have distinct ANS signatures. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    PubMed Central

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-01-01

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features. PMID:25333290

  6. Artificial Neural Network approach to develop unique Classification and Raga identification tools for Pattern Recognition in Carnatic Music

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Parimala, Y. G.

    2011-12-01

    A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.

  7. Proposal for a new classification of variations in the iliac venous system based on internal iliac veins: a case series and a review of double and left inferior vena cava.

    PubMed

    Hayashi, Shogo; Naito, Munekazu; Hirai, Shuichi; Terayama, Hayato; Miyaki, Takayoshi; Itoh, Masahiro; Fukuzawa, Yoshitaka; Nakano, Takashi

    2013-09-01

    There are many reports on variations in the inferior vena cava (IVC), particularly double IVC (DIVC) and left IVC (LIVC). However, no systematic report has recorded iliac vein (IV) flow patterns in the DIVC and LIVC. In this study, we examined IV flow patterns in both DIVC and LIVC observed during gross anatomy courses conducted for medical students and in previously reported cases. During the gross anatomy courses, three cases of DIVC and one case of LIVC were found in 618 cadavers. The IV flow pattern from these four cases and all other previously reported cases can be classified into one of the following three types according to the vein into which the internal iliac vein drained: the ipsilateral external IV; confluence of the ipsilateral external IV and IVC; and the communicating vein, which connects the IVC and the contralateral IVC or its iliac branch. This classification, which is based on the internal IV course, is considered to be useful because IV variations have the potential to cause clinical problems during related retroperitoneal surgery, venous interventional radiology, and diagnostic procedures for pelvic cancer.

  8. 29 CFR 4.51 - Prevailing in the locality determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determination is made. Such information is most frequently derived from area surveys made by the Bureau of Labor... classification data, patterns existing between survey periods, and the way the separate classification data... mean may be used include situations where: (1) The number of workers studied for the job classification...

  9. Potential risk for healthy siblings to develop schizophrenia: evidence from pattern classification with whole-brain connectivity.

    PubMed

    Liu, Meijie; Zeng, Ling-Li; Shen, Hui; Liu, Zhening; Hu, Dewen

    2012-03-28

    Recent resting-state functional connectivity MRI studies using group-level statistical analysis have demonstrated the inheritable characters of schizophrenia. The objective of the present study was to use pattern classification as a means to investigate schizophrenia inheritance based on the whole-brain resting-state functional connectivity at the individual subject level. One-against-one pattern classifications were made amongst three groups (i.e. patients diagnosed with schizophrenia, healthy siblings, and healthy controls after preprocessing), resulting in an 80.4% separation between patients with schizophrenia and healthy controls, a 77.6% separation between schizophrenia patients and their healthy siblings, and a 78.7% separation between healthy siblings and healthy controls, respectively. These results suggest that the healthy siblings of schizophrenia patients have an altered resting-state functional connectivity pattern compared with healthy controls. Thus, healthy siblings may have a potential higher risk for developing schizophrenia compared with the general population. Moreover, this pattern differed from that of schizophrenia patients and may contribute to the normal behavior exhibition of healthy siblings in daily life.

  10. Justification of Fuzzy Declustering Vector Quantization Modeling in Classification of Genotype-Image Phenotypes

    NASA Astrophysics Data System (ADS)

    Ng, Theam Foo; Pham, Tuan D.; Zhou, Xiaobo

    2010-01-01

    With the fast development of multi-dimensional data compression and pattern classification techniques, vector quantization (VQ) has become a system that allows large reduction of data storage and computational effort. One of the most recent VQ techniques that handle the poor estimation of vector centroids due to biased data from undersampling is to use fuzzy declustering-based vector quantization (FDVQ) technique. Therefore, in this paper, we are motivated to propose a justification of FDVQ based hidden Markov model (HMM) for investigating its effectiveness and efficiency in classification of genotype-image phenotypes. The performance evaluation and comparison of the recognition accuracy between a proposed FDVQ based HMM (FDVQ-HMM) and a well-known LBG (Linde, Buzo, Gray) vector quantization based HMM (LBG-HMM) will be carried out. The experimental results show that the performances of both FDVQ-HMM and LBG-HMM are almost similar. Finally, we have justified the competitiveness of FDVQ-HMM in classification of cellular phenotype image database by using hypotheses t-test. As a result, we have validated that the FDVQ algorithm is a robust and an efficient classification technique in the application of RNAi genome-wide screening image data.

  11. Comprehensive classification test of scapular dyskinesis: A reliability study.

    PubMed

    Huang, Tsun-Shun; Huang, Han-Yi; Wang, Tyng-Guey; Tsai, Yung-Shen; Lin, Jiu-Jenq

    2015-06-01

    Assessment of scapular dyskinesis (SD) is of clinical interest, as SD is believed to be related to shoulder pathology. However, no clinical assessment with sufficient reliability to identify SD and provide treatment strategies is available. The purpose of this study was to investigate the reliability of the comprehensive SD classification method. Cross-sectional reliability study. Sixty subjects with unilateral shoulder pain were evaluated by two independent physiotherapists with a visual-based palpation method. SD was classified as single abnormal scapular pattern [inferior angle (pattern I), medial border (pattern II), superior border of scapula prominence or abnormal scapulohumeral rhythm (pattern III)], a mixture of the above abnormal scapular patterns, or normal pattern (pattern IV). The assessment of SD was evaluated as subjects performed bilateral arm raising/lowering movements with a weighted load in the scapular plane. Percentage of agreement and kappa coefficients were calculated to determine reliability. Agreement between the 2 independent physiotherapists was 83% (50/60, 6 subjects as pattern III and 44 subjects as pattern IV) in the raising phase and 68% (41/60, 5 subjects as pattern I, 12 subjects as pattern II, 12 subjects as pattern IV, 12 subjects as mixed patterns I and II) in the lowering phase. The kappa coefficients were 0.49-0.64. We concluded that the visual-based palpation classification method for SD had moderate to substantial inter-rater reliability. The appearance of different types of SD was more pronounced in the lowering phase than in the raising phase of arm movements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking.

    PubMed

    Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario

    2015-09-01

    Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.

