Laser-velocimeter surveys of merging vortices in a wind tunnel: Complete data and analysis
NASA Technical Reports Server (NTRS)
Corsiglia, V. R.; Iversen, J. D.; Orloff, K. L.
1978-01-01
The merger of two corotating vortices was studied with a laser velocimeter designed to measure the two cross-stream components of velocity. Measurements were made at several downstream distances in the vortex wake shed by two semispan wings mounted on the wind-tunnel walls. The velocity data provided wall-defined contours of crossflow velocity, stream function, and vorticity for a variety of test conditions. Downstream of the merger point, the vorticity was found to be independent of the downstream distance for radii smaller than r/b = 0.05. For larger radii, the vorticity depended on the distance from the wing. Upstream of the merger, a multicell vorticity pattern was found.
Classification of Stellar Orbits Near Corotation
NASA Astrophysics Data System (ADS)
Breet, Jessica; Daniel, Kathryne J.; Bryn Mawr College Galaxy Lab
2018-01-01
The process of radial migration is frequently invoked as an important process to spiral galaxy evolution, but the physical properties that determine the efficiency of radial migration are poorly defined. In order for a star to migrate radially it must first be trapped in a resonant orbit at the corotation radius of a spiral pattern. Stars in such trapped orbits have changing average orbital radii — and thus orbital angular momenta — without any change in orbital eccentricity. It follows that transient spiral patterns can permanently rearrange the distribution of orbital angular momentum in the disk without kinematically heating it. It is also known that orbits can also have a significant dynamical response at Lindblad Resonances (LRs), where the Ultraharmonic Lindblad Resonances (ULRs) have a lesser impact on the disk. The goal of our project is to examine and constrain the efficiency of radial migration via an investigation into whether or not stars in trapped orbits have a dynamical response at the ULRs. We produced a dataset of nearly 105 orbits with initial conditions across a range of radii and 2-D velocities. We then classified these orbits into four categories based on analytic criteria for whether or not they are in trapped orbits and/or cross the ULR over 1 gigayear. Preliminary investigations show that trapped orbits that also meet the ULR have a chaotic response, putting a potential limit on the efficiency of radial migration.
Plasma observations near Saturn - Initial results from Voyager 1
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Olbert, S.; Sullivan, J. D.; Bagenal, F.; Gazis, P. R.; Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.
1981-01-01
The Voyager 1 encounter with Saturn and its satellites yielded extensive measurements of magnetospheric low-energy plasma electrons and positive ions, both heavy and light, probably of hydrogen and nitrogen or oxygen. At radial distances between 15 and 7 Saturn radii on the inbound trajectory, the plasma appears to corotate with a velocity within 20% of that theoretically expected for rigid corotation. The Titan data, taken while the moon was inside the Saturn magnetosphere, shows a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan.
Radial migration in numerical simulations of Milky-Way sized galaxies
NASA Astrophysics Data System (ADS)
Grand, R. J. J.; Kawata, D.
2016-09-01
We show that in ßrm N-body simulations of isolated spiral discs, spiral arms appear to transient, recurring features that co-rotate with the stellar disc stars at all radii. As a consequence, stars around the spiral arm continually feel a tangential force from the spiral and gain/lose angular momentum at all radii where spiral structure exists, without gaining significant amounts of random energy. We demonstrate that the ubiquitous radial migration in these simulations can be seen as outward (inward) systematic streaming motions along the trailing (leading) side of the spiral arms. We characterise these spiral induced peculiar motions and compare with those of the Milky Way obtained from APOGEE red clump data. We find that transient, co-rotating spiral arms are consistent with the data, in contrast with density wave-like spirals which are qualitatively inconsistent. In addition, we show that, in our simulations, radial migration does not change the radial metallicity gradient significantly, and broadens the metallicity distribution function at all radii, similar to some previous studies.
NASA Astrophysics Data System (ADS)
Kato, Shoji
2002-02-01
Various modes of oscillations are trapped in the inner region of geometrically thin relativistic disks. Among these oscillations, non-axisymmetric g-mode oscillations have been less studied compared with other modes of oscillations. The modes are, however, interesting since a corotation resonance appears in the trapped region. We mathematically examine whether the modes can be excited by the effects of the corotation resonance. This examination is made under an assumption that the inner and outer Lindblad radii are sufficiently separated in the opposite directions from the corotation radius. The results of analyses suggest that the waves are excited by the corotation resonance. The presence of the excitation suggests that the non-axisymmetric trapped g-mode oscillations are one of possible candidates for the quasi-periodic oscillations of a few hundred to kHz observed in some X-ray sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Font, Joan; Beckman, John E.; Fathi, Kambiz
In this Letter, we introduce a technique for finding resonance radii in a disk galaxy. We use a two-dimensional velocity field in H{alpha} emission obtained with Fabry-Perot interferometry, derive the classical rotation curve, and subtract it off, leaving a residual velocity map. As the streaming motions should reverse sign at corotation, we detect these reversals and plot them in a histogram against galactocentric radius, excluding points where the amplitude of the reversal is smaller than the measurement uncertainty. The histograms show well-defined peaks which we assume to occur at resonance radii, identifying corotations as the most prominent peaks corresponding tomore » the relevant morphological features of the galaxy (notably bars and spiral arm systems). We compare our results with published measurements on the same galaxies using other methods and different types of data.« less
Plasma observations near jupiter: initial results from voyager 1.
Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; McNutt, R L; Bagenal, F; Scudder, J D; Sittler, E C; Siscoe, G L; Vasyliunas, V M; Goertz, C K; Yeates, C M
1979-06-01
Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magneto-pause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energylcharge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios A/Z* = 8, 16, 32, and 64.
Plasma observations near Jupiter - Initial results from Voyager 1
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Mcnutt, R. L.; Bagenal, F.; Scudder, J. D.; Sittler, E. C.; Siscoe, G. L.; Vasyliunas, V. M.
1979-01-01
Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magnetopause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energy/charge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios equal to 8, 16, 32, and 64.
The formation of fragments at corotation in isothermal protoplanetary disks
NASA Astrophysics Data System (ADS)
Durisen, Richard H.; Hartquist, Thomas W.; Pickett, Megan K.
2008-09-01
Numerical hydrodynamics simulations have established that disks which are evolved under the condition of local isothermality will fragment into small dense clumps due to gravitational instabilities when the Toomre stability parameter Q is sufficiently low. Because fragmentation through disk instability has been suggested as a gas giant planet formation mechanism, it is important to understand the physics underlying this process as thoroughly as possible. In this paper, we offer analytic arguments for why, at low Q, fragments are most likely to form first at the corotation radii of growing spiral modes, and we support these arguments with results from 3D hydrodynamics simulations.
Characterizing bars in low surface brightness disc galaxies
NASA Astrophysics Data System (ADS)
Peters, Wesley; Kuzio de Naray, Rachel
2018-05-01
In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.
Plasma observations near Jupiter - Initial results from Voyager 2
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Bagenal, F.; Mcnutt, R. L., Jr.; Ogilvie, K. W.; Scudder, J. D.; Sittler, E. D.; Vasyliunas, V. M.
1979-01-01
A preliminary report is presented of the results obtained by the Voyager 2 plasma experiment during the encounter of Voyager 2 with Jupiter from about 100 Jupiter radii before periapsis to about 300 Jupiter radii after periapsis, the instrument being identical to that on Voyager 1. The discussion covers the following: (1) the crossings of the bow shock and magnetopause observed on the inbound and outbound passes; (2) the radial variation of plasma properties in the magnetosphere; (3) variations in plasma properties near Ganymede; (4) corotation and composition of the plasma in the dayside magnetosphere; and (5) plasma sheet crossings observed on the inbound and outbound passes. From the planetary spin modulation of the plasma-electron intensity it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40-50 Jupiter radii and deviates from it toward the rotational equator at larger distances.
NASA Astrophysics Data System (ADS)
Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H. J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; Moutou, C.; Santerne, A.; Tingley, B.
2013-05-01
We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (mV = 16) candidate revealed an eclipsing binary composed of a late F-type primary (Teff = 6090 ± 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 ± 0.011 M⊙, and a radius of 0.104-0.006+0.026 R⊙, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models. Based on observations made with the 1-m telescope at the Wise Observatory, Israel, the Swiss 1.2-m Leonhard Euler telescope at La Silla Observatory, Chile, the IAC-80 telescope at the Observatory del Teide, Canarias, Spain, and the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639).
Flow visualization in radial flow through stationary and corotating parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Tanaka, M.; Yang, Wen-Jei
Paraffin mist is used here as a tracer to observe the patterns in the radial flow through both stationary and corotating parallel disks. The periodic and alternative generation of separation bubbles on both disks and the resulting flow fluctuation and turbulent flow in the radial channel are studied. Stall cells are visualized around the outer rim of the corotating disks.
EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m
2009-12-20
Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less
TIME-DEPENDENT COROTATION RESONANCE IN BARRED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yu-Ting; Taam, Ronald E.; Pfenniger, Daniel, E-mail: ytwu@asiaa.sinica.edu.tw, E-mail: daniel.pfenniger@unige.ch, E-mail: taam@asiaa.sinica.edu.tw
2016-10-20
The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N -body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle levelmore » the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.« less
A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1978-01-01
The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.
NASA Astrophysics Data System (ADS)
Barceló Forteza, S.; Roca Cortés, T.; García, R. A.
2018-06-01
CoRoT and Kepler high-precision photometric data allowed the detection and characterization of the oscillation parameters in stars other than the Sun. Moreover, thanks to the scaling relations, it is possible to estimate masses and radii for thousands of solar-type oscillating stars. Recently, a Δν - ρ relation has been found for δ Scuti stars. Now, analysing several hundreds of this kind of stars observed with CoRoT and Kepler, we present an empiric relation between their frequency at maximum power of their oscillation spectra and their effective temperature. Such a relation can be explained with the help of the κ-mechanism and the observed dispersion of the residuals is compatible with they being caused by the gravity-darkening effect. Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A46
The stability of the oscillation motion of charged grains in the Saturnian ring system
NASA Astrophysics Data System (ADS)
Xu, R.-L.; Houpis, L. F.
1985-02-01
A perturbation approach for the gravitoelectrodynamic forces encountered in the corotating plasma environment of Saturn is used to determine the stability of charged grains, given a random initial velocity. Attention is given to the implications of the Northrop and Hill (1982) and Mendis et al. (1982) results for the formation of the Saturnian ring system, and it is suggested that the marginal z stability radius at 1.5245 Saturn radii for Kepler-launched particles is due to an erosion process with ejecta of the order 0.05-0.5 microns, rather than that of the previously suggested plasma. The diffuseness of the Saturnian rings beyond the F ring is also explained in terms of instability, while a new critical radius for r instability is suggestd for the optical depth feature at 1.72 Saturn radii. The F ring is analyzed in detail.
NASA Astrophysics Data System (ADS)
Yakovlev, A. B.
2018-05-01
The analysis of the motion of micro-particles with radii of several dozens of nanometers in the Earth's plasmasphere has confirmed that the earlier proved statement about conservation of the form for an orbit of a particle with constant electric charge which moves in superposition of the central gravitational field and the field of a magnetic dipole is true also for the case of a quasi-equilibrium electric charge. For a wide range of altitudes and the sizes of micro-particles other forces that act on the charged grain make considerably smaller impact on its motion. On the basis of numerical simulation it has been shown that for motion in an equatorial plane the field of co-rotation leads to very small monotonous growth of the semimajor axis and an orbit eccentricity, and for not-equatorial orbits there are fluctuations of the semimajor axis, an eccentricity and an inclination of an orbit with the period that considerably exceeds the period of orbital motion. In this paper, on the basis of the analysis of the canonical equations of the motion of a micro-particle in superposition of the central gravitational field and the field of co-rotation the explanation of the time dependences obtained numerically for the basic characteristics of an orbit of a micro-particle is proposed.
Plasma bulk flow in Jupiter's dayside middle magnetosphere
NASA Technical Reports Server (NTRS)
Sands, Mark R.; Mcnutt, Ralph L., Jr.
1988-01-01
Using the plasma data obtained during the Voyager 1 encounter and the full response function of the Plasma Science (PLS) experiment, convective plasma velocities have been determined in the dayside middle magnetosphere of Jupiter (r = 10-25 Jupiter radii). It is found that temperature anisotropies have very little effect on plasma velocity determination and that the plasma data are well approximated by convected, isotropic Maxwellian ion distribution functions. The insensitivity of the analysis to any thermal anisotropies which may exist allows a good determination of the bulk plasma flow velocity. In addition to the subcorotational azimuthal flow, there exists a substantial nonazimuthal component of plasma flow. This nonazimuthal flow is mostly aligned (antialigned) with the local magnetic field but also exhibits a cross-field component. The velocity pattern is inconsistent with enhanced plasma outflow in the active sector, as suggested by the corotating convection model of plasma transport. The contribution of field-aligned flow along the curved magnetic field lines to the stress on the magnetic field is evaluated. In the region studied, such flow contributes up to one half the stress produced by the azimuthal plasma flow.
The flow in the spiral arms of slowly rotating bar-spiral models
NASA Astrophysics Data System (ADS)
Patsis, P. A.; Tsigaridi, L.
2017-07-01
We use response models to study the stellar and gaseous flows in the spiral arm regions of slow rotating barred-spiral potentials. We vary the pattern speed so that the corotation-to bar radius ratios (Rc/Rb) are in the range 2 < Rc/Rb < 3. We find in general two sets of spirals, one inside and one outside corotation, which are reinforced by two different dynamical mechanisms. The bar and the spirals inside corotation are supported by regular orbits, while the spirals beyond corotation are associated with the "chaotic spirals", both in the stellar as well as in the gaseous case. The main difference in the two flows is the larger dispersion of velocities we encounter in the stellar (test-particles) models. The inner and the outer spirals are in general not connected. In most cases we find an oval component inside corotation, that surrounds the inner barred-spiral structure and separates it from the outer spirals. In the gaseous models, clumps of local overdensities are formed along the inner arms as the gas shocks in the spirals region, while clumps in the spirals beyond corotation are formed as the flows along the two outer arms meet and join each other close to the unstable Lagrangian points of the system.
Are pulsars spun up or down by SASI spiral modes?
NASA Astrophysics Data System (ADS)
Kazeroni, Rémi; Guilet, Jérôme; Foglizzo, Thierry
2017-10-01
Pulsars may either be spun up or down by hydrodynamic instabilities during the supernova explosion of massive stars. Besides rapidly rotating cases related to bipolar explosions, stellar rotation may affect the explosion of massive stars in the more common situations where the centrifugal force is minor. Using 2D simulations of a simplified set-up in cylindrical geometry, we examine the impact of rotation on the standing accretion shock instability (SASI) and the corotation instability, also known as low-T/|W|. The influence of rotation on the saturation amplitude of these instabilities depends on the specific angular momentum in the accretion flow and the ratio of the shock to the neutron star radii. The spiral mode of SASI becomes more vigorous with faster rotation only if this ratio is large enough. A corotation instability develops at large rotation rates and impacts the dynamics more dramatically, leading to a strong one-armed spiral wave. Non-axisymmetric instabilities are able to redistribute angular momentum radially and affect the pulsar spin at birth. A systematic study of the relationship between the core rotation period of the progenitor and the initial pulsar spin is performed. Stellar rotation rates for which pulsars are spun up or down by SASI are estimated. Rapidly spinning progenitors are modestly spun down by spiral modes, less than ˜30 per cent, when a corotation instability develops. Given the observational constraints on pulsar spin periods at birth, this suggests that rapid rotation might not play a significant hydrodynamic role in most core-collapse supernovae.
Modeling Enceladus and its torus in Saturn's magnetosphere (Invited)
NASA Astrophysics Data System (ADS)
Jia, Y.; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.
2010-12-01
The dynamics of the saturnian magnetosphere is controlled by the planetary spin at a rate of about 10.5 hours. The second icy moon of Saturn, Enceladus, orbits at 4 planetary radii deep in the inner magnetosphere. Enceladus creates neutrals at a rate of hundreds of kilograms per second. These neutrals are ionized and picked up by the ambient plasma and spun up to the corotational velocity to form a plasma disk. Consequently, the gas and plasma density peak close to the Enceladus orbit. In the gas torus, the majority of the gas particles travel at their keplerian speed of 14 km/s, while the bulk of the plasma rotates at 30-40 km/s as a response to the rigid spinning of the saturnian magnetic field. The corotating plasma torus feels a centrifugal force that is balanced by the magnetic tension force. To balance the centripetal force of this plasma disk, Saturn’s magnetic field is stretched in both radial and azimuthal directions. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance to cause plasma flows in the radial direction of Saturn. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we summarize the lessons learned from recent Cassini observations and our numerical simulation effort of the local interactions at Enceladus, and model the inner magnetosphere of Saturn to reproduce the force balance processes. The neutral torus is treated as a background in this axis-symmetric model.
NASA Astrophysics Data System (ADS)
Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.; Carpano, S.; Deleuil, M.; Deeg, H. J.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; Mazeh, T.; Moutou, C.; Ofir, A.; von Paris, P.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.
2010-11-01
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with T_eff = 5 945 K, M* = 1.09 M⊙, R_* = 1.01 R⊙, solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}⊕. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
THE DYNAMICAL RELATIONSHIP BETWEEN THE BAR AND SPIRAL PATTERNS OF NGC 1365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speights, Jason C.; Rooke, Paul C., E-mail: jcspeights@frostburg.edu
2016-07-20
Theories that attempt to explain the dynamical relationship between bar and spiral patterns in galactic disks make different predictions about the radial profile of the pattern speed. These are tested for the H-alpha bar and spiral patterns of NGC 1365. The radial profile of the pattern speed is measured by fitting mathematical models that are based on the Tremaine–Weinberg method. The results show convincing evidence for the bar rotating at a faster rate than the spiral pattern, inconsistent with a global wave mode or a manifold. There is evidence for mode coupling of the bar and spiral patterns at themore » overlap of corotation and inner Lindblad resonances (ILRs), but the evidence is unreliable and inconsistent. The results are the most consistent with the bar and spiral patterns being dynamically distinct features. The pattern speed of the bar begins near an ILR and ends near the corotation resonance (CR). The radial profile of the pattern speed beyond the bar most closely resembles what is expected for coupled spiral modes and tidal interactions.« less
Plasma observations near saturn: initial results from voyager 1.
Bridge, H S; Belcher, J W; Lazarus, A J; Olbert, S; Sullivan, J D; Bagenal, F; Gazis, P R; Hartle, R E; Ogilvie, K W; Scudder, J D; Sittler, E C; Eviatar, A; Siscoe, G L; Goertz, C K; Vasyliunas, V M
1981-04-10
Extensive measurements of low-energy plasma electrons and positive ions were made during the Voyager 1 encounter with Saturn and its satellites. The magnetospheric plasma contains light and heavy ions, probably hydrogen and nitrogen or oxygen; at radial distances between 15 and 7 Saturn-radii (Rs) on the inbound trajectory, the plasma appears to corotate with a velocity within 20 percent of that expected for rigid corotation. The general morphology of Saturn's magnetosphere is well represented by a plasma sheet that extends from at least 5 to 17 Rs, is symmetrical with respect to Saturn's equatorial plane and rotation axis, and appears to be well ordered by the magnetic shell parameter L (which represents the equatorial distance of a magnetic field line measured in units of Rs). Within this general configuration, two distinct structures can be identified: a central plasma sheet observed from L = 5 to L = 8 in which the density decreases rapidly away from the equatorial plane, and a more extended structure from L = 7 to beyond 18 Rs in which the density profile is nearly flat for a distance +/- 1.8 Rs off the plane and falls rapidly thereafter. The encounter with Titan took place inside the magnetosphere. The data show a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan. Titan appears to be a significant source of ions for the outer magnetosphere. The locations of bow shock crossings observed inbound and outbound indicate that the shape of the Saturnian magnetosphere is similar to that of Earth and that the position of the stagnation point scales approximately as the inverse one-sixth power of the ram pressure.
NASA Technical Reports Server (NTRS)
Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.
1997-01-01
Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.
A Study of Small Satellites Captured in Corotation Resonance
NASA Astrophysics Data System (ADS)
Santos Araújo, Nilton Carlos; Vieira Neto, E.
2013-05-01
Abstract (2,250 Maximum Characters): Currently we find in the solar system several types of celestial objects such as planets, satellites, rings, etc.. The dynamics of these objects have always been interesting for studies, mainly the satellites and rings of Saturn. We have the knowledge that these satellites and rings undergo various types of orbital resonances. These resonances are responsible for the formation of numerous structures in the rings such as, for example, almost the entire structure of A ring. Thus we see how important it is to examine the nature of these resonant interactions in order to understand the characteristics observed in the satellites and rings of Saturn. In this work we highlight the corotation resonance, which occurs when the velocity pattern of the potential disturbing frequency is equal to the orbital frequency of a satellite. In the Saturnian system there are three satellites, Aegaeon, Anthe and Methone that are in corotation resonance with Mimas. In this paper we study, through numerical simulations, corotation resonance of the G ring arc of Saturn with Tethys and Mimas, while Mimas is migrating. Ours initial results show that no particles escape from the corotational resonance while Mimas migrate, that is, it is very robust. We also show the effects and consequences of Tethys migration on Mimas and de G arc.
A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology
NASA Astrophysics Data System (ADS)
Müller, Oliver; Pawlowski, Marcel S.; Jerjen, Helmut; Lelli, Federico
2018-02-01
The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, <0.5% of Centaurus A–like systems show such behavior. Corotating satellite systems may be common in the universe, challenging small-scale structure formation in the prevailing cosmological paradigm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faigler, S.; Kull, I.; Mazeh, T.
We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17–3.82 days, andmore » WD masses, of 0.19–0.22 M{sub ⊙}, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R{sub ⊙}, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ∼1.5 × 10{sup −3}. These features are probably the outcome of the mass-transfer process.« less
Magnetic field evolution and reversals in spiral galaxies
NASA Astrophysics Data System (ADS)
Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.
2016-10-01
We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.
CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264
NASA Astrophysics Data System (ADS)
Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.
2016-02-01
Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A47
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2018-05-01
The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.
NASA Astrophysics Data System (ADS)
García Hernández, A.; Moya, A.; Michel, E.; Suárez, J. C.; Poretti, E.; Martín-Ruíz, S.; Amado, P. J.; Garrido, R.; Rodríguez, E.; Rainer, M.; Uytterhoeven, K.; Rodrigo, C.; Solano, E.; Rodón, J. R.; Mathias, P.; Rolland, A.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.
2013-11-01
Aims: The aim of this work was to use a multi-approach technique to derive the most accurate values possible of the physical parameters of the δ Sct star HD 174966, which was observed with the CoRoT satellite. In addition, we searched for a periodic pattern in the frequency spectra with the goal of using it to determine the mean density of the star. Methods: First, we extracted the frequency content from the CoRoT light curve. Then, we derived the physical parameters of HD 174966 and carried a mode identification out from the spectroscopic and photometric observations. We used this information to look for the models fulfilling all the conditions and discussed the inaccuracies of the method because of the rotation effects. In a final step, we searched for patterns in the frequency set using a Fourier transform, discussed its origin, and studied the possibility of using the periodicity to obtain information about the physical parameters of the star. Results: A total of 185 peaks were obtained from the Fourier analysis of the CoRoT light curve, all of which were reliable pulsating frequencies. From the spectroscopic observations, 18 oscillation modes were detected and identified, and the inclination angle (62.5°-17.5+7.5) and the rotational velocity of the star (142 km s-1) were estimated. From the multi-colour photometric observations, only three frequencies were detected that correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a quasiperiodic pattern Δν ~ 64 μHz. Using the inclination angle, the rotational velocity, and an Echelle diagram (showing a double comb outside the asymptotic regime), we concluded that the periodicity corresponds to a large separation structure. The quasiperiodic pattern allowed us to discriminate models from a grid. As a result, the value of the mean density is achieved with a 6% uncertainty. So, the Δν pattern could be used as a new observable for A-F type stars. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.This work is based on ground-based observations made with the ESO 3.6 m telescope at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and on observations made at Observatoire de Haute Provence (CNRS), France, and at Observatorio de Sierra Nevada (OSN), Spain, operated by the Instituto de Astrofísica de Andalucía (CSIC). This research has made use of both the Simbad database, operated at CDS, Strasbourg, France, and the Astrophysics Data System, provided by NASA, USA.Table 6 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A63
A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology.
Müller, Oliver; Pawlowski, Marcel S; Jerjen, Helmut; Lelli, Federico
2018-02-02
The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, <0.5% of Centaurus A-like systems show such behavior. Corotating satellite systems may be common in the universe, challenging small-scale structure formation in the prevailing cosmological paradigm. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model
NASA Astrophysics Data System (ADS)
Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.
2017-01-01
Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a starting point to apply these techniques to the investigation of clumps in the distribution of stars in the Galaxy, such as kinematic moving groups.
NASA Technical Reports Server (NTRS)
Richardson, J. D.; Eviatar, A.; Siscoe, G. L.
1986-01-01
The inner satellites of Saturn are icy bodies imbedded in a plasma environment in which they are continuously bombarded by energetic ions, corotating plasma, and solar radiation. Laboratory sputtering experiments indicate that this should result in the injection of substantial amounts of neutral H, H2, OH, H2O, and O2 into the magnetosphere. The atomic processes affecting these neutrals and the neutrals and ions formed from them are modeled, and the steady state neutral and ion densities expected in the plasma tori of Enceladus, Dione-Tethys, and Rhea are calculated. Comparison with observations shows that recombination can limit the Enceladus and Dione-Tethys tori to the observed densities, but that transport rates of at least 4 x 10 to the -8th Saturn radii squared/s are required to limit torus densities at Rhea to the observed values.
Modeling of exoplanets interiors in the framework of future space missions
NASA Astrophysics Data System (ADS)
Brugger, B.; Mousis, O.; Deleuil, M.
2017-12-01
Probing the interior of exoplanets with known masses and radii is possible via the use of models of internal structure. Here we present a model able to handle various planetary compositions, from terrestrial bodies to ocean worlds or carbon-rich planets, and its application to the case of CoRoT-7b. Using the elemental abundances of an exoplanet’s host star, we significantly reduce the degeneracy limiting such models. This further constrains the type and state of material present at the surface, and helps estimating the composition of a secondary atmosphere that could form in these conditions through potential outgassing. Upcoming space missions dedicated to exoplanet characterization, such as PLATO, will provide accurate fundamental parameters of Earth-like planets orbiting in the habitable zone, for which our model is well adapted.
Corotation of an intermittent solar wind source
NASA Technical Reports Server (NTRS)
Croft, T. A.
1972-01-01
The measured electron content of the solar wind in mid-1970 exhibited a region of relatively high electron density that reappeared at intervals of about 27.8 days. It is shown that the repeating event cannot be reconciled with the concept of a long-enduring steady flow, even though the recurrence period is close to the rotation period of the sun. This evidence of transients is inferred from the short duration of each appearance of the interval of higher density; each should last for roughly one corotation interval if it is caused by a steady stream. The radio path was approximately 0.8 AU long, and the corotation interval exceeded 3 days. Other aspects of the content data patterns support the view that such transient events are common in the solar wind. The mid-1970 repeating event is an unusually good example of the intermittent character of flow regions in the solar wind that fluctuate on a time scale of days but endure as identifiable regions for many months. A sputtering corotating source of thin solar plasma streams could explain this series of events; it could also be explained in terms of a stream that is steady in density and speed but undulating north-south so that it passes into and out of the 0.8 AU radio path in a matter of a day or less.
NASA Astrophysics Data System (ADS)
Bloemen, S.; Marsh, T. R.; Degroote, P.; Østensen, R. H.; Pápics, P. I.; Aerts, C.; Koester, D.; Gänsicke, B. T.; Breedt, E.; Lombaert, R.; Pyrzas, S.; Copperwheat, C. M.; Exter, K.; Raskin, G.; Van Winckel, H.; Prins, S.; Pessemier, W.; Frémat, Y.; Hensberge, H.; Jorissen, A.; Van Eck, S.
2012-05-01
We present a light-curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2-d orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 d of publicly available Kepler observations and present the first complete light-curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection and Doppler beaming. Markov chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of 87°.0 ± 0°.4, which is significantly lower than the previously published value. The altered inclination leads to different values for the relative radii of the two stars and therefore also the mass ratio deduced from the ellipsoidal modulations seen in this system. We find that the mass ratio derived from the radial velocity amplitude (q= 0.104 ± 0.004) disagrees with that derived from the ellipsoidal modulation (q= 0.052 ± 0.004 assuming corotation). This was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star, instead of assuming corotation with the binary orbit, is found to increase the discrepancy even further by lowering the mass ratio to q= 0.047 ± 0.004. These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The same problem could arise whenever an ellipsoidal modulation amplitude is used to derive the mass of a planet orbiting a host star that is not in corotation with the planet's orbit. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first measurement of Rømer delay in a light curve of a compact binary. This delay amounts to -56 ± 17 s and is consistent with the mass ratio derived from the radial velocity amplitude. The firm establishment of this mass ratio at q= 0.104 ± 0.004 leaves little doubt that the companion of KOI-74 is a low-mass white dwarf.
Further studies of the pulsation period and orbital elements of Centaurus X-3
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Schreier, E. J.
1977-01-01
The long- and short-term variability of the 4.8-s pulsation and the 2.1-day orbital periods of Centaurus X-3 are studied. The pulsation period decreases over 4 yr with a fractional change of -0.00028 per yr, but with rms fluctuations of 0.0002 s. In August-September 1972, a continuous transition from speedup to slowdown was observed. The orbital period also decreases over 4 yr with decrease of approximately 8 millionths per yr, and with significant fluctuations of the order of 0.00001 day over months. The orbital eccentricity is found to be about 0.0008. The pulsation-period variability is found to be consistent with a near balance between the Alfven and corotation radii in an accretion-disk model. The orbital-period variability is interpreted in terms of tidal circularization and possible mass transfer and loss.
Characterizing bar structures: application to NGC 1300, NGC 7479 and NGC 7723
NASA Astrophysics Data System (ADS)
Aguerri, J. A. L.; Muñoz-Tuñón, C.; Varela, A. M.; Prieto, M.
2000-09-01
Detailed surface photometry has been carried out for three barred galaxies with use of high resolution CCD broad-band images in the B, V and I bands. Using azimuthal luminosity profiles and their decomposition into Fourier Series, the structural parameters (length and strength) of the bars in the three galaxies have been obtained. We have also inferred the corotation radii (CR) using information available in the B-I and B-V colour index profiles. The regions selected for the CR were the ends of the bars, or a little further out and with an older stellar population than the su rrounding regions. The resulting values, RCR ~ 100''+/-10'' for NGC 1300, RCR ~ 63'' for NGC 7479 and RCR ~ 23'' for NGC 7723, are in agreement with those previously reported in the literature. This demonstrates the utility of accurate photometry for this type of observation.
NASA Astrophysics Data System (ADS)
Maus, Stefan
2017-08-01
Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.
Location and size of flux ropes in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Martin, C.; Arridge, C. S.; Badman, S. V.; Dieval, C.
2017-12-01
Cassini magnetometer data was surveyed during Titan flybys to find 73 instances of flux rope signatures. A force free flux rope model was utilised to obtain the radii, maximum magnetic field and flux content of flux ropes that adhere to the force-free assumptions. We find that flux ropes at Titan are similar in size in km and flux content to the giant flux ropes identified at Venus, with a median radii of 280 km and an inter-quartile range of 270 km, a median maximum magnetic field of 8 nT with an inter-quartile range of 7 nT and a median flux content of 76 Wb with a large inter-quartile range of 250 Wb. We additionally investigate the occurrence of flux ropes with respect to the Sun-lit facing hemisphere (zenith angle) and the ram-side of Titan within Saturn's corotating magnetosphere (angle of attack of the incoming plasma flow). We find that flux ropes are more commonly detected in Sun-lit areas of Titan's ionosphere, as well as the ram-side of Titan. We see a statistically-significant absence of flux ropes in all SLT sectors in the night side of Titan and the anti-ram side of Titan. We also comment on the physical mechanisms associated with the production of these flux ropes, with particular attention on the variability of Titan's environment in Saturn's magnetosphere.
A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.
NASA Astrophysics Data System (ADS)
Pontius, Duane Henry, Jr.
1988-06-01
The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.
Corot's 'gout' and a 'gipsy' girl.
Panush, R B; Caldwell, J R; Panush, R S
1990-09-05
Representations of rheumatic disease in art provide insight into artistic expression, help us understand the evolution and perhaps the etiology of rheumatic diseases, and remind us of great contributions by artists in adverse circumstances. We noted hand deformities characteristic of inflammatory arthritis in Jean-Baptiste-Camille Corot's Gipsy Girl With Mandolin (1870 to 1875), National Gallery of Art, Washington, DC. Corot suffered with what probably was gout beginning in 1866. We are unaware that arthritis has been observed in Corot's subjects or that Corot's depiction of arthritis has been appreciated from the perspective of his own rheumatic disease. Examination of other Corot portraits identifies some with blurred hand details consistent with the artist's style and the remainder with normal hands. These observations suggest that the artist portrayed specific anatomic abnormalities in the "Gipsy Girl's" hand, indicating familiarity with inflammatory arthritis. It is speculative whether this was Corot's own or the model's arthritis; we favor the interpretation that Corot's gout was reflected in this particular work. We thus add a new perspective to Corot's Gipsy Girl With Mandolin-a subject with arthritis, a painter knowledgeable about arthritis, and a painting that therefore might be understood at least in part from an appreciation of the artist's specific illness.
TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tusnski, Luis Ricardo M.; Valio, Adriana, E-mail: lrtusnski@das.inpe.br, E-mail: avalio@craam.mackenzie.br
2011-12-10
Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit.more » The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R{sub Circled-Plus} with CoRoT and 0.3 R{sub Circled-Plus} with Kepler.« less
Constraining physics of very hot super-Earths with the James Webb Telescope. The case of CoRot-7b
NASA Astrophysics Data System (ADS)
Samuel, B.; Leconte, J.; Rouan, D.; Forget, F.; Léger, A.; Schneider, J.
2014-03-01
Context. Transit detection from space using ultra-precise photometry led to the first detection of super-Earths with solid surfaces: CoRot-7b and Kepler-10b. Because they lie only a few stellar radii from their host stars, these two rocky planets are expected to be extremely hot. Aims: Assuming that these planets are in a synchronous rotation state and receive strong stellar winds and fluxes, previous studies have suggested that they must be atmosphere-free and that a lava ocean is present on their hot dayside. In this article, we use several dedicated thermal models of the irradiated planet to study how observations with NIRSPEC on the James Webb Space Telescope (JWST) could further confirm and constrain, or reject the atmosphere-free lava ocean planet model for very hot super-Earths. Methods: Using CoRoT-7b as a working case, we explore the consequences on the phase-curve of a non tidal-locked rotation, with the presence/absence of an atmosphere, and for different values of the surface albedo. We then simulate future observations of the reflected light and thermal emission from CoRoT-7b with NIRSPEC-JWST and look for detectable signatures, such as time lag, of those peculiarities. We also study the possibility to retrieve the latitudinal surface temperature distribution from the observed SED. Results: We demonstrate that we should be able to constrain several parameters after observations of two orbits (42 h) thanks to the broad range of wavelengths accessible with JWST: i) the Bond albedo is retrieved to within ±0.03 in most cases. ii) The lag effect allows us to retrieve the rotation period within 3 h of a non phase-locked planet, whose rotation would be half the orbital period; for longer period, the accuracy is reduced. iii) Any spin period shorter than a limit in the range 30-800 h, depending on the thickness of the thermal layer in the soil, would be detected. iv) The presence of a thick gray atmosphere with a pressure of one bar, and a specific opacity higher than 10-5 m-2 kg-1 is detectable. v) With spectra up to 4.5 μm, the latitudinal temperature profile can be retrieved to within 30 K with a risk of a totally wrong solution in 5% of the cases. This last result is obtained for a signal-to-noise ratio around 5 per resel, which should be reached on Corot-7 after a total exposure time of ~70 h with NIRSPEC and only three hours on a V = 8 star. Conclusions: We conclude that it should thus be possible to distinguish the reference situation of a lava ocean with phase-locking and no atmosphere from other cases. In addition, obtaining the surface temperature map and the albedo brings important constraints on the nature or the physical state of the soil of hot super-Earths.
Planetary transit candidates in Corot-IRa01 field
NASA Astrophysics Data System (ADS)
Carpano, S.; Cabrera, J.; Alonso, R.; Barge, P.; Aigrain, S.; Almenara, J.-M.; Bordé, P.; Bouchy, F.; Carone, L.; Deeg, H. J.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fressin, F.; Fridlund, M.; Gondoin, P.; Guillot, T.; Hatzes, A.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Moutou, C.; Ofir, A.; Ollivier, M.; Janot-Pacheco, E.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Régulo, C.; Renner, S.; Rouan, D.; Samuel, B.; Schneider, J.; Wuchterl, G.
2009-10-01
Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr.
OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foyle, K.; Rix, H.-W.; Walter, F.
2011-07-10
We test whether the spiral patterns apparent in many large disk galaxies should be thought of as dynamical features that are stationary in a corotating frame for {approx}> t{sub dyn}, as implied by the density wave approach for explaining spiral arms. If such spiral arms have enhanced star formation (SF), observational tracers for different stages of the SF sequence should show a spatial ordering, from upstream to downstream in the corotating frame: dense H I, CO, tracing molecular hydrogen gas, 24 {mu}m emission tracing enshrouded SF, and UV emission tracing unobscured young stars. We argue that such a spatial orderingmore » should be reflected in the angular cross-correlation (CC, in polar coordinates) using all azimuthal positions among pairs of these tracers; the peak of the CC should be offset from zero, in different directions inside and outside the corotation radius. Recent spiral SF simulations by Dobbs and Pringle show explicitly that for the case of a stationary spiral arm potential such angular offsets between gas and young stars of differing ages should be observable as cross-correlation offsets. We calculate the angular cross-correlations for different observational SF sequence tracers in 12 nearby spiral galaxies, drawing on a data set with high-quality maps of the neutral gas (H I, THINGS) and molecular gas (CO, HERACLES), along with 24 {mu}m emission (Spitzer, SINGS); we include FUV images (GALEX) and 3.6 {mu}m emission (Spitzer, IRAC) for some galaxies, tracing aging stars and longer timescales. In none of the resulting tracer cross-correlations for this sample do we find systematic angular offsets, which would be expected for a stationary dynamical spiral pattern of well-defined pattern speed. This result indicates that spiral density waves in their simplest form are not an important aspect of explaining spirals in large disk galaxies.« less
Coevality in Young Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Simon, M.; Toraskar, Jayashree
2017-06-01
The ages of the components in very short period pre-main-sequence (PMS) binaries are essential to an understanding of their formation. We considered a sample of seven PMS eclipsing binaries (EBs) with ages 1-6.3 MY and component masses 0.2-1.4 {M}⊙ . The very high precision with which their masses and radii have been measured and the capability provided by the Modules for Experiments in Stellar Astrophysics to calculate their evolutionary tracks at exactly the measured masses allows the determination of age differences of the components independent of their luminosities and effective temperatures. We found that the components of five EBs, ASAS J052821+0338.5, Parenago 1802, JW 380, CoRoT 223992193, and UScoCTIO 5, formed within 0.3 MY of each other. The parameters for the components of V1174 Ori imply an implausible large age difference of 2.7 MY and should be reconsidered. The seventh EB in our sample, RX J0529.4+0041 fell outside the applicability of our analysis.
Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions
NASA Technical Reports Server (NTRS)
Barrow, C. H.
1979-01-01
Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabath, P.; Fruth, T.; Rauer, H.
2009-04-15
We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less
A new interhemispheric 16-moment model of the plasmasphere-ionosphere system: IPIM
NASA Astrophysics Data System (ADS)
Marchaudon, A.; Blelly, P.-L.
2015-07-01
We present a new interhemispheric numerical model: the IRAP plasmasphere-ionosphere model (IPIM). This model describes the transport of the multispecies ionospheric plasma from one hemisphere to the other along convecting and corotating magnetic field lines, taking into account source processes at low altitude such as photoproduction, chemistry, and energization through the coupling with a kinetic code solving the transport of suprathermal electron along the field line. Among the new developments, a 16-moment-based approach is used for the transport equations in order to allow development of strong temperature anisotropy at high altitude and we consider important but often neglected effects, such as inertial acceleration (centrifugal and Coriolis). In this paper, after presenting in detail the principle of the model, we focus on preliminary results showing the original contribution of this new model. For these first runs, we simulate the convection and corotation transport of closed flux tubes in the plasmasphere for tilted/eccentric dipolar magnetic field configuration in solstice and equinox conditions. We follow different flux tubes between 1.2 and 6 Earth Radii (RE) and demonstrate the capability of the model to describe a wide range of density (above 15 orders of magnitude). The relevance of the mathematical approach used is highlighted, as anisotropies can develop above 3000 km in the plasmasphere as a result of the mirroring effect related to the anisotropic pressure tensor. Moreover, we show that the addition of inertial acceleration may become critical to describe plasma interhemispheric transport above 4RE. The ability of the model to describe the external plasmasphere is demonstrated, and innovative studies are foreseen, regarding the dynamics of the plasma along the magnetic field lines (in particular interhemispheric exchanges and "opening"/"closure" of a flux tube).
The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b
NASA Technical Reports Server (NTRS)
Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan J.; Greenberg, Richard
2010-01-01
CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.
Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere
NASA Astrophysics Data System (ADS)
Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Grodent, D.; Jones, G. H.; Dougherty, M. K.; Owen, C. J.; Guo, R. L.; Dunn, W. R.; Radioti, A.; Pu, Z. Y.; Lewis, G. R.; Waite, J. H.; Gérard, J.-C.
2017-09-01
Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
Departure from corotation of the Io plasma torus - Local plasma production
NASA Technical Reports Server (NTRS)
Pontius, D. H., Jr.; Hill, T. W.
1982-01-01
The departure of the Jovian magnetosphere from rigid corotation is adequately explained by outward plasma transport at distances where L is greater than approximately 10. The departure of 5% observed in the Io plasma torus, however, is too large to be accounted for simply by plasma transport. Local plasma production is proposed as the main factor determining the corotation lag in the torus. The outward pick-up current provided by ionization of neutral atoms is calculated and related to the current produced in the ionosphere by the corotation lag. This leads to an expression giving the corotation lag of the torus as a function of radial distance. Charge transfer is found to be an important process, allowing the majority of the torus mass to be ejected from the magnetosphere in a neutral state. Thus, the mass loading rate is found to be several times that inferred from examination of the corotation lag associated with outward plasma transport.
Stellar Rotation: New Insight from CoRoT
NASA Astrophysics Data System (ADS)
Catala, C.; Goupil, M. J.; Michel, E.; Baglin, A.; de Medeiros, J. Renan; Gondoin, Ph.