  13. Vasculitic wheel - an algorithmic approach to cutaneous vasculitides.

    PubMed

    Ratzinger, Gudrun; Zelger, Bettina Gudrun; Carlson, J Andrew; Burgdorf, Walter; Zelger, Bernhard

    2015-11-01

    Previous classifications of vasculitides suffer from several defects. First, classifications may follow different principles including clinicopathologic findings, etiology, pathogenesis, prognosis, or therapeutic options. Second, authors fail to distinguish between vasculitis and coagulopathy. Third, vasculitides are systemic diseases. Organ-specific variations make morphologic findings difficult to compare. Fourth, subtle changes are recognized in the skin, but may be asymptomatic in other organs. Our aim was to use the skin and subcutis as a model and the clinicopathologic correlation as the basic process for classification. We use an algorithmic approach with pattern analysis, which allows for consistent reporting of microscopic findings. We first differentiate between small and medium vessel vasculitis. In the second step, we differentiate the subtypes of small (capillaries versus postcapillary venules) and medium-sized (arterioles/arteries versus veins) vessels. In the final step, we differentiate, according to the predominant cell type, into leukocytoclastic and/or granulomatous vasculitis. Starting from leukocytoclastic vasculitis as a central reaction pattern of cutaneous small/medium vessel vasculitides, its relations or variations may be arranged around it like spokes of a wheel around the hub. This may help establish some basic order in this rather complex realm of cutaneous vasculitides, leading to a better understanding in a complicated field. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  14. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy?

    PubMed Central

    Papageorgiou, Eirini; Nieuwenhuys, Angela; Desloovere, Kaat

    2017-01-01

    Background This study aimed to improve the automatic probabilistic classification of joint motion gait patterns in children with cerebral palsy by using the expert knowledge available via a recently developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and Logistic Regression classification with varying degrees of usage of the expert knowledge (expert-defined and discretized features). A database of 356 patients and 1719 gait trials was used to validate the classification performance of eleven joint motions. Hypotheses Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can be automatically classified following a probabilistic approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of clinical expert knowledge in the selection of relevant gait features and the discretization of continuous features increases the performance of automatic probabilistic joint motion classification. Findings This study provided objective evidence supporting the first hypothesis. Automatic probabilistic gait classification using the expert knowledge available from the Delphi-consensus study resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher accuracy than that obtained with non-expert raters (78%). Regarding the second hypothesis, this study demonstrated that the use of more advanced machine learning techniques such as automatic feature selection and discretization instead of expert-defined and discretized features can result in slightly higher joint motion classification performance. However, the increase in performance is limited and does not outweigh the additional computational cost and the higher risk of loss of clinical interpretability, which threatens the clinical acceptance and applicability. PMID:28570616

  15. Development and content validity testing of a comprehensive classification of diagnoses for pediatric nurse practitioners.

    PubMed

    Burns, C

    1991-01-01

    Pediatric nurse practitioners (PNPs) need an integrated, comprehensive classification that includes nursing, disease, and developmental diagnoses to effectively describe their practice. No such classification exists. Further, methodologic studies to help evaluate the content validity of any nursing taxonomy are unavailable. A conceptual framework was derived. Then 178 diagnoses from the North American Nursing Diagnosis Association (NANDA) 1986 list, selected diagnoses from the International Classification of Diseases, the Diagnostic and Statistical Manual, Third Revision, and others were selected. This framework identified and listed, with definitions, three domains of diagnoses: Developmental Problems, Diseases, and Daily Living Problems. The diagnoses were ranked using a 4-point scale (4 = highly related to 1 = not related) and were placed into the three domains. The rating scale was assigned by a panel of eight expert pediatric nurses. Diagnoses that were assigned to the Daily Living Problems domain were then sorted into the 11 Functional Health patterns described by Gordon (1987). Reliability was measured using proportions of agreement and Kappas. Content validity of the groups created was measured using indices of content validity and average congruency percentages. The experts used a new method to sort the diagnoses in a new way that decreased overlaps among the domains. The Developmental and Disease domains were judged reliable and valid. The Daily Living domain of nursing diagnoses showed marginally acceptable validity with acceptable reliability. Six Functional Health Patterns were judged reliable and valid, mixed results were determined for four categories, and the Coping/Stress Tolerance category was judged reliable but not valid using either test. There were considerable differences between the panel's, Gordon's (1987), and NANDA's clustering of NANDA diagnoses. This study defines the diagnostic practice of nurses from a holistic, patient-centered perspective. It is the first study to use quantitative methods to test a diagnostic classification system for nursing. The classification model could also be adapted for other nurse specialties.

  16. Epileptic seizure detection in EEG signal with GModPCA and support vector machine.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2017-01-01

    Epilepsy is one of the most common neurological disorders caused by recurrent seizures. Electroencephalograms (EEGs) record neural activity and can detect epilepsy. Visual inspection of an EEG signal for epileptic seizure detection is a time-consuming process and may lead to human error; therefore, recently, a number of automated seizure detection frameworks were proposed to replace these traditional methods. Feature extraction and classification are two important steps in these procedures. Feature extraction focuses on finding the informative features that could be used for classification and correct decision-making. Therefore, proposing effective feature extraction techniques for seizure detection is of great significance. Principal Component Analysis (PCA) is a dimensionality reduction technique used in different fields of pattern recognition including EEG signal classification. Global modular PCA (GModPCA) is a variation of PCA. In this paper, an effective framework with GModPCA and Support Vector Machine (SVM) is presented for epileptic seizure detection in EEG signals. The feature extraction is performed with GModPCA, whereas SVM trained with radial basis function kernel performed the classification between seizure and nonseizure EEG signals. Seven different experimental cases were conducted on the benchmark epilepsy EEG dataset. The system performance was evaluated using 10-fold cross-validation. In addition, we prove analytically that GModPCA has less time and space complexities as compared to PCA. The experimental results show that EEG signals have strong inter-sub-pattern correlations. GModPCA and SVM have been able to achieve 100% accuracy for the classification between normal and epileptic signals. Along with this, seven different experimental cases were tested. The classification results of the proposed approach were better than were compared the results of some of the existing methods proposed in literature. It is also found that the time and space complexities of GModPCA are less as compared to PCA. This study suggests that GModPCA and SVM could be used for automated epileptic seizure detection in EEG signal.

  17. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with the 2-D spatial density map from the ICMA. The MS-BARDOT can measure multispectral elastic-light-scatter patterns of the bacterial colony and its spectral OD to overcome the inherent limits of the single-wavelength BARDOT. A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). Both model and experiment results show an excellent agreement; a longer wavelength induces a wider ring width, a wider ring gap, a smaller pattern size, and smaller numbers of rings. Further analysis using spatial fast Fourier transform (SFFT) shows a good agreement; the spatial frequencies are increasing towards the inward direction, and the slope is inversely proportional to the incoming wavelength. Four major pathogenic bacterial genera (Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923) and the seven major Escherichia coli serovar (O26, O45, O103, O111, O121, O145, and O157) with 3-4 strains each are measured and analyzed with the proposed instrument and algorithm. The MM-BARDOT can measure six different modalities: 1) light microscopy, 2) 3D morphology map from confocal microscopy, 3) 3D optical density map, 4) spectral forward scattering pattern, 5) spectral OD, 6) surface backward reflection pattern, and 7) fluorescence of a bacterial colony without moving the specimen. A custom-built confocal microscope with a controller which can be easily attached to an infinity-corrected commercial microscope is designed and built. Since the current BARDOT needs additional information from a bacterial colony to enhance the identification/classification ratio for a lower hierarchy of bacterial taxonomy such as serovar or strain level, the approach can offer a series of coordinates matched and correlated bio-optical characteristics of a colony and enhance the classification accuracy of the previously introduced BARDOT system. Four major pathogenic bacterial genera: Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923 are measured and analyzed with the proposed instrument and algorithm. Also, a feasibility test for a smaller colony (up to 500 mum) classification utilizing a surface backward reflection pattern from the measurement is done, and shows a potential as an additional modality for the bacterial phenotyping.

  18. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.

  19. Characterizing the Processes for Navigating Internet Health Information Using Real-Time Observations: A Mixed-Methods Approach.

    PubMed

    Perez, Susan L; Paterniti, Debora A; Wilson, Machelle; Bell, Robert A; Chan, Man Shan; Villareal, Chloe C; Nguyen, Hien Huy; Kravitz, Richard L

    2015-07-20

    Little is known about the processes people use to find health-related information on the Internet or the individual characteristics that shape selection of information-seeking approaches. Our aim was to describe the processes by which users navigate the Internet for information about a hypothetical acute illness and to identify individual characteristics predictive of their information-seeking strategies. Study participants were recruited from public settings and agencies. Interested individuals were screened for eligibility using an online questionnaire. Participants listened to one of two clinical scenarios—consistent with influenza or bacterial meningitis—and then conducted an Internet search. Screen-capture video software captured Internet search mouse clicks and keystrokes. Each step of the search was coded as hypothesis testing (etiology), evidence gathering (symptoms), or action/treatment seeking (behavior). The coded steps were used to form a step-by-step pattern of each participant's information-seeking process. A total of 78 Internet health information seekers ranging from 21-35 years of age and who experienced barriers to accessing health care services participated. We identified 27 unique patterns of information seeking, which were grouped into four overarching classifications based on the number of steps taken during the search, whether a pattern consisted of developing a hypothesis and exploring symptoms before ending the search or searching an action/treatment, and whether a pattern ended with action/treatment seeking. Applying dual-processing theory, we categorized the four overarching pattern classifications as either System 1 (41%, 32/78), unconscious, rapid, automatic, and high capacity processing; or System 2 (59%, 46/78), conscious, slow, and deliberative processing. Using multivariate regression, we found that System 2 processing was associated with higher education and younger age. We identified and classified two approaches to processing Internet health information. System 2 processing, a methodical approach, most resembles the strategies for information processing that have been found in other studies to be associated with higher-quality decisions. We conclude that the quality of Internet health-information seeking could be improved through consumer education on methodical Internet navigation strategies and the incorporation of decision aids into health information websites.

  20. Characterizing the Processes for Navigating Internet Health Information Using Real-Time Observations: A Mixed-Methods Approach

    PubMed Central

    Paterniti, Debora A; Wilson, Machelle; Bell, Robert A; Chan, Man Shan; Villareal, Chloe C; Nguyen, Hien Huy; Kravitz, Richard L

    2015-01-01

    Background Little is known about the processes people use to find health-related information on the Internet or the individual characteristics that shape selection of information-seeking approaches. Objective Our aim was to describe the processes by which users navigate the Internet for information about a hypothetical acute illness and to identify individual characteristics predictive of their information-seeking strategies. Methods Study participants were recruited from public settings and agencies. Interested individuals were screened for eligibility using an online questionnaire. Participants listened to one of two clinical scenarios—consistent with influenza or bacterial meningitis—and then conducted an Internet search. Screen-capture video software captured Internet search mouse clicks and keystrokes. Each step of the search was coded as hypothesis testing (etiology), evidence gathering (symptoms), or action/treatment seeking (behavior). The coded steps were used to form a step-by-step pattern of each participant’s information-seeking process. A total of 78 Internet health information seekers ranging from 21-35 years of age and who experienced barriers to accessing health care services participated. Results We identified 27 unique patterns of information seeking, which were grouped into four overarching classifications based on the number of steps taken during the search, whether a pattern consisted of developing a hypothesis and exploring symptoms before ending the search or searching an action/treatment, and whether a pattern ended with action/treatment seeking. Applying dual-processing theory, we categorized the four overarching pattern classifications as either System 1 (41%, 32/78), unconscious, rapid, automatic, and high capacity processing; or System 2 (59%, 46/78), conscious, slow, and deliberative processing. Using multivariate regression, we found that System 2 processing was associated with higher education and younger age. Conclusions We identified and classified two approaches to processing Internet health information. System 2 processing, a methodical approach, most resembles the strategies for information processing that have been found in other studies to be associated with higher-quality decisions. We conclude that the quality of Internet health-information seeking could be improved through consumer education on methodical Internet navigation strategies and the incorporation of decision aids into health information websites. PMID:26194787

  1. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    NASA Astrophysics Data System (ADS)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures, multilayer percepterons and convolutional neural networks. Our research with neural networks has encountered a great deal of difficulties regarding hyperparameter estimation for good training convergence rate and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable parameters (or weights) initialization, and so on, are chosen via a trial and error process with some educated guesses. However, we developed the first quantitative method to compare weight initialization strategies, a critical hyperparameter choice during training, to estimate among a group of candidate strategies which would make the network converge to the highest classification accuracy faster with high probability. Our method provides a quick, objective measure to compare initialization strategies to select the best possible among them beforehand without having to complete multiple training sessions for each candidate strategy to compare final results.