2009-02-01
We present an overview of the new insight provided by the CoRoT satellite on stellar rotation. Thanks to its ultra-high precision, high duty cycle, long photometric monitoring of thousands of stars, CoRoT gives us a powerful tool to study stellar rotational modulation, and therefore to measure stellar rotational periods and to study active structures at the surface of stars. This paper presents preliminary results concerning this type of study. CoRoT will also provide us with an insight of internal stellar rotation via the measurement and exploitation of rotational splittings of oscillation modes. This approach to stellar rotation with CoRoT will require a careful analysis of the oscillation power spectra, which is in progress, but prospects for such measurements are presented.
NASA Astrophysics Data System (ADS)
Bordé, P.; Bouchy, F.; Deleuil, M.; Cabrera, J.; Jorda, L.; Lovis, C.; Csizmadia, S.; Aigrain, S.; Almenara, J. M.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Benz, W.; Bonomo, A. S.; Bruntt, H.; Carone, L.; Carpano, S.; Deeg, H.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E.; Guillot, T.; Guterman, P.; Hatzes, A.; Havel, M.; Hébrard, G.; Lammer, H.; Léger, A.; Mayor, M.; Mazeh, T.; Moutou, C.; Pätzold, M.; Pepe, F.; Ollivier, M.; Queloz, D.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.; Tingley, B.; Udry, S.; Weingrill, J.; Wuchterl, G.
2010-09-01
Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 RJ, a mass of 0.22 ± 0.03 MJ, and therefore a mean density of 1.6 ± 0.1 g cm-3. Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm-3). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66
Ground-based photometric support for the CoRoT mission by the CoRoT-Hungarian Asteroseismology Group
NASA Astrophysics Data System (ADS)
Bognár, Zs.; Paparó, M.
2012-12-01
The CoRoT-Hungarian Asteroseismology Group was established in 2005 and joined the preparatory work of the CoRoT Mission via an ESA PECS project. After the successful launch of the telescope, we have continued our work of ground-based multi-colour photometric observations and contributed to the analyses of CoRoT data. Our observations were focused on δ Scuti, γ Doradus, and RR Lyrae stars. The follow-up of some selected targets' pulsations in different wavelengths has provided valuable information for mode identification. We provided additional support by the confirmation of relatively faint variables' spectral types. We proved that our ground-based observations can help in the interpretation of a target with a contaminated CoRoT light curve. In this paper, we summarize our most important results of the photometric support for the CoRoT Mission. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
CoRoT-7b: SUPER-EARTH OR SUPER-Io?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Rory; Kaib, Nathan A.; Raymond, Sean N.
2010-02-01
CoRoT-7b, a planet about 70% larger than the Earth orbiting a Sun-like star, is the first-discovered rocky exoplanet, and hence has been dubbed a 'super-Earth'. Some initial studies suggested that since the planet is so close to its host star, it receives enough insolation to partially melt its surface. However, these past studies failed to take into consideration the role that tides may play in this system. Even if the planet's eccentricity has always been zero, we show that tidal decay of the semimajor axis could have been large enough that the planet formed on a wider orbit which receivedmore » less insolation. Moreover, CoRoT-7b could be tidally heated at a rate that dominates its geophysics and drives extreme volcanism. In this case, CoRoT-7b is a 'super-Io' that, like Jupiter's volcanic moon, is dominated by volcanism and rapid resurfacing. Such heating could occur with an eccentricity of just 10{sup -5}. This small value could be driven by CoRoT-7c if its own eccentricity is larger than {approx}10{sup -4}. CoRoT-7b may be the first of a class of planetary super-Ios likely to be revealed by the CoRoT and Kepler spacecraft.« less
System-size and beam energy dependence of the space-time extent of the pion emission source
NASA Astrophysics Data System (ADS)
Pak, Robert; Phenix Collaboration
2014-09-01
Two-pion interferometry measurements are used to extract the Gaussian source radii Rout ,Rside and Rlong , of the pion emission sources produced in d + Au, Cu +Cu and Au +Au collisions for several beam collision energies at PHENIX experiment. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse geometric size of the collision system, and the transverse mass of the emitted pion pairs. These scaling patterns indicate a linear dependence of Rside on the initial transverse size, as well as a smaller freeze-out size for the d + Au system. Mathematical combinations of the extracted radii generally associated with the emission source duration and expansion rate exhibit non-monotonic behavior, suggesting a change in the expansion dynamics over this beam energy range.
NASA Astrophysics Data System (ADS)
Marques, J. F.; Lima, A. B.; Araújo, N. A. M.; Cadilhe, A.
2012-06-01
We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, i.e., the minimum and maximum particle radii, are also required. We find that the transition between any two adjacent regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape of the distribution function of the radii. We consider size dispersions up to 20% of the average radius using a physically motivated, truncated, Gaussian-size distribution, and focus on the regime where adsorbing particles do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure. The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to the presence of the pattern, the coverage shows a nonmonotonic dependence on the cell size. The pattern also affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii, particularly at high polydispersity.
NASA Astrophysics Data System (ADS)
Velasco, Almudena; Gutiérrez, Raúl; Solano, Enrique; García-Torres, Miguel; López, Mauro; Sarro, Luis Manuel
We describe here the main capabilities of the COROT archive. The archive (http://sdc.laeff.inta.es/corotfa/jsp/searchform.jsp), managed at LAEFF in the framework of the Spanish Virtual Observatory (http://svo.laeff.inta.es), has been developed following the standards and requirements defined by IVOA (http://www.ivoa.net). The COROT archive at LAEFF will be publicly available by the end of 2008.
Low mass planet migration in magnetically torqued dead zones - I. Static migration torque
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir
2017-12-01
Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.
NASA Astrophysics Data System (ADS)
Lindblad, P. A. B.; Kristen, H.
1996-09-01
We perform two-dimensional time dependent hydrodynamical simulations of the barred spiral galaxy NGC 1300. The input potential is divided into an axisymmetric part mainly derived from the observed rotation curve, and a perturbing part obtained from near infrared surface photometry of the bar and spiral structure. Self-gravitation of the gas is not taken into account in our modeling. A pure bar perturbed model is unable to reproduce the observations. It was found necessary to add a weak spiral potential to the perturbation, thus suggesting the presence of massive spiral arms in NGC 1300. We find two models, differing mainly in pattern speed, which are able to reproduce the essentials of NGC 1300. The high pattern speed model has {OMEGA}_p_=20km/s/kpc, corresponding to a corotation radius at R_CR_~104"=1.3R_bar_. Furthermore, the adopted rotation curve for this model supports one ILR at R_ILR_~26" and an OLR at R_OLR_~188". The low pattern speed model has {OMEGA}_p_=12km/s/kpc, corresponding to a corotation radius at R_ CR_~190"=2.4R_bar_. The adopted rotation curve for this model, which differs from the fast pattern speed model, supports one ILR at R_ILR_~25" and an OLR at R_OLR_~305". Morphological features, like spiral arms and offset dust lanes, are basically reproduced by both models. They are driven by orbit crowding effects across various resonances, leading to density enhancements. The general velocity structure, as described by HI data and optical long slit measurements, is fairly consistent with the model velocities.
Prominence formation and ejection in cool stars
NASA Astrophysics Data System (ADS)
Villarreal D'Angelo, Carolina; Jardine, Moira; See, Victor
2018-03-01
The observational signatures of prominences have been detected in single and binary G and K type stars for many years now, but recently this has been extended to the M dwarf regime. Prominences carry away both mass and angular momentum when they are ejected and the impact of this mass on any orbiting planets may be important for the evolution of exoplanetary atmospheres. By means of the classification used in the massive star community, that involves knowledge of two parameters (the co-rotation and Alfvén radii, rK and rA), we have determined which cool stars could support prominences. From a model of mechanical support, we have determined that the prominence mass mp/M⋆ = (EM/EG)(r⋆/rK)2F where E_MB_\\star ^2r_\\star ^3 and E_G = GM_\\star ^2/r_\\star are magnetic and gravitational energies and F is a geometric factor. Our calculated masses and ejection frequencies (typically 1016 - 1017 g and 0.4 d, respectively) are consistent with observations and are sufficient to ensure that an exoplanet orbiting in the habitable zone of an M dwarf could suffer frequent impacts.
Minimoon Survey with Subaru Hyper Suprime-Cam
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Boe, Ben; Bolin, Bryce T.; Bottke, William; Chyba, Monique; Denneau, Larry; Dodds, Curt; Granvik, Mikael; Kleyna, Jan; Weryk, Robert J.
2017-10-01
We will present the status of our search for minimoons using Hyper Suprime-Cam on the Subaru telescope on Maunkea, Hawaii. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii (˜12 LD). There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
Hybrid Simulations of Pickup Ions and Ion Cyclotron Waves at Enceladus
NASA Astrophysics Data System (ADS)
Cowee, M.; Wei, H.; Tokar, R. L.
2014-12-01
Saturn's moon Enceladus releases tens of kilograms per second of water-group neutrals from its southern plumes. These neutrals are ionized and accelerated by the background co-rotation electric field, producing a local population of pickup ions with a ring distribution in velocity space. This velocity space distribution is highly unstable to the growth of electromagnetic ion cyclotron waves whose amplitudes are generally related to the pickup ion production rate, the mass of the pickup ion, the pickup velocity, and the degree of damping by the background plasma. Observations from the Cassini spacecraft show the amplitudes of the waves generally increase with distance within 2 Enceladus radii of the Moon, consistent with an increasing density of pickup ion source, but then decrease right at the Moon, consistent with zero pickup velocity in the stagnating plasma flow. In order to interpret the observed wave amplitudes in terms of ion production rates at Enceladus, we carry out self-consistent hybrid simulations of the growth of ion cyclotron waves from pickup ions to determine the relationship between wave amplitude and background plasma and ion pickup conditions.
What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes
NASA Astrophysics Data System (ADS)
Collier, Angela; Shlosman, Isaac; Heller, Clayton
2018-05-01
We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.
Existence of a component corotating with the earth in high-latitude disturbance magnetic fields
NASA Technical Reports Server (NTRS)
Suzuki, A.; Kim, J. S.; Sugiura, M.
1982-01-01
A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.
NASA Astrophysics Data System (ADS)
Tolfree, K. J. D.; Wyse, R. F. G.
2014-03-01
Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.
EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, K. M.; Ida, S.; Ochiai, H.
2015-05-20
We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less
Europe looks forward to COROT launch
NASA Astrophysics Data System (ADS)
2006-12-01
While CNES is completing preparations for the launch from Baikonur/Kazakhstan, ESA and a large number of European scientists involved in the mission are eagerly awaiting this event and the first scientific results to come through. What is COROT? COROT stands for ‘Convection Rotation and planetary Transits’. The name describes the mission’s scientific goals. ‘Convection and rotation’ refer to the satellite’s capability to probe stellar interiors, studying the acoustic waves that ripple across the surface of stars, a technique called asteroseismology. ‘Transit’ refers to the technique whereby the presence of a planet orbiting a star can be inferred from the dimming starlight caused when the planet passes in front of it. To achieve its twin scientific objectives, COROT will monitor some 120,000 stars with its 30-centimetre telescope. COROT will lead a bold new search for planets around other stars. In the decade since the first discovery in 1995 of an exoplanet (51 Pegasi b), more than 200 other such planets outside our solar system have been detected using ground-based observatories. The COROT space telescope promises to find many more during its two-and-a-half-year mission, expanding the frontiers of our knowledge towards ever-smaller planets. Many of the planets COROT will detect are expected to be 'hot Jupiters', gaseous worlds. An unknown percentage of those detected are expected to be rocky planets, maybe just a few times larger than the Earth (or smaller, even). If COROT finds such planets, they will constitute a new class of planet altogether. While it is looking at a star, COROT will also be able to detect 'starquakes', acoustic waves generated deep inside a star that send ripples across its surface, altering its brightness. The exact nature of the ripples allows astronomers to calculate the star's precise mass, age and chemical composition. COROT’s European dimension The COROT mission was first proposed by CNES back in 1996. A call for potential European partners was issued in 1999. CNES gave the green light to build the spacecraft in 2000 and is now leading the mission. Its international partners are ESA, Austria, Belgium, Germany, Spain and Brazil. CNES is responsible for the overall system and for the launch contract with Franco-Russian company Starsem, which is providing the Soyuz launch service. The contributions of the other international partners range from the provision of hardware items to ground stations, complementary ground-based observation of targets to be studied by COROT and analysis of the scientific data to come. ESA is playing a crucial role in the mission. It has contributed the optics for the telescope positioned at the heart of the spacecraft and has carried out payload testing. The telescope’s baffle was developed by a team at ESA’s technical centre ESTEC. ESA has also provided the onboard data processing units. And under this truly collaborative effort, a number of scientists from various European countries - Denmark, Switzerland, the United Kingdom and Portugal - have been selected as Co-Investigators following open competition. As a result of ESA’s participation, scientists from its Member States will also be given access to COROT data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Z. H.; Coates, A. J.; Ray, L. C.
Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Ourmore » corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.« less
Phase Variations, Transits and Eclipses of the Misfit CoRoT-2b
NASA Astrophysics Data System (ADS)
Cowan, Nicolas; Deming, Drake; Gillon, Michael; Knutson, Heather; Madhusudhan, Nikku; Rauscher, Emily
2011-05-01
We propose to observe the nearby transiting hot Jupiter CoRoT-2b for a little over one planetary orbit on two occasions, yielding two secondary eclipses, a transit, and a full phase curve in each of the 3.6 and 4.5 micron channels. These data will help resolve the unique nature of this bloated planet: CoRoT-2b is the only hot Jupiter that is poorly fit by either inverted or non-inverted spectral models (Deming et al. 2011). Two hypotheses have been proposed to explain the peculiar mid-IR colors of CoRoT-2b, and thermal phase measurements with Spitzer's continuous, high-precision photometry will be able to distinguish between them: the planet has a non-inverted atmosphere but is losing mass to its host star, or the planet has a peculiar kind of temperature inversion due to mysterious atmospheric scatterers. CoRoT-2b is also among the most inflated hot Jupiters and, because of its relatively large mass, cannot be reconciled with interior evolution models, despite a small but non-zero eccentricity. A recent planetary collision may be necessary to explain the planet's youthful radius (Guillot & Havel 2011). Finally, the planet's extremely young host star, CoRoT-2, is the most chromospherically active of all transit hosts. This appears to be a common thread connecting all of its planet's peculiarities: the high UV flux of the star will drive mass loss, as well as photochemistry. Most importantly, the radius measurement of the planet at optical wavelengths may be contaminated by star spots. Mid-IR transit measurements from Spitzer will help resolve the mystery of CoRoT-2b's inflated radius.
Non-radial pulsations in Be stars. Preparation of the COROT space mission.
NASA Astrophysics Data System (ADS)
Gutierrez-Soto, J.
2006-12-01
The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of 1 ppm, and several thousands in the exoplanet fields with an accuracy of a few 10-4 and colour information. The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT. In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields. Special emphasis has been given to two Be stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and which we have modelled in terms of stellar pulsations. We have also performed an in-depth spectroscopic study of NW Ser and modelled the non-radial pulsations taking into account the rotational effects. A technique to search for faint Be stars based on CCD photometry has also been developed. We present here a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy SMC.
Elemental abundances in corotating events
NASA Technical Reports Server (NTRS)
Vonrosenvinge, T. T.; Mcguire, R. E.
1986-01-01
Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.
VizieR Online Data Catalog: Algorithm for correcting CoRoT raw light curves (Mislis+, 2010)
NASA Astrophysics Data System (ADS)
Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther, E. W.; Patzold, M.
2010-10-01
Requirements : gfortran (or g77, ifort) compiler Input Files : The input files sould be raw CoRoT txt files (http://idoc-corot.ias.u-psud.fr/index.jsp) with names CoRoT*.txt Run the cda by typing C>: ./cda.csh (code and data sould be in the same directory) Output files : CDA creates one ascii output file with name - CoRoT*.R.cor for R filter (2 data files).
Noise properties of the CoRoT data. A planet-finding perspective
NASA Astrophysics Data System (ADS)
Aigrain, S.; Pont, F.; Fressin, F.; Alapini, A.; Alonso, R.; Auvergne, M.; Barbieri, M.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Guterman, P.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.
2009-10-01
In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet-finding channel, with a particular emphasis on the time scales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the time scales of interest. The behaviour of the noise on 2 h time scales is described well by a power-law with index 0.25 in R-magnitude, ranging from 0.1 mmag at R=11.5 to 1 mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence of slight degradation in the performance over time. We find clear evidence of enhanced variability on hour time scales (at the level of 0.5 mmag) in stars identified as likely giants from their R magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the directions of Aquila and Monoceros, respectively. On the other hand, median correlated noise levels over 2 h for dwarf stars are extremely low, reaching 0.05 mmag at the bright end. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. CoRoT data become publicly available one year after release to the Co-Is of the mission from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/.
NASA Astrophysics Data System (ADS)
Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.
2008-09-01
CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org
The Origin of the Moon Within a Terrestrial Synestia
NASA Astrophysics Data System (ADS)
Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija
2018-04-01
The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.
Asteroseismology of OB stars with CoRoT
NASA Astrophysics Data System (ADS)
Degroote, P.; Aerts, C.; Samadi, R.; Miglio, A.; Briquet, M.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.
2010-12-01
The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
NASA Astrophysics Data System (ADS)
Rainer, Monica; Poretti, Ennio; Mistò, Angelo; Rosa Panzera, Maria
2017-10-01
The Spectroscopic Indicators in a SeisMic Archive (SISMA) has been built in the framework of the FP7 SpaceInn project to contain the 7013 HARPS spectra observed during the CoRoT asteroseismic groundbased program, along with their variability and asteroseismic indicators. The spectra pertain to 261 stars spread around the whole Herztsprung-Russell diagram: 72 of them were CoRoT targets while the others were observed in order to better characterize their variability classes. The Legacy Data lightcurves of the CoRoT targets are also stored in the archive.
NASA Astrophysics Data System (ADS)
Nadège, Lagarde
The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)
Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.
Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu
2016-08-01
This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.
Small asteroids temporarily captured in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff
2016-01-01
We present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system like the 2-3 meter diameter, 2006 RH120, that was discovered by the Catalina Sky Survey. We use the term `minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
Small asteroids temporarily captured in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff
2015-08-01
We will present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system, such as the 2-3 meter diameter 2006 RH120 that was discovered by the Catalina Sky Survey. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
NASA Astrophysics Data System (ADS)
Vorobyov, E. I.
2006-08-01
Motivated by recent observations of plateaus and minima in the radial abundance distributions of heavy elements in the Milky Way and some other spiral galaxies, we propose a dynamical mechanism for the formation of such features around corotation. Our numerical simulations show that the non-axisymmetric gravitational field of spiral density waves generates cyclone and anticylone gas flows in the vicinity of corotation. The anticyclones flatten the pre-existing negative abundance gradients by exporting many more atoms of heavy elements outside corotation than importing inside it. This process is very efficient and forms plateaus of several kiloparsec in size around corotation after two revolution periods of a galaxy. The strength of anticyclones and, consequently, the sizes of plateaus depend on the pitch angle of spiral arms and are expected to increase along the Hubble sequence.
ExoDat Information System at CeSAM
NASA Astrophysics Data System (ADS)
Agneray, F.; Moreau, C.; Chabaud, P.; Damiani, C.; Deleuil, M.
2014-05-01
CoRoT (Convection Rotation and planetary transits) is a space based mission led by French space agency (CNES) in association with French and international laboratories. One of CoRoT's goal is to detect exoplanets by the transit method. The Exoplanet Database (Exodat) is a VO compliant information system for the CoRoT exoplanet program. The main functions of ExoDat are to provide a source catalog for the observation fields and targets selection; to characterize the CoRoT targets (spectral type, variability , contamination...);and to support follow up programs. ExoDat is built using the AstroNomical Information System (ANIS) developed by the CeSAM (Centre de donneeS Astrophysique de Marseille). It offers download of observation catalogs and additional services like: search, extract and display data by using a combination of criteria, object list, and cone-search interfaces. Web services have been developed to provide easy access for user's softwares and pipelines.
EXO-DAT: AN INFORMATION SYSTEM IN SUPPORT OF THE CoRoT/EXOPLANET SCIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deleuil, M.; Meunier, J. C.; Moutou, C.
2009-08-15
Exo-Dat is a database and an information system created primarily in support of the exoplanet program of the COnvection ROtation and planetary Transits (CoRoT) mission. In the directions of CoRoT pointings, it provides a united interface to several sets of data: stellar published catalogs, photometric and spectroscopic data obtained during the mission preparation, results from the mission and from follow-up observations, and several mission-specific technical parameters. The new photometric data constitute the subcatalog Exo-Cat, and give consistent 4-color photometry of 14.0 million stars with a completeness to 19th magnitude in the r-filter. It covers several zones in the galactic planemore » around CoRoT pointings, with a total area of 209 deg{sup 2}. This Exo-Dat information system provides essential technical support to the ongoing CoRoT light-curve analyses and ground-based follow-up by supplying additional complementary information such as the prior knowledge of the star's fundamental parameters or its contamination level inside the large CoRoT photometric mask. The database is fully interfaced with VO tools and thus benefits from existing visualization and analysis tools like TOPCAT or ALADIN. It is accessible to the CoRoT community through the Web, and will be gradually opened to the public. It is the ideal tool to prepare the foreseen statistical studies of the properties of the exoplanetary systems. As a VO-compliant system, such analyses could thus benefit from the most up-to-date classifier tools.« less
NASA Astrophysics Data System (ADS)
Deleuil, M.; Deeg, H. J.; Alonso, R.; Bouchy, F.; Rouan, D.; Auvergne, M.; Baglin, A.; Aigrain, S.; Almenara, J. M.; Barbieri, M.; Barge, P.; Bruntt, H.; Bordé, P.; Collier Cameron, A.; Csizmadia, Sz.; de La Reza, R.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gandolfi, D.; Gillon, M.; Guenther, E.; Guillot, T.; Hatzes, A.; Hébrard, G.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Loeillet, B.; Mayor, M.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Schneider, J.; Shporer, A.; Wuchterl, G.; Zucker, S.
2008-12-01
Context: The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. Aims: The discovery and characterization of the first very massive transiting planetary companion with a short orbital period is reported. Methods: A series of 34 transits was detected in the CoRoT light curve of an F3V star, observed from May to October 2007 for 152 days. The radius was accurately determined and the mass derived for this new transiting, thanks to the combined analysis of the light curve and complementary ground-based observations: high-precision radial-velocity measurements, on-off photometry, and high signal-to-noise spectroscopic observations. Results: CoRoT-Exo-3b has a radius of 1.01 ± 0.07 R_Jup and transits around its F3-type primary every 4.26 days in a synchronous orbit. Its mass of 21.66 ± 1.0 M_Jup, density of 26.4 ± 5.6 g cm-3, and surface gravity of logg = 4.72 clearly distinguish it from the regular close-in planet population, making it the most intriguing transiting substellar object discovered so far. Conclusions: With the current data, the nature of CoRoT-Exo-3b is ambiguous, as it could either be a low-mass brown-dwarf or a member of a new class of “superplanets”. Its discovery may help constrain the evolution of close-in planets and brown-dwarfs better. Finally, CoRoT-Exo-3b confirms the trend that massive transiting giant planets (M ≥ 4 M_Jup) are found preferentially around more massive stars than the Sun. The CoRoT space mission, launched on December 27th 2006, has been developed and is operating by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Table of the COROT photometry is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/491/889
COROT mission: accurate stellar photometry
NASA Astrophysics Data System (ADS)
Costes, Vincent; Bodin, Pierre; Levacher, Patrick; Auvergne, Michel
2004-06-01
The COROT mission is dedicated to stellar seismology and search for telluric extra-solar planets. The development is led by CNES in association with French laboratories (LESIA, LAM and IAS) and several European partners (Germany, Belgium, Austria, Spain, ESA and Brasilia). The COROT seismology program will measure periodic variations with amplitude of 2.10 -6 of the photon flux emitted by bright stars. The COROT exoplanet program will detect the presence of exoplanets using the radiometric occultation method. The need is to detect photons flux variations about 7×10-4 for one hour integration time. Such performance will permit to detect occultations on a very large number of stars: magnitude between 12 and 15.5. The satellite Preliminary Design Review has been held on January 2004 while the instrument is already in development phase with a Critical Design Review in April 2004 and a delivery of the flight model in March 2005. The launch is scheduled in June 2006. This paper recalls the mission, describes the payload and its main noise performances.
Servo Driven Corotation: Development of AN Inertial Clock.
NASA Astrophysics Data System (ADS)
Cheung, Wah-Kwan Stephen
An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant, a stronger coupling between the rotors results. The coupling is suspected to be magnetic in nature. The complicated geometry of the double magnetic suspension scheme makes it difficult to evaluate the known mechanical cranking effect applied to this situation.
The use of twin screw extruders for feeding coal against pressures of up to 1500 PSI
NASA Technical Reports Server (NTRS)
Wiedmann, W.; Mack, W. A.
1977-01-01
Recent tests with a twin-screw, co-rotating extruder which was successfully used to convey and feed coal against pressures of up to 1500 psi are described. Intermeshing and self-wiping, co-rotating twin-screws give greatly improved conveying and pressure built-up capabilities and avoid hangup and eventual decomposition of coal particles in the screw flights. The conveying action of intermeshing, self-wiping, co-rotating extruder systems approaches that of a positive displacement pump. With this feature, it is possible to maintain very accurate control over all aspects of product conveyance in the extruder, i.e., intake, conveyance and pressure buildup.
VizieR Online Data Catalog: Corot photometry of TYC 455-791-1 (Strassmeier+, 2017)
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Granzer, T.; Mallonn, M.; Weber, M.; Weingrill, J.
2016-11-01
From the original CoRoT white-light flux obtained on two consecutive runs, we filter out obvious outliers from the SAA (south Atlantic Anomaly). The third column are the remaining CoRoT data points. The two data set were merged using individual zero-points of 716386.54e- for the first data set and 721882.56e- for the second data set, respectively. The magnitudes thus calculates are in column four. The last column is the combined model of the transit plus a 12th order Fourier-series fit to the out-of-transit data. (1 data file).
NASA Technical Reports Server (NTRS)
Rankin, C. C.
1988-01-01
A consistent linearization is provided for the element-dependent corotational formulation, providing the proper first and second variation of the strain energy. As a result, the warping problem that has plagued flat elements has been overcome, with beneficial effects carried over to linear solutions. True Newton quadratic convergence has been restored to the Structural Analysis of General Shells (STAGS) code for conservative loading using the full corotational implementation. Some implications for general finite element analysis are discussed, including what effect the automatic frame invariance provided by this work might have on the development of new, improved elements.
The COROT ground-based archive and access system
NASA Astrophysics Data System (ADS)
Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.
2002-01-01
A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.
On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats
2007-05-16
15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave
NASA Astrophysics Data System (ADS)
Léger, A.; Rouan, D.; Schneider, J.; Barge, P.; Fridlund, M.; Samuel, B.; Ollivier, M.; Guenther, E.; Deleuil, M.; Deeg, H. J.; Auvergne, M.; Alonso, R.; Aigrain, S.; Alapini, A.; Almenara, J. M.; Baglin, A.; Barbieri, M.; Bruntt, H.; Bordé, P.; Bouchy, F.; Cabrera, J.; Catala, C.; Carone, L.; Carpano, S.; Csizmadia, Sz.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Foing, B.; Fressin, F.; Gandolfi, D.; Gillon, M.; Gondoin, Ph.; Grasset, O.; Guillot, T.; Hatzes, A.; Hébrard, G.; Jorda, L.; Lammer, H.; Llebaria, A.; Loeillet, B.; Mayor, M.; Mazeh, T.; Moutou, C.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Renner, S.; Samadi, R.; Shporer, A.; Sotin, Ch.; Tingley, B.; Wuchterl, G.; Adda, M.; Agogu, P.; Appourchaux, T.; Ballans, H.; Baron, P.; Beaufort, T.; Bellenger, R.; Berlin, R.; Bernardi, P.; Blouin, D.; Baudin, F.; Bodin, P.; Boisnard, L.; Boit, L.; Bonneau, F.; Borzeix, S.; Briet, R.; Buey, J.-T.; Butler, B.; Cailleau, D.; Cautain, R.; Chabaud, P.-Y.; Chaintreuil, S.; Chiavassa, F.; Costes, V.; Cuna Parrho, V.; de Oliveira Fialho, F.; Decaudin, M.; Defise, J.-M.; Djalal, S.; Epstein, G.; Exil, G.-E.; Fauré, C.; Fenouillet, T.; Gaboriaud, A.; Gallic, A.; Gamet, P.; Gavalda, P.; Grolleau, E.; Gruneisen, R.; Gueguen, L.; Guis, V.; Guivarc'h, V.; Guterman, P.; Hallouard, D.; Hasiba, J.; Heuripeau, F.; Huntzinger, G.; Hustaix, H.; Imad, C.; Imbert, C.; Johlander, B.; Jouret, M.; Journoud, P.; Karioty, F.; Kerjean, L.; Lafaille, V.; Lafond, L.; Lam-Trong, T.; Landiech, P.; Lapeyrere, V.; Larqué, T.; Laudet, P.; Lautier, N.; Lecann, H.; Lefevre, L.; Leruyet, B.; Levacher, P.; Magnan, A.; Mazy, E.; Mertens, F.; Mesnager, J.-M.; Meunier, J.-C.; Michel, J.-P.; Monjoin, W.; Naudet, D.; Nguyen-Kim, K.; Orcesi, J.-L.; Ottacher, H.; Perez, R.; Peter, G.; Plasson, P.; Plesseria, J.-Y.; Pontet, B.; Pradines, A.; Quentin, C.; Reynaud, J.-L.; Rolland, G.; Rollenhagen, F.; Romagnan, R.; Russ, N.; Schmidt, R.; Schwartz, N.; Sebbag, I.; Sedes, G.; Smit, H.; Steller, M. B.; Sunter, W.; Surace, C.; Tello, M.; Tiphène, D.; Toulouse, P.; Ulmer, B.; Vandermarcq, O.; Vergnault, E.; Vuillemin, A.; Zanatta, P.
2009-10-01
Aims: We report the discovery of very shallow (Δ F/F ≈ 3.4× 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods: We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results: We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40´´or triple systems are almost excluded with a 8 × 10-4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10-5 day and a radius of Rp = 1.68 ± 0.09 R_Earth. Analysis of preliminary radial velocity data yields an upper limit of 21 M_Earth for the companion mass, supporting the finding. Conclusions: CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800-2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived. The CoRoT space mission, launched on 27 December 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. The complementary observations were obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by NRC in Canada, INSU-CNRS in France, and the University of Hawaii; ESO Telescopes at the La Silla and Paranal Observatories under programme ID 081.C-0413(C), DDT 282.C-5015; the IAC80 telescope operated by the Instituto de Astrofísica de Tenerife at the Observatorio del Teide; the Isaac Newton Telescope (INT), operated on the island of La Palma by the Isaac Newton group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias; and at the Anglo-Australian Telescope that have been funded by the Optical Infrared Coordination network (OPTICON), a major international collaboration supported by the Research Infrastructures Programme of the European Commissions Sixth Framework Programme; Radial-velocity observations were obtained with the SOPHIE spectrograph at the 1.93m telescope of Observatoire de Haute Provence, France.
Dynamics of multiple bodies in a corotation resonance
NASA Astrophysics Data System (ADS)
A'Hearn, Joseph; Hedman, Matthew
2018-04-01
The orbital evolution of multiple massive bodies trapped in the same corotation resonance site has not yet been studied in depth, but could be relevant to the origins and history of small moons like Saturn's moon Aegaeon. We conduct numerical simulations of multiple bodies trapped within a corotation resonance and examine what happens to these bodies when they have close encounters. Compared to simulations with equal mass bodies, simulations with one body more massive than the others may be more likely to feature an asymmetry in the phase space of semi-major axis and mean longitude. That is, bodies on one side of phase space have a slightly greater tendency to lose angular momentum, while bodies on the other side gain angular momentum. With this asymmetry, the transfer of angular momentum during gravitational encounters makes it more likely for the most massive body rather than other bodies to approach the center of the corotation site. More work is needed to determine if this sort of process can significantly affect the orbital evolution of small moons like Aegaeon.
Mode extraction from time series: from the challenges of COROT to those of Eddington
NASA Astrophysics Data System (ADS)
Appourchaux, T.; Moreira, O.; Berthomieu, G.; Toutain, T.
2004-01-01
With more than 30 years of experience in extraction of eigenmodes from power spectra of solar signals, we are now almost ready to apply this knowledge onto the forecoming missions: COROT and Eddington. However the fitting task differs by 3 orders of magnitude; COROT will be able to get time series of stellar light for some 30 stars, while Eddington will be able to gather such data for about 50000 stars. While for COROT, our current tools can be applied by hand, the case of Eddington is significantly more complex. We are looking forward having automatic fitting procedures that will allow to recover mode parameters for about 90% of the solar-like stars. Unfortunately, about 10% of these stars will require some more delicate attention that will cost time to take care of. We will use the example of the infamous HD 57006, known to be quite evolved with a difficult eigenmode spectrum, to explain how a star can evolve from an easy-to-fit target (90% of the solar-like stars) to a difficult-to-fit (10% of the remaining stars). In the latter case, new techniques for detecting narrow peaks (g-mode like) out of broad peaks (p-mode like) has been devised in the context of the hare-and-hound exercise of COROT. This and other techniques will be used to implement the automatic fitting procedure for the remaining 10% of Eddington solar-like stars.
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, L.; Rolland, G.; Lapeyrere, V.; Auvergne, M.
2008-03-01
Convection, Rotation and planetary Transits (CoRoT) is a space mission dedicated to stellar seismology and the search for extrasolar planets. Both scientific programs are based on very high precision photometry and require long, uninterrupted observations. The instrument is based on an afocal telescope and a wide-field camera, consisting of four E2V-4280 CCD devices. This set is mounted on a recurrent platform for insertion in low Earth orbit. The CoRoT satellite has been recently launched for a nominal mission duration of three years. In this work, we discuss the impact of space radiation on CoRoT CCDs, in sight of the in-flight characterization results obtained during the satellite's commissioning phase, as well as the very first observational data. We start by describing the population of trapped particles at the satellite altitude, and by presenting a theoretical prediction for the incoming radiation fluxes seen by the CCDs behind shielding. Empirical results regarding particle impact rates and their geographical distribution are then presented and discussed. The effect of particle impacts is also statistically characterized, with respect to the ionizing energy imparted to the CCDs and the size of impact trails. Based on these results, we discuss the effects of space radiation on precise and time-resolved stellar photometry from space. Finally, we present preliminary results concerning permanent radiation damage on CoRoT CCDs, as extrapolated from the data available at the beginning of the satellite's lifetime.
Plasma observations near jupiter: initial results from voyager 2.
Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; Bagenal, F; McNutt, R L; Ogilvie, K W; Scudder, J D; Sittler, E C; Vasyliunas, V M; Goertz, C K
1979-11-23
The first of at least nine bow shock crossings observed on the inbound pass of Voyager 2 occurred at 98.8 Jupiter radii (R(J)) with final entry into the magnetosphere at 62 R(J). On both the inbound and outbound passes the plasma showed a tendency to move in the direction of corotation, as was observed on the inbound pass of Voyager 1. Positive ion densities and electron intensities observed by Voyager 2 are comparable within a factor of 2 to those seen by Voyager 1 at the same radial distance from Jupiter; the composition of the magnetospheric plasma is again dominated by heavy ions with a ratio of mass density relative to hydrogen of about 100/1. A series of dropouts of plasma intensity near Ganymede may be related to a complex interaction between Ganymede and the magnetospheric plasma. From the planetary spin modulation of the intensity of plasma electrons it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40 to 50 R(J) and deviates from it toward the rotational equator at larger distances. The longitudinal excursion of the plasma sheet lags behind the rotating dipole by a phase angle that increases with increasing radial distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruens, R. C.; Kroupa, P.; Fellhauer, M.
In the lenticular galaxy NGC 1023 a third population of globular clusters (GCs), called faint fuzzies (FFs), was discovered next to the blue and red GC populations by Larsen and Brodie. While these FFs have colors comparable to the red population, the new population is fainter, larger (R{sub eff}>7 pc) and, most importantly, shows clear signs of corotation with the galactic disk of NGC 1023. We present N-body simulations verifying the hypothesis that these disk-associated FFs are related to the young massive cluster complexes (CCs) observed by Bastian et al. in M51, who discovered a mass-radius relation for these CCs.more » Our models have an initial configuration based on the observations from M51 and are placed on various orbits in a galactic potential derived for NGC 1023. All computations end up with a stable object containing 10%-60% of the initial CC mass after an integration time of 5 Gyr. A conversion to visual magnitudes demonstrates that the resulting objects cover exactly the observed range for FFs. Moreover, the simulated objects show projected half-mass radii between 3.6 and 13.4 pc, in good agreement with the observed FF sizes. We conclude that objects like the young massive CCs in M51 are likely progenitors of the FFs observed in NGC 1023.« less
NASA Astrophysics Data System (ADS)
Leitzinger, M.; Odert, P.; Zaqarashvili, T. V.; Greimel, R.; Hanslmeier, A.; Lammer, H.
2016-11-01
We present the analysis of six nights of spectroscopic monitoring of two young and fast rotating late-type stars, namely the dMe star HK Aqr and the dG/dK star PZ Tel. On both stars, we detect absorption features reminiscent of signatures of corotating cool clouds or prominences visible in Hα. Several prominences on HK Aqr show periodic variability in the prominence tracks which follow a sinusoidal motion (indication of prominence oscillations). On PZ Tel, we could not find any periodic variability in the prominence tracks. By fitting sinusoidal functions to the prominence tracks, we derive amplitudes and periods which are similar to those of large-amplitude oscillations seen in solar prominences. In one specific event, we also derive a periodic variation of the prominence track in the Hβ spectral line which shows an anti-phase variation with the one derived for the Hα spectral line. Using these parameters and estimated mass density of a prominence on HK Aqr, we derive a minimum magnetic field strength of ˜2 G. The relatively low strength of the magnetic field is explained by the large height of this stellar prominence (≥ 0.67 stellar radii above the surface).
Asteroseismic inversions in the Kepler era: application to the Kepler Legacy sample
NASA Astrophysics Data System (ADS)
Buldgen, Gaël; Reese, Daniel; Dupret, Marc-Antoine
2017-10-01
In the past few years, the CoRoT and Kepler missions have carried out what is now called the space photometry revolution. This revolution is still ongoing thanks to K2 and will be continued by the Tess and Plato2.0 missions. However, the photometry revolution must also be followed by progress in stellar modelling, in order to lead to more precise and accurate determinations of fundamental stellar parameters such as masses, radii and ages. In this context, the long-lasting problems related to mixing processes in stellar interior is the main obstacle to further improvements of stellar modelling. In this contribution, we will apply structural asteroseismic inversion techniques to targets from the Kepler Legacy sample and analyse how these can help us constrain the fundamental parameters and mixing processes in these stars. Our approach is based on previous studies using the SOLA inversion technique [1] to determine integrated quantities such as the mean density [2], the acoustic radius, and core conditions indicators [3], and has already been successfully applied to the 16Cyg binary system [4]. We will show how this technique can be applied to the Kepler Legacy sample and how new indicators can help us to further constrain the chemical composition profiles of stars as well as provide stringent constraints on stellar ages.
A 0.8-2.4 μm Transmission spectrum of the hot Jupiter CoRoT-1b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlawin, E.; Herter, T.; Zhao, M.
Hot Jupiters with brightness temperatures ≳2000 K can have TiO and VO molecules as gaseous species in their atmospheres. The TiO and VO molecules can potentially induce temperature inversions in hot Jupiter atmospheres and also have an observable signature of large optical to infrared transit depth ratios. Previous transmission spectra of very hot Jupiters have shown a lack of TiO and VO, but only in planets that also appear to lack temperature inversions. We measure the transmission spectrum of CoRoT-1b, a hot Jupiter that was predicted to have a temperature inversion potentially due to significant TiO and VO in itsmore » atmosphere. We employ the multi-object spectroscopy method using the SpeX and MORIS instruments on the Infrared Telescope Facility (IRTF) and the Gaussian process method to model red noise. By using a simultaneous reference star on the slit for calibration and a wide slit to minimize slit losses, we achieve transit depth precision of 0.03%-0.09%, comparable to the atmospheric scale height but detect no statistically significant molecular features. We combine our IRTF data with optical CoRoT transmission measurements to search for differences in the optical and near-infrared absorption that would arise from TiO/VO. Our IRTF spectrum and the CoRoT photometry disfavor a TiO/VO-rich spectrum for CoRoT-1b, suggesting that the atmosphere has another absorber that could create a temperature inversion or that the blackbody-like emission from the planet is due to a spectroscopically flat cloud, dust, or haze layer that smoothes out molecular features in both CoRoT-1b's emission and transmission spectra. This system represents the faintest planet hosting star (K = 12.2) with a measured planetary transmission spectrum.« less
NASA Astrophysics Data System (ADS)
Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.
2015-07-01
Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON). This work makes use of observations from the LCOGT network.Appendices are available in electronic form at http://www.aanda.org
FAST MODES AND DUSTY HORSESHOES IN TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Tushar; Chiang, Eugene
The brightest transitional protoplanetary disks are often azimuthally asymmetric: their millimeter-wave thermal emission peaks strongly on one side. Dust overdensities can exceed ∼100:1, while gas densities vary by factors less than a few. We propose that these remarkable ALMA observations—which may bear on how planetesimals form—reflect a gravitational global mode in the gas disk. The mode is (1) fast—its pattern speed equals the disk's mean Keplerian frequency; (2) of azimuthal wavenumber m = 1, displacing the host star from the barycenter; and (3) Toomre-stable. We solve for gas streamlines including the indirect stellar potential in the frame rotating with themore » pattern speed, under the drastic simplification that gas does not feel its own gravity. Near corotation, the gas disk takes the form of a horseshoe-shaped annulus. Dust particles with aerodynamic stopping times much shorter or much longer than the orbital period are dragged by gas toward the horseshoe center. For intermediate stopping times, dust converges toward a ∼45° wide arc on the corotation circle. Particles that do not reach their final accumulation points within disk lifetimes, either because of gas turbulence or long particle drift times, conform to horseshoe-shaped gas streamlines. Our mode is not self-consistent because we neglect gas self-gravity; still, we expect that trends between accumulation location and particle size, similar to those we have found, are generically predicted by fast modes and are potentially observable. Unlike vortices, global modes are not restricted in radial width to the pressure scale height; their large radial and azimuthal extents may better match observations.« less
The nature of solar brightness variations
NASA Astrophysics Data System (ADS)
Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.
2017-09-01
Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.