  2. Ex vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Karam, L. Z.; Pegorini, V.; Pitta, C. S. R.; Assmann, T. S.; Cardoso, R.; Kalinowski, H. J.; Silva, J. C. C.

    2014-05-01

    This paper reports the experimental procedures performed in a bovine head for the determination of chewing patterns during the mastication process. Mandible movements during the chewing have been simulated either by using two plasticine materials with different textures or without material. Fibre Bragg grating sensors were fixed in the jaw to monitor the biomechanical forces involved in the chewing process. The acquired signals from the sensors fed the input of an artificial neural network aiming at the classification of the measured chewing patterns for each material used in the experiment. The results obtained from the simulation of the chewing process presented different patterns for the different textures of plasticine, resulting on the determination of three chewing patterns with a classification error of 5%.

  3. Pattern of Cortical Fracture following Corticotomy for Distraction Osteogenesis

    PubMed Central

    Luvan, M; Roshan, G; Saw, A

    2015-01-01

    Corticotomy is an essential procedure for deformity correction and there are many techniques described. However there is no proper classification of the fracture pattern resulting from corticotomies to enable any studies to be conducted. We performed a retrospective study of corticotomy fracture patterns in 44 patients (34 tibias and 10 femurs) performed for various indications. We identified four distinct fracture patterns, Type I through IV classification based on the fracture propagation following percutaneous corticotomy. Type I transverse fracture, Type II transverse fracture with a winglet, Type III presence of butterfly fragment and Type IV fracture propagation to a fixation point. No significant correlation was noted between the fracture pattern and the underlying pathology or region of corticotomy. PMID:28611907

  4. Clinically orientated classification incorporating shoulder balance for the surgical treatment of adolescent idiopathic scoliosis.

    PubMed

    Elsebaie, H B; Dannawi, Z; Altaf, F; Zaidan, A; Al Mukhtar, M; Shaw, M J; Gibson, A; Noordeen, H

    2016-02-01

    The achievement of shoulder balance is an important measure of successful scoliosis surgery. No previously described classification system has taken shoulder balance into account. We propose a simple classification system for AIS based on two components which include the curve type and shoulder level. Altogether, three curve types have been defined according to the size and location of the curves, each curve pattern is subdivided into type A or B depending on the shoulder level. This classification was tested for interobserver reproducibility and intraobserver reliability. A retrospective analysis of the radiographs of 232 consecutive cases of AIS patients treated surgically between 2005 and 2009 was also performed. Three major types and six subtypes were identified. Type I accounted for 30 %, type II 28 % and type III 42 %. The retrospective analysis showed three patients developed a decompensation that required extension of the fusion. One case developed worsening of shoulder balance requiring further surgery. This classification was tested for interobserver and intraobserver reliability. The mean kappa coefficients for interobserver reproducibility ranged from 0.89 to 0.952, while the mean kappa value for intraobserver reliability was 0.964 indicating a good-to-excellent reliability. The treatment algorithm guides the spinal surgeon to achieve optimal curve correction and postoperative shoulder balance whilst fusing the smallest number of spinal segments. The high interobserver reproducibility and intraobserver reliability makes it an invaluable tool to describe scoliosis curves in everyday clinical practice.

  5. Classification and definition of misuse, abuse, and related events in clinical trials: ACTTION systematic review and recommendations.

    PubMed

    Smith, Shannon M; Dart, Richard C; Katz, Nathaniel P; Paillard, Florence; Adams, Edgar H; Comer, Sandra D; Degroot, Aldemar; Edwards, Robert R; Haddox, J David; Jaffe, Jerome H; Jones, Christopher M; Kleber, Herbert D; Kopecky, Ernest A; Markman, John D; Montoya, Ivan D; O'Brien, Charles; Roland, Carl L; Stanton, Marsha; Strain, Eric C; Vorsanger, Gary; Wasan, Ajay D; Weiss, Roger D; Turk, Dennis C; Dworkin, Robert H

    2013-11-01

    As the nontherapeutic use of prescription medications escalates, serious associated consequences have also increased. This makes it essential to estimate misuse, abuse, and related events (MAREs) in the development and postmarketing adverse event surveillance and monitoring of prescription drugs accurately. However, classifications and definitions to describe prescription drug MAREs differ depending on the purpose of the classification system, may apply to single events or ongoing patterns of inappropriate use, and are not standardized or systematically employed, thereby complicating the ability to assess MARE occurrence adequately. In a systematic review of existing prescription drug MARE terminology and definitions from consensus efforts, review articles, and major institutions and agencies, MARE terms were often defined inconsistently or idiosyncratically, or had definitions that overlapped with other MARE terms. The Analgesic, Anesthetic, and Addiction Clinical Trials, Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership convened an expert panel to develop mutually exclusive and exhaustive consensus classifications and definitions of MAREs occurring in clinical trials of analgesic medications to increase accuracy and consistency in characterizing their occurrence and prevalence in clinical trials. The proposed ACTTION classifications and definitions are designed as a first step in a system to adjudicate MAREs that occur in analgesic clinical trials and postmarketing adverse event surveillance and monitoring, which can be used in conjunction with other methods of assessing a treatment's abuse potential. Copyright © 2013 International Association for the Study of Pain. All rights reserved.

  6. EOG-sEMG Human Interface for Communication

    PubMed Central

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%. PMID:27418924

  7. EOG-sEMG Human Interface for Communication.

    PubMed

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  8. Hazard detection and avoidance sensor for NASA's planetary landers

    NASA Technical Reports Server (NTRS)

    Lau, Brian; Chao, Tien-Hsin

    1992-01-01

    An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.

  9. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: A description of the severity and extent of disease using the Bollinger angiogram scoring method and the TransAtlantic Inter-Society Consensus II classification.

    PubMed

    Bradbury, Andrew W; Adam, Donald J; Bell, Jocelyn; Forbes, John F; Fowkes, F Gerry R; Gillespie, Ian; Ruckley, Charles Vaughan; Raab, Gillian M

    2010-05-01

    The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial showed in patients with severe lower limb ischemia (rest pain, tissue loss) who survive for 2 years after intervention that initial randomization to bypass surgery, compared with balloon angioplasty, was associated with an improvement in subsequent amputation-free survival and overall survival of about 6 and 7 months, respectively. The aim of this report is to describe the angiographic severity and extent of infrainguinal arterial disease in the BASIL trial cohort so that the trial outcomes can be appropriately generalized to other patient cohorts with similar anatomic (angiographic) patterns of disease. Preintervention angiograms were scored using the Bollinger method and the TransAtlantic Inter-Society Consensus (TASC) II classification system by three consultant interventional radiologists and two consultant vascular surgeons unaware of the treatment received or patient outcomes. As was to be expected from the randomization process, patients in the two trial arms were well matched in terms of angiographic severity and extent of disease as documented by Bollinger and TASC II. In patients with the least overall disease, it tended to be concentrated in the superficial femoral and popliteal arteries, which were the commonest sites of disease overall. The below knee arteries became increasingly involved as the overall severity of disease increased, but the disease in the above knee arteries did not tend to worsen. The posterior tibial artery was the most diseased crural artery, whereas the peroneal appeared relatively spared. There was less interobserver disagreement with the Bollinger method than with the TASC II classification system, which also appears inherently less sensitive to clinically important differences in infrapopliteal disease among patients with severe leg ischemia. Anatomic (angiographic) disease description in patients with severe leg ischemia requires a reproducible scoring system that is sensitive to differences in crural artery disease. The Bollinger system appears well suited for this purpose, but the TASC II classification system less so. We hope this detailed analysis will facilitate appropriate generalization of the BASIL trial data to other groups of patients affected by similar anatomic (angiographic) patterns of disease. Crown Copyright (c) 2010. Published by Mosby, Inc. All rights reserved.

  10. Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors

    PubMed Central

    Zhang, Jian; Lockhart, Thurmon E.; Soangra, Rahul

    2013-01-01

    Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue. PMID:24081829

  11. Numerical Simulation of the ``Fluid Mechanical Sewing Machine''

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2011-11-01

    A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.

  12. Strategies for the Segmentation of Subcutaneous Vascular Patterns in Thermographic Images

    NASA Astrophysics Data System (ADS)

    Chan, Eric K. Y.; Pearce, John A.

    1989-05-01

    Computer-assisted segmentation of vascular patterns in thermographic images provides the clinician with graphic outlines of thermally significant subcutaneous blood vessels. Segmentation strategies compared here consist of image smoothing protocols followed by thresholding and zero-crossing edge detectors. Median prefiltering followed by the Frei-Chen algorithm gave the most reproducible results, with an execution time of 143 seconds for 256 X 256 images. The Laplacian of Gaussian operator was not suitable due to streak artifacts in the thermographic imaging system. This computerized process may be adopted in a fast paced clinical environment to aid in the diagnosis and assessment of peripheral circulatory diseases, Raynaud's Disease3, phlebitis, varicose veins, as well as diseases of the autonomic nervous system. The same methodology may be applied to enhance the appearance of abnormal breast vascular patterns, and hence serve as an adjunct to mammography in the diagnosis of breast cancer. The automatically segmented vascular patterns, which have a hand drawn appearance, may also be used as a data reduction precursor to higher level pattern analysis and classification tasks.

  13. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images.

    PubMed

    Abbas, Qaisar; Emre Celebi, M; Garcia, Irene Fondón; Ahmad, Waqar

    2013-02-01

    Melanoma Recognition based on clinical ABCD rule is widely used for clinical diagnosis of pigmented skin lesions in dermoscopy images. However, the current computer-aided diagnostic (CAD) systems for classification between malignant and nevus lesions using the ABCD criteria are imperfect due to use of ineffective computerized techniques. In this study, a novel melanoma recognition system (MRS) is presented by focusing more on extracting features from the lesions using ABCD criteria. The complete MRS system consists of the following six major steps: transformation to the CIEL*a*b* color space, preprocessing to enhance the tumor region, black-frame and hair artifacts removal, tumor-area segmentation, quantification of feature using ABCD criteria and normalization, and finally feature selection and classification. The MRS system for melanoma-nevus lesions is tested on a total of 120 dermoscopic images. To test the performance of the MRS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 88.2%, specificity of 91.3%, and AUC of 0.880. The experimental results show that the proposed MRS system can accurately distinguish between malignant and benign lesions. The MRS technique is fully automatic and can easily integrate to an existing CAD system. To increase the classification accuracy of MRS, the CASH pattern recognition technique, visual inspection of dermatologist, contextual information from the patients, and the histopathological tests can be included to investigate the impact with this system. © 2012 John Wiley & Sons A/S.

  14. Analysis of the acoustic spectral signature of prosthetic heart valves in patients experiencing atrial fibrillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, D.D.; Jones, H.E.

    1994-05-06

    Prosthetic heart valves have increased the life span of many patients with life threatening heart conditions. These valves have proven extremely reliable adding years to what would have been weeks to a patient`s life. Prosthetic valves, like the heart however, can suffer from this constant work load. A small number of valves have experienced structural fractures of the outlet strut due to fatigue. To study this problem a non-intrusive method to classify valves has been developed. By extracting from an acoustic signal the opening sounds which directly contain information from the outlet strut and then developing features which are suppliedmore » to an adaptive classification scheme (neural network) the condition of the valve can be determined. The opening sound extraction process has proved to be a classification problem itself. Due to the uniqueness of each heart and the occasional irregularity of the acoustic pattern it is often questionable as to the integrity of a given signal (beat), especially one occurring during an irregular beat pattern. A common cause of these irregular patterns is a condition known as atrial fibrillation, a prevalent arrhythmia among patients with prosthetic hear valves. Atrial fibrillation is suspected when the ECG shows no obvious P-waves. The atria do not contract and relax correctly to help contribute to ventricular filling during a normal cardiac cycle. Sometimes this leads to irregular patterns in the acoustic data. This study compares normal beat patterns to irregular patterns of the same heart. By analyzing the spectral content of the beats it can be determined whether or not these irregular patterns can contribute to the classification of a heart valve or if they should be avoided. The results have shown that the opening sounds which occur during irregular beat patterns contain the same spectral information as the opening which occur during a normal beat pattern of the same heart and these beats can be used for classification.« less

  15. Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach.

    PubMed

    Ecker, Christine; Marquand, Andre; Mourão-Miranda, Janaina; Johnston, Patrick; Daly, Eileen M; Brammer, Michael J; Maltezos, Stefanos; Murphy, Clodagh M; Robertson, Dene; Williams, Steven C; Murphy, Declan G M

    2010-08-11

    Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.