First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured
NASA Astrophysics Data System (ADS)
2009-09-01
The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass measurement for an exoplanet. Both were needed to discover a rocky planet with the same density as the Earth," says co-author Artie Hatzes. CoRoT-7b earns another distinction as the closest known exoplanet to its host star, which also makes it the fastest - it orbits its star at a speed of more than 750 000 kilometres per hour, more than seven times faster than the Earth's motion around the Sun. "In fact, CoRoT-7b is so close that the place may well look like Dante's Inferno, with a probable temperature on its 'day-face' above 2000 degrees and minus 200 degrees on its night face. Theoretical models suggest that the planet may have lava or boiling oceans on its surface. With such extreme conditions this planet is definitively not a place for life to develop," says Queloz. As a further testament to HARPS' sublime precision, the astronomers found from their dataset that CoRoT-7 hosts another exoplanet slightly further away than CoRoT-7b. Designated CoRoT-7c, it circles its host star in 3 days and 17 hours and has a mass about eight times that of Earth, so it too is classified as a super-Earth. Unlike CoRoT-7b, this sister world does not pass in front of its star as seen from Earth, so astronomers cannot measure its radius and thus its density. Given these findings, CoRoT-7 stands as the first star known to have a planetary system made of two short period super-Earths with one that transits its host. Notes [1] The CoRoT mission is a cooperation between France and its international partners: ESA, Austria, Belgium, Brazil, Germany and Spain. [2] We see exactly the same effect in our Solar System when Mercury or Venus transits the solar disc, as Venus did on 8 June 2004. In the past centuries such events were used to estimate the Sun-Earth distance, with extremely useful implications for astrophysics and celestial mechanics. [3] Gliese 581e, also discovered with HARPS, has a minimum mass about twice the Earth's mass (see ESO 15/09), but the exact geometry of the orbit is undefined, making its real mass unknown. In the case of CoRoT-7b, as the planet is transiting, the geometry is well defined, allowing the astronomers to measure the mass of the planet precisely. More information This research was presented in a paper to appear in a special issue of the Astronomy and Astrophysics journal on CoRoT, volume 506-1, 22 October 2009: "The CoRoT-7 planetary system: two orbiting Super-Earths", by D. Queloz et al. The team is composed of D. Queloz, R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Segransan, and S. Udry (Observatoire de Genève, Switzerland), F. Bouchy, F. and G. Hébrard, G. (IAP, Paris, France), C. Moutou, M. Barbieri, P. Barge, M. Deleuil, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, France), A. Hatzes, D. Gandolfi, E. Guenther, M. Hartmann, and G. Wuchterl (Thüringer Landessternwarte Tautenburg, Germany), M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (LESIA, CNRS, Observatoire de Paris, France), W. Benz (University of Bern, Switzerland), P. Bordé, A. Léger, and M. Ollivier (IAS, UMR 8617 CNRS, Université Paris-Sud, France), H. Deeg (Instituto de Astrofísica de Canarias, Spain), R. Dvorak (University of Vienna, Austria), A. Erikson and H. Rauer (DLR, Berlin, Germany), S. Ferraz Mello (IAG-Universidade de Sao Paulo, Brazil), M. Fridlund (European Space Agency, ESTEC, The Netherlands), M. Gillon and P. Magain (Université de Liège, Belgium), T. Guillot (Observatoire de la Côte d'Azur, CNRS UMR 6202, Nice France), H. Lammer (Austrian Academy of Sciences), T. Mazeh (Tel Aviv University, Israel), and M. Pätzold (Köln University, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
NASA Astrophysics Data System (ADS)
Viard, Thierry
2017-11-01
The COROT telescope, of which the customer is the French "INSU" / "CNES" (Institut National des Sciences de l'Univers / Centre National des Etudes Spatiales) is in fact a very precise and stable imaging instrument, which will be pointed towards fixed areas in the sky (each containing more than 3000 target stars) for periods of at least 5 months, in order to carry out its two missions.
NASA Astrophysics Data System (ADS)
Rainer, M.; Poretti, E.; Mistò, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.
2016-12-01
We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph HARPS have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The remaining stars belong to the same variable classes of the CoRoT targets and were observed to better characterize the properties of such classes. Several useful variability indicators (mean line profiles, indices of differential rotation, activity and emission lines) together with v\\sin I and radial-velocity measurements have been extracted from the spectra. The atmospheric parameters {T}{eff},{log}g, and [Fe/H] have been computed following a homogeneous procedure. As a result, we fully characterize a sample of new and known variable stars by computing several spectroscopic indicators, also providing some cases of simultaneous photometry and spectroscopy.
Corotating pressure waves without streams in the solar wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1983-01-01
Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.
A photometric study of Be stars located in the seismology fields of COROT
NASA Astrophysics Data System (ADS)
Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Lanzara, M.; Garrido, R.; Hubert, A.-M.; Floquet, M.
2007-12-01
Context: In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims: The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods: Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results: We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability was detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We show that non-radial pulsations are more frequent among Be stars than in slow-rotating B stars of the same spectral range. Appendix A is only available in electronic form at http://www.aanda.org
The origin of the eccentricities of the rings of Uranus
NASA Technical Reports Server (NTRS)
Goldreich, P.; Tremaine, S.
1981-01-01
The effect of gravitational perturbations from a nearby satellite on the eccentricity e of a narrow particulate ring is considered. The perturbations near a resonance in an eccentric ring may be divided into corotation and Lindblad terms. For small e, the corotation terms damp e, whereas the Lindblad terms excite e. In the absence of saturation the corotation terms win by a small margin, and e damps. However, if the perturbations open gaps at the strongest resonances, then the Lindblad terms win, and e grows. This result offers an explanation for the existence of both circular and eccentric rings around Uranus. It is also shown that eccentricity changes induced by circular rings on eccentric satellite orbits are similar to those induced by satellites with circular orbits on eccentric rings.
HD 50844: a new look at δ Scuti stars from CoRoT space photometry
NASA Astrophysics Data System (ADS)
Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.
2009-10-01
Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work is based on ground-based observations made with ESO telescopes at the La Silla Observatory under the ESO Large Programme LP178.D-0361 and on data collected at the Observatorio de Sierra Nevada (Spain), at the Observatorio Astronómico Nacional San Pedro Mártir (Mexico), and at the Piszkéstetö Mountain Station of Konkoly Observatory (Hungary). Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/85 Current address: Laboratoire AIM, CEA/DSM CNRS Université Paris Diderot, CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu
2015-04-07
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-04-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.
Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets
NASA Astrophysics Data System (ADS)
Xiao, Ke; Zhao, Yanping; Ouyang, Gang; Li, Xinlei
2017-04-01
An analytic thermodynamic model has been established to quantitatively investigate the wetting states of droplets on nanopatterned surfaces. Based on the calculations for the free energies of droplets with the Wenzel state and the Cassie-Baxter state, it is found that the size and shape of nanostructured surfaces play crucial roles in wetting states. In detail, for nanohole-patterned surfaces, the deep and thin nanoholes lead to the Cassie-Baxter state, and contrarily, the shallow and thick nanoholes result in the Wenzel state. However, the droplets have the Wenzel state on the patterned surfaces with small height and radii nanopillars and have the Cassie-Baxter state when the height and radii of nanopillars are large. Furthermore, the intuitive phase diagrams of the wetting states of the droplet in the space of surface geometrical parameters are obtained. The theoretical results are in good agreement with the experimental observations and reveal physical mechanisms involved in the effects of nanopatterned surfaces on wetting states, which implies that these studies may provide useful guidance to the conscious design of patterned surfaces to control the wetting states of droplets.
NASA Astrophysics Data System (ADS)
Csizmadia, Sz.; Moutou, C.; Deleuil, M.; Cabrera, J.; Fridlund, M.; Gandolfi, D.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Bruntt, H.; Carone, L.; Carpano, S.; Cavarroc, C.; Cochran, W.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Endl, M.; Erikson, A.; Ferraz-Mello, S.; Fruth, Th.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jehin, E.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; MacQueen, P. J.; Mazeh, T.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.
2011-07-01
We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 MJup and a radius of 1.02 ± 0.07 RJup, while its mean density is 2.82 ± 0.38 g/cm3. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain ~380 earth masses of heavier elements. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Estimating the Turn-around Radii of Six Isolated Galaxy Groups in the Local Universe
NASA Astrophysics Data System (ADS)
Lee, Jounghun
2018-03-01
Estimates of the turn-around radii of six isolated galaxy groups in the nearby universe are presented. From the Tenth Data Release of the Sloan Digital Sky Survey, we first select those isolated galaxy groups at redshifts z ≤ 0.05 in the mass range [0.3–1] × {10}14 {h}-1 {M}ȯ whose nearest-neighbor groups are located at distances larger than 15 times their virial radii. Then, we search for a gravitationally interacting web-like structure around each isolated group, which appears as an inclined streak pattern in the anisotropic spatial distribution of the neighboring field galaxies. Out of 59 isolated groups, only seven are found to possess such web-like structures in their neighbor zones, but one of them turns out to be NGC 5353/4, whose turn-around radius was already measured in a previous work and was thus excluded from our analysis. Applying the Turn-around Radius Estimator algorithm devised by Lee et al. to the identified web-like structures of the remaining six target groups, we determine their turn-around radii and show that three out of the six targets have larger turn-around radii than the spherical bound limit predicted by Planck cosmology. We discuss possible sources of the apparent violations of the three groups, including the underestimated spherical bound limit due to the approximation of the turn-around mass by the virial mass.
Baryon octet electromagnetic form factors in a confining NJL model
NASA Astrophysics Data System (ADS)
Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.
2016-08-01
Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp < rEΣ+ and | rEn | < | rEΞ0 |, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.
Pulsations in the late-type Be star HD 50 209 detected by CoRoT
NASA Astrophysics Data System (ADS)
Diago, P. D.; Gutiérrez-Soto, J.; Auvergne, M.; Fabregat, J.; Hubert, A.-M.; Floquet, M.; Frémat, Y.; Garrido, R.; Andrade, L.; de Batz, B.; Emilio, M.; Espinosa Lara, F.; Huat, A.-L.; Janot-Pacheco, E.; Leroy, B.; Martayan, C.; Neiner, C.; Semaan, T.; Suso, J.; Catala, C.; Poretti, E.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Samadi, R.
2009-10-01
Context: The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims: To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods: We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results: We have found four frequencies which correspond to gravity modes with azimuthal order m=0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd-1 (7.754 μHz). Conclusions: HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip. Based on observations made with the CoRoT satellite, with FEROS at the 2.2 m telescope of the La Silla Observatory under the ESO Large Programme LP178.D-0361 and with Narval at the Télescope Bernard Lyot of the Pic du Midi Observatory. Current address: Valencian International University (VIU), José Pradas Gallen s/n, 12006 Castellón, Spain. Current address: Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.
The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters
NASA Astrophysics Data System (ADS)
Ofir, Aviv; Alonso, Roi; Bonomo, Aldo Stefano; Carone, Ludmila; Carpano, Stefania; Samuel, Benjamin; Weingrill, Jörg; Aigrain, Suzanne; Auvergne, Michel; Baglin, Annie; Barge, Pierre; Borde, Pascal; Bouchy, Francois; Deeg, Hans J.; Deleuil, Magali; Dvorak, Rudolf; Erikson, Anders; Mello, Sylvio Ferraz; Fridlund, Malcolm; Gillon, Michel; Guillot, Tristan; Hatzes, Artie; Jorda, Laurent; Lammer, Helmut; Leger, Alain; Llebaria, Antoine; Moutou, Claire; Ollivier, Marc; Päetzold, Martin; Queloz, Didier; Rauer, Heike; Rouan, Daniel; Schneider, Jean; Wuchterl, Guenther
2010-05-01
Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.
NASA Astrophysics Data System (ADS)
Xiong, Ming; Davies, Jackie A.; Li, Bo; Yang, Liping; Liu, Ying D.; Xia, Lidong; Harrison, Richard A.; Keiji, Hayashi; Li, Huichao
2017-07-01
Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less
A modified CoRoT detrend algorithm and the discovery of a new planetary companion
NASA Astrophysics Data System (ADS)
Boufleur, Rodrigo C.; Emilio, Marcelo; Janot-Pacheco, Eduardo; Andrade, Laerte; Ferraz-Mello, Sylvio; do Nascimento, José-Dias, Jr.; de La Reza, Ramiro
2018-01-01
We present MCDA, a modification of the COnvection ROtation and planetary Transits (CoRoT) detrend algorithm (CDA) suitable to detrend chromatic light curves. By means of robust statistics and better handling of short-term variability, the implementation decreases the systematic light-curve variations and improves the detection of exoplanets when compared with the original algorithm. All CoRoT chromatic light curves (a total of 65 655) were analysed with our algorithm. Dozens of new transit candidates and all previously known CoRoT exoplanets were rediscovered in those light curves using a box-fitting algorithm. For three of the new cases, spectroscopic measurements of the candidates' host stars were retrieved from the ESO Science Archive Facility and used to calculate stellar parameters and, in the best cases, radial velocities. In addition to our improved detrend technique, we announce the discovery of a planet that orbits a 0.79_{-0.09}^{+0.08} R⊙ star with a period of 6.718 37 ± 0.000 01 d and has 0.57_{-0.05}^{+0.06} RJ and 0.15 ± 0.10 MJ. We also present the analysis of two cases in which parameters found suggest the existence of possible planetary companions.
Asteroseismology and mass loss in Be stars. Study with CoRoT
NASA Astrophysics Data System (ADS)
Diago, P. D.
The general aim of this work is the study of Be stars with the CoRoT space mission. The mechanisms responsible of the production and dynamics of the circumstellar gas in Be stars are still not constrained. Observations of non-radial pulsation beating phenomena connected to outbursts point toward a relevance of pulsation, but this mechanism cannot be generalized. In this regard, the observation of classical Be stars with the high-precision CoRoT satellite is providing important keys to understand the physics of these objects and the nature of the Be phenomenon. In order to study the light variations of the selected stars we use photometric and spectroscopic observations. These observations allow us to extract frequencies, amplitudes and phases of these variations. As we will show, these light variations can be connected with pulsations on the stellar surface. For carrying out the frequency analysis we have developed a new code based on standard Fourier analysis. The point is that this code, called PASPER, allows the frequency analysis of large sets of light curves in an automatic mode. This Ph.D. thesis is arranged as follows: In the first three Chapters we describe the scientific framework of this project, giving a brief description on Asteroseismology, presenting the current status of Be stars, and describing the basics of the Fourier analysis and the rudiments of the time series analysis. At the early begin of this Ph.D. thesis, the CoRoT satellite was still on ground getting ready for the launch. In this context, we perform a search for short-period B and Be star variables in the low metallicity environment of the Magellanic Clouds. This study constitutes the Part I of this Ph.D. thesis. This Part has a double goal: i) to test the frequency analysis codes; and ii) to detect observationally beta Cephei and SPB-like B-type pulsators in low metallicity environments, actually not predicted by the pulsational theory and models. This constitutes the PartI. Part II is devoted to the study of Be stars with the CoRoT space mission. Here we depict a complete review on the CoRoT mission. We also describe the results on the analysis of three Be stars from the CoRoT exoplanet field. Finally, we present the results on the frequency analysis of the late Be star HD50209, observed in the seismology field of the \\corot satellite. The analysis of this Be star has revealed up to sixty frequencies, grouped in six different and separated sets, attributed to g-mode pulsations. Finally, we resume the main conclusions of the whole project, including prospects and future work to be done. An addendum with all the published results derived from this project has been added at the end of this Part II. Part III encloses the Appendixes, providing a brief summary of this work in Spanish, a complete description on basic equations of non-radial oscillation, the user guide of the PASPER code and the user guide of the KURTZ_BOS code.
Could we constrain some major properties of hot Super-Earths with NIRSPEC-JWT spectra?
NASA Astrophysics Data System (ADS)
Rouan, D.; Samuel, B.; Leconte, J.; Léger, A.
2014-03-01
CoRot-7b and Kepler-10b were the first super-earths with solid surfaces identified thanks to transits detection from space using ultra-precise photometry. At only a few stellar radii from their host stars, these two rocky planets are very hot. The current model (Leger et al., 2011) is that they are atmosphere-free, in a synchronous rotation state, receive strong stellar winds and fluxes and that they feature a lava ocean on their hot dayside. We show how observations with NIRSPEC-JWST could further confirm and constrain, or reject the atmosphere-free lava ocean planet model for very hot super earths. Taking CoRoT-7b as a baseline, we explore the consequences on the phase-curve of a non tidal-locked rotation, of the presence/absence of an atmosphere, and of different values of the surface albedo. Simulated observations of the reflected light and thermal emission using NIRSPEC-JWST are used to look for detectable signatures of those peculiar conditions. We also study how to retrieve the temperature map of the surface. We demonstrate that thanks to the broad range of wavelengths accessible with JWST, we should be able to constrain several parameters: i) the Bond albedo is retrieved to within ±0.03 in most cases; ii) the lag effect allows to retrieve the rotation period of a non phaselocked planet to within 3 hours; iii) the shortest rotation period compatible with an actually phase-locked planet is in the range 30 - 800 h depending on the thermal properties of the soil; iv) the presence of a thick atmosphere with a pressure of one bar, and an specific opacity higher than 10-5m-2kg-1 is detectable; v) The latitudinal temperature profile can be retrieved to within 30 K for a signal to noise ratio of 7.5. We conclude that it should thus be possible to distinguish the situation of a lava ocean with phase-locking and no atmosphere from other cases. In addition, obtaining the surface temperature map and the albedo will bring important constraints on the nature or the physical state of the soil of hot super-earths. We examine the extension of this method to other cases of super-earths.
Simulating a slow bar in the low surface brightness galaxy UGC 628
NASA Astrophysics Data System (ADS)
Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen
2016-12-01
We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.
Stream interfaces and energetic ions II: Ulysses test of Pioneer results
NASA Technical Reports Server (NTRS)
Intriligator, Devrie S.; Siscoe, George L.; Wibberenz, Gerd; Kunow, Horst; Gosling, John T.
1995-01-01
Ulysses measurements of energetic and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating energetic ion population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding is noteworthy since the stream interface is not magnetically connected to the reverse shock, but lies 12-17 corotation hours from it. Thus, the finding seems to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines. Eliminating the inconsistency probably entails an extension of the standard model such as cross-field diffusion or a non-shock energization process operating near the stream interface closer to the sun.
Elemental abundances in corotating events
NASA Technical Reports Server (NTRS)
Vonrosenvinge, T. T.; Mcguire, R. E.
1985-01-01
Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) was remarkably constant at a value (22 + or 5) equal to that in the solar wind (21 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results were presented from a similar study approximately 11 years (i.e., one solar cycle) later. Corotating events have been identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. It is flund that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.
Unstable spiral modes in disk-shaped galaxies
Lau, Y. Y.; Lin, C. C.; Mark, James W.-K.
1976-01-01
The mechanisms for the maintenance and the excitation of trailing spiral modes of density waves in diskshaped galaxies, as proposed by Lin in 1969 and by Mark recently, are substantiated by an analysis of the gas-dynamical model of the galaxy. The self-excitation of the unstable mode in caused by waves propagating outwards from the corotation circle, which carry away angular momentum of a sign opposite to that contained in the wave system inside that circle. Specifically, a simple dispersion relationship is given as a definite integral, which allows the immediate determination of the pattern frequency and the amplification rate, once the basic galactic model is known. PMID:16592313
Low-Energy Charged Particles in Saturn's Magnetosphere: Results from Voyager 1.
Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C
1981-04-10
The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a mantle of low-energy particles extending inward from the dayside magnetopause to approximately 17 Saturn radii, at least two intensity dropouts occurring approximately 11 hours apart in the nighttime magnetosphere, and a pervasive population of energetic molecular hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Rawls, M. L.
2013-04-10
Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less
Raining a magma ocean: Thermodynamics of rocky planets after a giant impact
NASA Astrophysics Data System (ADS)
Stewart, S. T.; Lock, S. J.; Caracas, R.
2017-12-01
Rocky planets in exoplanetary systems have equilibrium temperatures up to a few 1000 K. The thermal evolution after a giant impact is sensitive to the equilibrium temperature. Post-impact rocky bodies are thermally stratified, with cooler, lower-entropy silicate overlain by vaporized, higher-entropy silicate. The radii of impact-vaporized rocky planets are much larger than the radii of equivalent condensed bodies. Furthermore, after some high-energy, high-angular momentum collisions, the post-impact body exceeds the corotation limit for a rocky planet and forms a synestia. Initially, volatiles and silicates are miscible at the high temperatures of the outer layer. If the equilibrium temperature with the star is lower than the silicate condensation temperature ( 2000 K), silicate droplets form at the photosphere and fall while volatile components remain in the vapor. Radiation and turbulent convection cool the vapor outer layer to the silicate vapor curve. A distinct magma ocean forms as the thermal profile crosses the silicate vapor curve and the critical curves for the volatiles. Near the temperatures and pressures of the critical curves, volatiles and silicates are partially soluble in each other. As the system continues cooling, the volatile vapor and silicate liquid separate toward the end member compositions, which are determined by the equilibrium temperature and the total vapor pressure of volatiles. If the equilibrium temperature with the star is near or above the condensation temperature for silicates, there would be limited condensation at the photosphere. Initially, the cooler lower mantle would slowly, diffusively equilibrate with the hotter upper mantle. In some cases, the thermal profile may cross the silicate vapor curve in the middle of the silicate layer, producing a silicate rain layer within the body. With continued evolution toward an adiabatic thermal profile, the body would separate into a silicate liquid layer underlying a silicate-volatile vapor layer. As the hottest rocky planets become tidally locked to their star, cooling progresses asymmetrically. The timing and degree of differentiation of rocky planets into silicate mantles and volatile atmospheres depends on the thermal evolution of vaporized rocky planets and may vary widely with equilibrium temperature.
Baryon octet electromagnetic form factors in a confining NJL model
Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloet, Ian C.; ...
2016-05-25
Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Here, comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that r p E < r Σ+ E and |r n E| < |r Ξ0 E|, whereas the magnetic radii have a pattern largely consistent with a naivemore » expectation based on the dressed quark masses.« less
The tip of the iceberg: the frequency content of the δ Sct star HD 50844 from CoRoT space photometry
NASA Astrophysics Data System (ADS)
Poretti, E.; Mantegazza, L.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Baglin, A.; Auvergne, M.; Catala, C.; Samadi, R.; Rodríguez, E.; Garrido, R.; Amado, P.; Martín-Ruiz, S.; Moya, A.; Suárez, J. C.; Baudin, F.; Zima, W.; Alvarez, M.; Mathias, P.; Paparó, M.; Pápics, P.; Plachy, E.
2009-09-01
It has been suggested that the detection of a wealth of very low amplitude modes in δ Sct stars was only a matter of signal-to-noise ratio. Access to this treasure, impossible from the ground, is one of the scientific aims of the space mission CoRoT, developed and operated by CNES. This work presents the results obtained on HD 50844: the 140,016 datapoints allowed us to reach the level of 10-5 mag in the amplitude spectra. The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to = 14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. The predominant term (f1 = 6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data.
NASA Astrophysics Data System (ADS)
Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny
2011-05-01
We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).
NASA Astrophysics Data System (ADS)
Yamauchi, Masatoshi; Ebihara, Yusuke; Dandouras, Iannis; Nilsson, Hans
2014-05-01
Energy-latitude dispersed structured sub-keV ions in the inner magnetosphere drifts very slowly in the noon-to-afternoon sectors because the eastward corotation and the westward magnetic drift balances to each other there. However, majority of Cluster ion observation by the Cluster Ion Spectrometry (CIS) COmposition DIstribution Function (CODIF) instrument during 2001-2006 showed significant development or intensification (by more than factor of 3) within 1-2 h in that sector during the Cluster perigee traversals that quickly scans latitudinal structure at a fixed local time (Yamauchi et al., 2013). The frequent observations of significant inbound-outbound differences in the wedge-like dispersed ions by Cluster indicates either new injections or high eastward drift velocity even in the afternoon sector. To examine the former possibility, i.e., whether such sudden appearances in the dayside can be explained by the drift motion of ions that are formed during substorm-related injections, we numerically simulated two such examples, one at noon (8 September 2002) and the other in the afternoon (9 July 2001), based on the same ion drift simulation model that has successfully reproduced the ion pattern of an inbound-outbound symmetric event at 5 MLT observed by the Cluster CIS/CODIF instrument. The model uses backward phase-space mapping to a boundary at the nightside 8 Earth radii and forward numerical simulation using re-constructed distribution function at that boundary. For both examples, the ion drift model with finite duration (limited to 1-2 hours) of proton source in the nightside can explain the observed large inbound-outbound differences in the sub-keV proton population without any new sources. Ion drift motion is thus able to cause rapid changes of complicated ion populations, at remote places from the source long time after the substorm activities, although this result does not eliminate the possibility of having independent ionospheric sources. References: Yamauchi, M. et al.: Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, 1569-1578, doi:10.5194/angeo-31-1569-2013, 2013.
NASA Astrophysics Data System (ADS)
Poretti, E.; Rainer, M.; Weiss, W. W.; Bognár, Zs.; Moya, A.; Niemczura, E.; Suárez, J. C.; Auvergne, M.; Baglin, A.; Baudin, F.; Benkő, J. M.; Debosscher, J.; Garrido, R.; Mantegazza, L.; Paparó, M.
2011-04-01
Aims: The detection of small-amplitude nonradial modes in high-amplitude δ Sct (HADS) variables has been very elusive until at least five of them were detected in the light curve of V974 Oph obtained from ground-based observations. The combination of radial and nonradial modes has a high asteroseismic potential, thanks to the strong constraints we can put in the modelling. The continuous monitoring of ASAS 192647-0030.0 ≡ CoRoT 101155310 (P = 0.1258 d, V = 13.4) ensured from space by the CoRoT (COnvection, ROtation and planetary Transits) mission constitutes a unique opportunity to exploit such potential. Methods: The 22270 CoRoT measurements were performed in the chromatic mode. They span 152 d and cover 1208 consecutive cycles. After the correction for one jump and the long-term drift, the level of the noise turned out to be 29 μmag. The phase shifts and amplitude ratios of the coloured CoRoT data, the HARPS spectra, and the period-luminosity relation were used to determine a self-consistent physical model. In turn, it allowed us to model the oscillation spectrum, also giving feedback on the internal structure of the star. Results: In addition to the fundamental radial mode f1 = 7.949 d-1 with harmonics up to 10f1, we detected 12 independent terms. Linear combinations were also found and the light curve was solved by means of 61 frequencies (smallest amplitude 0.10 mmag). The newest result is the detection of a periodic modulation of the f1 mode (triplets at ± 0.193 d-1 centred on f1 and 2f1), discussed as a rotational effect or as an extension of the Blazhko effect to HADS stars. The physical model suggests that CoRoT 101155310 is an evolved star, with a slight subsolar metallic abundance, close to the terminal age main sequence. All the 12 additional terms are identified with mixed modes in the predicted overstable region. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work uses ground-based spectroscopic observations made with the HARPS instrument at the 3.6 m-ESO telescope (La Silla, Chile) under the ESO Large Programme LP182.D-0356 and complementary photometric measurements made at the Piszkéstető Mountain Station of Konkoly Observatory (Hungary).Table 1 is also, and Table 2 only, available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A147
Strength determination of brittle materials as curved monolithic structures.
Hooi, P; Addison, O; Fleming, G J P
2014-04-01
The dental literature is replete with "crunch the crown" monotonic load-to-failure studies of all-ceramic materials despite fracture behavior being dominated by the indenter contact surface. Load-to-failure data provide no information on stress patterns, and comparisons among studies are impossible owing to variable testing protocols. We investigated the influence of nonplanar geometries on the maximum principal stress of curved discs tested in biaxial flexure in the absence of analytical solutions. Radii of curvature analogous to elements of complex dental geometries and a finite element analysis method were integrated with experimental testing as a surrogate solution to calculate the maximum principal stress at failure. We employed soda-lime glass discs, a planar control (group P, n = 20), with curvature applied to the remaining discs by slump forming to different radii of curvature (30, 20, 15, and 10 mm; groups R30-R10). The mean deflection (group P) and radii of curvature obtained on slumping (groups R30-R10) were determined by profilometry before and after annealing and surface treatment protocols. Finite element analysis used the biaxial flexure load-to-failure data to determine the maximum principal stress at failure. Mean maximum principal stresses and load to failure were analyzed with one-way analyses of variance and post hoc Tukey tests (α = 0.05). The measured radii of curvature differed significantly among groups, and the radii of curvature were not influenced by annealing. Significant increases in the mean load to failure were observed as the radius of curvature was reduced. The maximum principal stress did not demonstrate sensitivity to radius of curvature. The findings highlight the sensitivity of failure load to specimen shape. The data also support the synergistic use of bespoke computational analysis with conventional mechanical testing and highlight a solution to complications with complex specimen geometries.
NASA Astrophysics Data System (ADS)
Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.
2013-04-01
Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims: We concentrate on an asteroseismological study of HD 261711, a rather hot δ Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD 261711 was discovered to be a PMS δ Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods: High-precision, time-series photometry of HD 261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results: With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the δ Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new δ Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (Teff) was derived to be 8600 ± 200 K, log g is 4.1 ± 0.2, and the projected rotational velocity (υsini) is 53 ± 1 km s-1. Using our Teff value and the radius of 1.8 ± 0.5 R⊙ derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L⊙ of 1.20 ± 0.14 which agrees well to the seismologically determined values of 1.65 R⊙ and, hence, a log L/L⊙ of 1.13. The radial velocity of 14 ± 2 km s-1 we derived for HD 261711, confirms the star's membership to NGC 2264. Conclusions: Our asteroseismic models suggest that HD 261711 is a δ Scuti-type star close to the zero-age main sequence (ZAMS) with a mass of 1.8 to 1.9 M⊙. With an age of about 10 million years derived from asteroseismology, the star is either a young ZAMS star or a late PMS star just before the onset of hydrogen-core burning. The observed splittings about the l = 0 and 1 parent modes may be an artifact of the Fourier derived spectrum of frequencies with varying amplitudes. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.Reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A68
Stream interfaces and energetic ions 2: Ulysses test of Pioneer results
NASA Technical Reports Server (NTRS)
Intriligator, Devrie S.; Siscoe, George L.; Wibberez, Gerd; Kunow, Horst; Gosling, John T.
1995-01-01
Ulysses measurements of energetic and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating energetic ion population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding noteworthy since the stream interface is not magnetically connected to the reverse shock but lies 12-17 corotation hours from it. Thus, the finding to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines Eliminating the inconsistency probably entails an extension of the standard model. We consider two possible extensions cross-field diffusion and energetic particles generation closer to the sun in the gap between the stream interface and the reverse shock.
Comparison of stellar and gasdynamics of a barred galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contopoulos, G.; Gottesman, S.T.; Hunter, J.H. Jr.
1989-08-01
The stellar and gas dynamics of several models of barred galaxies were studied, and results for some representative cases are reported for galaxies in which the stars and gas respond to the same potentials. Inside corotation there are two main families of periodic orbits, designated x1 and 4/1. Close to the center, the x1 orbits are like elongated ellipses. As the 4/1 resonance is approached, these orbits become like lozenges, with apices along the bar and perpendicular to it. The family 4/1 consists of orbits like parallelograms which produce the boxy component of the bar. The orbits in spirals outsidemore » corotation enhance the spiral between the outer -4/1 resonance and the outer Lindblad resonance. Between corotation and the -4/1 resonance in strong spirals, the orbits are mostly stochastic and fill almost circular rings. A spiral field must be added to gasdynamical models to obtain gaseous arms extending from the end of a bar. 38 refs.« less
Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.
1984-01-01
A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.
Comparisons between stellar models and reliability of the theoretical models
NASA Astrophysics Data System (ADS)
Lebreton, Yveline; Montalbán, Josefina
2010-07-01
The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.
Observações no âmbito dos "additional programs" do satélite COROT
NASA Astrophysics Data System (ADS)
Janot Pacheco, E.
2003-08-01
O satélite Fraco-europeu COROT fará fotometria de altissima precisão (pretende-se atingir uma parte em um milhão), grande campo (3x3 graus) e por longos períodos, de duas regiões pré-determinadas do céu, com 10 graus de raio. Suas finalidades básicas serão estudos em sismologia estelar e a procura de exoplanetas. A comunidade astronômica brasileira participará dessa missão espacial, com direitos iguais aos dos parceiros europeus. Isso se deve a que o satélite utilizará a estação de recepção de dados de Natal (INPE), 5 a 6 brasileiros participarão das equipes de software e cientistas do país atuarão na fase de pré-lançamento. Apresentamos nesta comunicação sugestões para a preparação de propostas de observações com COROT, no âmbito dos Programas Adicionais, que contemplam outros projetos que não de sismologia ou exoplanetas. As últimas definições técnicas e decisões tomadas na 4th Corot Week de junho último serão igualmente apresentadas, em particular quanto às regiões de observação escolhidas e quanto aos procedimentos a seguir para se propor observações.
Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars
NASA Astrophysics Data System (ADS)
Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.
2017-01-01
Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.
Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays
NASA Astrophysics Data System (ADS)
Nelson, Gregory James
Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and magnitudes tracked, plotted and tabulated. The close match between the patterns of the measured array and the modeled circularly conformal array verifies the validity of the modeled circularly conformal array pattern predictions.
Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J
1992-09-11
Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.
Comparisons for ESTA-Task3: ASTEC, CESAM and CLÉS
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, J.
The ESTA activity under the CoRoT project aims at testing the tools for computing stellar models and oscillation frequencies that will be used in the analysis of asteroseismic data from CoRoT and other large-scale upcoming asteroseismic projects. Here I report results of comparisons between calculations using the Aarhus code (ASTEC) and two other codes, for models that include diffusion and settling. It is found that there are likely deficiencies, requiring further study, in the ASTEC computation of models including convective cores.
Homogeneous Studies of Transiting Extrasolar Planets: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Taylor, John
2011-09-01
We now know of over 500 planets orbiting stars other than our Sun. The jewels in the crown are the transiting planets, for these are the only ones whose masses and radii are measurable. They are fundamental for our understanding of the formation, evolution, structure and atmospheric properties of extrasolar planets. However, their characterization is not straightforward, requiring extremely high-precision photometry and spectroscopy as well as input from theoretical stellar models. I summarize the motivation and current status of a project to measure the physical properties of
An analytic model for buoyancy resonances in protoplanetary disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubow, Stephen H.; Zhu, Zhaohuan, E-mail: lubow@stsci.edu, E-mail: zhzhu@astro.princeton.edu
2014-04-10
Zhu et al. found in three-dimensional shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with the results of the Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from themore » classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k{sub y} > h {sup –1} (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to the corotation radius than the Lindblad resonance. Because the torque is localized to the region of excitation, it is potentially subject to the effects of nonlinear saturation. In addition, the torque can be reduced by the effects of radiative heat transfer between the resonant region and its surroundings. For each azimuthal wavenumber, the resonance establishes a large scale density wave pattern in a plane within the disk.« less
NASA Astrophysics Data System (ADS)
Tolfree, Kathryne; Wyse, R. F.
2014-01-01
Radial migration is a way to rearrange the orbital angular momentum of stars in an spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta in a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially given certain conditions. In order for a star in a spiral disk to migrate radially, it must first be “captured" in a family of resonant orbits near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for stars on non-circular orbits in a disk galaxy. We then use our analytically derived capture criteria to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve as well as the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation (|Φs|CR). We find that the captured fraction goes as Exp[-σR2/|Φs|CR].
NASA Astrophysics Data System (ADS)
Buta, Ronald J.
2017-10-01
Dark gaps are commonly seen in early-to-intermediate-type barred galaxies having inner and outer rings or related features. In this paper, the morphologies of 54 barred and oval ringed galaxies have been examined with the goal of determining what the dark gaps are telling us about the structure and evolution of barred galaxies. The analysis is based mainly on galaxies selected from the Galaxy Zoo 2 data base and the Catalogue of Southern Ringed Galaxies. The dark gaps between inner and outer rings are of interest because of their likely association with the L4 and L5 Lagrangian points that would be present in the gravitational potential of a bar or oval. Since the points are theoretically expected to lie very close to the corotation resonance (CR) of the bar pattern, the gaps provide the possibility of locating corotation in some galaxies simply by measuring the radius rgp of the gap region and setting rCR=rgp. With the additional assumption of generally flat rotation curves, the locations of other resonances can be predicted and compared with observed morphological features. It is shown that this `gap method' provides remarkably consistent interpretations of the morphology of early-to-intermediate-type barred galaxies. The paper also brings attention to cases where the dark gaps lie inside an inner ring, rather than between inner and outer rings. These may have a different origin compared to the inner/outer ring gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ming; Yang, Liping; Liu, Ying D.
Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations ofmore » both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.« less
Plasmapause Dynamics Observed During the 17 March and 28 June 2013 Storms
NASA Astrophysics Data System (ADS)
Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Roeder, J. L.; Shumko, M.; Bhatt, R.; Payne, C.; Bust, G. S.
2017-12-01
Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. When the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can rapidly erode to L 2.5 or less. During subsequent quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes refills the plasmasphere over the course of several days or more, with the plasmapause expanding to higher L-shells. The combination of convection, corotation, and ionospheric plasma outflow during and after a storm leads to characteristic features such as plasmaspheric shoulders, notches, and plumes. In this presentation, we focus on the dynamics of the plasmapause during two storms in 2013: March 17 and June 28. The minimum Dst for the two storms were -139 and -98 nT, respectively. We examine plasmapause dynamics utilizing data from an extensive global network of ground-based scientific GPS receivers ( 4000) and line-of-sight observations from the GPS receivers on the COSMIC and C/NOFS satellites, along with data from THEMIS and van Allen Probes, and Millstone Hill Incoherent Scatter Radar. Using the various datasets, we will compare the pre-storm and storm-time plasmasphere. We will also examine the location, evolution, and erosion time scales of the plasmapause during the active portion of the storm using a combination of the observational data, the assimilative PDA model, and the RCM-E model.
MOST detects corotating bright spots on the mid-O-type giant ξ Persei
NASA Astrophysics Data System (ADS)
Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Chené, André-Nicolas; Richardson, Noel D.; Henrichs, Huib F.; Desforges, Sébastien; Antoci, Victoria; Rowe, Jason F.; Matthews, Jaymie M.; Kuschnig, Rainer; Weiss, Werner W.; Sasselov, Dimitar; Rucinski, Slavek M.; Guenther, David B.
2014-06-01
We have used the MOST (Microvariability and Oscillations of STars) microsatellite to obtain four weeks of contiguous high-precision broad-band visual photometry of the O7.5III(n)((f)) star ξ Persei in 2011 November. This star is well known from previous work to show prominent DACs (discrete absorption components) on time-scales of about 2 d from UV spectroscopy and non-radial pulsation with one (l = 3) p-mode oscillation with a period of 3.5 h from optical spectroscopy. Our MOST-orbit (101.4 min) binned photometry fails to reveal any periodic light variations above the 0.1 mmag 3σ noise level for periods of a few hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer period variations are unlikely due to pulsations, including gravity modes. From our simulations based upon a simple spot model, we deduce that we are seeing the photometric modulation of several corotating bright spots on the stellar surface. In our model, the starting times (random) and lifetimes (up to several rotations) vary from one spot to another yet all spots rotate at the same period of 4.18 d, the best-estimated rotation period of the star. This is the first convincing reported case of corotating bright spots on an O star, with important implications for drivers of the DACs (resulting from corotating interaction regions) with possible bright-spot generation via a breakout at the surface of a global magnetic field generated by a subsurface convection zone.
Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme
2014-01-01
Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do Nascimento, J.-D. Jr.; Da Costa, J. S.; Castro, M.
The question of whether the Sun is peculiar within the class of solar-type stars has been the subject of active investigation over the past three decades. Although several solar twins have been found with stellar parameters similar to those of the Sun (albeit in a range of Li abundances and with somewhat different compositions), their rotation periods are unknown, except for 18 Sco, which is younger than the Sun and with a rotation period shorter than solar. It is difficult to obtain rotation periods for stars of solar age from ground-based observations, as a low-activity level implies a shallow rotationalmore » modulation of their light curves. CoRoT has provided space-based long time series from which the rotation periods of solar twins as old as the Sun could be estimated. Based on high-signal-to-noise, high-resolution spectroscopic observations gathered at the Subaru Telescope, we show that the star CoRoT ID 102684698 is a somewhat evolved solar twin with a low Li abundance. Its rotation period is 29 {+-} 5 days, compatible with its age (6.7 Gyr) and low lithium content, A{sub Li} {approx}< 0.85 dex. Interestingly, our CoRoT solar twin seems to have enhanced abundances of the refractory elements with respect to the Sun, a typical characteristic of most nearby twins. With a magnitude V {approx_equal} 14.1, ID 102684698 is the first solar twin revealed by CoRoT, the farthest field solar twin so far known, and the only solar twin older than the Sun for which a rotation period has been determined.« less
Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b
NASA Astrophysics Data System (ADS)
Dang, Lisa; Cowan, Nicolas B.; Schwartz, Joel C.; Rauscher, Emily; Zhang, Michael; Knutson, Heather A.; Line, Michael; Dobbs-Dixon, Ian; Deming, Drake; Sundararajan, Sudarsan; Fortney, Jonathan J.; Zhao, Ming
2018-03-01
Short-period planets exhibit day-night temperature contrasts of hundreds to thousands of kelvin. They also exhibit eastward hotspot offsets whereby the hottest region on the planet is east of the substellar point1; this has been widely interpreted as advection of heat due to eastward winds2. We present thermal phase observations of the hot Jupiter CoRoT-2b obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These measurements show the most robust detection to date of a westward hotspot offset of 23 ± 4°, in contrast with the nine other planets with equivalent measurements3-10. The peculiar infrared flux map of CoRoT-2b may result from westward winds due to non-synchronous rotation11 or magnetic effects12,13, or partial cloud coverage, that obscure the emergent flux from the planet's eastern hemisphere14-17. Non-synchronous rotation and magnetic effects may also explain the planet's anomalously large radius12,18. On the other hand, partial cloud coverage could explain the featureless dayside emission spectrum of the planet19,20. If CoRoT-2b is not tidally locked, then it means that our understanding of star-planet tidal interaction is incomplete. If the westward offset is due to magnetic effects, our result represents an opportunity to study an exoplanet's magnetic field. If it has eastern clouds, then it means that a greater understanding of large-scale circulation on tidally locked planets is required.
Wu, P; Zeng, Y Z; Wang, C M
2004-03-01
Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.
3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star
NASA Astrophysics Data System (ADS)
Lovelace, R. V. E.; Romanova, M. M.
2014-01-01
We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
NASA Astrophysics Data System (ADS)
Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.
2018-02-01
In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.
Implications of the Corotation Theorem on the MRI in Axial Symmetry
NASA Astrophysics Data System (ADS)
Montani, G.; Cianfrani, F.; Pugliese, D.
2016-08-01
We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.
Towards a theory for Neptune's arc rings
NASA Technical Reports Server (NTRS)
Goldreich, P.; Tremaine, S.; Borderies, N.
1986-01-01
It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.
Measurements of the rotation rate of the jovian mid-to-low latitude ionosphere
NASA Astrophysics Data System (ADS)
Johnson, Rosie E.; Stallard, Tom S.; Melin, Henrik; Miller, Steve; Nichols, Jonathan D.
2016-12-01
Previous studies of Jupiter's upper atmosphere often assume that the mid-to-low latitude ionosphere is corotating, but a model describing an observed asymmetry in hydrogen Lyman-α emission (∼1000 km above the 1 bar level) disagrees with this assumption. From measurements of the Doppler shifted H3+ν2 Q (1 ,0-) line at 3.953 μm using the IRTF, the line-of-sight velocities of the H3+ ions were derived in the planetary reference frame and found to be 0.091 ± 0.25 km s-1, 0.0082 ± 0.30 km s-1 and 0.31 ± 0.51 km s-1 in 1998, 2007 and 2013 respectively. These zero velocities represent corotation at the mid-to-low latitude region of Jupiter's ionosphere. There is no evidence of flows associated with the hydrogen Lyman-α emission asymmetries detected in the peak H3+ emission layer (∼550 km above the 1 bar level), and we assert that the H3+ ions in Jupiter's mid-to-low latitude are rigidly corotating.
NASA Astrophysics Data System (ADS)
Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.
2012-12-01
Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr, inferred using a parameterization of the stellar rotation period as a function of colour index and time established for the I-sequence of stars in stellar clusters. Conclusions: We conclude that the high magnetic activity level and fast rotation of CoRoT 102899501 are manifestations of its stellar youth consistent with its estimated evolutionary status and with the detection of a strong Li i λ6707.8 Å absorption line in its spectrum. We argue that a magnetic activity level comparable to that observed on CoRot 102899501 could have been present on the Sun at the time of planet formation. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.Based on observations made with the Anglo-Australian Telescope; the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA; the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by the NOT "Fast-Track" Service Programme, OPTICON, and the Spanish Time Allocation Committee (CAT).The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON).
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Arballo, J.
1994-01-01
We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.
Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers
NASA Technical Reports Server (NTRS)
Calvert, W.
1985-01-01
It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.
Experimental parametric study of jet vortex generators for flow separation control
NASA Technical Reports Server (NTRS)
Selby, Gregory
1991-01-01
A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.
The two radii of a charged particle.
Michov, B M
1989-01-01
The existence of two radii of each charged particle-a geometric and electrokinetic radii, is supposed. The mathematical relationship between them in the four possible combinations of an ion and its counterion is analyzed: (i) at equal geometric radii and, in absolute values, equal valencies; (ii) at equal geometric radii and, in absolute values, different valencies; (iii) at different geometric radii and, in absolute values, equal valencies; (iv) at different geometric radii and, in absolute values, different valencies. One of the equations worked out can be used to define the relationship between the geometric and electrokinetic radii of a polyion. All the equations are used in working out precise calculations.
SIGNATURES OF LONG-LIVED SPIRAL PATTERNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A., E-mail: ericmartinez@inaoep.mx, E-mail: martinez@astro.unam.mx, E-mail: r.gonzalez@crya.unam.mx
2013-03-10
Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals weremore » analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.« less
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.
2011-01-01
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736
Xi Per [O7.5 III(n)((f))]: DACs, NRPs and Now Co-rotating Hot Spots with MOST
NASA Astrophysics Data System (ADS)
Ramiaramanantsoa, Tahina; Moffat, A.; Chene, A.-N.; Desforges, S.; Henrichs, H.; MOST Science Team
2013-06-01
We have used the MOST (Microvariability and Oscillations of Stars) microsatellite to obtain four weeks of contiguous high-precision broadband visual photometry in Nov 2011 along with several simultaneous nights of ground-based medium-resolution high signal-to-noise optical spectroscopic monitoring of the O7.5III star xi Persei. This star is well known from previous work to show prominent DACs (Discrete Absorption Components) on times-scales of about two days from UV spectroscopy and NRP (Non Radial Pulsation) with one (l=3) p-mode oscillation of period 3.5 hours from optical spectroscopy. Our MOST-orbit (101 min) binned photometry fails to reveal any coherent pulsations above the 0.1 mmag 3-sigma noise level for periods of hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer-period variations are unlikely due to pulsations; rather we deduce from our simulations based upon a simple spot model that we are seeing the photometric modulation of several co-rotating hot spots on the stellar surface, whose lifetimes vary yet they all rotate at the same (probable) period of 4 days, i.e. the best-estimated stellar rotation period. We are in the process of examining if our new optical spectra at a cadence of ~ 5 minutes and signal-to-noise ~ 150 reveal any periodicities on hour and day timescales. This may be the first reported case of co-rotating hot spots on an O star, with important implications for drivers of the DACs (resulting from CIRs, Corotating Interaction Regions) and possible generation via a subsurface convection zone.
Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.
2017-01-01
Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2018-02-01
In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.
NASA Astrophysics Data System (ADS)
Smith, E. J.; Dougherty, M. K.; Zhou, X.
2010-12-01
A consensus model of Saturn’s magnetosphere that has broad acceptance consists of four regions in which the plasma and field are corotating, sub-corotating or undergoing Vasyliunas or Dungey convection. In this model, the sub-corotating magnetosphere contains a large scale circuital current system comprised of radial, field-aligned and ionospheric currents. A quantitative rendering of this system developed by S. Cowley and E. Bunch relates the azimuthal field component, B phi, that causes the field to spiral to the ionospheric Pedersen current , Ip. Cassini measurements of B phi over the four year interval between 2005 and 2008 that are widely distributed in radial distance, latitude and local time have been used to compute Ip from a Bunce-Cowley formula. A striking north-south asymmetry of the global magnetosphere has been found. In the southern hemisphere, the magnitude and variation of Ip with invariant colatitude, θ, agree qualitatively with the model but Ip (θ) is shifted poleward by about 10°. In the northern hemisphere, however, the data fail to reproduce the profile of Ip (θ) predicted by the model but are dominated by two high latitude currents having the wrong polarities. Possible causes of this asymmetry are seasonal variations (summer in the southern hemisphere) and/or asymmetric plasma outflow from the inner magnetosphere such as the plumes extending southward from Enceladus. Another finding is a significant local time dependence of Ip(θ) rather than the axisymmetry assumed in the model. There is a close correspondence with the model in the noon sector. The currents in the midnight and dawn sectors are significantly larger than in the noon sector and the current in the dusk sector is dramatically weaker.
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J
2011-10-01
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.
Presenting new exoplanet candidates for the CoRoT chromatic light curves
NASA Astrophysics Data System (ADS)
Boufleur, Rodrigo; Emilio, Marcelo; Andrade, Laerte; Janot-Pacheco, Eduardo; De La Reza, Ramiro
2015-08-01
One of the most promising topics of modern Astronomy is the discovery and characterization of extrasolar planets due to its importance for the comprehension of planetary formation and evolution. Missions like MOST (Microvariability and Oscillations of Stars Telescope) (Walker et al., 2003) and especially the satellites dedicated to the search for exoplanets CoRoT (Convection, Rotation and planetary Transits) (Baglin et al., 1998) and Kepler (Borucki et al., 2003) produced a great amount of data and together account for hundreds of new discoveries. An important source of error in the search for planets with light curves obtained from space observatories are the displacements occuring in the data due to external causes. This artificial charge generation phenomenon associated with the data is mainly caused by the impact of high energy particles onto the CCD (Pinheiro da Silva et al. 2008), although other sources of error, not as well known also need to be taken into account. So, an effective analysis of the light curves depends a lot on the mechanisms employed to deal with these phenomena. To perform our research, we developed and applied a different method to fix the light curves, the CDAM (Corot Detrend Algorithm Modified), inspired by the work of Mislis et al. (2012). The paradigms were obtained using the BLS method (Kovács et al., 2002). After a semiautomatic pre-analysis associated with a visual inspection of the planetary transits signatures, we obtained dozens of exoplanet candidates in very good agreement with the literature and also new unpublished cases. We present the study results and characterization of the new cases for the chromatic channel public light curves of the CoRoT satellite.
Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Goldstein, M. L.
1983-01-01
Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.
Nuclear physics of reverse electron flow at pulsar polar caps
NASA Astrophysics Data System (ADS)
Jones, P. B.
2010-01-01
Protons produced in electromagnetic showers formed by the reverse electron flux are usually the largest component of the time-averaged polar cap open magnetic flux line current in neutron stars with positive corotational charge density. Although the electric field boundary conditions in the corotating frame are time independent, instabilities on both medium and short time-scales cause the current to alternate between states in which either protons or positrons and ions form the major component. These properties are briefly discussed in relation to nulling and microstructure in radio pulsars, pair production in an outer gap and neutron stars with high surface temperatures.
NASA Astrophysics Data System (ADS)
Benedito, Adolfo; Buezas, Ignacio; Giménez, Enrique; Galindo, Begoña
2010-06-01
The dispersion of multi-walled carbon nanotubes in thermoplastic polyurethanes has been done in co-rotative twin screw extruder through a melt blending process. A specific experimental design was prepared taking into account different compounding parameters such as feeding, temperature profile, screw speed, screw design, and carbon nanotube loading. The obtained samples were characterized by thermogravimetric analysis (TGA), light transmission microscopy, dynamic rheometry, and dynamic mechanical analysis. The objective of this work has been to study the dispersion quality of the carbon nanotubes and the effect of different compounding parameters to optimize them for industrial scale-up to final applications.
Relatively stable, large-amplitude Alfvenic waves seen at 2.5 and 5.0 AU
NASA Technical Reports Server (NTRS)
Mavromichalaki, H.; Moussas, X.; Quenby, J. J.; Valdes-Galicia, J. F.; Smith, E. J.
1988-01-01
Pioneer 11 and 10 observations of the wave structure seen in a corotating interaction region at 2.5 AU on day 284 of 1973 and 8 days later at 5 AU reveal large-amplitude Alfvenic structures with many detailed correlations seen between their features at the two radial distances. Hodogram analysis suggests the dominance of near plane polarized, transverse Alfvenic mode fluctuations with periods between 2 min and one hour or more. Some wave evolution close to the Corotating Interaction Region (CIR) shock is noticed, but waves towards the center of the compression seem to propagate with little damping between the spacecraft observation positions.
The Formation of CIRs at Stream-Stream Interfaces and Resultant Geomagnetic Activity
NASA Technical Reports Server (NTRS)
Richardson, I. G.
2005-01-01
Corotating interaction regions (CIRs) are regions of compressed plasma formed at the leading edges of corotating high-speed solar wind streams originating in coronal holes as they interact with the preceding slow solar wind. Although particularly prominent features of the solar wind during the declining and minimum phases of the 11-year solar cycle, they may also be present at times of higher solar activity. We describe how CIRs are formed, and their geomagnetic effects, which principally result from brief southward interplanetary magnetic field excursions associated with Alfven waves. Seasonal and long-term variations in these effects are briefly discussed.
Photometric and spectroscopic variability of the B5IIIe star HD 171219
NASA Astrophysics Data System (ADS)
Andrade, L.; Janot-Pacheco, E.; Emilio, M.; Frémat, Y.; Neiner, C.; Poretti, E.; Mathias, P.; Rainer, M.; Suárez, J. C.; Uytterhoeven, K.; Briquet, M.; Diago, P. D.; Fabregat, J.; Gutiérrez-Soto, J.
2017-07-01
We analyzed the star HD 171219, one of the relatively bright Be stars observed in the seismo field of the CoRoT satellite, in order to determine its physical and pulsation characteristics. Classical Be stars are main-sequence objects of mainly B-type, whose spectra show, or have shown at some epoch, Balmer lines in emission and an infrared excess. Both characteristics are attributed to an equatorially concentrated circumstellar disk fed by non-periodic mass-loss episodes (outbursts). Be stars often show nonradial pulsation gravity modes and, as more recently discovered, stochastically excited oscillations. Applying the CLEANEST algorithm to the high-cadence and highly photometrically precise measurements of the HD 171219 light curve led us to perform an unprecedented detailed analysis of its nonradial pulsations. Tens of frequencies have been detected in the object compatible with nonradial g-modes. Additional high-resolution ground-based spectroscopic observations were obtained at La Silla (HARPS) and Haute Provence (SOPHIE) observatories during the month preceding CoRoT observations. Additional information was obtained from low-resolution spectra from the BeSS database. From spectral line fitting we determined physical parameters of the star, which is seen equator-on (I = 90°). We also found in the ground data the same frequencies as in CoRoT data. Additionally, we analyzed the circumstellar activity through the traditional method of violet to red emission Hα line variation. A quintuplet was identified at approximately 1.113 c d-1 (12.88 μHz) with a separation of 0.017 c d-1 that can be attributed to a pulsation degree ℓ 2. The light curve shows six small- to medium-scale outbursts during the CoRoT observations. The intensity of the main frequencies varies after each outburst, suggesting a possible correlation between the nonradial pulsations regime and the feeding of the envelope. The CoRoT space mission was developed and operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work is partially based on observations made with the 3.6-m telescope at La Silla Observatory under the ESO Large Programme LP185.D-0056.
NASA Astrophysics Data System (ADS)
Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Padgett, Debbie; Herbst, William; Gillen, Edward; Lyra, Wladimir; Medeiros Guimaraes, Marcelo; Bouy, Herve; Favata, Fabio
2015-04-01
We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall. Based on data from the Spitzer and CoRoT missions, as well as the Canada France Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Southworth, John
2011-11-01
I calculate the physical properties of 32 transiting extrasolar planet and brown-dwarf systems from existing photometric observations and measured spectroscopic parameters. The systems studied include 15 observed by the CoRoT satellite, 10 by Kepler and five by the Deep Impact spacecraft. Inclusion of the objects studied in previous papers leads to a sample of 58 transiting systems with homogeneously measured properties. The Kepler data include observations from Quarter 2, and my analyses of several of the systems are the first to be based on short-cadence data from this satellite. The light curves are modelled using the JKTEBOP code, with attention paid to the treatment of limb darkening, contaminating light, orbital eccentricity, correlated noise and numerical integration over long exposure times. The physical properties are derived from the light-curve parameters, spectroscopic characteristics of the host star and constraints from five sets of theoretical stellar model predictions. An alternative approach using a calibration from eclipsing binary star systems is explored and found to give comparable results whilst imposing a much smaller computational burden. My results are in good agreement with published properties for most of the transiting systems, but discrepancies are identified for CoRoT-5, CoRoT-8, CoRoT-13, Kepler-5 and Kepler-7. Many of the error bars quoted in the literature are underestimated. Refined orbital ephemerides are given for CoRoT-8 and for the Kepler planets. Asteroseismic constraints on the density of the host stars are in good agreement with the photometric equivalents for HD 17156 and TrES-2, but not for HAT-P-7 and HAT-P-11. Complete error budgets are generated for each transiting system, allowing identification of the observations best-suited to improve measurements of their physical properties. Whilst most systems would benefit from further photometry and spectroscopy, HD 17156, HD 80606, HAT-P-7 and TrES-2 are now extremely well characterized. HAT-P-11 is an exceptional candidate for studying starspots. The orbital ephemerides of some transiting systems are becoming uncertain and they should be re-observed in the near future. The primary results from the current work and from previous papers in the series have been placed in an online catalogue, from where they can be obtained in a range of formats for reference and further study. TEPCat is available at
Effect of Central Mass Concentration on the Formation of Nuclear Spirals in Barred Galaxies
NASA Astrophysics Data System (ADS)
Thakur, Parijat; Ann, H. B.; Jiang, Ing-Guey
2009-03-01
We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.
MIGRATION OF SMALL MOONS IN SATURN's RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
2013-02-20
The motions of small moons through Saturn's rings provide excellent tests of radial migration models. In theory, torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii r {sub H} {approx} 2-24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in a full ring eventually migrate at the same rate. Smaller moons or moonlets-such as the propellers-are trapped by diffusion of disk material into corotating orbits, creating inertial drag. Larger moons-such as Pan or Atlas-do not migrate becausemore » of their own inertia. Fast migration of 2-24 km moons should eliminate intermediate-size bodies from the A ring and may be responsible for the observed large-radius cutoff of r {sub H} {approx} 1-2 km in the size distribution of the A ring's propeller moonlets. Although the presence of Daphnis (r {sub H} Almost-Equal-To 5 km) inside the Keeler gap challenges this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g., Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination orbit in {approx}10{sup 3} yr prior to a phase of rapid migration. We provide predictions of observational constraints required to discriminate among possible scenarios for Daphnis.« less
Cassini evidence for rapid interchange transport at Saturn
NASA Astrophysics Data System (ADS)
Rymer, A. M.; Mauk, B. H.; Hill, T. W.; André, N.; Mitchell, D. G.; Paranicas, C.; Young, D. T.; Smith, H. T.; Persoon, A. M.; Menietti, J. D.; Hospodarsky, G. B.; Coates, A. J.; Dougherty, M. K.
2009-12-01
During its tour Cassini has observed numerous plasma injection events in Saturn's inner magnetosphere. Here, we present a case study of one "young" plasma bubble observed when Cassini was in the equatorial plane. The bubble was observed in the equatorial plane at ˜7 Saturn radii from Saturn and had a maximum azimuthal extent of ˜0.25 Rs (Rs=Saturn radius ˜60330 km). We show that the electron density inside the event is lower by a factor ˜3 and the electron temperature higher by over an order of magnitude compared to its surroundings. The injection contains slightly increased magnetic field magnitude of 49 nT compared with a background field of 46 nT. Modelling of pitch angle distributions inside the plasma bubble and measurements of plasma drift provide a novel way to estimate that the bubble originated between 9< L<11 and had an average radial propagation speed of ˜260+60/-70 km s -1. An independent estimate of the speed of the injection following theoretical work of Pontius et al. [1986. Steady State Plasma transport in a Corotation-Dominated Magnetosphere. Geophys. Res. Lett. 13(11), 1097-1100] based on the mass per unit flux gives a maximum radial propagation speeds of 140 km s -1. These results are similar to those found by Thorne et al. [1997. Galileo evidence for rapid interchange transport in the Io torus. Geophys. Res. Lett. 24, 2131] for one event observed in Jupiter's magnetosphere near Io. We therefore suggest this is evidence of the same process operating at both planets.
Large-eddy substitution via vortex cancellation for wall turbulence control
NASA Technical Reports Server (NTRS)
Mcginley, C. B.; Beeler, G. B.
1985-01-01
A system of co-rotating longitudinal vortices was used to introduce streamline (as opposed to wall) curvature into a turbulent wall flow. Two methods of vortex cancellation, unwinding and self-annihilation, were tested as a means of removing the vortices once they had processed most of the incoming turbulent boundary layer. Vortex unwinding, which uses vorticity of the opposite sign, was shown to be a viable method for cancelling the co-rotating vortices. Vortex self-annihilation, caused by interference effects resulting from a close initial spanwise vortex spacing, eliminated the vortices within 60 delta downstream. In each case, reductions in boundary layer entrainment were found once the vortices were cancelled.
Solar-like stars as seen by CoRoT
NASA Astrophysics Data System (ADS)
Garcia, R. A.; Appourchaux, T.; Baglin, A.; Auvergne, M.; Barban, C.; Baudin, F.; Michel, E.; Mosser, B.; Samadi, R.; Data Analysis Team D. A. T
2008-12-01
For more than a year, photometric high-quality data have been achieved from the CoRoT (COnvection ROtation and Planetary Transits; Baglin et al. 2006, Michel et al. 2008) min- isatellite developed by the French space agency (CNES) in collaboration with the Science Program of ESA, Austria, Belgium, Brazil Germany and Spain. The power spectrum of 4 dif- ferent solar-like stars (stars having sub-surface convective zones showing an acoustic (p) mode spectrum) has been obtained with unprecedented quality allowing the precise study of their seismic properties. These solar-like stars are F stars with masses in the range 1.0 to 1.4 M⊙ and are significantly hotter than the Sun.
Are solar brightness variations faculae- or spot-dominated?
NASA Astrophysics Data System (ADS)
Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Yeo, K. L.; Schmutz, W. K.
2016-05-01
Context. Regular spaceborne measurements have revealed that solar brightness varies on multiple timescales, variations on timescales greater than a day being attributed to a surface magnetic field. Independently, ground-based and spaceborne measurements suggest that Sun-like stars show a similar, but significantly broader pattern of photometric variability. Aims: To understand whether the broader pattern of stellar variations is consistent with the solar paradigm, we assess relative contributions of faculae and spots to solar magnetically-driven brightness variability. We investigate how the solar brightness variability and its facular and spot contributions depend on the wavelength, timescale of variability, and position of the observer relative to the ecliptic plane. Methods: We performed calculations with the SATIRE model, which returns solar brightness with daily cadence from solar disc area coverages of various magnetic features. We took coverages as seen by an Earth-based observer from full-disc SoHO/MDI and SDO/HMI data and projected them to mimic out-of-ecliptic viewing by an appropriate transformation. Results: Moving the observer away from the ecliptic plane increases the amplitude of 11-year variability as it would be seen in Strömgren (b + y)/2 photometry, but decreases the amplitude of the rotational brightness variations as it would appear in Kepler and CoRoT passbands. The spot and facular contributions to the 11-year solar variability in the Strömgren (b + y)/2 photometry almost fully compensate each other so that the Sun appears anomalously quiet with respect to its stellar cohort. Such a compensation does not occur on the rotational timescale. Conclusions: The rotational solar brightness variability as it would appear in the Kepler and CoRoT passbands from the ecliptic plane is spot-dominated, but the relative contribution of faculae increases for out-of-ecliptic viewing so that the apparent brightness variations are faculae-dominated for inclinations less than about I = 45°. Over the course of the 11-year activity cycle, the solar brightness variability is faculae-dominated shortwards of 1.2 μm independently of the inclination.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.
2015-12-01
We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.
Dawnside Variability of Magnetic Field in High Latitude Regions of Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Davies, E. H.; Masters, A.; Dougherty, M. K.; Sergis, N.
2017-12-01
Magnetic field lines at high latitudes in Saturn's post dawn sector tend to exhibit a swept-back configuration with respect to the direction of planetary rotation. This is a result of equatorial mass loading (mostly from the moon Enceladus) and the inability of planet to accelerate this plasma to co-rotation velocities, owing to plasma sinks in the system and the finite conductivity of the ionosphere. Results of a survey of high latitude magnetic field measurements within the dawn-noon sector from the Magnetometer Instrument (MAG) on the Cassini Spacecraft are presented. Data from 2004 to 2016 are used, representing almost the entire duration of the mission. 39 examples of field lines deviating in the direction of planetary rotation from their default configuration of sweep-back are found. These deviations represent the field sweeping forward towards a co-rotating (or occasionally super co-rotating) configuration, and occur transiently, on a timescale of hours. An analysis of these events, using data from the Magnetospheric Imaging Instrument (MIMI) is carried out. Several of the perturbed field events are found to correspond with the detection of high energy (on the order of 100 keV) electrons local to the spacecraft. It is suggested that these events are examples of return flow from magnetotail reconnection.
Semi-empirical seismic relations of A-F stars from COROT and Kepler legacy data
NASA Astrophysics Data System (ADS)
Moya, A.; Suárez, J. C.; García Hernández, A.; Mendoza, M. A.
2017-10-01
Asteroseismology is witnessing a revolution, thanks to high-precise asteroseismic space data (MOST, COROT, Kepler, BRITE) and their large ground-based follow-up programs. Those instruments have provided an unprecedented large amount of information, which allows us to scrutinize its statistical properties in the quest for hidden relations among pulsational and/or physical observables. This approach might be particularly useful for stars whose pulsation content is difficult to interpret. This is the case of intermediate-mass classical pulsating stars (I.e. γ Dor, δ Scuti, hybrids) for which current theories do not properly predict the observed oscillation spectra. Here, we establish a first step in finding such hidden relations from data mining techniques for these stars. We searched for those hidden relations in a sample of δ Scuti and hybrid stars observed by COROT and Kepler (74 and 153, respectively). No significant correlations between pairs of observables were found. However, two statistically significant correlations emerged from multivariable correlations in the observed seismic data, which describe the total number of observed frequencies and the largest one, respectively. Moreover, three different sets of stars were found to cluster according to their frequency density distribution. Such sets are in apparent agreement with the asteroseismic properties commonly accepted for A-F pulsating stars.
Keen, Justin M; Martin, Charlie; Machado, Augie; Sandhu, Harpreet; McGinity, James W; DiNunzio, James C
2014-02-01
The use of corotating twin screw hot-melt extruders to prepare amorphous drug/polymer systems has become commonplace. As small molecule drug candidates exiting discovery pipelines trend towards higher MW and become more structurally complicated, the acceptable operating space shifts below the drug melting point. The objective of this research is to investigate the extrusion process space, which should be selected to ensure that the drug is solubilized in the polymer with minimal thermal exposure, is critical in ensuring the performance, stability and purity of the solid dispersion. The properties of a model solid dispersion were investigated using both corotating and counter-rotating hot-melt twin-screw extruders operated at various temperatures and screw speeds. The solid state and dissolution performance of the resulting solid dispersions was investigated and evaluated in context of thermodynamic predictions from Flory-Huggins Theory. In addition, the residence time distributions were measured using a tracer, modelled and characterized. The amorphous content in the resulting solid dispersions was dependent on the combination of screw speed, temperature and operating mode. The counter-rotating extruder was observed to form amorphous solid dispersions at a slightly lower temperature and with a narrower residence time distribution, which also exhibited a more desirable shape. © 2013 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio
2014-04-01
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
NASA Astrophysics Data System (ADS)
Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Bust, G. S.; Roeder, J. L.
2016-12-01
Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. During quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes can fill the plasmasphere over the course of several days with the plasmapause expanding to higher L-shells. However, when the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can be rapidly eroded to L 2.5 or less leading to many interesting magnetospheric and ionospheric features such as plasmapause erosion, plasmaspheric plumes and ionospheric plasma outflows. In this presentation, we focus on the dynamics of the plasmapause as observed by ground-based and space-borne GPS receivers. We will focus on the period 15 March to 19 March 2013, which includes the on-set and recovery periods of a strong geomagnetic storm. We will examine the location and erosion time scales of the plasmapause during the active portion of the storm. An extensive global network of ground-based scientific receivers ( 4000) will be utilized in the study. Space-based observations will be obtained from data from the CORISS GPS radio occultation (RO) sensor on the C/NOFS satellite as well as the COSMIC GPS RO sensors.
VizieR Online Data Catalog: Spectroscopic Indicators in SeisMic Archive (SISMA) (Rainer+, 2016)
NASA Astrophysics Data System (ADS)
Rainer, M.; Poretti, E.; Misto, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.
2017-02-01
We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. CoRoT was launched on 2006 December 27 and it was retired on 2013 June 24. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph High Accuracy Radial velocity Planet Searcher (HARPS) have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA; http://sisma.brera.inaf.it/), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The ground-based activities started with the Large Programme 178.D-0361 using the FEROS spectrograph at the 2.2m telescope of the ESO-La Silla Observatory, and continued with the Large Programmes LP182.D-0356 and LP185.D-0056 using the HARPS instrument at the 3.6m ESO telescope. In the framework of the awarded two HARPS Large Programmes, 15 nights were allocated each semester over nine semesters, from 2008 December to 2013 January, for a total of 135 nights. The HARPS spectrograph covers the spectral range from 3780 to 6910Å, distributed over echelle orders 89-161. We usually used it in the high-efficiency mode EGGS, with resolving power R=80000 to obtain high signal-to-noise ratio (S/N) spectroscopic time series. All of the data (reduced spectra, indicators, and photometric series) are stored as either FITS or PDF files in the SISMA archive and can be accessed at http://sisma.brera.inaf.it/. The data can also be accessed through the Seismic Plus portal (http://voparis-spaceinn.obspm.fr/seismic-plus/), developed in the framework of the SpaceInn project in order to gather and help coordinated access to several different solar and stellar seismic data sources. (1 data file).
Flow stagnation at Enceladus: The effects of neutral gas and charged dust
NASA Astrophysics Data System (ADS)
Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.
2012-06-01
Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.
Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field
NASA Astrophysics Data System (ADS)
Hekker, S.; Kallinger, T.; Baudin, F.; De Ridder, J.; Barban, C.; Carrier, F.; Hatzes, A. P.; Weiss, W. W.; Baglin, A.
2009-10-01
Context: Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. Aims: We aim to understand the statistical distribution of the frequencies of maximum oscillation power (ν_max) in red giants and to search for a possible correlation between ν_max and the large separation (Δ ν). Methods: Red giants with detectable solar-like oscillations are identified using both semi-automatic and manual procedures. For these stars, we determine ν_max as the centre of a Gaussian fit to the oscillation power excess. For the determination of Δ ν, we use the autocorrelation of the Fourier spectra, the comb response function and the power spectrum of the power spectrum. Results: The resulting ν_max distribution shows a pronounced peak between 20-40 μHz. For about half of the stars we obtain Δ ν with at least two methods. The correlation between ν_max and Δ ν follows the same scaling relation as inferred for solar-like stars. Conclusions: The shape of the ν_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between Δ ν and ν_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution. The fraction of stars for which we determine Δ ν does not correlate with ν_max in the investigated frequency range, which confirms theoretical predictions. The CoRoT space mission which was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Light curves can be retrieved from the CoRoT archive: http://idoc-corot.ias.u-psud.fr Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/465
NASA Astrophysics Data System (ADS)
Van Grootel, V.; Charpinet, S.; Fontaine, G.; Green, E. M.; Brassard, P.
2010-12-01
Context. The asteroseismic exploitation of long period, g-mode hot B subdwarf pulsators (sdBVs), undermined so far by limitations associated with ground-based observations, has now become possible, thanks to high quality data obtained from space such as those recently gathered with the CoRoT (COnvection, ROtation, and planetary Transits) satellite. Aims: We propose a detailed seismic analysis of the sdBVs star KPD 0629-0016, the first compact pulsator monitored with CoRoT, using the g-mode pulsations recently uncovered by that space-borne observatory during short run SRa03. Methods: We use a forward modeling approach on the basis of our latest sdB models, which are now suitable for the accurate computation of the g-mode pulsation properties. The simultaneous match of the independent periods observed in KPD 0629-0016 with those of the models leads objectively to the identification of the pulsation modes and, more importantly, to the determination of the structural and core parameters of the star. Results: The optimal model we found closely reproduces the 18 observed periods retained in our analysis at a 0.23% level on average. These are identified as low-degree (ℓ = 1 and 2), intermediate-order (k = -9 through -74) g-modes. The structural and core parameters for KPD 0629-0016 are the following (formal fitting errors only): Teff = 26 290 ± 530 K, log g = 5.450 ± 0.034, M_* = 0.471 ± 0.002 M⊙, log (Menv/M_*) = -2.42 ± 0.07, log (1-Mcore/M_*) = -0.27 ± 0.01, and Xcore(C+O) = 0.41 ± 0.01. We additionally derive an age of 42.6 ± 1.0 Myr after the zero-age extreme horizontal branch, the radius R = 0.214 ± 0.009 R⊙, the luminosity L = 19.7 ± 3.2 L⊙, the absolute magnitude MV = 4.23 ± 0.13, the reddening index E(B-V) = 0.128 ± 0.023, and the distance d = 1190 ± 115 pc. Conclusions: The advent of high-precision time-series photometry from space with instruments like CoRoT now allows as demonstrated with KPD 0629-0016 the full exploitation of g-modes as deep probes of the internal structure of these stars, in particular for determining the mass of the convective core and its chemical composition. The CoRoT space mission, launched on December 27th 2006, has been developped and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.
VizieR Online Data Catalog: CoRoT observation log (N2-4.4) (CoRoT, 2009-2016)
NASA Astrophysics Data System (ADS)
COROT Team
2014-03-01
CoRoT is a space astronomy mission devoted to the study of the variability with time of stars brightness, with an extremely high accuracy (100 times better than from the ground), on very long durations (up to 150 days) and a very high duty cycle (more than 90%). The mission was led by CNES in association with four french laboratories, and 7 participating countries and agencies (Austria, Belgium, Brazil, Germany, Spain, and the ESA Science Programme). The satellite is composed of a PROTEUS platform (the 3rd in the serie), and a unique instrument: a stellar photometer. It has been launched on December 27th 2006 by a Soyuz Rocket, from Baikonour. The mission has lasted almost 6 years (the nominal 3 years duration and a 3 years extension) and has observed more than 160 000 stars. It stopped to send data suddenly on November 2nd 2012. CoRoT is performing Ultra High Precision Photomery of Stars to detect and characterise the variability of their luminosity with two main directions: - variability of the object itself: oscillations, rotation, magnetic activity - variability due to external causes as bodies in orbit around the star: planets and stars The original scientific objectives were focussed on the study of stellar pulsations (asteroseismology) to probe the internal structure of stars, and the detection of small exoplanets through their "transit in front of their host star, and the measurement of their size. This lead to introduce two modes of observations, working simultaneously: - The bright star mode dedicated to very precise seismology of a small sample of bright and closeby stars (data presented in file momentarily named "astero.dat", but should change in the near future to to "bright star.dat") - The faint star mode, observing a very large number of stars at the same time, to detect transits, which are rare events, as they imply the alignment of the star, the planet and the observer (data presented in momentarily named "exo.dat" but should change in the near future to "faint star.dat"). The large amount of data gathered in this mode mode turned out to be extremely fruitful for many topics of stellar physics. Due to project constraints, two regions of the sky were accessible (circles of 10 degrees centered on the equator around alpha=06:50 and alpha=18:50). They are called the CoRoT eyes: the fisrt one is called the "anticenter" eye, whereas the second one is called the "center eye". Each pointing covers 1.4x2.8 square degrees The CoRoT project is still processing the data, aiming at at removing instrumental artifacts and defects. Therefore the format and content of the catalog is still somehow evolving. More details on the data can be found in the "CoRoTN2versions_30sept2014.pdf" document available on the vizier ftp as well as project websites listed in the "See also" field below. (3 data files).
Zonal wind observations during a geomagnetic storm
NASA Technical Reports Server (NTRS)
Miller, N. J.; Spencer, N. W.
1986-01-01
In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions convecting westward.
NASA Astrophysics Data System (ADS)
David-Uraz, A.; Owocki, S. P.; Wade, G. A.; Sundqvist, J. O.; Kee, N. D.
2017-09-01
OB stars exhibit various types of spectral variability historically associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These features have been proposed to be caused either by magnetic fields or non-radial pulsations. In this second paper of this series, we revisit the canonical phenomenological hydrodynamical modelling used to explain the formation of DACs by taking into account modern observations and more realistic theoretical predictions. Using constraints on putative bright spots located on the surface of the O giant ξ Persei derived from high precision space-based broad-band optical photometry obtained with the Microvariability and Oscillations of Stars (MOST) space telescope, we generate 2D hydrodynamical simulations of corotating interaction regions in its wind. We then compute synthetic ultraviolet (UV) resonance line profiles using Sobolev Exact Integration and compare them with historical timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate if the observed behaviour of ξ Persei's DACs is reproduced. Testing three different models of spot size and strength, we find that the classical pattern of variability can be successfully reproduced for two of them: the model with the smallest spots yields absorption features that are incompatible with observations. Furthermore, we test the effect of the radial dependence of ionization levels on line driving, but cannot conclusively assess the importance of this factor. In conclusion, this study self-consistently links optical photometry and UV spectroscopy, paving the way to a better understanding of cyclical wind variability in massive stars in the context of the bright spot paradigm.
Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.
2013-02-21
The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematicallymore » from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the more electronegative M atoms. On the other hand, the ionic radii are in closer agreement with rb(M) for the more electropositive atoms. Notwithstanding that ionic radii are typically smaller than bonded radii, particularly for the more electronegative atoms, they have been used with considerable success in understanding and rationalizing problems and properties in crystal chemistry primarily because both ionic and crystal radii are highly correlated on a one-to-one basis with both the bonded radii and the associated M-O bond lengths. The lack of agreement between the effective ionic and crystal radii and the bonded radii for the more shared bonded interactions is ascribed to the progressive increase in the polarization of the O atom by the bonded atoms with a concomitant decrease in its radius, a factor that was neglected in the compilation of ionic and crystal radii for fluorides, oxides, sulfides and nitrides. This accounts for ionic radii for these materials being smaller than the bonded radii for the more electronegative atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B
2011-01-01
We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well asmore » to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.« less
Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Inoue, T.
1990-03-01
An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.
Spectral features of solar plasma flows
NASA Astrophysics Data System (ADS)
Barkhatov, N. A.; Revunov, S. E.
2014-11-01
Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.
NASA Astrophysics Data System (ADS)
Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie
2017-11-01
COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.
Anisotropy and corotation of galactic cosmic rays.
Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X
2006-10-20
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.
Main, Russell P
2007-01-01
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177
Thermal Structure and Mantle Dynamics of Rocky Exoplanets
NASA Astrophysics Data System (ADS)
Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.
2011-12-01
The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across the whole mantle and cold downwellings (slabs) disperse in the mid-mantle. This may have a significant effect on thermal evolution, magnetic field generation, and the propensity of plate tectonics on rocky super-Earths. Model calculations also indicate that modest radiogenic heating through the decay of long-lived radioactive elements such as U, Th, and K has a negligible effect on the interior structure of rocky exoplanets. However, the calculated body tide Love numbers strongly scale with planetary mass suggesting that in resonant and sufficiently eccentric orbits the dissipation of tidal energy would substantially affect present thermal state and orbital evolution. Therefore, tidal heating provides a viable present-day heat source for close-in exoplanets such as CoRoT-7b and Kepler-10b.
K2 eclipsing binaries in the benchmark open cluster Ruprecht 147
NASA Astrophysics Data System (ADS)
Torres, Guillermo
Open clusters are ideal laboratories to study stellar astrophysics. They represent homogeneous collections of hundreds or thousands of stars that were formed together and should therefore have the same age, chemical composition, space motion, and distance. Easily measured properties for member stars such as the brightness and color can be used to infer some of the characteristics of the ensemble including the age and distance, by comparing with model isochrones in the color-magnitude diagram. In recent years space missions such as CoRoT and Kepler have enabled the detection of solar-like oscillations in some of the brighter open cluster members, which can yield asteroseismic estimates of the stellar masses and radii through simple scaling relations anchored on the Sun, and also ages under certain assumptions. Furthermore, when photometric rotation periods of stars can be measured in them, clusters will well-known ages then become essential calibrators for gyrochronology relations, which describe how stars spin down as they get older due to magnetic braking from stellar winds. These relations are important because they provide one of the few empirical ways to age-date field stars. For clusters endowed with detached, double-lined eclipsing binaries amenable to study, even stronger constraints on their properties become available that are of an entirely different nature. The absolute masses and radii of the binary components can be measured very accurately and in a model-independent way, providing an opportunity for stringent tests of stellar evolution theory. The ages that can also be obtained by comparison with models can serve to validate other age estimates mentioned above. Ruprecht 147 is remarkable in that it permits all of these types of studies at the same time. It is the oldest nearby open cluster, with an age of about 3 Gyr and a distance of only 300 pc. This makes it a favorable target for follow-up studies. The metallicity is well determined from previous spectroscopic investigations. It was observed photometrically by the K2 mission for 80 days in late 2015, enabling both asteroseismic and rotation period studies of dozens of members. What makes it truly unique, however, is that it has no less than five eclipsing binaries brighter than 13th magnitude that lend themselves to high-precision mass and radius determinations. No other open cluster has as many, let alone an old one. The brightest binary happens to be at the tip of the turnoff and provides an unusually strong constraint on age. A very special opportunity for study has thus presented itself. This is a proposal to analyze publicly available K2 photometry for the five bright eclipsing binaries discovered in Ruprecht 147, with the goal of fashioning the cluster into an important new benchmark for high-precision testing of stellar astrophysics. We will supplement the K2 light curves, processed with special detrending techniques, with ground-based spectroscopic observations yielding radial velocities for the stars. With these we will derive accurate masses, radii, and temperatures for the components of each binary using well-proven classical methodologies. The impact of the project is that the large number of binaries will allow for an unprecedented and extraordinarily strong test of stellar evolution theory over a range of masses, not available for any other open cluster. The ages we will infer are completely independent of, and of a different nature than other estimates in Ruprecht 147, coming from isochrone fitting in the colormagnitude diagram, asteroseismology of the brighter cluster members, or the use of gyrochronology relations. We will thus have a unique opportunity to cross-validate four different age-dating techniques in the same cluster. Additionally, our accurate eclipsing binary masses and radii will enable crucial tests of the asteroseismic scaling relations, which will improve their use for single stars.
HD 51844: An Am δ Scuti in a binary showing periastron brightening
NASA Astrophysics Data System (ADS)
Hareter, M.; Paparó, M.; Weiss, W.; García Hernández, A.; Borkovits, T.; Lampens, P.; Rainer, M.; De Cat, P.; Marcos-Arenal, P.; Vos, J.; Poretti, E.; Baglin, A.; Michel, E.; Baudin, F.; Catala, C.
2014-07-01
Context. Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of the frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. Aims: We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Methods: Time series analysis using standard tools was employed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. Results: We found that HD 51844 is a double lined spectroscopic binary. The determined abundances are consistent with δ Delphini classification. We determined the orbital period (33.498 ± 0.002 d), the eccentricity (0.484 ± 0.020), the mass ratio (0.988 ± 0.02), and the masses to 2.0 ± 0.2 M⊙ for both components. Only one component showed pulsation. Two p modes (f22 and f36) and one g mode (forb) may be tidally excited. Among the 115 frequencies, we detected triplets due to the frequency modulation, frequency differences connected to the orbital period, and unexpected resonances (3:2, 3:5, and 3:4), which is a new discovery for a δ Sct star. The observed frequency differences among the dominant modes suggest a large separation of 2.0-2.2 d-1, which are consistent with models of mean density of 0.063 g cm-3, and with the binary solution and TAMS evolutionary phase for the pulsating component. The binary evolution is in an intermediate evolutionary phase; the stellar rotation is super-synchronised, but circularisation of the orbit is not reached. Based on observations obtained with the HERMES spectrograph attached to the Mercator Telescope which is operated on the island of La Palma by the University of Leuven (IvS) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The HERMES spectrograph is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6 m telescope, under programme LP185.D-0056.Table 9 is available in electronic form at http://www.aanda.org
Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.
2018-01-01
Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.
Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet
NASA Technical Reports Server (NTRS)
Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.
2016-01-01
The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansdell, M.; Williams, J. P.; Gaidos, E.
We present ten young (≲10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show ∼10–20 dips in flux over the 80-day observing campaign with durations of ∼0.5–2 days and depths of up to ∼40%. These stars are all members of the ρ Ophiuchus (∼1 Myr) or Upper Scorpius (∼10 Myr) star-forming regions. To investigate the nature of these “dippers” we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions thatmore » could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li i absorption and Hα emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within ∼10 stellar radii in most cases; however, the sub-millimeter observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 (Wide-field Infrared Survey Explorer-2) excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.« less
The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc
NASA Astrophysics Data System (ADS)
Gallo, L. C.; Fabian, A. C.
2013-07-01
In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.