  16. An attention-based effective neural model for drug-drug interactions extraction.

    PubMed

    Zheng, Wei; Lin, Hongfei; Luo, Ling; Zhao, Zhehuan; Li, Zhengguang; Zhang, Yijia; Yang, Zhihao; Wang, Jian

    2017-10-10

    Drug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex sentences is still unsatisfactory. In this study, we propose an effective model that classifies DDIs from the literature by combining an attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach, first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level semantic information of the whole sentence. Finally, a softmax layer performs DDI classification. Experimental results from the DDIExtraction 2013 corpus show that our system performs the best with respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds those of top-ranking systems by 12.6%. Our approach effectively improves the performance of DDI classification tasks. Experimental analysis demonstrates that our model performs better with respect to recognizing not only close-range but also long-range patterns among words, especially for long, complex and compound sentences.

  17. Analysis of the Carnegie Classification of Community Engagement: Patterns and Impact on Institutions

    ERIC Educational Resources Information Center

    Driscoll, Amy

    2014-01-01

    This chapter describes the impact that participation in the Carnegie Classification for Community Engagement had on the institutions of higher learning that applied for the classification. This is described in terms of changes in direct community engagement, monitoring and reporting on community engagement, and levels of student and professor…

  18. Challenges to the Use of Artificial Neural Networks for Diagnostic Classifications with Student Test Data

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Circi, Ruhan

    2017-01-01

    Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…

  19. Two notions of conspicuity and the classification of phyllotaxis.

    PubMed

    Reick, Christian H

    2002-04-07

    Invoking cylindrical Bravais lattices, Adler (1974, 1977) proposed a mathematically precise definition for the botanical classification of phyllotaxis. It is based on opposed pairs of parastichy families, that are conspicuous and visible. Jean (1988) generalized this concept to non-opposed pairs of parastichy families. In the present paper it is shown that this generalization implies a notion of conspicuity different from Adler's. This is made obvious by redefining the key terms of the two approaches. Both classifications are well defined. For Adler's, this is shown by presenting a general proof for his conjecture that conspicuous (in the sense of Adler) opposed pairs of parastichy families are visible. There are indications that in applications to models of phyllotaxis (van Iterson model, inhibitor models) their solutions are better characterized by Jean's classification. The differences between Adler's and Jean's classification show up only in very rare cases, so that the practice of pattern determination is only insignificantly touched by the present results. It turns out that the widely used contact parastichy method to determine phyllotactic patterns gives results according to Jean's classification rather than Adler's. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  20. Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study.

    PubMed

    Jiang, Ningbo; Betts, Alan; Riley, Matt

    2016-02-01

    This paper explores the classification and visualisation utility of the self-organising map (SOM) method in the context of New South Wales (NSW), Australia, using gridded NCEP/NCAR geopotential height reanalysis for east Australia, together with multi-site meteorological and air quality data for Sydney from the NSW Office of Environment and Heritage Air Quality Monitoring Network. A twice-daily synoptic classification has been derived for east Australia for the period of 1958-2012. The classification has not only reproduced the typical synoptic patterns previously identified in the literature but also provided an opportunity to visualise the subtle, non-linear change in the eastward-migrating synoptic systems influencing NSW (including Sydney). The summarisation of long-term, multi-site air quality/meteorological data from the Sydney basin on the SOM plane has identified a set of typical air pollution/meteorological spatial patterns in the region. Importantly, the examination of these patterns in relation to synoptic weather types has provided important visual insights into how local and synoptic meteorological conditions interact with each other and affect the variability of air quality in tandem. The study illustrates that while synoptic circulation types are influential, the within-type variability in mesoscale flows plays a critical role in determining local ozone levels in Sydney. These results indicate that the SOM can be a useful tool for assessing the impact of weather and climatic conditions on air quality in the regional airshed. This study further promotes the use of the SOM method in environmental research.

  1. Optical classification for quality and defect analysis of train brakes

    NASA Astrophysics Data System (ADS)

    Glock, Stefan; Hausmann, Stefan; Gerke, Sebastian; Warok, Alexander; Spiess, Peter; Witte, Stefan; Lohweg, Volker

    2009-06-01

    In this paper we present an optical measurement system approach for quality analysis of brakes which are used in high-speed trains. The brakes consist of the so called brake discs and pads. In a deceleration process the discs will be heated up to 500°C. The quality measure is based on the fact that the heated brake discs should not generate hot spots inside the brake material. Instead, the brake disc should be heated homogeneously by the deceleration. Therefore, it makes sense to analyze the number of hot spots and their relative gradients to create a quality measure for train brakes. In this contribution we present a new approach for a quality measurement system which is based on an image analysis and classification of infra-red based heat images. Brake images which are represented in pseudo-color are first transformed in a linear grayscale space by a hue-saturation-intensity (HSI) space. This transform is necessary for the following gradient analysis which is based on gray scale gradient filters. Furthermore, different features based on Haralick's measures are generated from the gray scale and gradient images. A following Fuzzy-Pattern-Classifier is used for the classification of good and bad brakes. It has to be pointed out that the classifier returns a score value for each brake which is between 0 and 100% good quality. This fact guarantees that not only good and bad bakes can be distinguished, but also their quality can be labeled. The results show that all critical thermal patterns of train brakes can be sensed and verified.

  2. Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.

    PubMed

    Kilic, Niyazi; Hosgormez, Erkan

    2016-03-01

    Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.

  3. Automatic Screening and Grading of Age-Related Macular Degeneration from Texture Analysis of Fundus Images

    PubMed Central

    Phan, Thanh Vân; Seoud, Lama; Chakor, Hadi; Cheriet, Farida

    2016-01-01

    Age-related macular degeneration (AMD) is a disease which causes visual deficiency and irreversible blindness to the elderly. In this paper, an automatic classification method for AMD is proposed to perform robust and reproducible assessments in a telemedicine context. First, a study was carried out to highlight the most relevant features for AMD characterization based on texture, color, and visual context in fundus images. A support vector machine and a random forest were used to classify images according to the different AMD stages following the AREDS protocol and to evaluate the features' relevance. Experiments were conducted on a database of 279 fundus images coming from a telemedicine platform. The results demonstrate that local binary patterns in multiresolution are the most relevant for AMD classification, regardless of the classifier used. Depending on the classification task, our method achieves promising performances with areas under the ROC curve between 0.739 and 0.874 for screening and between 0.469 and 0.685 for grading. Moreover, the proposed automatic AMD classification system is robust with respect to image quality. PMID:27190636

  4. Biochip microsystem for bioinformatics recognition and analysis

    NASA Technical Reports Server (NTRS)

    Lue, Jaw-Chyng (Inventor); Fang, Wai-Chi (Inventor)

    2011-01-01

    A system with applications in pattern recognition, or classification, of DNA assay samples. Because DNA reference and sample material in wells of an assay may be caused to fluoresce depending upon dye added to the material, the resulting light may be imaged onto an embodiment comprising an array of photodetectors and an adaptive neural network, with applications to DNA analysis. Other embodiments are described and claimed.

  5. Discriminant analysis for fast multiclass data classification through regularized kernel function approximation.

    PubMed

    Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K

    2010-06-01

    In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.

  6. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    NASA Astrophysics Data System (ADS)

    Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.

    2014-03-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.

  7. Automatically high accurate and efficient photomask defects management solution for advanced lithography manufacture

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Lijun; Ma, Lantao; Li, Dejian; Jiang, Wei; Pan, Lihong; Shen, Huiting; Jia, Hongmin; Hsiang, Chingyun; Cheng, Guojie; Ling, Li; Chen, Shijie; Wang, Jun; Liao, Wenkui; Zhang, Gary

    2014-04-01

    Defect review is a time consuming job. Human error makes result inconsistent. The defects located on don't care area would not hurt the yield and no need to review them such as defects on dark area. However, critical area defects can impact yield dramatically and need more attention to review them such as defects on clear area. With decrease in integrated circuit dimensions, mask defects are always thousands detected during inspection even more. Traditional manual or simple classification approaches are unable to meet efficient and accuracy requirement. This paper focuses on automatic defect management and classification solution using image output of Lasertec inspection equipment and Anchor pattern centric image process technology. The number of mask defect found during an inspection is always in the range of thousands or even more. This system can handle large number defects with quick and accurate defect classification result. Our experiment includes Die to Die and Single Die modes. The classification accuracy can reach 87.4% and 93.3%. No critical or printable defects are missing in our test cases. The missing classification defects are 0.25% and 0.24% in Die to Die mode and Single Die mode. This kind of missing rate is encouraging and acceptable to apply on production line. The result can be output and reloaded back to inspection machine to have further review. This step helps users to validate some unsure defects with clear and magnification images when captured images can't provide enough information to make judgment. This system effectively reduces expensive inline defect review time. As a fully inline automated defect management solution, the system could be compatible with current inspection approach and integrated with optical simulation even scoring function and guide wafer level defect inspection.

  8. Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system.

    PubMed

    Forkel, Philipp; Reuter, Sven; Sprenker, Frederike; Achtnich, Andrea; Herbst, Elmar; Imhoff, Andreas; Petersen, Wolf

    2015-01-01

    Posterior lateral meniscus root tears (PLMRTs) affect the intra-articular pressure distribution in the lateral compartment of the knee. The biomechanical consequences of these injuries are significantly influenced by the integrity of the meniscofemoral ligaments (MFLs). A newly introduced arthroscopic classification system for PLMRTs that takes MFL integrity into account has not yet been clinically applied but may be useful in selecting the optimal method of PLMRT repair. Prospective ACL reconstruction data were collected. Concomitant injuries of the lateral meniscus posterior horn were classified according to their shape and MFL status. The classifications were: type 1, avulsion of the root; type 2, radial tear of the lateral meniscus posterior horn close to the root with an intact MFL; and type 3, complete detachment of the posterior meniscus horn. Between January 2011 and May 2012, 228 consecutive ACL reconstructions were included. Lateral and medial meniscus tears were identified in 38.2% (n = 87) and 44.7% (n = 102), respectively. Of the 87 lateral meniscus tears, 32 cases had PLMRTs; the overall prevalence of PLMRTs was 14% (n = 32). Two medial meniscus root tears were detected. All PLMRTs were classified according to the classification system described above, and the fixation procedure was adapted to the type of meniscus tear. The PLMRT tear is a common injury among patients undergoing ACL repair and can be arthroscopically classified into three different types. Medial meniscus root tears are rare in association with ACL tears. The PLMRT classification presented here may help to estimate the injury's impact on the lateral compartment and to identify the optimal treatment. These tears should not be overlooked, and the treatment strategy should be chosen with respect to the type of root tear. IV.

  9. Artificial intelligence techniques for embryo and oocyte classification.

    PubMed

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the 'local binary patterns'). The proposed system is tested on two data sets, of 269 oocytes and 269 corresponding embryos from 104 women, and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they showed an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. A modified artificial immune system based pattern recognition approach -- an application to clinic diagnostics

    PubMed Central

    Zhao, Weixiang; Davis, Cristina E.

    2011-01-01

    Objective This paper introduces a modified artificial immune system (AIS)-based pattern recognition method to enhance the recognition ability of the existing conventional AIS-based classification approach and demonstrates the superiority of the proposed new AIS-based method via two case studies of breast cancer diagnosis. Methods and materials Conventionally, the AIS approach is often coupled with the k nearest neighbor (k-NN) algorithm to form a classification method called AIS-kNN. In this paper we discuss the basic principle and possible problems of this conventional approach, and propose a new approach where AIS is integrated with the radial basis function – partial least square regression (AIS-RBFPLS). Additionally, both the two AIS-based approaches are compared with two classical and powerful machine learning methods, back-propagation neural network (BPNN) and orthogonal radial basis function network (Ortho-RBF network). Results The diagnosis results show that: (1) both the AIS-kNN and the AIS-RBFPLS proved to be a good machine leaning method for clinical diagnosis, but the proposed AIS-RBFPLS generated an even lower misclassification ratio, especially in the cases where the conventional AIS-kNN approach generated poor classification results because of possible improper AIS parameters. For example, based upon the AIS memory cells of “replacement threshold = 0.3”, the average misclassification ratios of two approaches for study 1 are 3.36% (AIS-RBFPLS) and 9.07% (AIS-kNN), and the misclassification ratios for study 2 are 19.18% (AIS-RBFPLS) and 28.36% (AIS-kNN); (2) the proposed AIS-RBFPLS presented its robustness in terms of the AIS-created memory cells, showing a smaller standard deviation of the results from the multiple trials than AIS-kNN. For example, using the result from the first set of AIS memory cells as an example, the standard deviations of the misclassification ratios for study 1 are 0.45% (AIS-RBFPLS) and 8.71% (AIS-kNN) and those for study 2 are 0.49% (AIS-RBFPLS) and 6.61% (AIS-kNN); and (3) the proposed AIS-RBFPLS classification approaches also yielded better diagnosis results than two classical neural network approaches of BPNN and Ortho-RBF network. Conclusion In summary, this paper proposed a new machine learning method for complex systems by integrating the AIS system with RBFPLS. This new method demonstrates its satisfactory effect on classification accuracy for clinical diagnosis, and also indicates its wide potential applications to other diagnosis and detection problems. PMID:21515033

  11. Lava Morphology Classification of a Fast-Spreading Ridge Using Deep-Towed Sonar Data: East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, J.; White, S.