NASA Astrophysics Data System (ADS)
Kervella, Pierre; Decin, Leen; Richards, Anita M. S.; Harper, Graham M.; McDonald, Iain; O'Gorman, Eamon; Montargès, Miguel; Homan, Ward; Ohnaka, Keiichi
2018-01-01
We observed Betelgeuse using ALMA's extended configuration in band 7 (f ≈ 340 GHz, λ ≈ 0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(ν= 2, J = 8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of νeqsini = 5.47 ± 0.25 km s-1 at the equivalent continuum angular radius Rstar = 29.50 ± 0.14 mas. This corresponds to an angular rotation velocity of ω sini = (5.6 ± 1.3) × 10-9 rad s-1. The position angle of its north pole is PA = 48.0 ± 3.5°. The rotation period of Betelgeuse is estimated to P/ sini = 36 ± 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ≈ 10 au (45 mas or 1.5 × the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong "rogue" convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants.
The Plasmaspheric Role in Coupled Inner Magnetospheric Dynamics
NASA Astrophysics Data System (ADS)
Goldstein, J.
2006-05-01
The plasmasphere is a near-Earth cold, dense, corotating plasma region that plays both passive and active roles in inner magnetospheric coupling. The plasmasphere plays a passive role with respect to electrodynamic coupling associated with enhanced magnetospheric convection; i.e., zero-order plasmaspheric dynamics result from convection. Following extended periods of quiet geomagnetic conditions, the equatorial extent of the plasmasphere can be several Earth radii (RE), with an internal density distribution that contains a great deal of fine-scale (under 0.1 RE) and meso-scale (0.1 to 1 RE) density structure. Enhanced geomagnetic activity causes erosion of the plasmasphere, in which the outer plasma-filled flux tubes are caught up in the convection field and carried sunward, forming plumes of dense plasmaspheric material on the dayside. The electrodynamic coupling between the ring current and ionosphere (leading to shielding and sub-auroral polarization stream, or SAPS) can either reduce or intensify the global convection field that arises from solar-wind-magnetosphere coupling, and the plasmasphere is subject to the variations of this convection. There is also good evidence that ionosphere-thermosphere coupling plays an important role in determination of the convection field during quiet conditions. The plasmasphere plays an active role in determining the global distribution of warmer inner magnetospheric plasmas (ring current and radiation belts), by providing plasma conditions that can favor or discourage the growth of waves such as whistler, chorus, and electromagnetic ion-cyclotron (EMIC) waves, all of which are believed to be crucial in the various acceleration and loss processes that affect warmer particles. Thus, knowledge of the global plasmasphere configuration and composition is critical for understanding and predicting the behavior of the inner magnetosphere.
Bar formation as driver of gas inflows in isolated disc galaxies
NASA Astrophysics Data System (ADS)
Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.
2015-12-01
Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.
Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.
Aharonian, F A; Bogovalov, S V; Khangulyan, D
2012-02-15
Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.
Three regimes of extrasolar planet radius inferred from host star metallicities.
Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W
2014-05-29
Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.
Three regimes of extrasolar planet radius inferred from host star metallicities
Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.
2014-01-01
Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan
2018-04-01
We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.
NASA Astrophysics Data System (ADS)
Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit
2015-08-01
The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan
2018-07-01
We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutzman, Philip A.; Fabrycky, Daniel C.; Fortney, Jonathan J., E-mail: pnutzman@ucolick.org
Spectroscopic follow-up of dozens of transiting planets has revealed the degree of alignment between the equators of stars and the orbits of the planets they host. Here we determine a method, applicable to spotted stars, that can reveal the same information from the photometric discovery data, with no need for follow-up. A spot model fit to the global light curve, parameterized by the spin orientation of the star, predicts when the planet will transit the spots. Observing several spot crossings during different transits then leads to constraints on the spin-orbit alignment. In cases where stellar spots are small, the stellarmore » inclination, i{sub s} , and hence the true alignment, rather than just the sky projection, can be obtained. This method has become possible with the advent of space telescopes such as CoRoT and Kepler, which photometrically monitor transiting planets over a nearly continuous, long time baseline. We apply our method to CoRoT-2 and find the projected spin-orbit alignment angle, {lambda} = 4.{sup 0}7 {+-} 12.{sup 0}3, in excellent agreement with a previous determination that employed the Rossiter-McLaughlin effect. The large spots of the parent star, CoRoT-2, limit our precision on i{sub s} : 84{sup 0} {+-} 36{sup 0}, where i{sub s} < 90{sup 0}(> 90{sup 0}) indicates that the rotation axis is tilted toward (away from) the line of sight.« less
Consistent van der Waals Radii for the Whole Main Group
Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.
2013-01-01
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751
Consistent van der Waals radii for the whole main group.
Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G
2009-05-14
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.
Atomic and Ionic Radii of Elements 1-96.
Rahm, Martin; Hoffmann, Roald; Ashcroft, N W
2016-10-04
Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
VizieR Online Data Catalog: Basic properties of Kepler and CoRoT targets (Yildiz+, 2016)
NASA Astrophysics Data System (ADS)
Yildiz, M.; Celik Orhan, Z.; Kayhan, C.
2018-01-01
The basic data of certain Kepler (79 stars) and CoRoT (seven stars) target stars, compiled from the literature, are listed in Table A1. Oscillation frequencies of three stars (Procyon A, HD 2151 and HD 146233) were obtained from ground-based observations (Bedding et al., 2010ApJ...713..935B; Bedding et al., 2007ApJ...663.1315B and Bazot et al. 2012, Cat. J/A+A/544/A106, respectively). These stars are also listed in this table, with data for the Sun for comparison. For most stars, we provide B-V and V-K colours (SIMBAD data base) from photometric observations, and surface gravity [log(g)], effective temperature (TeS) and metallicity ([Fe/H]) from spectroscopic observations. (2 data files).
UTM, a universal simulator for lightcurves of transiting systems
NASA Astrophysics Data System (ADS)
Deeg, Hans
2009-02-01
The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. Applications of UTM to date have been mainly in the generation of light-curves for the testing of detection algorithms. For the preparation of such test for the Corot Mission, a special version has been used to generate multicolour light-curves in Corot's passbands. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.
VizieR Online Data Catalog: BEST-II catalog of variables: CoRoT SRc02 field (Klagyivik+, 2016)
NASA Astrophysics Data System (ADS)
Klagyivik, P.; Csizmadia, S.; Pasternacki, T.; Cabrera, J.; Chini, R.; Eigmuller, P.; Erikson, A.; Fruth, T.; Kabath, P.; Lemke, R.; Murphy, M.; Rauer, H.; Titz-Weider, R.
2018-03-01
The observations were performed with the BEST II telescope located at the Universitats-sternwarte Bochum near the Observatorio Cerro Armazones in Chile. The system consists of a Takahashi 25 cm Baker-Ritchey-Chretien telescope equipped with a 4kx4k Finger Lakes CCD. The corresponding field of view is 1.7°x1.7°, with an angular resolution of 1.5"/pixel. In order to maximize the photon yield and to get more accurate photometry of the fainter stars, no filter was used. The exposure time was 120 s for all of the images. BEST II observed the CoRoT target field SRc02 during a total of 32 nights between 2009 May 4 and July 28. (3 data files).
The Observational and Theoretical Tidal Radii of Globular Clusters in M87
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-02-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.
1987-01-01
The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.
Orbital tori for non-axisymmetric galaxies
NASA Astrophysics Data System (ADS)
Binney, James
2018-02-01
Our Galaxy's bar makes the Galaxy's potential distinctly non-axisymmetric. All orbits are affected by non-axisymmetry, and significant numbers are qualitatively changed by being trapped at a resonance with the bar. Orbital tori are used to compute these effects. Thick-disc orbits are no less likely to be trapped by corotation or a Lindblad resonance than thin-disc orbits. Perturbation theory is used to create non-axisymmetric orbital tori from standard axisymmetric tori, and both trapped and untrapped orbits are recovered to surprising accuracy. Code is added to the TorusModeller library that makes it as easy to manipulate non-axisymmetric tori as axisymmetric ones. The augmented TorusModeller is used to compute the velocity structure of the solar neighbourhood for bars of different pattern speeds and a simple action-based distribution function. The technique developed here can be applied to any non-axisymmetric potential that is stationary in a rotating from - hence also to classical spiral structure.
F Ring Core Stability: Corotation Resonance Plus Antiresonance
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Marouf, Essam; French, Richard; Jacobson, Robert
2014-01-01
The decades-or-longer stability of the narrow F Ring core in a sea of orbital chaos appears to be due to an unusual combination of traditional corotation resonance and a novel kind of "antiresonance". At a series of specific locations in the F Ring region, apse precession between synodic encounters with Prometheus allows semimajor axis perturbations to promptly cancel before significant orbital period changes can occur. This cancellation fails for particles that encounter Prometheus when it is near its apoapse, especially during periods of antialignment of its apse with that of the F Ring. At these times, the strength of the semimajor axis perturbation is large (tens of km) and highly nonsinusoidal in encounter longitude, making it impossible to cancel promptly on a subsequent encounter and leading to chaotic orbital diffusion. Only particles that consistently encounter Prometheus away from its apoapse can use antiresonance to maintain stable orbits, implying that the true mean motion nF of the stable core must be defined by a corotational resonance of the form nF = nP(-kappa)P/m, where (nP, kappaP) are Prometheus' mean motion and epicycle frequency. To test this hypothesis we used the fact that Cassini RSS occultations only sporadically detect a "massive" F Ring core, composed of several-cm-and-larger particles. We regressed the inertial longitudes of 24 Cassini RSS (and VGR) detections and 43 nondetections to a common epoch, using a comb of candidate nP, and then folded them modulo the anticipated m-number of the corotational resonance (Prometheus m = 110 outer CER), to see if clustering appears. We find the "true F Ring core" is actually arranged in a series of short longitudinal arcs separated by nearly empty longitudes, orbiting at a well determined semimajor axis of 140222.4 km (from 2005-2012 at least). Small particles seen by imaging and stellar occultations spread quickly in azimuth and obscure this clumpy structure. Small chaotic variations in the mean motion and/or apse longitude of Prometheus quickly become manifest in the F Ring core, and we suggest that the core must adapt to these changes for the F Ring to maintain stability over timescales of decades and longer
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, L.; Auvergne, M.; Toublanc, D.; Rowe, J.; Kuschnig, R.; Matthews, J.
2006-06-01
Context: .Fitting photometry algorithms can be very effective provided that an accurate model of the instrumental point spread function (PSF) is available. When high-precision time-resolved photometry is required, however, the use of point-source star images as empirical PSF models can be unsatisfactory, due to the limits in their spatial resolution. Theoretically-derived models, on the other hand, are limited by the unavoidable assumption of simplifying hypothesis, while the use of analytical approximations is restricted to regularly-shaped PSFs. Aims: .This work investigates an innovative technique for space-based fitting photometry, based on the reconstruction of an empirical but properly-resolved PSF. The aim is the exploitation of arbitrary star images, including those produced under intentional defocus. The cases of both MOST and COROT, the first space telescopes dedicated to time-resolved stellar photometry, are considered in the evaluation of the effectiveness and performances of the proposed methodology. Methods: .PSF reconstruction is based on a set of star images, periodically acquired and presenting relative subpixel displacements due to motion of the acquisition system, in this case the jitter of the satellite attitude. Higher resolution is achieved through the solution of the inverse problem. The approach can be regarded as a special application of super-resolution techniques, though a specialised procedure is proposed to better meet the PSF determination problem specificities. The application of such a model to fitting photometry is illustrated by numerical simulations for COROT and on a complete set of observations from MOST. Results: .We verify that, in both scenarios, significantly better resolved PSFs can be estimated, leading to corresponding improvements in photometric results. For COROT, indeed, subpixel reconstruction enabled the successful use of fitting algorithms despite its rather complex PSF profile, which could hardly be modeled otherwise. For MOST, whose direct-imaging PSF is closer to the ordinary, comparison to other models or photometry techniques were carried out and confirmed the potential of PSF reconstruction in real observational conditions.
Stress-driven buckling patterns in spheroidal core/shell structures.
Yin, Jie; Cao, Zexian; Li, Chaorong; Sheinman, Izhak; Chen, Xi
2008-12-09
Many natural fruits and vegetables adopt an approximately spheroidal shape and are characterized by their distinct undulating topologies. We demonstrate that various global pattern features can be reproduced by anisotropic stress-driven buckles on spheroidal core/shell systems, which implies that the relevant mechanical forces might provide a template underpinning the topological conformation in some fruits and plants. Three dimensionless parameters, the ratio of effective size/thickness, the ratio of equatorial/polar radii, and the ratio of core/shell moduli, primarily govern the initiation and formation of the patterns. A distinct morphological feature occurs only when these parameters fall within certain ranges: In a prolate spheroid, reticular buckles take over longitudinal ridged patterns when one or more parameters become large. Our results demonstrate that some universal features of fruit/vegetable patterns (e.g., those observed in Korean melons, silk gourds, ribbed pumpkins, striped cavern tomatoes, and cantaloupes, etc.) may be related to the spontaneous buckling from mechanical perspectives, although the more complex biological or biochemical processes are involved at deep levels.
[Effect of Radii barrier sleeves on cure depth of composite resin].
Wang, Binping; DU, Yongxiu
2009-01-01
To explore the effect of Radii barrier sleeves on the cure depth of composite resin. Cylinder mold was prepared, and the resin was filled strictly into the mold. The surface was flattened and then cured with plastic engraver's knife.The depth of composite resin which was cured by QHL75TM with or without Radii barrier sleeves was compared. The cure depth of composite resin which were cured by QHL75TM with or without Radii barrier sleeves of photo-curing machine was 4.38 mm and 4.27 mm respectively,with no statistical difference. The cure depth of composite resin is not influenced by Radii barrier sleeves under the same light condition.
2016-09-01
searching for lost car keys in a parking lot to prosecuting a submarine in the South China Sea. This research draws on oceanographic properties to...search area based on the oceanographic properties at 21N 119E. 14. SUBJECT TERMS Search Theory, Undersea Warfare, South China Sea, Anti- Submarine ...lot to prosecuting a submarine in the South China Sea. This research draws on oceanographic properties to develop a search radii for two surface ships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.
2012-12-01
We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.
1983-01-01
Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.
Gravitational waves from plunges into Gargantua
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.
NASA Astrophysics Data System (ADS)
Lebreton, Yveline; Montalbán, Josefina; Christensen-Dalsgaard, Jørgen; Roxburgh, Ian W.; Weiss, Achim
2008-08-01
We compare stellar models produced by different stellar evolution codes for the CoRoT/ESTA project, comparing their global quantities, their physical structure, and their oscillation properties. We discuss the differences between models and identify the underlying reasons for these differences. The stellar models are representative of potential CoRoT targets. Overall we find very good agreement between the five different codes, but with some significant deviations. We find noticeable discrepancies (though still at the per cent level) that result from the handling of the equation of state, of the opacities and of the convective boundaries. The results of our work will be helpful in interpreting future asteroseismology results from CoRoT.
SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montalban, J.; Miglio, A.; Noels, A.
2010-10-01
The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way for seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes for an extended grid of models. We highlight how their detection allows a deeper insight into the internal structure and evolutionary state of red giants. In particular, we find that the properties of dipole modes constitute a promising seismic diagnostic tool of the evolutionary state of red giant stars. We comparemore » our theoretical predictions with the first 34 days of KEPLER data and predict the frequency diagram expected for red giants in the CoRoT exofield in the galactic center direction.« less
A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1979-01-01
Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.
A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields
NASA Astrophysics Data System (ADS)
Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.
2017-10-01
We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.
Galaxy Rotation and Rapid Supermassive Binary Coalescence
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
Investigation of Co-rotation Lag in Saturn's Dayside Magnetosphere and Comparison with the Nightside
NASA Astrophysics Data System (ADS)
Smith, E. J.; Dougherty, M. K.
2016-12-01
Two previous studies of co-rotation lag concentrated on 13 identical high-inclination Cassini orbits. In the first, measurements of the magnetospheric field azimuthal component, Bϕ, were restricted to the southern hemisphere, near midnight, from the equator and perikron to maximum latitude 70°. Comparison with the prevailing model of the magnetosphere-ionosphere interaction yielded conclusions that the ionospheric conductivity, Σp, was independent of ionospheric co-latitude, θi, and the ratio of magnetospheric to planetary field angular velocities, ω/Ωs, equaled, 1- exp(-Bθi), an unexpected exponential dependence on a single parameter. Both model parameters exhibited significant temporal variations from orbit to orbit leading to variations in the ionospheric profiles of Pedersen current, Ip. The second 13 orbit study of Bϕ extended to the north hemisphere where lagging fields alternated with leading and co-rotating fields. It was concluded that the difference was actually a local- time dependence with lagging -fields- only occurring after midnight and the mixed rotations before midnight. Again, Σp was independent of θi and ω/Ωs = 1- exp(-Bθi). Both studies raised the questions: How general is the exponential dependence of 1-ω/Ωs? Is it restricted to midnight or hold as well in the dayside magnetosphere? What is the cause of this dependence that differs from the model? The analysis of Bϕ has been extended to four nearly-identical north-south orbits near noon. The results and conclusions of this third study will be reported.
Astrossismologia e o satélite COROT
NASA Astrophysics Data System (ADS)
Andrade, L. B. P.; Janot Pacheco, E.
2003-08-01
Este trabalho centra-se em atividades na fase de pré-lançamento do satélite COROT, da agência espacial francesa (CNES), a ser lançado em 2005. O satélite será dedicado à sismologia estelar e à procura de exoplanetas. Nosso programa de trabalho centra-se em dois pontos principais: (1) efetuar uma procura detalhada nos campos COROT de alvos astrofísicos de especial interesse; (2) participar das análises espectroscópicas prévias de alvos selecionados para determinação de parâmetros físicos das estrelas com a maior precisão possível. Na presente etapa, priorizou-se o primeiro ponto do projeto. Foi feito um levantamento geral dos objetos astrofísicos encontrados nos dois campos de observação, centrados em 06H50M e 18H50M, com raios de 10 minutos. Concluiu-se que as estrelas B-Be deverão ser observadas no campo sismológico, enquanto que as anãs brancas deverão sê-lo no campo exoplanetário. Objetos a serem observados foram escolhidos de forma a estarem próximos de alvos principais dos programas centrais do satélite. Paralelamente, estudos e pesquisas bibliográficas foram feitos para compreender os assuntos de interesse principal, ou seja, as pulsações não-radiais de estrelas Ob-Be
GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu
2015-09-10
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less
Polarized curvature radiation in pulsar magnetosphere
NASA Astrophysics Data System (ADS)
Wang, P. F.; Wang, C.; Han, J. L.
2014-07-01
The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.
Gaseous spiral structure and mass drift in spiral galaxies
NASA Astrophysics Data System (ADS)
Kim, Yonghwi; Kim, Woong-Tae
2014-05-01
We use hydrodynamic simulations to investigate non-linear gas responses to an imposed stellar spiral potential in disc galaxies. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. We consider various spiral-arm models with differing strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the related mass drift rate depend rather sensitively on the arm pattern speed. In models where the arm pattern is rotating slow, the gaseous arms extend across the corotation resonance (CR) all the way to the outer boundary, with a pitch angle slightly smaller than that of the stellar counterpart. In models with a fast rotating pattern, on the other hand, spiral shocks are much more tightly wound than the stellar arms, and cease to exist in the regions near and outside the CR where mathcal {M}_perp /sin p_* gtrsim 25-40, with mathcal {M}_perp denoting the perpendicular Mach number of a rotating gas relative to the arms with pitch angle p*. Inside the CR, the arms drive mass inflows at a rate of ˜0.05-3.0 M⊙ yr-1 to the central region, with larger values corresponding to stronger and slower arms. The contribution of the shock dissipation, external torque, and self-gravitational torque to the mass inflow is roughly 50, 40, and 10 per cent, respectively. We demonstrate that the distributions of line-of-sight velocities and spiral-arm densities can be a useful diagnostic tool to distinguish if the spiral pattern is rotating fast or slow.
Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √{sN N}=2.76 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-02-01
We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √{sNN}=2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with
Centrality dependence of pion freeze-out radii in Pb-Pb collisions at s N N = 2.76 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-02-04
Here, we report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √s NN = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k T. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k T, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with < dN ch/d η > 1/3. We compare this behavior to world data onmore » femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √s NN, a decrease in the ratio R out/R side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. Furthermore, these results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.« less
Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions at √{sNN}=200 GeV
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration
2015-09-01
We present a systematic study of charged-pion and kaon interferometry in Au +Au collisions at √{s NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.
Experimental study on flame pattern formation and combustion completeness in a radial microchannel
NASA Astrophysics Data System (ADS)
Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru
2007-12-01
Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.
NASA Astrophysics Data System (ADS)
Semaan, T.; Hubert, A. M.; Zorec, J.; Gutiérrez-Soto, J.; Frémat, Y.; Martayan, C.; Fabregat, J.; Eggenberger, P.
2018-06-01
Context. The class of Be stars are the epitome of rapid rotators in the main sequence. These stars are privileged candidates for studying the incidence of rotation on the stellar internal structure and on non-radial pulsations. Pulsations are considered possible mechanisms to trigger mass-ejection phenomena required to build up the circumstellar disks of Be stars. Aims: Time series analyses of the light curves of 15 faint Be stars observed with the CoRoT satellite were performed to obtain the distribution of non-radial pulsation (NRP) frequencies in their power spectra at epochs with and without light outbursts and to discriminate pulsations from rotation-related photometric variations. Methods: Standard Fourier techniques were employed to analyze the CoRoT light curves. Fundamental parameters corrected for rapid-rotation effects were used to study the power spectrum as a function of the stellar location in the instability domains of the Hertzsprung-Russell (H-R) diagram. Results: Frequencies are concentrated in separate groups as predicted for g-modes in rapid B-type rotators, except for the two stars that are outside the H-R instability domain. In five objects the variations in the power spectrum are correlated with the time-dependent outbursts characteristics. Time-frequency analysis showed that during the outbursts the amplitudes of stable main frequencies within 0.03 c d-1 intervals strongly change, while transients and/or frequencies of low amplitude appear separated or not separated from the stellar frequencies. The frequency patterns and activities depend on evolution phases: (i) the average separations between groups of frequencies are larger in the zero-age main sequence (ZAMS) than in the terminal age main sequence (TAMS) and are the largest in the middle of the MS phase; (ii) a poor frequency spectrum with f ≲ 1 cd-1 of low amplitude characterizes the stars beyond the TAMS; and (iii) outbursts are seen in stars hotter than B4 spectral type and in the second half of the MS. Conclusions: The two main frequency groups are separated by δf = (1.24 ± 0.28) × frot in agreement with models of prograde sectoral g-modes (m = -1, -2) of intermediate-mass rapid rotators. The changes of amplitudes of individual frequencies and the presence of transients correlated with the outburst events deserve further studies of physical conditions in the subatmospheric layers to establish the relationship between pulsations and sporadic mass-ejection events. Tables 7 to 22 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A70
A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator.
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2016-11-03
This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30 ∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured -10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88-2.58 GHz) and 19.30% (2.06-2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed.
Where do field lines go in the quiet magnetosphere?
NASA Technical Reports Server (NTRS)
Stern, David P.; Alekseev, Igor' I.
1988-01-01
The state of knowledge concerning the global pattern of geomagnetic field lines is reviewed. Sources of information on that pattern include (1) magnetic-field models, derived directly from magnetic data or indirectly from generally observed properties and from physics; (2) the tracing of magnetospheric features (e.g., polar cusps or the inner edge of the plasma sheet); (3) matching of magnetic flux; and (4) analysis of magnetic fields. Field-line structure inside about 8 earth radii is known fairly well, but beyond that, especially in the tail, the situation becomes rather uncertain and variable. Two particularly difficult problems are the linkage between open field lines and the interplanetary field and the field-line structure of the quiescent magnetosphere following periods of prolonged northward Bz.
Srinivasan, A R; Yathindra, N
1977-01-01
A novel description of the conformational characteristics of all the individual nucleotides and the phosphodiesters in tRNAs is presented in the form of a circular plot. This representation furnishes information of the base sequence with the folding patterns of the polynucleotide chain as one traverses along the circumference and with the individual nucleotide and phosphodiester linkage torsions along the radii. The circular plot obtained for yeast tRNAPhe strikingly distinguishes the helical and the loop regions. The variation of the different nucleotide torsions along the entire chain length and their effect on the secondary helical and tertiary loop regions become readily apparent. PMID:339206
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.
2006-01-01
The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.
NASA Astrophysics Data System (ADS)
Roussos, E.; Kollmann, P.; Krupp, N.; Paranicas, C.; Dialynas, K.; Sergis, N.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.
2018-05-01
The short, 7.2-day orbital period of Cassini's Ring Grazing Orbits (RGO) provided an opportunity to monitor how fast the effects of an intense magnetospheric storm-time period (days 336-343/2016) propagated into Saturn's electron radiation belts. Following the storms, Cassini's MIMI/LEMMS instrument detected a transient extension of the electron radiation belts that in subsequent orbits moved towards the inner belts, intensifying them in the process. This intensification was followed by an equally fast decay, possibly due to the rapid absorption of MeV electrons by the planet's main rings. Surprisingly, all this cycle was completed within four RGOs, effectively in less than a month. That is considerably faster than the year-long time scales of Saturn's proton radiation belt evolution. In order to explain this difference, we propose that electron radial transport is partly controlled by the variability of global scale electric fields which have a fixed local time pointing. Such electric fields may distort significantly the orbits of a particular class of energetic electrons that cancel out magnetospheric corotation due to their westward gradient and curvature drifts (termed "corotation-resonant" or "local-time stationary" electrons) and transport them radially between the ring current and the radiation belts within several days and few weeks. The significance of the proposed process is highlighted by the fact that corotation resonance at Saturn occurs for electrons of few hundred keV to several MeV. These are the characteristic energies of seed electrons from the ring current that sustain the radiation belts of the planet. Our model's feasibility is demonstrated through the use of a simple test-particle simulation, where we estimate that uniform but variable electric fields with magnitudes lower that 1.0 mV/m can lead to a very efficient transport of corotation resonant electrons. Such electric fields have been consistently measured in the magnetosphere, and here we provide additional evidence showing that they may be constantly present all the way down to the outer edge of Saturn's main rings, further supporting our model. The implications of our findings are not limited to Saturn. Corotation resonance at Jupiter occurs for electrons with energies above about 10 MeV throughout the quasi-dipolar, energetic particle-trapping region of the magnetosphere. The proposed process could in principle then lead to rapid transport and adiabatic acceleration electrons into ultra-relativistic energies. The observation by Galileo's EPD/LEMMS instrument of an intense Jovian acceleration event at the orbital distance of Ganymede during the mission's C22 orbit, when > 11 MeV electron fluxes were preferentially enhanced, provides additional support to our transport model and insights on the origin of that orbit's extreme energetic electron environment. Finally, if the mode of radial transport that we describe here is a dominant one, radial diffusion coefficients (DLL) would be subject to strong energy, pitch angle and species dependencies.
Predictions of nuclear charge radii
NASA Astrophysics Data System (ADS)
Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.
2016-12-01
The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.
NASA Technical Reports Server (NTRS)
Negulesco, J. A.; Kossler, T.
1978-01-01
Histological measurements of radii from chickens exposed to estrone and hypergravity are reported. Female chicks at two weeks post-hatch were maintained for two weeks at earth gravity or 2 G with daily injections of 0.2 or 0.4 mg estrone. Animals were sacrificed after the last injection, and the radii were processed by described histological techniques. The results suggest that proximal and distal epiphyses of developing radii show different morphological responses to estrone and hypergravity.
Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √s NN = 200 GeV
Adare, A.
2015-09-23
We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √s NN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe themore » transverse-mass dependence of the oscillations.« less
NASA Technical Reports Server (NTRS)
Reames, D. V.; Richardson, I. G.; Barbier, L. M.
1991-01-01
The abundances of energetic ions accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the ions in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar energetic particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the ion abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP ions and by elevated abundances of He, C, and S.
Angular velocity of gravitational radiation from precessing binaries and the corotating frame
NASA Astrophysics Data System (ADS)
Boyle, Michael
2013-05-01
This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.
Mirroring of fast solar flare electrons on a downstream corotating interaction region
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.
1995-01-01
We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.
Spectral Properties of Suprathermal Heavy Ions in Corotating Interaction Regions at 1 AU
NASA Astrophysics Data System (ADS)
Filwett, R. J.; Desai, M. I.; Ebert, R. W.; Dayeh, M. A.
2017-12-01
Suprathermal particles are an important constituent of the seed population that is accelerated in interplanetary events. Despite their importance, the origin of these particles and the acceleration mechanism they undergo is poorly understood. Using data from Wind/EPACT/STEP and ACE/ULEIS we examined the 0.03-3.0MeV nucleon-1 H-Fe spectra in 41 corotating interaction regions (CIRs). We fit power-law functions to the data to obtain the spectral index γ and break energy Eo. We examined the energy and species-to-species variation of both γ and Eo. Our results show Eo decreases systematically with decreasing Q/M scaling as (Q/M)α. Additionally, we compared the expected compression ratio, H, as determined by γ, to the observed magnetic and density compression ratios. We discuss these results and their implications to local vs. non-local suprathermal particle acceleration and transport in CIRs.
The outer magnetosphere. [composition and comparison with earth
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Behannon, K. W.; Lepping, R. P.; Carbary, J. F.; Eviatar, A.; Siscoe, G. L.
1984-01-01
Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.
Muon and neutron observations in connection with the corotating interaction regions
NASA Astrophysics Data System (ADS)
da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.
Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.
GAUDI: A Preparatory Archive for the COROT Mission
NASA Astrophysics Data System (ADS)
Solano, E.; Catala, C.; Garrido, R.; Poretti, E.; Janot-Pacheco, E.; Gutiérrez, R.; González, R.; Mantegazza, L.; Neiner, C.; Fremat, Y.; Charpinet, S.; Weiss, W.; Amado, P. J.; Rainer, M.; Tsymbal, V.; Lyashko, D.; Ballereau, D.; Bouret, J. C.; Hua, T.; Katz, D.; Lignières, F.; Lüftinger, T.; Mittermayer, P.; Nesvacil, N.; Soubiran, C.; van't Veer-Menneret, C.; Goupil, M. J.; Costa, V.; Rolland, A.; Antonello, E.; Bossi, M.; Buzzoni, A.; Rodrigo, C.; Aerts, C.; Butler, C. J.; Guenther, E.; Hatzes, A.
2005-01-01
The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofísica Espacial y Física Fundamental (Laboratory for Space Astrophysics and Theoretical Physics, Spain). Its intention is to make the ground-based observations obtained in preparation of the asteroseismology program available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since 1998 January 1998 in 6 years of observational campaigns. In this paper, the main functions and characteristics of the system are described. Based on observations collected at La Silla (ESO proposals 67.D-0169, 69.D-0166, and 70.D-0110), Telescopio Nazionale Galileo (proposal 6-20-068), Observatoire de Haute-Provence, the South African Astronomical Observatory, Tautenburg Observatory, and Sierra Nevada Observatory.
Study of MRI in stratified viscous plasma configuration
NASA Astrophysics Data System (ADS)
Carlevaro, Nakia; Montani, Giovanni; Renzi, Fabrizio
2017-02-01
We analyze the morphology of the magneto-rotational instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfvénic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the local perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.
Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise
NASA Technical Reports Server (NTRS)
Yates, J. E.
1978-01-01
A complete theory of aeroacoustics of homentropic fluid media is developed and compared with previous theories. The theory is applied to study the interaction of sound with vortex flows, for the DC-9 in a standard take-off configuration. The maximum engine-wake interference noise is estimated to be 3 or 4 db in the ground plane. It is shown that the noise produced by a corotating vortex pair departs significantly from the compact M scaling law for eddy Mach numbers (M) greater than 0.1. An estimate of jet impingement noise is given that is in qualitative agreement with experimental results. The increased noise results primarily from the nonuniform acceleration of turbulent eddies through the stagnation point flow. It is shown that the corotating vortex pair can be excited or de-excited by an externally applied sound field. The model is used to qualitatively explain experimental results on excited jets.
Modeling the Enceladus Plasma and Neutral Torus in Saturn's Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Jia, Yingdong; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.
2010-10-01
Saturn's moon Enceladus, produces hundreds of kilograms of water vapor every second. These water molecules form a neutral torus which is comparable to the Io torus in the Jovian system. These molecules become ionized producing a plasma disk in the inner magnetosphere of Saturn which exchanges momentum with the "corotating” magnetospheric plasma. To balance the centripetal force of this plasma disk, Saturn's magnetic field is stretched in the radial direction and to accelerate the azimuthal speed to corotational values, the field is stretched in the azimuthal direction. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance, causing plasma flows in the radial direction. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we develop a global model of the inner magnetosphere of Saturn in an attempt to reproduce such processes.
Diffractive optical devices produced by light-assisted trapping of nanoparticles.
Muñoz-Martínez, J F; Jubera, M; Matarrubia, J; García-Cabañes, A; Agulló-López, F; Carrascosa, M
2016-01-15
One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported.
NASA Technical Reports Server (NTRS)
Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino
1993-01-01
We have constructed a series of models of Alpha Centauri A and Alpha Centauri B for the purposes of testing the effects of convection modeling both by means of the mixing-length theory (MLT), and by means of parameterization of energy fluxes based upon numerical simulations of turbulent compressible convection. We demonstrate that while MLT, through its adjustable parameter alpha, can be used to match any given values of luminosities and radii, our treatment of convection, which lacks any adjustable parameters, makes specific predictions of stellar radii. Since the predicted radii of the Alpha Centauri system fall within the errors of the observed radii, our treatment of convection is applicable to other stars in the H-R diagram in addition to the sun. A second set of models is constructed using MLT, adjusting alpha to yield not the 'measured' radii but, instead, the radii predictions of our revised treatment of convection. We conclude by assessing the appropriateness of using a single value of alpha to model a wide variety of stars.
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Ho, Christian M.; Arballo, John K.; Goldstein, Bruce E.; Balogh, Andre
1995-01-01
Corotating Interaction Regions (CIRs), formed by high-speed corotating streams interacting with slow speed streams, have been examined from -20 deg to -36 deg heliolatitudes. The high-speed streams emanate from a polar coronal hole that Ulysses eventually becomes fully embedded in as it travels towards the south pole. We find that the trailing portion of the CIR, from the interface surface (IF) to the reverse shock (RS), contains both large amplitude transverse fluctuations and magnitude fluctuations. Similar fluctuations have been previously noted to exist within CIRs detected in the ecliptic plane, but their existence has not been explained. The normalized magnetic field component variances within this portion of the CIR and in the trailing high-speed stream are approximately the same, indicating that the fluctuations in the CIR are compressed Alfven waves. Mirror mode structures with lower intensities are also observed in the trailing portion of the CIR, presumably generated from a local instability driven by free energy associated with compression of the high-speed solar wind plasma. The mixture of these two modes (compressed Alfven waves and mirror modes) plus other modes generated by three wave processes (wave-shock interactions) lead to a lower Alfvenicity within the trailing portion of the CfR than in the high-speed stream proper. The results presented in this paper suggest a mechanism for generation of large amplitude B(sub z) fluctuations within CIRS. Such phenomena have been noted to be responsible for the generation of moderate geomagnetic storms during the declining phase of the solar cycle.
ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masset, F. S.; Casoli, J., E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f
2009-09-20
We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient,more » and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.« less
NASA Astrophysics Data System (ADS)
Shishov, V. I.; Chashei, I. V.; Oreshko, V. V.; Logvinenko, S. V.; Tyul'bashev, S. A.; Subaev, I. A.; Svidskii, P. M.; Lapshin, V. B.; Dagkesamanskii, R. D.
2016-12-01
The design properties and technical characteristics of the upgraded Large Phased Array (LPA) are briefly described. The results of an annual cycle of observations of interplanetary scintillations of radio sources on the LPA with the new 96-beam BEAM 3 system are presented. Within a day, about 5000 radio sources displaying second-timescale fluctuations in their flux densities due to interplanetary scintillations were observed. At present, the parameters of many of these radio sources are unknown. Therefore, the number of sources with root-mean-square flux-density fluctuations greater than 0.2 Jy in a 3° × 3° area of sky was used to characterize the scintillation level. The observational data obtained during the period of the maximum of solar cycle 24 can be interpreted using a three-component model for the spatial structure of the solar wind, consisting of a stable global component, propagating disturbances, and corotating structures. The global component corresponds to the spherically symmetric structure of the distribution of the turbulent interplanetary plasma. Disturbances propagating from the Sun are observed against the background of the global structure. Propagating disturbances recorded at heliocentric distances of 0.4-1 AU and at all heliolatitudes reach the Earth's orbit one to two days after the scintillation enhancement. Enhancements of ionospheric scintillations are observed during night-time. Corotating disturbances have a recurrence period of 27 d . Disturbances of the ionosphere are observed as the coronal base of a corotating structure approaches the western edge of the solar limb.
NASA Astrophysics Data System (ADS)
Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.
2012-06-01
Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany.Appendix A is available in electronic form at http://www.aanda.org
CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves
NASA Astrophysics Data System (ADS)
Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Gillen, Edward; Medeiros Guimarães, Marcelo; Bouy, Herve; Favata, Fabio
2016-03-01
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
F Ring Core Stability: Corotation Resonance Plus Antiresonance
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Marouf, Essam; French, Richard; Jacobson, Robert
2014-11-01
The decades-or-longer stability of the narrow F Ring core in a sea of orbital chaos appears to be due to an unusual combination of traditional corotation resonance and a novel kind of “antiresonance”. At a series of specific locations in the F Ring region, apse precession between synodic encounters with Prometheus allows semimajor axis perturbations to promptly cancel before significant orbital period changes can occur (Cuzzi et al. 2014, Icarus 232, 157-175). This cancellation fails for particles that encounter Prometheus when it is near its apoapse, especially during periods of antialignment of its apse with that of the F Ring. At these times, the strength of the semimajor axis perturbation is large (tens of km) and highly nonsinusoidal in encounter longitude, making it impossible to cancel promptly on a subsequent encounter and leading to chaotic orbital diffusion. Only particles that consistently encounter Prometheus away from its apoapse can use antiresonance to maintain stable orbits, implying that the true mean motion nF of the stable core must be defined by a corotational resonance of the form nF = nP-κP/m, where (nP, κP) are Prometheus’ mean motion and epicycle frequency. To test this hypothesis we used the fact that Cassini RSS occultations only sporadically detect a “massive” F Ring core, composed of several-cm-and-larger particles. We regressed the inertial longitudes of 24 Cassini RSS (and VGR) detections and 43 nondetections to a common epoch, using a comb of candidate nP, and then folded them modulo the anticipated m-number of the corotational resonance (Prometheus m=110 outer CER), to see if clustering appears. We find the “true F Ring core” is actually arranged in a series of short longitudinal arcs separated by nearly empty longitudes, orbiting at a well determined semimajor axis of 140222.4km (from 2005-2012 at least). Small particles seen by imaging and stellar occultations spread quickly in azimuth and obscure this clumpy structure. Small chaotic variations in the mean motion and/or apse longitude of Prometheus quickly become manifest in the F Ring core, and we suggest that the core must adapt to these changes for the F Ring to maintain stability over timescales of decades and longer.
Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS
NASA Astrophysics Data System (ADS)
Ofir, A.; Deeg, H. J.; Lacy, C. H. S.
2009-10-01
Aims: Already from the initial discoveries of extrasolar planets it was apparent that their population and environments are far more diverse than initially postulated. Discovering circumbinary (CB) planets will have many implications, and in this context it will again substantially diversify the environments that produce and sustain planets. We search for transiting CB planets around eclipsing binaries (EBs). Methods: CB-BLS is a recently-introduced algorithm for the detection of transiting CB planets around EBs. We describe progress in search sensitivity, generality and capability of CB-BLS, and detection tests of CB-BLS on simulated data. We also describe an analytical approach for the determination of CB-BLS detection limits, and a method for the correct detrending of intrinsically-variable stars. Results: We present some blind-tests with simulated planets injected to real CoRoT data. The presented upgrades to CB-BLS allowed it to detect all the blind tests successfully, and these detections were in line with the detection limits analysis. We also correctly detrend bright eclipsing binaries from observations by the TrES planet search, and present some of the first results of applying CB-BLS to multiple real light curves from a wide-field survey. Conclusions: CB-BLS is now mature enough for its application to real data, and the presented processing scheme will serve as the template for our future applications of CB-BLS to data from wide-field surveys such as CoRoT. Being able to put constraints even on non-detection will help to determine the correct frequency of CB planets, contributing to the understanding of planet formation in general. Still, searching for transiting CB planets is still a learning experience, similarly to the state of transiting planets around single stars only a few years ago. The recent rapid progress in this front, coupled with the exquisite quality of space-based photometry, allows to realistically expect that if transiting CB planets exist - then they will soon be found. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.
Experimental Hydrodynamics of Turning Maneuvers in Koi Carps
NASA Astrophysics Data System (ADS)
Wu, G. H.; Yang, Y.; Zeng, L. J.
Experimental hydrodynamics of two types of turning maneuvers in koi carps (cyprinus carpio koi) are studied. The flow patterns generated by koi carps during turning are quantified by using digital particle image velocimetry. Based on the velocity fields measured, the momentums in the wake and the impulsive moments exerted on the carps are estimated. On the other hand, turning rates and radii, and moments of inertia of the carps including added mass during turning are obtained by processing the images recorded. Comparisons of the impulsive moments and moments of inertia show good agreements.
Modeling hardwood crown radii using circular data analysis
Paul F. Doruska; Hal O. Liechty; Douglas J. Marshall
2003-01-01
Cylindrical data are bivariate data composed of a linear and an angular component. One can use uniform, first-order (one maximum and one minimum) or second-order (two maxima and two minima) models to relate the linear component to the angular component. Crown radii can be treated as cylindrical data when the azimuths at which the radii are measured are also recorded....
Nuclear charge radii: density functional theory meets Bayesian neural networks
NASA Astrophysics Data System (ADS)
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia
NASA Astrophysics Data System (ADS)
Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.
2018-05-01
We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.
Viscoelastic flow in rotating curved pipes
NASA Astrophysics Data System (ADS)
Chen, Yitung; Chen, Huajun; Zhang, Jinsuo; Zhang, Benzhao
2006-08-01
Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number RΩ', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, RΩ' can be estimated according to the expression RΩ'=-4Weδ. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed.
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
The causes of recurrent geomagnetic storms
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lepping, R. P.
1976-01-01
The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.
Non-radial pulsations and large-scale structure in stellar winds
NASA Astrophysics Data System (ADS)
Blomme, R.
2009-07-01
Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.
Witnessing the growth of the nearest galaxy cluster: thermodynamics of the Virgo Cluster outskirts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simionescu, A.; Werner, N.; Mantz, A.
Here, we present results from Suzaku Key Project observations of the Virgo Cluster, the nearest galaxy cluster to us, mapping its X-ray properties along four long ‘arms’ extending beyond the virial radius. The entropy profiles along all four azimuths increase with radius, then level out beyond ~0.5r 200, while the average pressure at large radii exceeds Planck Sunyaev–Zel'dovich measurements. These results can be explained by enhanced gas density fluctuations (clumping) in the cluster's outskirts. Using a standard Navarro, Frenk and White model, we estimate a virial mass, radius and concentration parameter of M 200 = 1.05 ± 0.02 × 10more » 14 M⊙, r 200 = 974.1 ± 5.7 kpc and c = 8.8 ± 0.2, respectively. The inferred cumulative baryon fraction exceeds the cosmic mean at r ~r 200 along the major axis, suggesting enhanced gas clumping possibly sourced by a candidate large-scale structure filament along the north–south direction. The Suzaku data reveal a large-scale sloshing pattern, with two new cold fronts detected at radii of 233 and 280 kpc along the western and southern arms, respectively. Two high-temperature regions are also identified 1 Mpc towards the south and 605 kpc towards the west of M87, likely representing shocks associated with the ongoing cluster growth. Although systematic uncertainties in measuring the metallicity for low-temperature plasma remain, the data at large radii appear consistent with a uniform metal distribution on scales of ~90 × 180 kpc and larger, providing additional support for the early chemical enrichment scenario driven by galactic winds at redshifts of 2–3.« less
Witnessing the growth of the nearest galaxy cluster: thermodynamics of the Virgo Cluster outskirts
Simionescu, A.; Werner, N.; Mantz, A.; ...
2017-04-17
Here, we present results from Suzaku Key Project observations of the Virgo Cluster, the nearest galaxy cluster to us, mapping its X-ray properties along four long ‘arms’ extending beyond the virial radius. The entropy profiles along all four azimuths increase with radius, then level out beyond ~0.5r 200, while the average pressure at large radii exceeds Planck Sunyaev–Zel'dovich measurements. These results can be explained by enhanced gas density fluctuations (clumping) in the cluster's outskirts. Using a standard Navarro, Frenk and White model, we estimate a virial mass, radius and concentration parameter of M 200 = 1.05 ± 0.02 × 10more » 14 M⊙, r 200 = 974.1 ± 5.7 kpc and c = 8.8 ± 0.2, respectively. The inferred cumulative baryon fraction exceeds the cosmic mean at r ~r 200 along the major axis, suggesting enhanced gas clumping possibly sourced by a candidate large-scale structure filament along the north–south direction. The Suzaku data reveal a large-scale sloshing pattern, with two new cold fronts detected at radii of 233 and 280 kpc along the western and southern arms, respectively. Two high-temperature regions are also identified 1 Mpc towards the south and 605 kpc towards the west of M87, likely representing shocks associated with the ongoing cluster growth. Although systematic uncertainties in measuring the metallicity for low-temperature plasma remain, the data at large radii appear consistent with a uniform metal distribution on scales of ~90 × 180 kpc and larger, providing additional support for the early chemical enrichment scenario driven by galactic winds at redshifts of 2–3.« less
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Marcy, Geoffrey W.; Petigura, Erik A.; Fulton, Benjamin J.; Howard, Andrew W.; Winn, Joshua N.; Isaacson, Howard T.; Morton, Timothy D.; Hirsch, Lea A.; Sinukoff, Evan J.; Cumming, Andrew; Hebb, Leslie; Cargile, Phillip A.
2018-01-01
We have established precise planet radii, semimajor axes, incident stellar fluxes, and stellar masses for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios smaller than 1.2, regardless of planet size. Using empirical mass–radius relationships, we estimate the mutual Hill separations of planet pairs. We find that 93% of the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of ∼20 mutual Hill radii is most common. We also find that when comparing planet sizes, the outer planet is larger in 65% ± 0.4% of cases, and the typical ratio of the outer to inner planet size is positively correlated with the temperature difference between the planets. This could be the result of photo-evaporation. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of California, and California Institute of Technology, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Manfroid, J.
2009-06-01
L'ESA en route vers les origines de l'univers; Record de distance; Blob primordial; Novae; Expansion de l'univers; Plat ou pas?; L'eau sur Mars; Bombardement massif; M87; CoRoT; EX Lupi; Première pour ALMA; Kohoutek 4-55; Arp 194
Revisiting the Tale of Hercules: How Stars Orbiting the Lagrange Points Visit the Sun
NASA Astrophysics Data System (ADS)
Pérez-Villegas, Angeles; Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin
2017-05-01
We propose a novel explanation for the Hercules stream consistent with recent measurements of the extent and pattern speed of the Galactic bar. We have adapted a made-to-measure dynamical model tailored for the Milky Way to investigate the kinematics of the solar neighborhood (SNd). The model matches the 3D density of the red clump giant stars (RCGs) in the bulge and bar as well as stellar kinematics in the inner Galaxy, with a pattern speed of 39 km s-1 kpc-1. Cross-matching this model with the Gaia DR1 TGAS data combined with RAVE and LAMOST radial velocities, we find that the model naturally predicts a bimodality in the U-V-velocity distribution for nearby stars which is in good agreement with the Hercules stream. In the model, the Hercules stream is made of stars orbiting the Lagrange points of the bar which move outward from the bar’s corotation radius to visit the SNd. While the model is not yet a quantitative fit of the velocity distribution, the new picture naturally predicts that the Hercules stream is more prominent inward from the Sun and nearly absent only a few 100 pc outward of the Sun, and plausibly explains that Hercules is prominent in old and metal-rich stars.
AME - Asteroseismology Made Easy. Estimating stellar properties by using scaled models
NASA Astrophysics Data System (ADS)
Lundkvist, Mia; Kjeldsen, Hans; Silva Aguirre, Victor
2014-06-01
Context. Stellar properties and, in particular stellar radii of exoplanet host stars, are essential for measuring the properties of exoplanets, therefore it is becoming increasingly important to be able to supply reliable stellar radii fast. Grid-modelling is an obvious choice for this, but that only offers a low degree of transparency to non-specialists. Aims: Here we present a new, easy, fast, and transparent method of obtaining stellar properties for stars exhibiting solar-like oscillations. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean densities, radii, and surface gravities, as well as estimate ages. We present AME as a visual and powerful tool that could be useful, in particular, in light of the large number of exoplanets being found. Methods: AME consists of a set of figures from which the stellar parameters can be deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 M⊙ to 1.6 M⊙ in steps of 0.1 M⊙ and metallicities in the interval -0.3 dex ≤ [Fe/H] ≤ +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. Results: We have compared the results from AME with results for three groups of stars: stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on modelling their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yields a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. Conclusions: The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%, respectively. http://sac.au.dk/scientific-data/ame
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less
NASA Technical Reports Server (NTRS)
Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan;
2015-01-01
We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian corotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected on successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard \\disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSO in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel- ow accretion columns arising near the inner disk wall.
The nature of arms in spiral galaxies. III. Azimuthal profiles
NASA Astrophysics Data System (ADS)
del Rio, M. S.; Cepa, J.
1998-12-01
In this paper we analyse the structure of a small sample of galaxies using a set of CCD images in standard photometric bands presented in a previous paper (del Rio & Cepa 1998a, hereafter \\cite{p2}). The galaxies are NGC 157, 753, 895, 4321, 6764, 6814, 6951, 7479 and 7723, and the selected bands were B and I. Seven galaxies are grand design, i.e. they have two long and symmetric arms, second in the classification of \\cite{ee87} (1987), and are the best laboratories for testing the predictions of the spiral density wave (SDW) theory. Two of the galaxies have intermediate arms, i.e., they are not so well defined. They are selected to compare the results with those found in the grand design spirals. Using the method of analyse the azimuthal flux profiles presented by \\cite{c88} (1988) and Beckman & Cepa (1990) (hereafter \\cite{bc90}) and assuming that star formation is triggered by a spiral density wave, we look for evidence of the existence of a corotation radius, as predicted by the SDW theory. We have determined the corotation radius in all but two grand design galaxies, and, tentatively, in the other four. Galaxies with very weak arms (such as NGC 753 and NGC 6951) or arms which are not well defined (such as NGC 6764 and NGC 7723) present difficulties when employing the azimuthal profile method, but even in these cases, the method is powerful enough to give a good estimate of the value of corotation, which must then be confirmed (or discarded) by other independent methods (del Rio & Cepa 1998b, hereafter \\cite{p4}).
Plasmas in Saturn's magnetosphere
NASA Technical Reports Server (NTRS)
Frank, L. A.; Burek, B. G.; Ackerson, K. L.; Wolfe, J. H.; Mihalov, J. D.
1980-01-01
The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparo, M.; Benko, J. M.; Hareter, M.
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less
The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT-29b
NASA Astrophysics Data System (ADS)
Pallé, E.; Chen, G.; Alonso, R.; Nowak, G.; Deeg, H.; Cabrera, J.; Murgas, F.; Parviainen, H.; Nortmann, L.; Hoyer, S.; Prieto-Arranz, J.; Nespral, D.; Cabrera Lavers, A.; Iro, N.
2016-05-01
Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims: Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods: Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric differential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results: After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 300 ppm over 5 min. Due to the relative faintness of the star, we do not reach the precision necessary to perform transmission spectroscopy of its atmosphere, but we see no signs of color-dependency of the transit depth or duration. Conclusions: We conclude that the previously reported asymmetry may have been a time-dependent phenomenon, which did not occur in more recent epochs. Alternatively, instrumental effects in the discovery data may need to be reconsidered. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A62
NASA Astrophysics Data System (ADS)
Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Chomiuk, Laura; Spitler, Lee R.; Strader, Jay; Benson, Andrew J.; Forbes, Duncan A.
2011-08-01
We present a global analysis of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging from Suprime-Cam on the Subaru telescope, and multi-slit spectra of the field stars and globular clusters (GCs) obtained using Keck-DEIMOS/LRIS and Magellan-IMACS. Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly (v/σ >~ 1.5). At larger radii, the rotation declines dramatically to v/σ ~ 0.7, but remains well aligned with the inner regions. The radial decrease in characteristic metallicity of both the metal-rich and metal-poor GC subpopulations produces strong gradients with power-law slopes of -0.17 ± 0.04 and -0.38 ± 0.06 dex dex-1, respectively. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers with typical mass ratios of ~15-20:1.
A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2016-01-01
This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured −10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88–2.58 GHz) and 19.30% (2.06–2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed. PMID:27827881
Noctilucent cloud studies with Envisat/SCIAMACHY: Observations of the 5-day wave
NASA Astrophysics Data System (ADS)
von Savigny, C.; Bovensmann, H.; Burrows, J. P.; Schwartz, M. J.; Wu, D. L.
SCIAMACHY Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY measures scattered solar radiation in limb viewing geometry from the troposphere up to the mesopause covering the spectral range from 220 nm to 2380 nm It is therefore well suited to study the geographical distribution of NLCs their temporal evolution and also allows the retrieval of NLC particle sizes This presentation will give an overview of the NLC results obtained so far from SCIAMACHY limb scatter measurements A special focus will be on the first identification of the westward propagating wavenumber-1 5-day wave in collocated satellite measurements of NLC characteristics - NLC occurence rate brightness and radii - and mesopause temperature The temperature measurements were made with the Microwave Limb Sounder MLS on Aura The 5-day wave was recently identified in SNOE NLC brightness measurements Merkel et al 2003 The 5-day wave signature has a severe impact on the geographical distribution of NLCs as well as their particle radii Long-term changes in global middle atmospheric wind patterns affecting the vertical propagation of planetary wave signatures may be an important driver for long-term variations in NLC occurrence rates and NLC brightness
Development of ATHENA mirror modules
NASA Astrophysics Data System (ADS)
Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Landgraf, Boris; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Dekker, Danielle; Chatbi, Abdel; Girou, David; Sforzini, Jessica; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; Haneveld, Jeroen; Koelewijn, Arenda; Booysen, Karin; Wijnperle, Maurice; van Baren, Coen; Eigenraam, Alexander; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Massahi, Sonny; Christensen, Finn E.; Della Monica Ferreira, Desirée.; Valsecchi, Giuseppe; Oliver, Paul; Checquer, Ian; Ball, Kevin; Zuknik, Karl-Heinz
2017-08-01
Silicon Pore Optics (SPO), developed at cosine with the European Space Agency (ESA) and several academic and industrial partners, provides lightweight, yet stiff, high-resolution x-ray optics. This technology enables ATHENA to reach an unprecedentedly large effective area in the 0.2 - 12 keV band with an angular resolution better than 5''. After developing the technology for 50 m and 20 m focal length, this year has witnessed the first 12 m focal length mirror modules being produced. The technology development is also gaining momentum with three different radii under study: mirror modules for the inner radii (Rmin = 250 mm), outer radii (Rmax = 1500 mm) and middle radii (Rmid = 737 mm) are being developed in parallel.
Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds.
Berenov, A; Le Goupil, F; Alford, N
2016-06-21
A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.
Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. Themore » precision of the relations is not as well constrained for giant stars as it is for less evolved stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan
We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less
Analysis of coronal H I Lyman alpha measurements from a rocket flight on 1979 April 13
NASA Technical Reports Server (NTRS)
Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Noci, G.; Munro, R. H.
1982-01-01
It is noted that measurements of the profiles of resonantly scattered hydrogen Lyman-alpha coronal radiation have been used in determining hydrogen kinetic temperatures from 1.5 to 4 solar radii from sun center in a quiet region of the corona. Proton temperatures derived using the line widths decrease with height from 2.6 x 10 to the 6th K at 1.5 solar radii to 1.2 x 10 to the 6th K at 4 solar radii. These measurements, together with temperatures for lower heights determined from earlier Skylab and eclipse data, suggest that there is a maximum in the quiet coronal proton temperature at about 1.5 solar radii. Comparison of measured Lyman-alpha intensities with those calculated using a representative model for the radial variation of the coronal electron density yields information on the magnitude of the electron temperature gradient and suggests that the solar wind flow was subsonic for distances less than 4 solar radii.
The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy
NASA Technical Reports Server (NTRS)
Brueckner, Guenter E.; Howard, Russell A.; Koomen, Martin J.; Korendyke, C.; Michels, D. J.; Socker, D. G.; Lamy, Philippe; Llebaria, Antoine; Maucherat, J.; Schwenn, Rainer
1992-01-01
The Large Angle Spectroscopic Coronagraph (LASCO) is a triple coronagraph being jointly developed for the Solar and Heliospheric Observatory (SOHO) mission. LASCO comprises three nested coronagraphs (C1, C2, and C3) that image the solar corona for 1.1 to 30 solar radii (C1: 1.1 to 3 solar radii, C2: 1.5 to 6 solar radii, and C3: 3 to 30.0 solar radii). The inner coronagraph (C1) is a newly developed mirror version of the classic Lyot coronagraph without an external occultor, while the middle coronagraph (C2) and the outer coronagraph (C3) are externally occulted instruments. High resolution coronal spectroscopy from 1.1 to 3 R solar radii can be performed by using a Fabry-Perot interferometer, which is part of C1. High volume memories and a high speed microprocessor enable extensive onboard image processing. Image compression by factors of 10 to 20 will result in the transmission of 10 to 20 full images per hour.
Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve
2016-03-22
We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and small contact angle from jump to jump; the result is a large evaporation rate leading to faster evaporation.
Recurrent solar wind streams observed by interplanetary scintillation of 3C 48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1972-10-01
The interplanetary scintillation of 3C 48 was observed by two spaced receivers (69.3 MHz) during February and March 1971. The recurrent property of the observed velocity increase of the solar wind is clearly seen, and their recurrent period is 24 to 25 days. This value is shorter than the synodic period of 27 days, but this deviation may be explained by the displacement of the closest point to the Sun on the line of sight for 3C 48. A comparison with the data of the wind velocity obtained by apace probes shows that the observed enhancements are associated with twomore » high-velocity streams corotating around the Sun. The enhancements of the scintillation index precede by about two days the velocity enhancements, and it may be concluded that such enhancement of the scintillation index has resulted from the compressed region of the interplanetary plasma formed in front of the high-velocity corotating stream. (auth)« less
ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renner, S.; Vienne, A.; Cooper, N. J.
2016-05-01
We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied bymore » the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.« less
The generation of tire cornering forces in aircraft with a free-swiveling nose gear
NASA Technical Reports Server (NTRS)
Daugherty, R. H.; Stubbs, S. M.
1985-01-01
An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.
Detecting planets in Kepler lightcurves using methods developed for CoRoT.
NASA Astrophysics Data System (ADS)
Grziwa, S.; Korth, J.; Pätzold, M.
2011-10-01
Launched in March 2009, Kepler is the second space telescope dedicated to the search for extrasolar planets. NASA released 150.000 lightcurves to the public in 2010 and announced that Kepler has found 1.235 candidates. The Rhenish Institute for Environmental Research (RIU-PF) is one of the detection groups from the CoRoT space mission. RIU-PF developed the software package EXOTRANS for the detection of transits in stellar lightcurves. EXOTRANS is designed for the fast automated processing of huge amounts of data and was easily adapted to the analysis of Kepler lightcurves. The use of different techniques and philosophies helps to find more candidates and to rule out others. We present the analysis of the Kepler lightcurves with EXOTRANS. Results of our filter (trend, harmonic) and detection (dcBLS) techniques are compared with the techniques used by Kepler (PDC, TPS). The different approaches to rule out false positives are discussed and additional candidates found by EXOTRANS are presented.
Plasma and electric field boundaries at high and low altitudes on July 29, 1977
NASA Technical Reports Server (NTRS)
Fennell, J. F.; Johnson, R. G.; Young, D. T.; Torbert, R. B.; Moore, T. E.
1982-01-01
Hot plasma observations at high and low altitudes were compared. The plasma ion composition at high altitudes outside the plasmasphere was 0+. Heavy ions were also observed at low altitudes outside the plasmasphere. It is shown that at times these ions are found well below the plasmapause inside the plasmasphere. Comparisons of the low altitude plasma and dc electric fields show that the outer limits of the plasmasphere is not always corotating at the low L-shells. The corotation boundary, the estimated plasmapause boundary at the boundary of the inner edge of plasma sheet ions were at the same position. The inner edge of plasma sheet electrons is observed at higher latitudes than the plasmasphere boundary during disturbed times. The inner edge of the plasma sheaths shows a strong dawn to dusk asymmetry. At the same time the inner edge of the ring current and plasma sheath also moves to high latitudes reflecting an apparent inflation of the magnetosphere.
NASA Astrophysics Data System (ADS)
Boden, F.; Stasicki, B.; Szypuła, M.; Ružička, P.; Tvrdik, Z.; Ludwikowski, K.
2016-07-01
Knowledge of propeller or rotor blade behaviour under real operating conditions is crucial for optimizing the performance of a propeller or rotor system. A team of researchers, technicians and engineers from Avia Propeller, DLR, EVEKTOR and HARDsoft developed a rotating stereo camera system dedicated to in-flight blade deformation measurements. The whole system, co-rotating with the propeller at its full speed and hence exposed to high centrifugal forces and strong vibration, had been successfully tested on an EVEKTOR VUT 100 COBRA aeroplane in Kunovice (CZ) within the project AIM2—advanced in-flight measurement techniques funded by the European Commission (contract no. 266107). This paper will describe the work, starting from drawing the first sketch of the system up to performing the successful flight test. Apart from a description of the measurement hardware and the applied IPCT method, the paper will give some impressions of the flight test activities and discuss the results obtained from the measurements.
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Cranmer, Steven R.
2018-03-01
In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.
Origin of the Chaotic Motion of the Saturnian Satellite Atlas
NASA Astrophysics Data System (ADS)
Renner, S.; Cooper, N. J.; El Moutamid, M.; Sicardy, B.; Vienne, A.; Murray, C. D.; Saillenfest, M.
2016-05-01
We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.
A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear
NASA Technical Reports Server (NTRS)
Daugherty, R. H.; Stubbs, S. M.
1985-01-01
An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.
Production and fate of the G ring arc particles due to Aegaeon (Saturn LIII)
NASA Astrophysics Data System (ADS)
Madeira, Gustavo; Sfair, R.; Mourão, D. C.; Giuliatti Winter, S. M.
2018-04-01
The G ring arc hosts the smallest satellite of Saturn, Aegaeon, observed with a set of images sent by Cassini spacecraft. Along with Aegaeon, the arc particles are trapped in a 7:6 corotation eccentric resonance with the satellite Mimas. Due to this resonance, both Aegaeon and the arc material are confined to within 60° of corotating longitudes. The arc particles are dust grains which can have their orbital motions severely disturbed by the solar radiation force. Our numerical simulations showed that Aegaeon is responsible for depleting the arc dust population by removing them through collisions. The solar radiation force hastens these collisions by removing most of the 10 μm sized grains in less than 40 yr. Some debris released from Aegaeon's surface by meteoroid impacts can populate the arc. However, it would take 30 000 yr for Aegaeon to supply the observed amount of arc material, and so it is unlikely that Aegaeon alone is the source of dust in the arc.
Trapped particles in the polar wind
NASA Astrophysics Data System (ADS)
Demars, H. G.; Barakat, A. R.; Schunk, R. W.
1998-01-01
The flow of plasma along open field lines at high latitudes is highly variable and depends both on conditions in the underlying ionosphere and thermosphere and on the transport of particles and energy from the magnetosphere. Past attempts to model this time variability have, for the most part, examined the response of the plasma on a stationary field line to certain prespecified boundary conditions and heat sources. While such prespecified conditions may bear some resemblance to what occurs naturally, they are artificial and cannot be expected to yield a truly quantitative understanding of the various physical processes that interact to produce the dynamic polar wind. The present study is one in a series of studies that attempts to eliminate this artificiality by coupling the mathematical description of the polar wind to a three-dimensional time-dependent model of the high-latitude ionosphere. In this study, an individual flux tube of plasma is followed as it moves under the influence of combined corotation and convection electric fields. Boundary conditions at the lower end of the flux tube are obtained from the ionosphere model, which takes into account all significant particle species, chemical reactions, and heat sources that contribute to the state of the ionosphere. A multi-ion macroscopic particle-in-cell code is used to model the plasma in the flux tube. A description of the behavior of H+ and O+ for the altitude range from 2000 km to about 8 Earth radii is obtained as the flux tube moves along the trajectory, which traverses regions of the subauroral ionosphere, dayside and nightside ovals, and polar cap. The goal of the study is to determine the extent to which ion trapping can occur in the polar wind and the effects that collisions, wave-particle interactions, centrifugal acceleration, and varying ionospheric conditions have on the trapped ions. The main conclusion of the study is that O+ trapping is important and it acts to increase the O+ density at high altitudes.
Plasmapause Boundary Dynamics and the Interplanetary Magnetic Field Effect
NASA Astrophysics Data System (ADS)
Goldstein, J.
2006-05-01
The plasmapause is the outer boundary of the plasmasphere, the roughly toroidal region of cold, dense, corotating plasma that encircles the Earth and can extend several Earth radii (RE) out into space. The source of plasma in this region is ionospheric outflow (or upflow), which fills plasmaspheric field lines with a mixture of protons, helium ions, and oxygen ions on a timescale of several days. A distinct outer plasmapause boundary forms when plasmaspheric plasma is removed, a process known as erosion. Plasmaspheric erosion occurs most strongly during times of southward interplanetary magnetic field (IMF), when magnetospheric convection is greatly enhanced. Decades of theory and observation support the idea that enhanced sunward convection (during southward IMF) forms large plumes of dense plasma that stretch sunward from the main plasmasphere during erosion. The plasmapause during erosion events is distorted: reduced on the nightside, elongated on the dayside, and in general, overlapping the boundaries of regions of warmer plasmas (such as the ring current and radiation belts) that experience increased loss rates from wave-particle interactions in the overlap regions. Thus, the plasmapause boundary is of critical importance to the global dynamics of these warmer particles. In recent years, the southward IMF (i.e., convection) effect on the plasmapause has been fairly well characterized, but what has received less attention is the northward IMF effect. What happens at the plasmapause boundary following disturbances, when convection is reduced but ionospheric outflow has not yet had enough time to refill the plasmaspheric flux tubes? Observations by CRRES, Polar, IMAGE, Cluster, and other spacecraft have shown a bewildering variety of fine-scale plasmapause density structure during recovery and deep quiet phases. Many plasmapause features have been classified, sorted and named, but nonetheless, remain unexplained. This paper will present our current understanding of IMF effects on the plasmapause, and present the many remaining challenges to a comprehensive model of this critical boundary layer.
NASA Astrophysics Data System (ADS)
Anders, F.; Chiappini, C.; Minchev, I.; Miglio, A.; Montalbán, J.; Mosser, B.; Rodrigues, T. S.; Santiago, B. X.; Baudin, F.; Beers, T. C.; da Costa, L. N.; García, R. A.; García-Hernández, D. A.; Holtzman, J.; Maia, M. A. G.; Majewski, S.; Mathur, S.; Noels-Grotsch, A.; Pan, K.; Schneider, D. P.; Schultheis, M.; Steinmetz, M.; Valentini, M.; Zamora, O.
2017-04-01
Using combined asteroseismic and spectroscopic observations of 418 red-giant stars close to the Galactic disc plane (6 kpc < RGal ≲ 13 kpc, | ZGal| < 0.3 kpc), we measure the age dependence of the radial metallicity distribution in the Milky Way's thin disc over cosmic time. The slope of the radial iron gradient of the young red-giant population (-0.058 ± 0.008 [stat.] ±0.003 [syst.] dex/kpc) is consistent with recent Cepheid measurements. For stellar populations with ages of 1-4 Gyr the gradient is slightly steeper, at a value of -0.066 ± 0.007 ± 0.002 dex/kpc, and then flattens again to reach a value of -0.03 dex/kpc for stars with ages between 6 and 10 Gyr. Our results are in good agreement with a state-of-the-art chemo-dynamical Milky-Way model in which the evolution of the abundance gradient and its scatter can be entirely explained by a non-varying negative metallicity gradient in the interstellar medium, together with stellar radial heating and migration. We also offer an explanation for why intermediate-age open clusters in the solar neighbourhood can be more metal-rich, and why their radial metallicity gradient seems to be much steeper than that of the youngest clusters. Already within 2 Gyr, radial mixing can bring metal-rich clusters from the innermost regions of the disc to Galactocentric radii of 5 to 8 kpc. We suggest that these outward-migrating clusters may be less prone to tidal disruption and therefore steepen the local intermediate-age cluster metallicity gradient. Our scenario also explains why the strong steepening of the local iron gradient with age is not seen in field stars. In the near future, asteroseismic data from the K2 mission will allow for improved statistics and a better coverage of the inner-disc regions, thereby providing tighter constraints on theevolution of the central parts of the Milky Way.
The initial value problem as it relates to numerical relativity.
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
The initial value problem as it relates to numerical relativity
NASA Astrophysics Data System (ADS)
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
Mirror Charge Radii and the Neutron Equation of State
NASA Astrophysics Data System (ADS)
Brown, B. Alex
2017-09-01
The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is important for constraining the neutron equation of state for use in astrophysics. The charge radii of several neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N =Z depend upon the value of the symmetry energy at a density of 0.10 nucleons /fm3 .
Properties of tree rings in LSST sensors
Park, H. Y.; Nomerotski, A.; Tsybychev, D.
2017-05-30
Images of uniformly illuminated sensors for the Large Synoptic Survey Telescope have circular periodic patterns with an appearance similar to tree rings. Furthermore, these patterns are caused by circularly symmetric variations of the dopant concentration in the monocrystal silicon boule induced by the manufacturing process. Non-uniform charge density results in the parasitic electric field inside the silicon sensor, which may distort shapes of astronomical sources. Here, we analyzed data from fifteen LSST sensors produced by ITL to determine the main parameters of the tree rings: amplitude and period, and also variability across the sensors tested at Brookhaven National Laboratory. Treemore » ring pattern has a weak dependence on the wavelength. But the ring amplitude gets smaller as wavelength gets longer, since longer wavelengths penetrate deeper into the silicon. Tree ring amplitude gets larger as it gets closer to the outer part of the wafer, from 0.1 to 1.0%, indicating that the resistivity variation is larger for larger radii.« less
Properties of tree rings in LSST sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H. Y.; Nomerotski, A.; Tsybychev, D.
Images of uniformly illuminated sensors for the Large Synoptic Survey Telescope have circular periodic patterns with an appearance similar to tree rings. Furthermore, these patterns are caused by circularly symmetric variations of the dopant concentration in the monocrystal silicon boule induced by the manufacturing process. Non-uniform charge density results in the parasitic electric field inside the silicon sensor, which may distort shapes of astronomical sources. Here, we analyzed data from fifteen LSST sensors produced by ITL to determine the main parameters of the tree rings: amplitude and period, and also variability across the sensors tested at Brookhaven National Laboratory. Treemore » ring pattern has a weak dependence on the wavelength. But the ring amplitude gets smaller as wavelength gets longer, since longer wavelengths penetrate deeper into the silicon. Tree ring amplitude gets larger as it gets closer to the outer part of the wafer, from 0.1 to 1.0%, indicating that the resistivity variation is larger for larger radii.« less
X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku
NASA Astrophysics Data System (ADS)
Thölken, Sophia; Lovisari, Lorenzo; Reiprich, Thomas H.; Hasenbusch, Jan
2016-07-01
Context. In the last few years, the outskirts of galaxy clusters have been studied in detail and the analyses have brought up interesting results such as indications of possible gas clumping and the breakdown of hydrostatic, thermal, and ionization equilibrium. These phenomena affect the entropy profiles of clusters, which often show deviations from the self-similar prediction around R200. However, significant uncertainties remain for groups of galaxies. In particular the question, of whether entropy profiles are similar to those of galaxy clusters. Aims: We investigated the gas properties of the galaxy group UGC 03957 up to 1.4 R200 ≈ 1.4 Mpc in four azimuthal directions with the Suzaku satellite. We checked for azimuthal symmetry and obtained temperature, entropy, density, and gas mass profiles. Previous studies point to deviations from equilibrium states at the outskirts of groups and clusters and so we studied the hydrodynamical status of the gas at these large radii. Methods: We performed a spectral analysis of five Suzaku observations of UGC 03957 with ~138 ks good exposure time in total and five Chandra snapshot observations for point source detection. We investigated systematic effects such as point spread function and uncertainties in the different background components, and performed a deprojection of the density and temperature profile. Results: We found a temperature drop of a factor of ~3 from the center to the outskirts that is consistent with previous results for galaxy clusters. The metal abundance profile shows a flat behavior towards large radii, which is a hint for galactic winds as the primary ICM enrichment process. The entropy profile is consistent with numerical simulations after applying a gas mass fraction correction. Feedback processes and AGN activity might be one explanation for entropy modification, imprinting out to larger radii in galaxy groups than in galaxy clusters. Previous analyses for clusters and groups often showed an entropy flattening or even a drop around ~ R200, which can be an indication of clumping or non-equilibrium states in the outskirts. Such entropy behavior is absent in UGC 03957. The gas mass fraction is well below the cosmic mean but rises above this value beyond R200, which could be a hint for deviations from hydrostatic equilibrium at these large radii. By measuring the abundance of the α-elements Si and S at intermediate radii we determined the relative number of different supernovae types and found that the abundance pattern can be described by a relative contribution of 80%-100% of core-collapse supernovae. This result is in agreement with previous measurements for galaxy groups.
NASA Astrophysics Data System (ADS)
Ajitanand, N. N.; Phenix Collaboration
2014-11-01
Two-pion interferometry measurements in d +Au and Au + Au collisions at √{sNN} = 200 GeV are used to extract and compare the Gaussian source radii Rout, Rside and Rlong, which characterize the space-time extent of the emission sources. The comparisons, which are performed as a function of collision centrality and the mean transverse momentum for pion pairs, indicate strikingly similar patterns for the d +Au and Au + Au systems. They also indicate a linear dependence of Rside on the initial transverse geometric size R bar , as well as a smaller freeze-out size for the d +Au system. These patterns point to the important role of final-state re-scattering effects in the reaction dynamics of d +Au collisions.
The effect of starspots on the radii of low-mass pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.
2014-07-01
A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.
Kim, Mingue; Eom, Youngsub; Lee, Hwa; Suh, Young-Woo; Song, Jong Suk; Kim, Hyo Myung
2018-02-01
To evaluate the accuracy of IOL power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio. Nine hundred twenty-eight eyes from 928 reference subjects and 158 eyes from 158 cataract patients who underwent phacoemulsification surgery were enrolled. Adjusted corneal power of cataract patients was calculated using the fictitious refractive index that was obtained from the geometric mean posterior/anterior corneal curvature radii ratio of reference subjects and adjusted anterior and predicted posterior corneal curvature radii from conventional keratometry (K) using the posterior/anterior corneal curvature radii ratio. The median absolute error (MedAE) based on the adjusted corneal power was compared with that based on conventional K in the Haigis and SRK/T formulae. The geometric mean posterior/anterior corneal curvature radii ratio was 0.808, and the fictitious refractive index of the cornea for a single Scheimpflug camera was 1.3275. The mean difference between adjusted corneal power and conventional K was 0.05 diopter (D). The MedAE based on adjusted corneal power (0.31 D in the Haigis formula and 0.32 D in the SRK/T formula) was significantly smaller than that based on conventional K (0.41 D and 0.40 D, respectively; P < 0.001 and P < 0.001, respectively). The percentage of eyes with refractive prediction error within ± 0.50 D calculated using adjusted corneal power (74.7%) was significantly greater than that obtained using conventional K (62.7%) in the Haigis formula (P = 0.029). IOL power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio provided more accurate refractive outcomes than calculation using conventional K.
Nuclear States with Abnormally Large Radii (size Isomers)
NASA Astrophysics Data System (ADS)
Ogloblin, A. A.; Demyanova, A. S.; Danilov, A. N.; Belyaeva, T. L.; Goncharov, S. A.
2015-06-01
Application of the methods of measuring the radii of the short-lived excited states (Modified diffraction model MDM, Inelastic nuclear rainbow scattering method INRS, Asymptotic normalization coefficients method ANC) to the analysis of some nuclear reactions provide evidence of existing in 9Be, 11B, 12C, 13C the excited states whose radii exceed those of the corresponding ground states by ~ 30%. Two types of structure of these "size isomers" were identified: neutron halo an α-clusters.
Global Geodesy Using GPS Without Fiducial Sites
NASA Technical Reports Server (NTRS)
Heflin, Michael B.; Blewitt, Geoffrey
1994-01-01
Global Positioning System, GPS, used to make global geodetic measurements without use of fiducial site coordinates. Baseline lengths and geocentric radii for each site determined without having to fix any site coordinates. Given n globally distributed sites, n baseline lengths and n geocentric radii form polyhedron with each site at vertex and with geocenter at intersection of all radii. Geodetic information derived from structure of polyhedron and its change with time. Approach applied to any global geodetic technique.
Radii of neutron drops probed via the neutron skin thickness of nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P. W.; Gandolfi, S.
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
Radii of neutron drops probed via the neutron skin thickness of nuclei
Zhao, P. W.; Gandolfi, S.
2016-10-10
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
The magnetic field of the equatorial magnetotail from 10 to 40 earth radii
NASA Technical Reports Server (NTRS)
Fairfield, D. H.
1986-01-01
A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.
Physical Properties of the Double Kerr Solution
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos A. R.; Rebelo, Carmen
We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.
Olson, Gordon Lee
2016-12-06
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Gordon Lee
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows
NASA Technical Reports Server (NTRS)
Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.
2015-01-01
This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.
Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos
Kanungo, R.; Horiuchi, W.; Hagen, Gaute; ...
2016-09-02
We report proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target. A thick neutron surface evolves from ~0.5 fm in 15C to ~1 fm in 19C. Also, the halo radius in 19C is found to be 6.4±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.
2008-10-30
rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the
Constraints on the Efficiency of Radial Migration in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2015-01-01
A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential disk with a flat rotation curve where the initial fraction of stars trapped in horseshoe orbits falls with increasing velocity dispersion as exp[-σR^2].
Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470
NASA Astrophysics Data System (ADS)
Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney
2018-01-01
We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all < 4.2 g/cm3) and bright host stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.
Statistical spatial properties of speckle patterns generated by multiple laser beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Cain, A.; Sajer, J. M.; Riazuelo, G.
2011-08-15
This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as wellmore » as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.« less
Mapping the circumsolar dust ring near the orbit of Venus
NASA Astrophysics Data System (ADS)
Jones, M. H.; Bewsher, D.; Brown, D. S.
2017-05-01
Synoptic images obtained from the HI-2 instrument on STEREO-A and -B between 2007 and 2014 have been used to further investigate the circumsolar dust ring at the orbit of Venus that was reported by Jones et al. (2013). The analysis is based on high signal-to-noise ratio photometry of the zodiacal light, using data acquired over 10-day intervals, followed by a process of extracting spatial variability on scales up to about 6.5°. The resulting images provide information about the structure of the ring at the location where it is viewed tangentially. We identify 65 usable data sets that comprise about 11% of the available HI-2 data. Analysis of these images show that the orientation of the ring appears to be different to that of the orbit of Venus, with an inclination of 2.1° and longitude of ascending node of 68.5°. We map the variation of ring density parameters in a frame of reference that is co-rotating with Venus and find a pattern suggestive of dust in a 3: 2 orbital resonance. However, the location of the maxima of dust densities is not as expected from theoretical models, and there is some evidence that the dust density distribution in the ring has a pattern speed that differs from the mean motion of Venus.
The measurement of dynamic radii for passenger car tyre
NASA Astrophysics Data System (ADS)
Anghelache, G.; Moisescu, R.
2017-10-01
The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.
UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.
NASA Astrophysics Data System (ADS)
Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas
2018-01-01
The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.
Trapping of Non-Axisymmetric g-Mode Oscillations in Thin Relativistic Disks and kHz QPOs
NASA Astrophysics Data System (ADS)
Kato, Shoji
2001-10-01
We suggest that in the inner part of geometrically thin relativistic disks there are trapped non-axisymmetric g-mode oscillations which are excited by a corotation resonance. These oscillation modes would be the cause of quasi-periodic kHz oscillations observed in some low-mass X-ray sources.
Compositions of energetic particle populations in interplanetary space
NASA Technical Reports Server (NTRS)
Gloeckler, G.
1979-01-01
Observations of helium and heavier particles with energies below about 10 to 20 MeV/nucleon are discussed with emphasis on the composition of solar flare particles, corotating energetic particle streams, and the anomalous cosmic ray component. Future advances expected from results obtained from ISEE -3, Voyager, and the international solar polar spacecraft are reviewed.
Twin-Screw Extruders in Ceramic Extrusion
NASA Astrophysics Data System (ADS)
Wiedmann, Werner; Hölzel, Maria
The machines mainly used for compounding plastics, chemicals and food are co-rotating, closely intermeshing twin-screw extruders. Some 30 000 such extruders are in use worldwide, about 1/3 are ZSKs from Coperion Werner & Pfleiderer, Stuttgart. In the chemical industry more and more batch mixers are being replaced by continuous twin-screw kneaders.
Hall Determination of Atomic Radii of Alkali Metals
ERIC Educational Resources Information Center
Houari, Ahmed
2008-01-01
I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)
Analysis of Solar Wind Plasma Properties of Co-Rotating Interaction Regions at Mars with MSL/RAD
NASA Astrophysics Data System (ADS)
Lohf, H.; Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Posner, A.; Heber, B.; Appel, J. K.; Matthiae, D.; Brinza, D. E.; Weigle, E.; Böttcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Boehm, E.; Rafkin, S. C.; Kahanpää, H.; Martín-Torres, J.; Zorzano, M. P.
2014-12-01
The measurements of the Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover Curiosity have given us the very first opportunity to evaluate the radiation environment on the surface of Mars, which consists mostly of Galactic Cosmic Rays (GCRs) and secondary particles created in the Martian Atmosphere. The solar wind can have an influence on the modulation of the GCR, e.g. when the fast solar wind (~ 750 km/s) interacts with the slow solar wind (~ 400 km/s) at so-called Stream Interaction Regions (SIRs) resulting in an enhancement of the local magnetic field which could affect the shielding of GCRs. SIRs often occur periodically as Co-rotating Interaction Regions (CIRs) which may-be observed at Mars as a decrease in the radiation data measured by MSL/RAD. Considering the difference of the Earth-Mars orbit, we correlate these in-situ radiation data at Mars with the solar wind properties measured by spacecrafts at 1 AU, with the aim to eventually determine the solar wind properties at Mars based on MSL/RAD measurements.
NASA Astrophysics Data System (ADS)
Saengow, C.; Giacomin, A. J.
2017-12-01
The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.
Multibody dynamic analysis using a rotation-free shell element with corotational frame
NASA Astrophysics Data System (ADS)
Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen
2018-03-01
Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.
Loss of ring current O(+) ions due to interaction with Pc 5 waves
NASA Astrophysics Data System (ADS)
Li, Xinlin; Hudson, Mary; Chan, Anthony; Roth, Ilan
1993-01-01
A test particle code is used here to investigate ring current ion interaction with Pc 5 waves, combined with convection and corotation electric fields, with emphasis on the loss of O(+) ions over the dayside magnetosphere. A new loss mechanism for the O(+) ions due to the combined effects of convection and corotation electric fields and interactions with Pc 5 waves via a magnetic drift-bound resonance is presented. For given fields, whether a particle gains or losses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O(+) ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. Due to interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle is lost to the dayside magnetopause by a sunward E x B drift.
Mechanistic modeling of modular co-rotating twin-screw extruders.
Eitzlmayr, Andreas; Koscher, Gerold; Reynolds, Gavin; Huang, Zhenyu; Booth, Jonathan; Shering, Philip; Khinast, Johannes
2014-10-20
In this study, we present a one-dimensional (1D) model of the metering zone of a modular, co-rotating twin-screw extruder for pharmaceutical hot melt extrusion (HME). The model accounts for filling ratio, pressure, melt temperature in screw channels and gaps, driving power, torque and the residence time distribution (RTD). It requires two empirical parameters for each screw element to be determined experimentally or numerically using computational fluid dynamics (CFD). The required Nusselt correlation for the heat transfer to the barrel was determined from experimental data. We present results for a fluid with a constant viscosity in comparison to literature data obtained from CFD simulations. Moreover, we show how to incorporate the rheology of a typical, non-Newtonian polymer melt, and present results in comparison to measurements. For both cases, we achieved excellent agreement. Furthermore, we present results for the RTD, based on experimental data from the literature, and found good agreement with simulations, in which the entire HME process was approximated with the metering model, assuming a constant viscosity for the polymer melt. Copyright © 2014. Published by Elsevier B.V.
Novel kinematic methods to trace Spiral Arms nature using Gaia data
NASA Astrophysics Data System (ADS)
Roca-Fàbrega, S.; Figueras, F.; Valenzuela, O.; Romero-Gómez, M.; Antoja, T.; Colín, P.; Pichardo, B.; Velázquez, H.