    2005-05-01

    Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.

  12. Assessment of Cropping System Diversity in the Fergana Valley Through Image Fusion of Landsat 8 and SENTINEL-1

    NASA Astrophysics Data System (ADS)

    Dimov, D.; Kuhn, J.; Conrad, C.

    2016-06-01

    In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  13. Classification of intertrochanteric fractures with computed tomography: a study of intraobserver and interobserver variability and prognostic value.

    PubMed

    Chapman, Cary B; Herrera, Mauricio F; Binenbaum, Gil; Schweppe, Michael; Staron, Ronald B; Feldman, Frieda; Rosenwasser, Melvin P

    2003-09-01

    The purpose of this prospective study was to determine the level of interobserver and intraobserver agreement among orthopedic surgeons and radiologists when computed tomography (CT) scans are used with plain radiographs to evaluate intertrochanteric fractures. In addition, the prognostic value of current classifications systems concerning quality of life was evaluated. Sixty-one patients who presented with intertrochanteric fractures received open reduction and internal fixation with compression hip screw. Three orthopedic surgeons and 2 radiologists independently classified the fractures according to 2 systems: Evans-Jensen and AO (Arbeitsgemeinschaft für Osteo-synthesefragen). Fractures were initially graded with plain radiographs and then again in conjunction with CT. Results were analyzed using the (kappa) kappa coefficient. The 36-item Short-Form Health Survey was administered at baseline, 3 months, and 1 year, and results were correlated with fracture grade. Mean kappa coefficients when comparing radiography alone with radiography and CT scan were 0.63 for the AO system and 0.59 for the Evans-Jensen system. Both represent "fair" agreements. Mean overall interobserver kappa coefficients were 0.67 for radiologists and 0.57 for orthopedic surgeons. Radiologists also had higher intraobserver kappa coefficients. No significant relationships were found between follow-up Short Form Health Survey results and intraoperative grading of fractures. When these classification schemes are compared, interobserver agreement does not appear to change dramatically when information from CT scans is added. This may suggest that (1) more data have been provided by CT with greater possibilities for misinterpretation and (2) these classification schemes may not be comprehensive in describing fracture pattern and displacement. Finally, both systems failed to provide any prognostic value.

  14. Lineament and polygon patterns on Europa

    NASA Technical Reports Server (NTRS)

    Pieri, D. C.

    1981-01-01

    A classification scheme is presented for the lineaments and associated polygonal patterns observed on the surface of Europa, and the frequency distribution of the polygons is discussed in terms of the stress-relief fracturing of the surface. The lineaments are divided on the basis of albedo, morphology, orientation and characteristic geometry into eight groups based on Voyager 2 images taken at a best resolution of 4 km. The lineaments in turn define a system of polygons varying in size from small reticulate patterns the limit of resolution to 1,000,000 sq km individuals. Preliminary analysis of polygon side frequency distributions reveals a class of polygons with statistics similar to those found in complex terrestrial terrains, particularly in areas of well-oriented stresses, a class with similar statistics around the antijovian point, and a class with a distribution similar to those seen in terrestrial tensional fracture patterns. Speculations concerning the processes giving rise to the lineament patterns are presented.

  15. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug

    2013-05-15

    Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less

  16. Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface

    PubMed Central

    Brunner, Clemens; Allison, Brendan Z.; Krusienski, Dean J.; Kaiser, Vera; Müller-Putz, Gernot R.; Pfurtscheller, Gert; Neuper, Christa

    2012-01-01

    In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user’s mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs. PMID:20153371

  17. Searching for patterns in remote sensing image databases using neural networks

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.

  18. Improved opponent color local binary patterns: an effective local image descriptor for color texture classification

    NASA Astrophysics Data System (ADS)

    Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo

    2018-01-01

    Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.

  19. Online adaptive decision trees: pattern classification and function approximation.

    PubMed

    Basak, Jayanta

    2006-09-01

    Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.

  20. Long-range dismount activity classification: LODAC

    NASA Astrophysics Data System (ADS)

    Garagic, Denis; Peskoe, Jacob; Liu, Fang; Cuevas, Manuel; Freeman, Andrew M.; Rhodes, Bradley J.

    2014-06-01

    Continuous classification of dismount types (including gender, age, ethnicity) and their activities (such as walking, running) evolving over space and time is challenging. Limited sensor resolution (often exacerbated as a function of platform standoff distance) and clutter from shadows in dense target environments, unfavorable environmental conditions, and the normal properties of real data all contribute to the challenge. The unique and innovative aspect of our approach is a synthesis of multimodal signal processing with incremental non-parametric, hierarchical Bayesian machine learning methods to create a new kind of target classification architecture. This architecture is designed from the ground up to optimally exploit correlations among the multiple sensing modalities (multimodal data fusion) and rapidly and continuously learns (online self-tuning) patterns of distinct classes of dismounts given little a priori information. This increases classification performance in the presence of challenges posed by anti-access/area denial (A2/AD) sensing. To fuse multimodal features, Long-range Dismount Activity Classification (LODAC) develops a novel statistical information theoretic approach for multimodal data fusion that jointly models multimodal data (i.e., a probabilistic model for cross-modal signal generation) and discovers the critical cross-modal correlations by identifying components (features) with maximal mutual information (MI) which is efficiently estimated using non-parametric entropy models. LODAC develops a generic probabilistic pattern learning and classification framework based on a new class of hierarchical Bayesian learning algorithms for efficiently discovering recurring patterns (classes of dismounts) in multiple simultaneous time series (sensor modalities) at multiple levels of feature granularity.

Top