2014-07-01
In this work we shed new light in the nature of spiral arm structures in galaxies. We present a disk kinematic and dynamic study of MW like galaxies using complementary approaches: analytical models, test-particle simulations, pure N-body and cosmological N-body plus hydrodynamic simulations. Using collisionless N-body data we have found that models with strong bar present a flat rotation frequency, i.e. rigid body rotation, whereas in the opposite extreme case, i.e. in unbarred systems, spiral arms are disk corotant (Roca-Fàbrega et al. 2013). Complementary to this work, we discuss how the vertex deviation parameter is a good tracer of corotation (CR) and outer Lindblad resonance radius (OLR) (Roca-Fàbrega et al. 2014). We have succeeded to produce MW like models in fully cosmological N-body plus hydrodynamic simulations with a high resolution (Roca-Fàbrega et al., in preparation). First results concerning disk phase space properties in terms of spiral arm nature using these simulations are presented (http://www.am.ub.edu/ sroca/shared/PosterRocaFabrega.pdf).
Conservation buffer distance estimates for Greater Sage-Grouse: a review
Manier, Daniel J.; Bowen, Zachary H.; Brooks, Matthew L.; Casazza, Michael L.; Coates, Peter S.; Deibert, Patricia A.; Hanser, Steven E.; Johnson, Douglas H.
2014-01-01
Distances in this report reflect radii around lek locations because these locations are typically (although not universally) known, and management plans often refer to these locations. Lek sites are most representative of breeding habitats, but their locations are focal points within populations, and as such, protective buffers around lek sites can offer a useful solution for identifying and conserving seasonal habitats required by sage-grouse throughout their life cycle. However, knowledge of local and regional patterns of seasonal habitat use may improve conservation of those important areas, especially regarding the distribution and utilization of nonbreeding season habitats (which may be underrepresented in lek-based designations).
NASA Astrophysics Data System (ADS)
Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong
2018-04-01
We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.
NASA Astrophysics Data System (ADS)
Gibbs, G. V.; Ross, N. L.; Cox, D. F.
2017-09-01
The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.
Azimuthal Angle Dependence of HBT Radii in Au+Au Collisions at RHIC-PHENIX
NASA Astrophysics Data System (ADS)
Niida, Takafumi
Measurement of Hanbury-Brown and Twiss (HBT) interferometry with respect to the event plane have been performed in Au+Au collisions at √{sNN} = 200 GeV at PHENIX, which is a unique tool to study the spatial extent of the created matter at final state in heavy ion collisions and the detailed picture of the space-time evolution from the initial state to the final state. The Gaussian source radii was measured for charged pions and kaons with respect to 2nd-order event plane. There was a difference in final eccentricity between both species, which may imply the different freeze-out mechanism by the particle species. The pion source radii was also measured relative to 3rd-order event plane, and the azimuthal angle dependence of the radii was observed, which qualitatively agrees with the recent hydrodynamic calculation and the oscillation may be driven from the triangular flow.
Hydraulic jumps in 'viscous' accretion disks. [in astronomical models
NASA Technical Reports Server (NTRS)
Michel, F. C.
1984-01-01
It is proposed that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central 'paddle wheel', may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the 'slow' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 to the 10th gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.
2001-09-01
We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Stromgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best chi^2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.
2001-12-01
We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Strömgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.
A Generalized Equatorial Model for the Accelerating Solar Wind
NASA Astrophysics Data System (ADS)
Tasnim, S.; Cairns, Iver H.; Wheatland, M. S.
2018-02-01
A new theoretical model for the solar wind is developed that includes the wind's acceleration, conservation of angular momentum, deviations from corotation, and nonradial velocity and magnetic field components from an inner boundary (corresponding to the onset of the solar wind) to beyond 1 AU. The model uses a solution of the time-steady isothermal equation of motion to describe the acceleration and analytically predicts the Alfvénic critical radius. We fit the model to near-Earth observations of the Wind spacecraft during the solar rotation period of 1-27 August 2010. The resulting data-driven model demonstrates the existence of noncorotating, nonradial flows and fields from the inner boundary (r = rs) outward and predicts the magnetic field B = (Br,Bϕ), velocity v = (vr,vϕ), and density n(r,ϕ,t), which vary with heliocentric distance r, heliolatitude ϕ, and time t in a Sun-centered standard inertial plane. The description applies formally only in the equatorial plane. In a frame corotating with the Sun, the transformed velocity v' and a field B' are not parallel, resulting in an electric field with a component Ez' along the z axis. The resulting E'×B'=E'×B drift lies in the equatorial plane, while the ∇B and curvature drifts are out of the plane. Together these may lead to enhanced scattering/heating of sufficiently energetic particles. The model predicts that deviations δvϕ from corotation at the inner boundary are common, with δvϕ(rs,ϕs,ts) comparable to the transverse velocities due to granulation and supergranulation motions. Abrupt changes in δvϕ(rs,ϕs,ts) are interpreted in terms of converging and diverging flows at the cell boundaries and centers, respectively. Large-scale variations in the predicted angular momentum demonstrate that the solar wind can drive vorticity and turbulence from near the Sun to 1 AU and beyond.
CoRoT-2b: a Tidally Inflated, Young Exoplanet?
NASA Astrophysics Data System (ADS)
Guillot, Tristan; Havel, M.
2009-09-01
CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparó, M.; Benkő, J. M.; Hareter, M.
A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT . We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges)more » were found in the 5–21 d{sup −1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d{sup −1}) by twice the value of the estimated rotational splitting frequency (0.269 d{sup −1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d{sup −1}) are in better agreement with the sum of a possible 1.710 d{sup −1} large separation and two or one times, respectively, the value of the rotational frequency.« less
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2017-03-01
We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.
The expected interior and surface environment of CoRoT-7b
NASA Astrophysics Data System (ADS)
Ziethe, R.; Wurz, P.; Lammer, H.
2010-12-01
The discovery of extrasolar planets - planets that orbit stars other than our sun - has always been fascinating. Meanwhile more than 400 so--called exoplanets have been detected. However, most of the detected exoplanets so far are relatively large (beyond 10 Earth masses) and can be regarded as gaseous planets, but scientists have always seeked after smaller and rocky planets, which could be compared to Earth or other earth--like bodies. Recently, the COROT mission discovered an object, Corot-7b, with a radius of only 1.68 REarth corresponding to a mass of 4.8 +/- 0.8 MEarth. This first low-mass exoplanet -- a so-called Super-Earth -- can be considered to be solid. Corot-7b orbits its primary at a very close distance and is therefore tidally locked in an 1:1 spin-orbit resonance. This implies a very inhomogeneous energy input from the star into the planet. Since the dayside is constantly exposed to the star, there is a strong temperature gradient towards the nightside. The surface temperature on the illuminated side is estimated with 2700K, while the shadowed side is thought to be at 110K. The high temperatures on the dayside will cause the evaporation of volatiles, which gives rise to the formation of an atmosphere. We introduce a three dimensional thermal convection model by solving the pertaining dimensionless hydrodynamical equations, computing the temperature field and especially investigate the formation of partially molten regions due to the inhomogeneous energy input onto the surface. The temperature of the surface and subsurface regions is enormously important for the composition of the atmosphere fed from volatiles, which escaped from the planet. The atmosphere is the only part of this exoplanet, which can be observed with remote sensing methods. Henceforth, understanding the conditions for the formation of an atmosphere (i.e., surface temperature map) is an important step forward in understanding extrasolar planets. We found that the highest temperatures are of course reached below the sub-solar hotspot up to a depth of 2500km. The figure shows a slice through the planet perpendicular to the terminator region, the star would be on the right hand side. It can clearly be seen that the temperatures are generally higher below the sub-solar spot. This is also illustrated by the temperature isosurface of 4270K (centre of figure). The hot upwellings concentrate below the dayside. Directly below the subsolar spot the material would be molten up to 200km deep, while towards eastern or respectively western longitudes material freezes out in shallower depths (right side of figure). Left: temperature slice, Centre: temperature isosurface (red) of 4270K, Right: partial melt isosurface (green) of 50k above solidus temperature.
Morphology of distal radius curvatures: a CT-based study on the Malaysian Malay population
Singh, Taran Singh Pall; Sadagatullah, Abdul Nawfar; Yusof, Abdul Halim
2015-01-01
INTRODUCTION The purpose of this study was to examine the differing curves of the volar distal radius of healthy Malaysian Malays, so as to obtain detailed morphological information that will further the understanding of volar plate osteosynthesis in Malaysian Malays. METHODS Computed tomography with three-dimensional reconstruction was performed on the wrists of 16 healthy Malaysian Malay volunteers. Profile measurements were made using a software program. A novel parameter, the pronator quadratus curve angle, was explored and introduced in this study. Interclass correlation coefficients were calculated to assess the level of agreement between the data collected by the principal investigator and that collected by an independent radiologist. RESULTS The mean ± standard deviation of the arc radii on the radial aspect was 17.50° ± 5.40°, while the median (interquartile range [IQR]) of the arc radii on the ulnar aspect was 25.27° (IQR 5.80°). The mean ± standard deviation of the curvature of the pronator quadratus line was 40.52° ± 2.48°. The arc radii on the radial aspect was significantly lower than the arc radii on the ulnar aspect (p = 0.001). Different radial and ulnar arcs were observed in 56.25% of the radii; the arc was deeper on the ulnar aspect in 93.75% of the radii. CONCLUSION Based on the findings of this study, the likelihood of achieving anatomical reduction with uniformly curved, fixed-angle volar plates is questionable. Changes in the design of these implants may be needed to optimise their usage in the Malaysian Malay population. PMID:25814075
A hint of Poincaré dodecahedral topology in the WMAP first year sky map
NASA Astrophysics Data System (ADS)
Roukema, B. F.; Lew, B.; Cechowska, M.; Marecki, A.; Bajtlik, S.
2004-09-01
It has recently been suggested by Luminet et al. (\\cite{LumNat03}) that the WMAP data are better matched by a geometry in which the topology is that of a Poincaré dodecahedral model and the curvature is ``slightly'' spherical, rather than by an (effectively) infinite flat model. A general back-to-back matched circles analysis by Cornish et al. (\\cite{CSSK03}) for angular radii in the range 25-90 °, using a correlation statistic for signal detection, failed to support this. In this paper, a matched circles analysis specifically designed to detect dodecahedral patterns of matched circles is performed over angular radii in the range 1-40\\ddeg on the one-year WMAP data. Signal detection is attempted via a correlation statistic and an rms difference statistic. Extreme value distributions of these statistics are calculated for one orientation of the 36\\ddeg ``screw motion'' (Clifford translation) when matching circles, for the opposite screw motion, and for a zero (unphysical) rotation. The most correlated circles appear for circle radii of \\alpha =11 ± 1 \\ddeg, for the left-handed screw motion, but not for the right-handed one, nor for the zero rotation. The favoured six dodecahedral face centres in galactic coordinates are (\\lII,\\bII) ≈ (252\\ddeg,+65\\ddeg), (51\\ddeg,+51\\ddeg), (144\\ddeg,+38\\ddeg), (207\\ddeg,+10\\ddeg), (271\\ddeg,+3\\ddeg), (332\\ddeg,+25\\ddeg) and their opposites. The six pairs of circles independently each favour a circle angular radius of 11 ± 1\\ddeg. The temperature fluctuations along the matched circles are plotted and are clearly highly correlated. Whether or not these six circle pairs centred on dodecahedral faces match via a 36\\ddeg rotation only due to unexpected statistical properties of the WMAP ILC map, or whether they match due to global geometry, it is clear that the WMAP ILC map has some unusual statistical properties which mimic a potentially interesting cosmological signal.
Maximum-valence radii of transition metals
Pauling, Linus
1975-01-01
In many of their compounds the transition metals have covalence 9, forming nine bonds with use of nine hybrid spd bond orbitals. A set of maximum-valence single-bond radii is formulated for use in these compounds. These radii are in reasonably good agreement with observed bond lengths. Quadruple bonds between two transition metal atoms are about 50 pm (iron-group atoms) or 55 pm (palladium and platinum-group atoms) shorter than single bonds. This amount of shortening corresponds to four bent single bonds with the best set of bond angles, 79.24° and 128.8°. PMID:16578730
Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K
NASA Astrophysics Data System (ADS)
Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.
2018-01-01
The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.
Electrolyte solutions at curved electrodes. II. Microscopic approach
NASA Astrophysics Data System (ADS)
Reindl, Andreas; Bier, Markus; Dietrich, S.
2017-04-01
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
Electrolyte solutions at curved electrodes. II. Microscopic approach.
Reindl, Andreas; Bier, Markus; Dietrich, S
2017-04-21
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
Precision Stellar and Planetary Astrophysics with TESS and Gaia
NASA Astrophysics Data System (ADS)
Stevens, Daniel J.; KELT Collaboration
2018-01-01
There is an ever-present need for precise and accurate stellar parameters, particularly for low-mass stars. For example, some fraction of measured M dwarf radii are inflated and have effective temperatures that are suppressed relative to predictions from models, but the physical cause of these effects is still uncertain. This is exacerbated by the fact that only a handful of M dwarfs -- all from double-lined eclipsing binaries (EBs) -- have both masses and radii measured to 3% or better. In the Gaia era, we can now measure model-independent masses and radii for single-lined EBs, thus expanding the sample of stars with precisely measured parameters by at least an order of magnitude, in principle. I will illustrate how one can combine Gaia parallaxes and broad-band stellar fluxes with the eclipse and radial velocity data to provide model-independent masses and radii. I will present our expected achievable constraints on the masses and radii of single-lined EBs. I will discuss both our current effort to turn several dozens of single-lined EBs discovered by the KELT and HATNet surveys into a catalog of exquisitely characterized stars and exoplanets as well as the prospects for achieving similar science for a much larger number of systems with TESS.
Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin
NASA Astrophysics Data System (ADS)
Yang, Junjie; Piekarewicz, J.
2018-01-01
It has recently been suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy L [Brown, Phys. Rev. Lett. 102, 122502 (2009), 10.1103/PhysRevLett.102.122502]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of L . Our results confirm that the difference in charge radii between various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and L . Moreover, given that various neutron-star properties are also sensitive to L , a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Luz, V.
2016-07-10
Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H{sup −}. In order to solve the radiative transfermore » equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H{sup −}, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.« less
Bayesian Analysis of Hot-Jupiter Radius Anomalies: Evidence for Ohmic Dissipation?
NASA Astrophysics Data System (ADS)
Thorngren, Daniel P.; Fortney, Jonathan J.
2018-05-01
The cause of hot-Jupiter radius inflation, where giant planets with {T}eq} > 1000 K are significantly larger than expected, is an open question and the subject of many proposed explanations. Many of these hypotheses postulate an additional anomalous power that heats planets’ convective interiors, leading to larger radii. Rather than examine these proposed models individually, we determine what anomalous powers are needed to explain the observed population’s radii, and consider which models are most consistent with this. We examine 281 giant planets with well-determined masses and radii and apply thermal evolution and Bayesian statistical models to infer the anomalous power as a fraction of (and varying with) incident flux ɛ(F) that best reproduces the observed radii. First, we observe that the inflation of planets below about M = 0.5 M J appears very different than their higher-mass counterparts, perhaps as the result of mass loss or an inefficient heating mechanism. As such, we exclude planets below this threshold. Next, we show with strong significance that ɛ(F) increases with {T}eq} toward a maximum of ∼2.5% at T eq ≈ 1500 K, and then decreases as temperatures increase further, falling to ∼0.2% at T eff = 2500 K. This high-flux decrease in inflation efficiency was predicted by the Ohmic dissipation model of giant planet inflation but not other models. We also show that the thermal tides model predicts far more variance in radii than is observed. Thus, our results provide evidence for the Ohmic dissipation model and a functional form for ɛ(F) that any future theories of hot-Jupiter radii can be tested against.
Characteristic analysis and comparison of two kinds of hybrid plasmonic annular resonators
NASA Astrophysics Data System (ADS)
Zhou, Jie; Shi, Feifei; Zhou, Taojie; He, Kebo; Qiu, Bocang; Zhang, Zhaoyu
2017-04-01
We designed two kinds of hybrid plasmonic annular resonators with different cross-sectional shapes, i.e., a square and circle called "square ring" and "circle ring" resonators, respectively. Both resonators feature an ultracompact mode volume of ˜10-4 μm3 and a relatively high-quality factor of ˜102 at a submicron footprint within our studied wavelength range from 400 to 900 nm. Their performance as defined by the Q/V ratio (quality factor over mode volume) is enhanced considerably with a reduction in their physical dimensions. There exists critical annular radii, which increase from 400 to 600 nm with an increase in the azimuthal numbers from m=7 to m=10, if the two types of rings are compared with the same mode numbers and same ring thickness of 120 nm. Below the critical radii, the circle ring resonator outperforms the square ring resonator in terms of the Q/V ratio, and the difference in Q/V of the two types of rings increases rapidly with the decrease of the radii. On the other hand, they have critical annular radii of ˜250 nm, below which the square ring resonator outperforms the circle ring resonator at the wavelengths of 490 and 595 nm however, the difference in Q/V of the two types of rings remains small within the radii range we consider. It is suggested that, in practice, with the consideration of the wavelength of green emission for these two ring structures with radii from 100 to 500 nm and ring thickness ˜120 nm, they have a negligible difference in Q/V performance.
Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft
NASA Technical Reports Server (NTRS)
Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.
1995-01-01
Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.
Naylor, Andrew; Talwalkar, Sumedh C.; Trail, Ian A.; Joyce, Thomas J.
2016-01-01
The articulating surfaces of four different sizes of unused pyrolytic carbon proximal interphalangeal prostheses (PIP) were evaluated though measuring several topographical parameters using a white light interferometer: average roughness (Sa); root mean-square roughness (Sq); skewness (Ssk); and kurtosis (Sku). The radii of the articulating surfaces were measured using a coordinate measuring machine, and were found to be: 2.5, 3.3, 4.2 and 4.7 mm for proximal, and 4.0, 5.1, 5.6 and 6.3 mm for medial components. ANOVA was used to assess the relationship between the component radii and each roughness parameter. Sa, Sq and Ssk correlated negatively with radius (p = 0.001, 0.001, 0.023), whilst Sku correlated positively with radius (p = 0.03). Ergo, the surfaces with the largest radii possessed the better topographical characteristics: low roughness, negative skewness, high kurtosis. Conversely, the surfaces with the smallest radii had poorer topographical characteristics. PMID:27089375
What shapes stellar metallicity gradients of massive galaxies at large radii?
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela
2017-03-01
We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).
Scleral topography analysed by optical coherence tomography.
Bandlitz, Stefan; Bäumer, Joachim; Conrad, Uwe; Wolffsohn, James
2017-08-01
A detailed evaluation of the corneo-scleral-profile (CSP) is of particular relevance in soft and scleral lenses fitting. The aim of this study was to use optical coherence tomography (OCT) to analyse the profile of the limbal sclera and to evaluate the relationship between central corneal radii, corneal eccentricity and scleral radii. Using OCT (Optos OCT/SLO; Dunfermline, Scotland, UK) the limbal scleral radii (SR) of 30 subjects (11M, 19F; mean age 23.8±2.0SD years) were measured in eight meridians 45° apart. Central corneal radii (CR) and corneal eccentricity (CE) were evaluated using the Oculus Keratograph 4 (Oculus, Wetzlar, Germany). Differences between SR in the meridians and the associations between SR and corneal topography were assessed. Median SR measured along 45° (58.0; interquartile range, 46.8-84.8mm) was significantly (p<0.001) flatter than along 0° (30.7; 24.5-44.3mm), 135° (28.4; 24.9-30.9mm), 180° (23.40; 21.3-25.4mm), 225° (25.8; 22.4-32.4mm), 270° (28.8; 25.3-33.1mm), 315° (30.0; 25.0-36.9mm), and 90° (37.1; 29.1-43.4mm). In addition, the nasal SR along 0° were significant flatter than the temporal SR along 180° (p<0.001). Central corneal radius in the flat meridian (7.83±0.26mm) and in the steep meridian (7.65±0.26mm) did not correlate with SR (p=0.186 to 0.998). There was no statistically significant correlation between corneal eccentricity and scleral radii in each meridian (p=0.422). With the OCT device used in this study it was possible to measure scleral radii in eight different meridians. Scleral radii are independent of corneal topography and may provide additional data useful in fitting soft and scleral contact lenses. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models
NASA Astrophysics Data System (ADS)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-15
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simplemore » Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.« less
A new possible picture of the hadron structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokrovsky, Yury E.
A new chiral-scale invariant version of the bag model (CSB) is developed and applied to calculations of masses and radii for single bag states. The mass formula of the CSB model contains no free parameters and connects masses and radii of the bags with fundamental QCD scales, namely with {lambda}{sub QCD},
Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects
NASA Astrophysics Data System (ADS)
Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja
2014-10-01
In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.
Starspot detection and properties
NASA Astrophysics Data System (ADS)
Savanov, I. S.
2013-07-01
I review the currently available techniques for the starspots detection including the one-dimensional spot modelling of photometric light curves. Special attention will be paid to the modelling of photospheric activity based on the high-precision light curves obtained with space missions MOST, CoRoT, and Kepler. Physical spot parameters (temperature, sizes and variability time scales including short-term activity cycles) are discussed.
The Hercules stream as seen by APOGEE-2 South
NASA Astrophysics Data System (ADS)
Hunt, Jason A. S.; Bovy, Jo; Pérez-Villegas, Angeles; Holtzman, Jon A.; Sobeck, Jennifer; Chojnowski, Drew; Santana, Felipe A.; Palicio, Pedro A.; Wegg, Christopher; Gerhard, Ortwin; Almeida, Andrés; Bizyaev, Dmitry; Fernandez-Trincado, Jose G.; Lane, Richard R.; Longa-Peña, Penélope; Majewski, Steven R.; Pan, Kaike; Roman-Lopes, Alexandre
2018-02-01
The Hercules stream is a group of comoving stars in the solar neighbourhood, which can potentially be explained as a signature of either the outer Lindblad resonance (OLR) of a fast Galactic bar or the corotation resonance (CR) of a slower bar. In either case, the feature should be present over a large area of the disc. With the recent commissioning of the APOGEE-2 Southern spectrograph we can search for the Hercules stream at (l, b) = (270°, 0), a direction in which the Hercules stream, if caused by the bar's OLR, would be strong enough to be detected using only the line-of-sight velocities. We clearly detect a narrow, Hercules-like feature in the data that can be traced from the solar neighbourhood to a distance of about 4 kpc. The detected feature matches well the line-of-sight velocity distribution from the fast-bar (OLR) model. Confronting the data with a model where the Hercules stream is caused by the CR of a slower bar leads to a poorer match, as the corotation model does not predict clearly separated modes, possibly because the slow-bar model is too hot.
Quasi-steady solar wind dynamics
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1983-01-01
Progress in understanding the large scale dynamics of quasisteady, corotating solar wind structure was reviewed. The nature of the solar wind at large heliocentric distances preliminary calculations from a 2-D MHD model are used to demonstrate theoretical expectations of corotating structure out to 30 AU. It is found that the forward and reverse shocks from adjacent CIR's begin to interact at about 10 AU, producing new shock pairs flanking secondary CIR's. These sawtooth secondary CIR's interact again at about 20 AU and survive as visible entities to 30 AU. The model predicts the velocity jumps at the leading edge of the secondary CIR's at 30 AU should be very small but there should still be sizable variations in the thermodynamic and magnetic parameters. The driving dynamic mechanism in the distant solar wind is the relaxation of pressure gradients. The second topic is the influence of weak, nonimpulsive time dependence in quasisteady dynamics. It is suggested that modest large scale variations in the coronal flow speed on periods of several hours to a day may be responsible for many of the remaining discrepancies between theory and observation. Effects offer a ready explanation for the apparent rounding of stream fronts between 0.3 and 1.0 AU discovered by Helios.
On the Azimuthal Variation of Core Plasma in the Equatorial Magnetosphere
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Craven, P. D.; Comfort, R. H.; Moore, T. E.
1995-01-01
Previous results of plasmapause position surveys have been synthesized into a description of the underlying global distribution of plasmasphere-like or core plasma densities unique to a steady state magnetosphere. Under these steady conditions, the boundary between high- and low-density regions is taken to represent the boundary between diurnal near-corotation and large-scale circulation streamlines that traverse the entire magnetosphere. Results indicate a boundary that has a pronounced bulge in the dusk sector that is rotated westward and markedly reduced in size at increased levels of geomagnetic activity (and presumably magnetospheric convection). The derived profile is empirical confirmation of an underlying 'tear drop' distribution of core plasma, which is valid only for prolonged steady conditions and is somewhat different from that associated with the simple superposition of sunward flow and corotation, both in its detailed shape and in its varying orientation. Variation away from the tear drop profile suggests that magnetospheric circulation departs from a uniform flow field, having a radial dependence with respect to the Earth that is qualitatively consistent with electrostatic shielding of the convection electric field and which is rotated westward at increased levels of geophysical activity.
Investigation of Magnetic Reconnection Suppression at Saturn's Magnetopause
NASA Astrophysics Data System (ADS)
Sawyer, R.; Fuselier, S. A.; Mukherjee, J.; Steven, P. M.; Masters, A.
2017-12-01
At Earth, one of the fundamental processes that govern the interaction between the solar wind and the magnetosphere is magnetic reconnection. It remains to be seen how significant a role magnetic reconnection plays in the magnetospheric dynamics of the outer planets. In particular, there may be conditions that cause suppression of reconnection. For fast rotators, like Saturn, the strong co-rotation may be dominant throughout the magnetosphere, out to the magnetopause. These strong internal co-rotational flows may create a shear flow across the magnetopause that may act to suppress reconnection, especially on the dawn flank. Cassini has given us an extraordinary insight into the plasma environment around Saturn. The electron spectrometer (ELS) on the Cassini plasma spectrometer (CAPS) instrument provides data on the plasma density and temperatures as well as electron pitch angle distributions and their associated energies. In this study we examine magnetopause crossing events where heated electrons were observed in the magnetosheath. We use a modified empirical model for the location of the reconnection X-line to show where reconnection may be taking place at Saturn's magnetopause. From these results, we determine if any events considered fall in the predicted suppression region along the dawn flanks.
A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies
NASA Astrophysics Data System (ADS)
Sutyrin, G.
2016-02-01
In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.
Observations of energetic particles between a pair of corotating interaction regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Z.; Chen, Y.; Tang, C. L.
We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed by the STEREO-B spacecraft, the two CIRs were separated by less than 5 days. In contrast to other CIR events, the fluxes of the energetic ions and electrons in this event reached their maxima between the trailing edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (B{sub r} ) reversed its sense and the anisotropy of the flux also changed from Sunward tomore » anti-Sunward between the two CIRs. Furthermore, there was an extended period of counterstreaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained with the Advanced Composition Explorer and STEREO-A. We conjecture that these observations were due to a U-shaped, large-scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic field topology may have formed due to magnetic reconnection in the upper corona.« less
Generic element processor (application to nonlinear analysis)
NASA Technical Reports Server (NTRS)
Stanley, Gary
1989-01-01
The focus here is on one aspect of the Computational Structural Mechanics (CSM) Testbed: finite element technology. The approach involves a Generic Element Processor: a command-driven, database-oriented software shell that facilitates introduction of new elements into the testbed. This shell features an element-independent corotational capability that upgrades linear elements to geometrically nonlinear analysis, and corrects the rigid-body errors that plague many contemporary plate and shell elements. Specific elements that have been implemented in the Testbed via this mechanism include the Assumed Natural-Coordinate Strain (ANS) shell elements, developed with Professor K. C. Park (University of Colorado, Boulder), a new class of curved hybrid shell elements, developed by Dr. David Kang of LPARL (formerly a student of Professor T. Pian), other shell and solid hybrid elements developed by NASA personnel, and recently a repackaged version of the workhorse shell element used in the traditional STAGS nonlinear shell analysis code. The presentation covers: (1) user and developer interfaces to the generic element processor, (2) an explanation of the built-in corotational option, (3) a description of some of the shell-elements currently implemented, and (4) application to sample nonlinear shell postbuckling problems.
NASA Astrophysics Data System (ADS)
Zhang, B.; Delamere, P. A.; Ma, X.; Burkholder, B.; Wiltberger, M.; Lyon, J. G.; Merkin, V. G.; Sorathia, K. A.
2018-01-01
The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven by the growth of KHI modes in the prenoon and subsolar region (e.g., >10 local time) that are advected by magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank (18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2 h at the dawn flank (6 MLT). Although the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other planetary missions.
The changing phases of extrasolar planet CoRoT-1b.
Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon
2009-05-28
Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-06-17
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparo, M.; Benko, J. M.; Hareter, M.
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\
Chaotic dynamics outside Saturn’s main rings: The case of Atlas
NASA Astrophysics Data System (ADS)
Renner, Stéfan; Cooper, Nicholas J.; El Moutamid, Maryame; Evans, Mike W.; Murray, Carl D.; Sicardy, Bruno
2014-11-01
We revisit in detail the dynamics of Atlas. From a fit to new Cassini ISS astrometric observations spanning February 2004 to August 2013, we estimate GM_Atlas=0.384+/-0.001 x 10^(-3)km^3s^(-2), a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. Our numerically-derived orbit shows that Atlas is currently librating in both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. We demonstrate that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. The interactions between the two resonances is investigated using the CoraLin analytical model (El Moutamid et al., 2014), showing that the chaotic zone fills almost all the corotation site occupied by the satellite’s orbit. Four 70 :67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect on Atlas.We estimate the capture probabilities of Atlas into resonances with Prometheus as the orbits expand through tidal effects, and discuss the implications for the orbital evolution.
Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations
NASA Astrophysics Data System (ADS)
Hmidi, Taoufik; Mateu, Joan
2017-03-01
In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.
Dependence of Fusion Barrier Heights on the Difference of Proton and Neutron Radii
NASA Astrophysics Data System (ADS)
Dobrowolski, A.; Pomorski, K.; Bartel, J.
2005-04-01
Using the Skyrme effective nucleon--nucleon interaction together with the semiclassical Extended Thomas--Fermi approach (ETF) we investigate the relative change of the fusion barrier heights for the reaction 16O+208Pb as function of the nuclear proton or neutron radii of the colliding nuclei.
The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind
NASA Astrophysics Data System (ADS)
Reames, Donald V.
2018-03-01
We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.
Spectroscopic Study of the Variability of Three Northern Of+ Supergiants
NASA Astrophysics Data System (ADS)
De Becker, M.; Rauw, G.; Linder, N.
2009-10-01
The transition from early Of stars to WN-type objects is poorly understood. O-type supergiants with emission lines (OIf+) are considered to be intermediate between these two classes. The scope of this paper is to investigate the spectral variability of three Of+ supergiants. We constituted spectral time series of unprecedented quality for our targets (~200 spectra in total), essentially in the blue domain, covering timescales from a few hours up to a few years. Temporal Variance Spectrum and Fourier analyses were performed in order to characterize their spectral variability. We report on a correlated significant line profile variability in the prominent He II λ4686 and Hβ lines most likely related to the strong stellar winds. The variability pattern is similar for the three stars investigated (HD 14947, HD 15570, and HD 16691), and the main differences are more quantitative than qualitative. However, the reported timescales are somewhat different, and the most striking variability pattern is reported for HD 16691. We did not find any clear evidence for binarity, and we focus mainly on an interpretation based on a single-star scenario. We show that the behavior of the three stars investigated in this study present strong similarities, pointing to a putative common scenario, even though a few differences should be noted. Our preferred interpretation scheme is that of Large-Scale Corotating Structures modulating the profile of the lines that are produced in the strong stellar wind. Based on observations collected at the Observatoire de Haute-Provence (France).
Imaging the disk around IRAS 20126+4104 at subarcsecond resolution
NASA Astrophysics Data System (ADS)
Cesaroni, R.; Galli, D.; Neri, R.; Walmsley, C. M.
2014-06-01
Context. The existence of disks around high-mass stars has yet to be established on a solid ground, as only few reliable candidates are known to date. The disk rotating about the ~104 L⊙ protostar IRAS 20126+4104 is probably the most convincing of these. Aims: We would like to resolve the disk structure in IRAS 20126+4104 and, if possible, investigate the relationship between the disk and the associated jet emitted along the rotation axis. Methods: We performed observations at 1.4 mm with the IRAM Plateau de Bure interferometer attaining an angular resolution of ~0.̋4 (~660 AU). We imaged the methyl cyanide J = 12 → 11 ground state and vibrationally excited transitions as well as the CH313CN isotopologue, which had proved to be disk tracers. Results: Our findings confirm the existence of a disk rotating about a ~7-10 M⊙ star in IRAS 20126+4104, with rotation velocity increasing at small radii. The dramatic improvement in sensitivity and spectral and angular resolution with respect to previous observations allows us to establish that higher excitation transitions are emitted closer to the protostar than the ground state lines, which demonstrates that the gas temperature is increasing towards the centre. We also find that the material is asymmetrically distributed in the disk and speculate on the possible origin of such a distribution. Finally, we demonstrate that the jet emitted along the disk axis is co-rotating with the disk. Conclusions: We present iron-clad evidence of the existence of a disk undergoing rotation around a B-type protostar, with rotation velocity increasing towards the centre. We also demonstrate that the disk is not axially symmetric. These results prove that B-type stars may form through disk-mediated accretion as their low-mass siblings do, but also show that the disk structure may be significantly perturbed by tidal interactions with (unseen) companions, even in a relatively poor cluster such as that associated with IRAS 20126+4104. Based on observations carried out with the Plateau de Bure interferometer.
Inferences of the deep solar meridional flow
NASA Astrophysics Data System (ADS)
Böning, Vincent G. A.
2017-10-01
Understanding the solar meridional flow is important for uncovering the origin of the solar activity cycle. Yet, recent helioseismic estimates of this flow have come to conflicting conclusions in deeper layers of the solar interior, i.e., at depths below about 0.9 solar radii. The aim of this thesis is to contribute to a better understanding of the deep solar meridional flow. Time-distance helioseismology is the major method for investigating this flow. In this method, travel times of waves propagating between pairs of locations on the solar surface are measured. Until now, the travel-time measurements have been modeled using the ray approximation, which assumes that waves travel along infinitely thin ray paths between these locations. In contrast, the scattering of the full wave field in the solar interior due to the flow is modeled in first order by the Born approximation. It is in general a more accurate model of the physics in the solar interior. In a first step, an existing model for calculating the sensitivity of travel-time measurements to solar interior flows using the Born approximation is extended from Cartesian to spherical geometry. The results are succesfully compared to the Cartesian ones and are tested for self-consistency. In a second step, the newly developed model is validated using an existing numerical simulation of linear wave propagation in the Sun. An inversion of artificial travel times for meridional flow shows excellent agreement for noiseless data and reproduces many features in the input flow profile in the case of noisy data. Finally, the new method is used to infer the deep meridional flow. I used Global Oscillation Network Group (GONG) data that were earlier analyzed using the ray approximation and I employed the same Substractive Optimized Local Averaging (SOLA) inversion technique as in the earlier study. Using an existing formula for the covariance of travel-time measurements, it is shown that the assumption of uncorrelated errors from earlier studies leads to errors in the inverted flows being underestimated by a factor of about two to four. The inverted meridional flow above about 0.85 solar radii confirms the earlier results from ray theory regarding the general pattern of the flow, especially regarding a shallow return flow at about 0.9 solar radii, with some differences in the magnitude of the flow. Below about 0.85 solar radii, the inversion result depends on the thresholds used in the singular value decomposition. One result is again similar to the original regarding its general single-cell shape. Other results show a multi-cell structure in the southern hemisphere with two or three cells stacked radially. However, both the single-cell and the multi-cell flow profiles are consistent with the measured travel times within the measurement errors. To reach an unambiguous conclusion on the meridional flow below about 0.85 solar radii, the errors in the measured travel times have to be decreased considerably in future studies. For now, I conclude that the existing controversy of recent measurements of the deep meridional flow is relaxed by properly taking the associated errors into account.
Acceleration mechanisms for energetic particles in the earth's magnetosphere
NASA Technical Reports Server (NTRS)
Schiferl, S.; Fan, C. Y.; Hsieh, K. C.; Erickson, K. N.; Gloeckler, G.
1982-01-01
By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, signatures of different acceleration mechanisms for these particles were searched for. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 earth radii while ATS-6 was located at local midnight at a distance of 6.6 earth radii. Although the flux variations as observed on the two spacecraft both showed 1.5 min periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the x-point located at about 10 earth radii.
Problems with the Baade-Wesselink method
NASA Technical Reports Server (NTRS)
Bohm-Vitense, E.; Garnavich, P.; Lawler, M.; Mena-Werth, J.; Morgan, S.
1989-01-01
The discrepancy noted in radii obtained by the Baade-Wesselink method when different colors are used to determine the effective temperatures is explored. The discrepancy is found to be due to an inconsistency in the applied temperature-color calibrations. The assumption of the maximum likelihood method that beta (the effective temperature + 0.1 times the bolometric correction) is a linear function of the color is valid for the B-V and V-I colors, but not for the V-R colors. It is suggested that the errors introduced by the nonlinearity in the relation between beta and the V-R colors will produce radii which are too large. The radii derived from the V-B colors appear to be too small.
NASA Technical Reports Server (NTRS)
Sandage, A.; Tarenghi, M.; Binggeli, B.
1984-01-01
Attention is given to the technical aspects of photometric measurements of 109 galaxies near the center of the Virgo Cluster, noting various types of radii and surface brightness for about 50 E and dE galaxies in the sample that range in absolute magnitude from -20 to -12. These data are combined with data from the literature for giant E and dwarf E galaxies in the Local Group to study the systematic properties of E galaxies over a range of one million luminosities. The radial intensity profiles derived are fitted to the manifold of King (1978) models to derive model-dependent central surface brightness, core radii, and cutoff radii.
Multidimensional equilibria and their stability in copolymer-solvent mixtures
NASA Astrophysics Data System (ADS)
Glasner, Karl; Orizaga, Saulo
2018-06-01
This paper discusses localized equilibria which arise in copolymer-solvent mixtures. A free boundary problem associated with the sharp-interface limit of a density functional model is used to identify both lamellar and concentric domain patterns composed of a finite number of layers. Stability of these morphologies is studied through explicit linearization of the free boundary evolution. For the multilayered lamellar configuration, transverse instability is observed for sufficiently small dimensionless interfacial energies. Additionally, a crossover between small and large wavelength instabilities is observed depending on whether solvent-polymer or monomer-monomer interfacial energy is dominant. Concentric domain patterns resembling multilayered micelles and vesicles exhibit bifurcations wherein they only exist for sufficiently small dimensionless interfacial energies. The bifurcation of large radii vesicle solutions is studied analytically, and a crossover from a supercritical case with only one solution branch to a subcritical case with two is observed. Linearized stability of these configurations shows that azimuthal perturbation may lead to instabilities as interfacial energy is decreased.
Chien, Yu Ching; Wu, Shian Chee; Chen, Wan Ching; Chou, Chih Chung
2013-04-01
Microcystis , a genus of potentially harmful cyanobacteria, is known to proliferate in stratified freshwaters due to its capability to change cell density and regulate buoyancy. In this study, a trajectory model was developed to simulate the cell density change and spatial distribution of Microcystis cells with nonuniform colony sizes. Simulations showed that larger colonies migrate to the near-surface water layer during the night to effectively capture irradiation and become heavy enough to sink during daytime. Smaller-sized colonies instead took a longer time to get to the surface. Simulation of the diurnally varying Microcystis population profile matched the observed pattern in the field when the radii of the multisized colonies were in a beta distribution. This modeling approach is able to take into account the history of cells by keeping track of their positions and properties, such as cell density and the sizes of colonies. It also serves as the basis for further developmental modeling of phytoplanktons that are forming colonies and changing buoyancy.
NASA Technical Reports Server (NTRS)
Murchie, S. L.; Fraeman, A. A.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.
2013-01-01
Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior.
Ehrlich, Yael; Regev, Lior; Kerem, Zohar; Boaretto, Elisabetta
2017-01-01
The age of living massive olive trees is often assumed to be between hundreds and even thousands of years. These estimations are usually based on the girth of the trunk and an extrapolation based on a theoretical annual growth rate. It is difficult to objectively verify these claims, as a monumental tree may not be cut down for analysis of its cross-section. In addition, the inner and oldest part of the trunk in olive trees usually rots, precluding the possibility of carting out radiocarbon analysis of material from the first years of life of the tree. In this work we present a cross-section of an olive tree, previously estimated to be hundreds of years old, which was cut down post-mortem in 2013. The cross-section was radiocarbon dated at numerous points following the natural growth pattern, which was made possible to observe by viewing the entire cross-section. Annual growth rate values were calculated and compared between different radii. The cross-section also revealed a nearly independent segment of growth, which would clearly offset any estimations based solely on girth calculations. Multiple piths were identified, indicating the beginning of branching within the trunk. Different radii were found to have comparable growth rates, resulting in similar estimates dating the piths to the 19th century. The estimated age of the piths represent a terminus ante quem for the age of the tree, as these are piths of separate branches. However, the tree is likely not many years older than the dated piths, and certainly not centuries older. The oldest radiocarbon-datable material in this cross-section was less than 200 years old, which is in agreement with most other radiocarbon dates of internal wood from living olive trees, rarely older than 300 years.
Determination of mechanical properties of excised dog radii from lateral vibration experiments
NASA Technical Reports Server (NTRS)
Thompson, G. A.; Anliker, M.; Young, D. R.
1973-01-01
Experimental data which can be used as a guideline in developing a mathematical model for lateral vibrations of whole bone are reported. The study used wet and dry dog radii mounted in a cantilever configuration. Data are also given on the mechanical, geometric, and viscoelastic properties of bones.
Bridge-in-a-Backpack(TM). Task 2.1 and 2.2 : investigate alternative shapes with varying radii.
DOT National Transportation Integrated Search
2015-02-01
This report includes fulfillment of Tasks 2.1 and 2.2 of a multi-task contract to further enhance concrete filled FRP : tubes, or the Bridge in a Backpack. Task 2 is an investigation of alternative shapes for the FRP tubes with varying : radii. Task ...
Relations among Five Radii of Circles in a Triangle, Its Sides and Other Segments
ERIC Educational Resources Information Center
Sigler, Avi; Stupel, Moshe; Flores, Alfinio
2017-01-01
Students use GeoGebra to explore the mathematical relations among different radii of circles in a triangle (circumcircle, incircle, excircles) and the sides and other segments in the triangle. The more formal mathematical development of the relations that follows the explorations is based on known geometrical properties, different formulas…
Photometric Study of Fourteen Low-mass Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korda, D.; Zasche, P.; Wolf, M.
2017-07-01
New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includesmore » 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.« less
Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiu; Lei, Huan; Gao, Peiyuan
Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a method for quantifying this uncertainty in solvation energies using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many moremore » types of atomic charges; therefore, construction of surrogate models for the charge parameter space required compressed sensing combined with an iterative rotation method to enhance problem sparsity. We present results for the uncertainty in small molecule solvation energies based on these approaches. Additionally, we explore the correlation between uncertainties due to radii and charges which motivates the need for future work in uncertainty quantification methods for high-dimensional parameter spaces.« less
Fundamental Stellar Properties of M-Dwarfs from the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Gies, D. R.; McAlister, H. A.; ten Brummelaar, T. A.; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Mérand, A. M.
2005-12-01
We report the angular diameters of six M dwarfs ranging in spectral type from M1.0 V to M3.0 V measured with Georgia State University's CHARA Array, a long-baseline optical interferometer located at Mount Wilson Observatory. Observations were made with the longest baselines in the near infrared K'-band and yielded angular diameters less than one milliarcsecond. Using an iterative process combining parallaxes from the NStars program and photometrically-derived bolometric luminosities and masses, we calculated effective temperatures, surface gravities, and stellar radii. Our results are consistent with other empirical measurements of M-dwarf radii, but found that current models underestimate the true stellar radii by up to 15-20%. We suggest that theoretical models for low mass stars may be lacking an opacity source that alters the computed stellar radii. Science operations at the Array are supported by the National Science Foundation through NSF Grant AST--0307562 and by Georgia State University through the College of Arts and Sciences and the Office of the Vice President for Research. Financial support for DHB was provided by the National Science Foundation through grant AST--0205297.
Electron pitch angle distributions throughout the magnetosphere as observed on Ogo 5.
NASA Technical Reports Server (NTRS)
West, H. I., Jr.; Buck, R. M.; Walton, J. R.
1973-01-01
A survey of the equatorial pitch angle distributions of energetic electrons is provided for all local times out to radial distances of 20 earth radii on the night side of the earth and to the magnetopause on the day side of the earth. In much of the inner magnetosphere and in the outer magnetosphere on the day side of the earth, the normal loss cone distribution prevails. The effects of drift shell splitting - i.e., the appearance of pitch angle distributions with minimums at 90 deg, called butterfly distributions - become apparent in the early afternoon magnetosphere at extended distances, and the distribution is observed in to 5.5 earth radii in the nighttime magnetosphere. Inside about 9 earth radii the pitch angle effects are quite energy-dependent. Beyond about 9 earth radii in the premidnight magnetosphere during quiet times the butterfly distribution is often observed. It is shown that these electrons cannot survive a drift to dawn without being considerably modified. The role of substorm activity in modifying these distributions is identified.
Electronegativity effects and single covalent bond lengths of molecules in the gas phase.
Lang, Peter F; Smith, Barry C
2014-06-07
This paper discusses in detail the calculation of internuclear distances of heteronuclear single bond covalent molecules in the gaseous state. It reviews briefly the effect of electronegativity in covalent bond length. A set of single bond covalent radii and electronegativity values are proposed. Covalent bond lengths calculated by an adapted form of a simple expression (which calculated internuclear separation of different Group 1 and Group 2 crystalline salts to a remarkable degree of accuracy) show very good agreement with observed values. A small number of bond lengths with double bonds as well as bond lengths in the crystalline state are calculated using the same expression and when compared with observed values also give good agreement. This work shows that covalent radii are not additive and that radii in the crystalline state are different from those in the gaseous state. The results also show that electronegativity is a major influence on covalent bond lengths and the set of electronegativity scale and covalent radii proposed in this work can be used to calculate covalent bond lengths in different environments that have not yet been experimentally measured.
NASA Astrophysics Data System (ADS)
Erdemchimeg, B.; Artukh, A. G.; Klygin, S. A.; Kononenko, G. A.; Kyslukha, D. A.; Sereda, Yu. M.; Vorontzov, A. N.; Lukyanov, S. M.; Penionzhkevich, Yu. E.; Davaa, S.; Khuukhenkhuu, G.; Borcea, C.; Rotaru, F.; Stanoiu, M.; Martina, L.; Saillant, F.; Raine, B.
2015-06-01
The total nuclear reaction cross sections (σR) measurements have long been of interest since they tell us about the radii and transparency of these nuclei and give clues to understanding of their structure. For studies of unstable nuclei, in particular the physical properties of halo nuclei and the neutron skin thickness, it is valuable to know not only the root-mean-square radii (rms) but it is important to know the details of nucleusnucleus potentials. Our goal was to study total reaction cross sections (σR) by a direct measurement technique (the so-called beam attenuation or transmission method) which allows to extract model independent information. The interaction radii for 6He, 8,9Li were extracted, which are in agreement with the previous measurement at the similar energies (about a few tens of AMeV) Our results show a tendency of increasing radii as function of mass of the secondary targets.
Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Eric D.; Fortney, Jonathan J.
2014-09-01
Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that atmore » fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.« less
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa
2015-01-01
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.
The search for life on Earth and other planets.
Gross, Michael
2012-04-10
As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.
Photometric variability of the Be star CoRoT-ID 102761769
NASA Astrophysics Data System (ADS)
Emilio, M.; Andrade, L.; Janot-Pacheco, E.; Baglin, A.; Gutiérrez-Soto, J.; Suárez, J. C.; de Batz, B.; Diago, P.; Fabregat, J.; Floquet, M.; Frémat, Y.; Huat, A. L.; Hubert, A. M.; Espinosa Lara, F.; Leroy, B.; Martayan, C.; Neiner, C.; Semaan, T.; Suso, J.
2010-11-01
Context. Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. Aims: For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. Methods: One low-resolution spectrum of the star was obtained with the INT telescope at the Observatorio del Roque de los Muchachos. A time series analysis was performed using both cleanest and singular spectrum analysis algorithms to the CoRoT light curve. To identify the pulsation modes of the observed frequencies, we computed a set of models representative of CoRoT-ID 102761769 by varying its main physical parameters inside the uncertainties discussed. Results: We found two close frequencies related to the star. They are 2.465 c d-1 (28.5 μHz) and 2.441 c d-1 (28.2 μHz). The precision to which those frequencies were found is 0.018 c d-1 (0.2 μHz). The projected stellar rotation was estimated to be 120 km s-1 from the Fourier transform of spectral lines. If CoRoT-ID 102761769 is a typical Galactic Be star it rotates near the critical velocity. The critical rotation frequency of a typical B5-6 star is about 3.5 c d-1 (40.5 μHz), which implies that the above frequencies are really caused by stellar pulsations rather than star's rotation. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
The dynamics of rings around small, irregular bodies
NASA Astrophysics Data System (ADS)
Sicardy, Bruno
2017-06-01
Stellar occultations revealed the presence of two dense rings around the Centaur object (10199) Chariklo (Braga-Ribas et al., Nature 508, 72, 2014). This is the first ring system discovered around an object that is not a giant planet, suggesting that rings may exist around numerous bodies in the solar system. Chariklo's rings roughly reside at the outer limit of the Roche zone of the body. Moreover, the main ring has sharp edges, which call for the presence of putative shepherd satellites. Those characteristics give an image of Chariklo's rings that are rather similar, in terms of dynamics, to those surrounding the gaseous planets.An important difference exists, however, between giant planets and small bodies: the formers are highly axisymmetric, while the latters can support mass anomalies (eg surface topographic features) or non-spherical shapes (eg an ellipsoidal figure of equilibrium) that involve masses, relative to the body itself, as large as 10-4-10-3.We investigate the effect of non-axisymmetric terms in the potential of the body upon a collisional debris disk that initially surrounds a small irregular body. We show that the corotation points being maxima of energy, dissipative collisions remove the particles from the corotation zone over short time scales (< 106 years). Moreover, the Lindblad resonances inside the corotation radius create torques that drive the particles onto the surface of the central body. Conversely, the outer Lindblad resonances push the disk material beyond the outer 3/2 and 2/1 Lindblad resonances.Taking as an example Chariklo's ring system, for which recent data have been obtained from stellar occultations, we show that the Lindblad resonant torques actuate over short time scales (< 106 years). This general picture offers a natural explanation of the presence of dense rings at the outer limit of Chariklo's Roche zone, and their absence closer to the body.The work leading to this results has received funding from the European Research Council under the European Community's H2020 2014-2020 ERC grant Agreement n°669416 "Lucky Star".
NASA Astrophysics Data System (ADS)
Pascual-Granado, J.; Suárez, J. C.; Garrido, R.; Moya, A.; Hernández, A. García; Rodón, J. R.; Lares-Martiz, M.
2018-06-01
Context. It is known that the observed distribution of frequencies in CoRoT and Kepler δ Scuti stars has no parallelism with any theoretical model. Pre-whitening is a widespread technique in the analysis of time series with gaps from pulsating stars located in the classical instability strip, such as δ Scuti stars. However, some studies have pointed out that this technique might introduce biases in the results of the frequency analysis. Aims: This work aims at studying the biases that can result from pre-whitening in asteroseismology. The results will depend on the intrinsic range and distribution of frequencies of the stars. The periodic nature of the gaps in CoRoT observations, only in the range of the pulsational frequency content of the δ Scuti stars, is shown to be crucial to determining their oscillation frequencies, the first step in performing asteroseismology of these objects. Hence, here we focus on the impact of pre-whitening on the asteroseismic characterization of δ Scuti stars. Methods: We select a sample of 15 δ Scuti stars observed by the CoRoT satellite, for which ultra-high-quality photometric data have been obtained by its seismic channel. In order to study the impact on the asteroseismic characterization of δ Scuti stars we perform the pre-whitening procedure on three datasets: gapped data, linearly interpolated data, and data with gaps interpolated using Autoregressive and Moving Average models (ARMA). Results: The different results obtained show that at least in some cases pre-whitening is not an efficient procedure for the deconvolution of the spectral window. Therefore, in order to reduce the effect of the spectral window to a minimum, in addition to performing a pre-whitening of the data, it is necessary to interpolate with an algorithm that is aimed to preserve the original frequency content. Tables 5-49 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A40
NASA Astrophysics Data System (ADS)
Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene
2016-10-01
Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.
Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis.
Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim
2016-08-01
The aims of this study were to noninvasively and automatically estimate both the radius of the ablated liver tissue and the radius encircling the treated zone, which also defines where the tissue is definitely untreated during a microwave (MW) thermal ablation procedure. Fourteen ex vivo bovine fresh liver specimens were ablated at 40 W using a 14 G microwave antenna, for durations of 3, 6, 8, and 10 min. The tissues were scanned every 5 s during the ablation using an x-ray CT scanner. In order to estimate the radius of the ablation zone, the acquired images were transformed into a polar presentation by displaying the Hounsfield units (HU) as a function of angle and radius. From this polar presentation, the average HU radial profile was analyzed at each time point and the ablation zone radius was estimated. In addition, textural analysis was applied to the original CT images. The proposed algorithm identified high entropy regions and estimated the treated zone radius per time. The estimated ablated zone radii as a function of treatment durations were compared, by means of correlation coefficient and root mean square error (RMSE) to gross pathology measurements taken immediately post-treatment from similarly ablated tissue. Both the estimated ablation radii and the treated zone radii demonstrated strong correlation with the measured gross pathology values (R(2) ≥ 0.89 and R(2) ≥ 0.86, respectively). The automated ablation radii estimation had an average discrepancy of less than 1 mm (RMSE = 0.65 mm) from the gross pathology measured values, while the treated zone radii showed a slight overestimation of approximately 1.5 mm (RMSE = 1.6 mm). Noninvasive monitoring of MW ablation using x-ray CT and image analysis is feasible. Automatic estimations of the ablation zone radius and the radius encompassing the treated zone that highly correlate with actual ablation measured values can be obtained. This technique can therefore potentially be used to obtain real time monitoring and improve the clinical outcome.
Radial and azimuthal distribution of Io's oxygen neutral cloud observed by Hisaki/EXCEED
NASA Astrophysics Data System (ADS)
Koga, R.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kimura, T.; Smith, H. T.
2017-12-01
We report the spatial distributions of oxygen neural cloud surrounding Jupiter's moon Io and along Io's orbit observed by the HISAKI satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exobase and move to corona (< 5.8 Io radii, the boundary where Jupiter's gravity begins to dominate) and neutral clouds (> 5.8 Io radii) mainly due to atmospheric sputtering. Io plasma torus is formed by ionization of these atoms by electron impact and charge exchange processes. It is essential to examine the dominant source of Io plasma torus, particularly in the vicinity of Io (<5.8 Io radii; atmosphere and corona) or the region away from Io (>5.8 Io radii; extended neutral clouds). The spatial distribution of oxygen and sulfur neutral clouds is important to understand the source. The extreme ultraviolet spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Hisaki satellite observed Io plasma torus continuously in 2014-2015, and we carried out the monitoring of the distribution of atomic oxygen emission at 130.4 nm. The emission averaged over the distance range of 4.5-6.5 Jovian radii on the dawn and dusk sides strongly depends on the Io phase angle (IPA), and has a emission peak between IPA of 60-90 degrees on the dawn side, and between 240-270 degrees on the dusk side, respectively. It also shows the asymmetry with respect to Io's position: the intensity averaged for IPA 60-90 degrees (13.3 Rayleighs (R)) is 1.2 times greater than that for IPA 90-120 degrees (11.1 R) on the dawn side. The similar tendency is found on the dusk side. Weak atomic oxygen emission (4 R) uniformly distributes in every IPA. We also examined the radial distribution of the oxygen neutral cloud during the same period and found the emission peak near Io's orbit with decreasing the intensity toward 8.0 Jupiter radii. The results show the high density component of the oxygen neutral cloud is concentrated around Io and extends mainly toward leading side of Io. In addition, the low density neutrals uniformly exist along Io's orbit. Both components extend radially outward up to 8 Jovian radii with decreasing the density. In the presentation, we give the estimation of spatial distribution of oxygen neutral density and the oxygen ion source rate in the Io plasma torus.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
Small exoplanets tend to fall into two categories: the smallest ones are predominantly rocky, like Earth, and the larger ones have a lower-density, more gaseous composition, similar to Neptune. The planet Kepler-454b was initially estimated to fall between these two groups in radius. So what is its composition?Small-Planet DichotomyThough Kepler has detected thousands of planet candidates with radii between 1 and 2.7 Earth radii, we have only obtained precise mass measurements for 12 of these planets.Mass-radius diagram (click for a closer look!) for planets with radius 2.7 Earth radii and well-measured masses. The six smallest planets (and Venus and Earth) fall along a single mass-radius curve of Earth-like composition. The six larger planets (including Kepler-454b) have lower-density compositions. [Gettel et al. 2016]These measurements, however, show an interesting dichotomy: planets with radii less than 1.6 Earth radii have rocky, Earth-like compositions, following a single relation between their mass and radius. Planets between 2 and 2.7 Earth radii, however, have lower densities and dont follow a single mass-radius relation. Their low densities suggest they contain a significant fraction of volatiles, likely in the form of a thick gas envelope of water, hydrogen, and/or helium.The planet Kepler-454b, discovered transiting a Sun-like star, was initially estimated to have a radius of 1.86 Earth radii placing it in between these two categories. A team of astronomers led by Sara Gettel (Harvard-Smithsonian Center for Astrophysics) have since followed up on the initial Kepler detection, hoping to determine the planets composition.Low-Density OutcomeGettel and collaborators obtained 63 observations of the host stars radial velocity with the HARPS-N spectrograph on the Telescopio Nazionale Galileo, and another 36 observations with the HIRES spectrograph at Keck Observatory. These observations allowed them to do several things:Obtain a more accurate radius estimate for Kepler-454b: 2.37 Earth radii.Measure the planets mass: roughly 6.8 Earth masses.Discover surprise! two other, non-transiting companions in the system: Kepler-454c, a planet with a minimum mass of ~4.5 Jupiter masses on a 524-day orbit, and Kepler-454d, a more distant (10-year orbit) brown dwarf or low-mass star.Kepler-454bs newly measured size and mass place it firmly in the category of non-rocky, larger, less dense planets (the authors calculate a density of ~2.76 g/cm3, or roughly half that of Earth). This seems to reinforce the idea that rocky planets dont grow larger than ~1.6 Earth radii, and planets with mass greater than about 6 Earth masses are typically low-density and/or swathed in an envelope of gas.The authors point out that future observing missions like NASA TESS (launching in 2017) will provide more targets that can be followed up to obtain mass measurements, allowing us to determine if this trend in mass and radius holds up in a larger sample.CitationSara Gettel et al 2016 ApJ 816 95. doi:10.3847/0004-637X/816/2/95
Transition to chaos of natural convection between two infinite differentially heated vertical plates
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.
2013-08-01
Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.
Hoffmann, Ch; Lücke, M; Pinter, A
2004-05-01
We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders. The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio 12 with rigid nonrotating ends in a setup with radius ratio eta=0.5. Differences in structure, dynamics, symmetry properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave numbers M=+/-1 and M=0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second part of the paper we determine how the above listed properties of the M=-1, 0, and 1 vortex structures are changed by an externally imposed axial through flow with Reynolds numbers in the range -40< or =Re< or =40. Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are preferred.
Modelling of the Saturnian Kilometric Radiation (SKR)
NASA Astrophysics Data System (ADS)
Cecconi, B.; Lamy, L.; Prangé, R.; Zarka, P.; Hess, S.; Clarke, J. T.; Nichols, J.
2008-12-01
The Saturnian Kilometric Radiation (SKR), discovered by the Voyager spacecraft in the 1980's, is observed quasi-continuously by Cassini since 2003. Study of 3 years of SKR observations by RPWS (Radio and Plasma Wave Science) revealed three recurrent features of SKR dynamic spectra : (i) discrete arcs, presumably caused by the anisotropy of the radio emission pattern combined to the observer's motion, (ii) an equatorial shadow zone around the planet (observed near perikrones) and (iii) signal extinctions at high northern latitudes. We model these features using the code PRES (Planetary Radio Emission Simulator) that assumes radio emissions to be generated via the Cyclotron Maser Instability for simulating observed dynamic spectra. We show that observed arc-like structures imply radio sources in partial (~90%) corotation, located on magnetic field lines of invariant latitude 70° to 75°, and emitting at oblique angle from the local magnetic field with a cone angle that varies with frequency. Then, based on the previously demonstrated conjugacy between UV and SKR sources, we successfully model the equatorial shadow zone as well as northern latitude SKR extinctions assuming time variable radio sources distributed along field lines with footprints along the daily UV oval measured from HST images.
First Temperate Exoplanet Sized Up
NASA Astrophysics Data System (ADS)
2010-03-01
Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such exoplanets, the planet has a temperate climate. The temperature of its gaseous surface is expected to be between 160 degrees and minus twenty degrees Celsius, with minimal variations between day and night. The exact value depends on the possible presence of a layer of highly reflective clouds. The CoRoT satellite, operated by the French space agency CNES [3], identified the planet after 145 days of observations during the summer of 2008. Observations with the very successful ESO exoplanet hunter - the HARPS instrument attached to the 3.6-metre ESO telescope at La Silla in Chile - allowed the astronomers to measure its mass, confirming that Corot-9b is indeed an exoplanet, with a mass about 80% the mass of Jupiter. This finding is being published in this week's edition of the journal Nature. Notes [1] A planetary transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes changes in the apparent brightness of the star and enables the planet's diameter to be measured. Combined with radial velocity measurements made by the HARPS spectrograph, it is also possible to deduce the mass and, hence, the density of the planet. It is this combination that allows astronomers to study this object in great detail. The fact that it is transiting - but nevertheless not so close to its star to be a "hot Jupiter" - is what makes this object uniquely well suited for further studies. [2] Temperate gas giants are, so far, the largest known group of exoplanets discovered. [3] The CoRoT (Convection, Rotation and Transits) space telescope was constructed by CNES, with contributions from Austria, Germany, Spain, Belgium, Brazil and the European Space Agency (ESA). It was specifically designed to detect transiting exoplanets and carry out seismological studies of stars. Its results are supplemented by observations with several ground-based telescopes, among them the IAC-80 (Teide Observatory), the Canada France Hawaii Telescope (Hawaii), the Isaac Newton Telescope (Roque de los Muchachos Observatory), Wise Observatory (Israel), the Faulkes North Telescope of the Las Cumbres Observatory Global Telescope Network (Hawaii) and the ESO 3.6-metre telescope (Chile). More information This research was presented in a paper published this week in Nature ("A transiting giant planet with a temperature between 250 K and 430 K"), by H. J. Deeg et al. The team is composed of H.J. Deeg, B. Tingley, J.M. Almenara, and M. Rabus (Instituto de Astrofısica de Canarias, Tenerife, Spain), C. Moutou, P. Barge, A. S. Bonomo, M. Deleuil, J.-C. Gazzano, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, Université de Provence, CNRS, OAMP, France), A. Erikson, Sz. Csizmadia, J. Cabrera, P. Kabath, H. Rauer (Institute of Planetary Research, German Aerospace Center, Berlin, Germany), H. Bruntt, M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (Observatoire de Paris-Meudon, France), S. Aigrain and F. Pont (University of Exeter, UK), R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Queloz, and S. Udry (Observatoire de l'Université de Genève, Switzerland), M. Barbieri (Università di Padova, Italia), W. Benz (Universität Bern, Switzerland), P. Bordé, A. Léger, M. Ollivier, and B. Samuel (Institut d'Astrophysique Spatiale, Université Paris XI, Orsay, France), F. Bouchy and G. Hébrard (IAP, Paris, France), L. Carone and M. Pätzold (Rheinisches Institut für Umweltforschung an der Universität zu Köln, Germany), S. Carpano, M. Fridlund, P. Gondoin, and R. den Hartog (ESTEC/ESA, Noordwijk, The Netherlands), D. Ciardi (NASA Exoplanet Science Institute/Caltech, USA), R. Dvorak (University of Vienna, Austria), S. Ferraz-Mello (Universidade de São Paulo, Brasil), D. Gandolfi, E. Guenther, A. Hatzes, G. Wuchterl, B. Stecklum (Thüringer Landessternwarte, Tautenburg, Germany), M. Gillon (University of Liège, Belgium), T. Guillot and M. Havel (Observatoire de la Côte d' Azur, Nice, France), M. Hidas, T. Lister, and R. Street (Las Cumbres Observatory Global Telescope Network, Santa Barbara, USA), H. Lammer and J. Weingrill (Space Research Institute, Austrian Academy of Science), and T. Mazeh and A. Shporer (Tel Aviv University, Israel). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
A MOLA-controlled RAND-USGS Control Network for Mars
NASA Technical Reports Server (NTRS)
Archinal, B. A.; Colvin, T. R.; Davies, M. E.; Kirk, R. L.; Duxbury, T. C.; Lee, E. M.; Cook, D.; Gitlin, A. R.
2002-01-01
We are undertaking, in support of the Mars Digital Image Mosaic (MDIM) 2.1, many improvements in the RAND-USGS photogrammetric control network for Mars, primarily involving the use of Mars Orbiter Laser Altimeter (MOLA)-derived radii and DIMs to improve control point absolute radii and horizontal positions. Additional information is contained in the original extended abstract.
A differential equation for the Generalized Born radii.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2013-06-28
The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.
VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)
NASA Astrophysics Data System (ADS)
Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.
2017-11-01
We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).
Epidemic spreading on random surfer networks with optimal interaction radius
NASA Astrophysics Data System (ADS)
Feng, Yun; Ding, Li; Hu, Ping
2018-03-01
In this paper, the optimal control problem of epidemic spreading on random surfer heterogeneous networks is considered. An epidemic spreading model is established according to the classification of individual's initial interaction radii. Then, a control strategy is proposed based on adjusting individual's interaction radii. The global stability of the disease free and endemic equilibrium of the model is investigated. We prove that an optimal solution exists for the optimal control problem and the explicit form of which is presented. Numerical simulations are conducted to verify the correctness of the theoretical results. It is proved that the optimal control strategy is effective to minimize the density of infected individuals and the cost associated with the adjustment of interaction radii.
Yetkinler, D N; Ladd, A L; Poser, R D; Constantz, B R; Carter, D
1999-03-01
The purpose of this study was to compare the biomechanical efficacy of an injectable calcium-phosphate bone cement (Skeletal Repair System [SRS]) with that of Kirschner wires for the fixation of intraarticular fractures of the distal part of the radius. Colles fractures (AO pattern, C2.1) were produced in ten pairs of fresh-frozen human cadaveric radii. One radius from each pair was randomly chosen for stabilization with SRS bone cement. These ten radii were treated with open incision, impaction of loose cancellous bone with use of a Freer elevator, and placement of the SRS bone cement by injection. In the ten control specimens, the fracture was stabilized with use of two horizontal and two oblique Kirschner wires. The specimens were cyclically loaded to a peak load of 200 newtons for 2000 cycles to evaluate the amount of settling, or radial shortening, under conditions simulating postoperative loading with the limb in a cast. Each specimen then was loaded to failure to determine its ultimate strength. The amount of radial shortening was highly variable among the specimens, but it was consistently higher in the Kirschner-wire constructs than in the bone fixed with SRS bone cement within each pair of radii. The range of shortening for all twenty specimens was 0.18 to 4.51 millimeters. The average amount of shortening in the SRS constructs was 50 percent of that in the Kirschner-wire constructs (0.51+/-0.34 compared with 1.01+/-1.23 millimeters; p = 0.015). With the numbers available, no significant difference in ultimate strength was detected between the two fixation groups. This study showed that fixation of an intra-articular fracture of the distal part of a cadaveric radius with biocompatible calcium-phosphate bone cement produced results that were biomechanically comparable with those produced by fixation with Kirschner wires. However, the constructs that were fixed with calcium-phosphate bone cement demonstrated less shortening under simulated cyclic load-bearing.
Fuel cell crimp-resistant cooling device with internal coil
NASA Technical Reports Server (NTRS)
Wittel, deceased, Charles F. (Inventor)
1986-01-01
A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.
Pulsar extinction. [astrophysics
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Baker, K.; Turk, J. S.
1975-01-01
Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.
NASA Astrophysics Data System (ADS)
Mosser, B.; Samadi, R.; Belkacem, K.
2013-11-01
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.
Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions
NASA Astrophysics Data System (ADS)
McCarthy, Morgan; Quillen, Alice
2018-01-01
We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.
Development and validation of a canine radius replica for mechanical testing of orthopedic implants.
Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A
2012-01-01
To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.
NASA Astrophysics Data System (ADS)
Grunblatt, Samuel K.; Huber, Daniel; Gaidos, Eric; Lopez, Eric D.; Howard, Andrew W.; Isaacson, Howard T.; Sinukoff, Evan; Vanderburg, Andrew; Nofi, Larissa; Yu, Jie; North, Thomas S. H.; Chaplin, William; Foreman-Mackey, Daniel; Petigura, Erik; Ansdell, Megan; Weiss, Lauren; Fulton, Benjamin; Lin, Douglas N. C.
2017-12-01
Despite more than 20 years since the discovery of the first gas giant planet with an anomalously large radius, the mechanism for planet inflation remains unknown. Here, we report the discovery of K2-132b, an inflated gas giant planet found with the NASA K2 Mission, and a revised mass for another inflated planet, K2-97b. These planets orbit on ≈9 day orbits around host stars that recently evolved into red giants. We constrain the irradiation history of these planets using models constrained by asteroseismology and Keck/High Resolution Echelle Spectrometer spectroscopy and radial velocity measurements. We measure planet radii of 1.31 ± 0.11 R J and 1.30 ± 0.07 R J, respectively. These radii are typical for planets receiving the current irradiation, but not the former, zero age main-sequence irradiation of these planets. This suggests that the current sizes of these planets are directly correlated to their current irradiation. Our precise constraints of the masses and radii of the stars and planets in these systems allow us to constrain the planetary heating efficiency of both systems as 0.03{ % }-0.02 % +0.03 % . These results are consistent with a planet re-inflation scenario, but suggest that the efficiency of planet re-inflation may be lower than previously theorized. Finally, we discuss the agreement within 10% of the stellar masses and radii, and the planet masses, radii, and orbital periods of both systems, and speculate that this may be due to selection bias in searching for planets around evolved stars.
Propeller installation effects on turboprop aircraft acoustics
NASA Astrophysics Data System (ADS)
Chirico, Giulia; Barakos, George N.; Bown, Nicholas
2018-06-01
Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.
Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation
NASA Astrophysics Data System (ADS)
Yun, Su-Jin
In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.
Corotation lag limit on mass-loss rate from Io
NASA Astrophysics Data System (ADS)
Huang, T. S.; Siscoe, G. L.
1987-08-01
Considering rapid escape of H2O from Io during an early hot evolutionary epoch, an H2O plasma torus is constructed by balancing dissociation and ionization products against centrifugally driven diffusion, including for the first time the effects of corotation lag resulting from mass loading. Two fundamental limits are found as the mass injection rate increases: (1) an 'ignition' limit of 1.1 x 10 to the 6th kg/s, beyond which the torus cannot ionize itself and photoionization dominates; and (2) the ultimate mass loading limit of 1.3 x 10 to the 7th kg/s, which occurs when neutrals newly created by charge exchange and recombination cannot leave the torus, thereby bringing magnetospherically driven transport to a halt. Connecting this limit with the variations of Io's temperature in its early evolution epoch gives an estimate of the upper limit on the total mass loss from Io, about 3.0 x 10 to the 20th kg (for high-opacity nebula) and about 8.9 x 10 to the 20th kg (for low-opacity nebula). These limits correspond to eroding 8 km and 22 km of H2O from the surface. It is concluded that compared to the other Galilean satellites, Io was created basically dry.
The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei
2017-11-01
In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.
Probing Stellar Dynamics With Space Photometry
NASA Astrophysics Data System (ADS)
García, Rafael A.; Salabert, D.; Ballot, J.; Beck, P. G.; Bigot, L.; Corsaro, E.; Creevey, O.; Egeland, R.; Jiménez, A.; Mathur, S.; Metcalfe, T.; do Nascimento, J.; Pallé, P. L.; Pérez Hernández, F.; Regulo, C.
2016-08-01
The surface magnetic field has substantial influence on various stellar properties that can be probed through various techniques. With the advent of new space-borne facilities such as CoRoT and Kepler, uninterrupted long high-precision photometry is available for hundred of thousand of stars. This number will substantially grow through the forthcoming TESS and PLATO missions. The unique Kepler observations -covering up to 4 years with a 30-min cadence- allows studying stellar variability with different origins such as pulsations, convection, surface rotation, or magnetism at several time scales from hours to years. We study the photospheric magnetic activity of solar-like stars by means of the variability induced in the observed signal by starspots crossing the visible disk. We constructed a solar photometric magnetic activity proxy, Sph from SPM/VIRGO/SoHO, as if the Sun was a distant star and we compare it with several solar well-known magnetic proxies. The results validate this approach. Thus, we compute the Sph proxy for a set of CoRoT and Kepler solar-like stars for which pulsations were already detected. After characterizing the rotation and the magnetic properties of 300 solar-like stars, we use their seismic properties to characterize 18 solar analogs for which we study their magnetism. This allows us to put the Sun into context of its siblings.
Dusty disc-planet interaction with dust-free simulations
NASA Astrophysics Data System (ADS)
Chen, Jhih-Wei; Lin, Min-Kai
2018-05-01
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.
The Structure of a Quasi-Keplerian Accretion Disk around Magnetized Stars
NASA Astrophysics Data System (ADS)
Habumugisha, Isaac; Jurua, Edward; Tessema, Solomon B.; Simon, Anguma K.
2018-06-01
In this paper, we present the complete structure of a quasi-Keplerian thin accretion disk with an internal dynamo around a magnetized neutron star. We assume a full quasi-Keplerian disk with the azimuthal velocity deviating from the Keplerian fashion by a factor of ξ (0 < ξ < 2). In our approach, we vertically integrate the radial component of the momentum equation to obtain the radial pressure gradient equation for a thin quasi-Keplerian accretion disk. Our results show that, at large radial distance, the accretion disk behaves in a Keplerian fashion. However, close to the neutron star, pressure gradient force (PGF) largely modifies the disk structure, resulting into sudden dynamical changes in the accretion disk. The corotation radius is shifted inward (outward) for ξ > 1 (for ξ < 1), and the position of the inner edge with respect to the new corotation radius is also relocated accordingly, as compared to the Keplerian model. The resulting PGF torque couples with viscous torque (when ξ < 1) to provide a spin-down torque and a spin-up torque (when ξ > 1) while in the advective state. Therefore, neglecting the PGF, as has been the case in previous models, is a glaring omission. Our result has the potential to explain the observable dynamic consequences of accretion disks around magnetized neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Andreas; Lorenzen, Winfried; Schöttler, Manuel
2015-01-01
We present new equations of state (EOSs) for hydrogen and helium covering a wide range of temperatures from 60 K to 10{sup 7} K and densities from 10{sup –10} g cm{sup –3} to 10{sup 3} g cm{sup –3}. They include an extended set of ab initio EOS data for the strongly correlated quantum regime with an accurate connection to data derived from other approaches for the neighboring regions. We compare linear mixing isotherms based on our EOS tables with available real mixture data. A first important astrophysical application of this new EOS data is the calculation of interior models formore » Jupiter and comparison with recent results. Second, mass-radius relations are calculated for Brown Dwarfs (BDs) which we compare with predictions derived from the widely used EOS of Saumon, Chabrier, and van Horn. Furthermore, we calculate interior models for typical BDs with different masses, namely, Corot-3b, Gliese-229b, and Corot-15b, and the giant planet KOI-889b. The predictions for the central pressures and densities differ by up to 10% dependent on the EOS used. Our EOS tables are made available in the supplemental material of this paper.« less
The nature of arms in spiral galaxies. IV. Symmetries and asymmetries
NASA Astrophysics Data System (ADS)
del Río, M. S.; Cepa, J.
1999-01-01
A Fourier analysis of the intensity distribution in the planes of nine spiral galaxies is performed. In terms of the arm classification scheme of \\cite[Elmegreen & Elmegreen (1987)]{ee87} seven of the galaxies have well-defined arms (classes 12 and 9) and two have intermediate-type arms (class 5). The galaxies studied are NGC 157, 753, 895, 4321, 6764, 6814, 6951, 7479 and 7723. For each object Johnson B-band images are available which are decomposed into angular components, for different angular periodicities. No a priori assumption is made concerning the form of the arms. The base function used in the analysis is a logarithmic spiral. The main result obtained with this method is that the dominant component (or mode) usually changes at corotation. In some cases, this change to a different mode persists only for a short range about corotation, but in other cases the change is permanent. The agreement between pitch angles found with this method and by fitting logarithmic spirals to mean arm positions (del Río & Cepa 1998b, hereafter \\cite[Paper III]{p3}) is good, except for those cases where bars are strong and dominant. Finally, a comparison is made with the ``symmetrization'' method introduced by Elmegreen, Elmegreen & Montenegro (1992, hereafter EEM), which also shows the different symmetric components.
NASA Astrophysics Data System (ADS)
Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.
2017-06-01
A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.
Drift resonance and stability of the Io plasma torus
NASA Astrophysics Data System (ADS)
Zhan, Jie; Hill, T. W.
2000-03-01
The observed local time asymmetry of the Io plasma torus is generally attributed to the presence of a persistent dawn-to-dusk electric field in the Jovian magnetosphere. The local time asymmetry is modulated at the System 3 rotation period of Jupiter's magnetic field, suggesting that the dawn-to-dusk electric field may be similarly modulated. We argue that such a System 3 modulation would have a profound disruptive effect on the observed torus structure if the torus were to corotate at exactly the System 3 rate: the torus would be a resonantly forced harmonic oscillator, and would disintegrate in a few rotation periods, contrary to observations. This destabilizing effect is independent of, and in addition to, the more familiar effect of the centrifugal interchange instability, which is also capable of disrupting the torus in a few rotation periods in the absence of other effects. We conclude that the observed (few percent) corotation lag of the torus is essential to preserving the observed long-lived torus structure by detuning the resonant frequency (the torus drift frequency) relative to the forcing frequency (System 3). A possible outcome of this confinement mechanism is a residual radial oscillation of the torus at the beat period (~10 days) between System 3 and the torus drift period.
Stability of a family of uniform vortices related to vortex configurations before merging
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, P.; Williamson, C. H. K.
2006-11-01
Motivated by the merger of two corotating vortices, Cerretelli & Williamson (JFM 2003) discovered a family of uniform vorticity patches representing the continuation of two corotating vortices into a single ``dumbbell'' shape. This branch of solutions passes through a bifurcation from the Kirchhoff ellipses (discovered by Kamm 1987 and Saffman 1988) and ends into a cat's eye shape. By using a more accurate method for equilibrium shape calculation, we find some differences in the equilibrium shapes to those discovered by Cerretelli & Williamson, particularly near the topological change (from a two-vortex to a single vortex shape). We implement the approach of Dritschel (1985), and show that all the simply connected shapes are unstable to a three-fold perturbation, while a regime of the two-vortex shapes nearing the topological change is unstable to a two-fold antisymmetric perturbation. The stability of two patches has been source of debate in the literature. Saffman & Szeto (1980) predicted exchange of stability at an extremum in energy and angular momentum; on the other hand, Dritschel (1985) found that conditions for instability from linear analysis did not match those coming from the energy criterion. In the present work, we find precise agreement between results from linear analysis and energy criterion, in accordance with the more recent work of Kamm (1987) and Dritschel (1995).
Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debes, John H.; Poteet, Charles A.; Hines, Dean
2017-02-01
We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope ( HST ), using the newly commissioned BAR5 occulter. These HST /STIS observations achieved an inner working angle of ∼0.″2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya’smore » azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22.°7 yr{sup −1} in a counterclockwise direction, equivalent to a period of 15.9 yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douici, M.; Allal, N. H.; Fellah, M.
The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.
Comparison of methods to determine disk and heartwood areas
Michael C. Wiemann; John P. Brown; Neal D. Bennett
2002-01-01
The feasibility of using radius measurements on disks to determine cross-sectional areas of tree stems and the heartwood they contain was examined in sugar maple and red oak butt logs. Areas calculated from quadratic means of four stem radii and four heartwood radii were compared with areas measured with a planimeter. The lineal measurement method was less precise for...
NASA Astrophysics Data System (ADS)
Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.
2016-08-01
Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.
Yamaguchi, Makoto; Matsunaga, Takuro; Amemiya, Kazuki; Ohira, Akihiro; Hasegawa, Naoki; Shinohara, Kazuhiko; Ando, Masaki; Yoshida, Toshihiko
2014-12-26
The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor controlling the performance of catalyst layers in membrane electrode assemblies of proton exchange membrane fuel cells (PEMFCs). The effect of water/alcohol composition on the dispersion of H-Nafion in water/1-propanol and water/ethanol solutions was studied by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopy. Hydrodynamic radii calculated from DLS decay profiles and the radii and interparticle distance of rod-like particles derived from SAXS profiles showed almost the same dependence on alcohol concentration. 1-Propanol was more effective than ethanol to induce changes in the characteristic lengths of the rod-like particles. The motional narrowing in the (19)F NMR spectra by addition of 1-propanol indicates selective solvation of the rod-like particles. We suppose this might have decreased their radii and induced their elongation, which eventually led to extension of the ordered regions as observed in the hydrodynamic radii. Our study helps to clarify the dispersion of Nafion in aqueous alcohol solutions, which has implications for the performance of PEMFCs.
Spreading of blood drops over dry porous substrate: complete wetting case.
Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M
2015-05-15
The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Testing the white dwarf mass-radius relationship with eclipsing binaries
NASA Astrophysics Data System (ADS)
Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.
2017-10-01
We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.
Mapping the Pressure-radius Relationship of Exoplanets
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Fossati, Luca; Kubyshkina, Darya
2017-10-01
The radius of a planet is one of the most physically meaningful and readily accessible parameters of extra-solar planets. This parameter is extensively used in the literature to compare planets or study trends in the know population of exoplanets. However, in an atmosphere, the concept of a planet radius is inherently fuzzy. The atmospheric pressures probed by trasmission (transit) or emission (eclipse) spectra are not directly constrained by the observations, they vary as a function of the atmospheric properties and observing wavelengths, and further correlate with the atmospheric properties producing degenerate solutions.Here, we characterize the properties of exoplanet radii using a radiative-transfer model to compute clear- atmosphere transmission and emission spectra of gas-dominated planets. We explore a wide range of planetary temperatures, masses, and radii, sampling from 300 to 3000 K and Jupiter- to Earth-like values. We will discuss how transit and photospheric radii vary over the parameter space, and map the global trends in the atmospheric pressures associated with these radii. We will also highlight the biases introduced by the choice of an observing band, or the assumption of a clear/cloudy atmosphere, and the relevance that these biases take as better instrumentation improves the precision of photometric observations.
Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes.
Liu, Shujuan; Dong, Yitong; Zhao, Wenbo; Xie, Xiang; Ji, Tianrong; Yin, Xiaohong; Liu, Yun; Liang, Zhongwei; Momotenko, Dmitry; Liang, Dehai; Girault, Hubert H; Shao, Yuanhua
2012-07-03
The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.
Charge radii of neutron-deficient Ca isotopes
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.
2017-09-01
Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.
Evaluating point count efficiency relative to territory mapping in cropland birds
Andre Cyr; Denis Lepage; Kathryn Freemark
1995-01-01
Species richness, composition, and abundance of farmland birds were compared between point counts (50-m, 100-m, and 150-m radius half circles) and territory mapping on three 40-ha plots in Québec, Canada. Point counts of smaller radii tended to have larger density estimates than counts of larger radii. Territory mapping detected 10 species more than 150-m...
Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive
2009-06-01
time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast
Update on matter radii of O-2417
NASA Astrophysics Data System (ADS)
Fortune, H. T.
2018-05-01
The appearance of new theoretical papers concerning matter radii of neutron-rich oxygen nuclei has prompted a return to this problem. New results provide no better agreement with experimental values than did previous calculations with a simple model. I maintain that there is no reason to adjust the 22O core in the 24O nucleus, and the case of 24O should be reexamined experimentally.
NASA Technical Reports Server (NTRS)
Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.
1995-01-01
The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.
NASA Astrophysics Data System (ADS)
Moraru, Ciprian G.
The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.
Gyration-radius dynamics in structural transitions of atomic clusters.
Yanao, Tomohiro; Koon, Wang S; Marsden, Jerrold E; Kevrekidis, Ioannis G
2007-03-28
This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.
Gyration-radius dynamics in structural transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang S.; Marsden, Jerrold E.; Kevrekidis, Ioannis G.
2007-03-01
This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.
Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii
NASA Technical Reports Server (NTRS)
Lehmer, O. R.; Catling, D. C.
2017-01-01
In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by an early episode of thermally-driven hydrodynamic escape when host stars have saturated XUV fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenerani, Anna; Velli, Marco; DeForest, Craig, E-mail: annatenerani@epss.ucla.edu
DeForest et al. used synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft to identify inbound wave motions in the outer corona beyond 7 solar radii and inferred, from the observation, that the Alfvén surface separating the magnetically dominated corona from the flow dominated wind must be located beyond at least 12 solar radii from the Sun over polar coronal holes and beyond 15 solar radii in the streamer belt. Here, we attempt identification of the observed inward signal by theoretically reconstructing height-speed diagrams and comparing them to the observed profiles. Interpretation in terms of Alfvénmore » waves or Alfvénic turbulence appears to be ruled out by the fact that the observed signal shows a deceleration of inward motion when approaching the Sun. Fast magnetoacoustic waves are not directly ruled out in this way, as it is possible for inward waves observed in quadrature, but not propagating exactly radially, to suffer total reflection as the Alfvén speed rises close to the Sun. However, the reconstructed signal in the height-speed diagram has the wrong concavity. A final possibility is decelerating reconnection jets, most probably from component reconnection, in the accelerating wind: the profile in this case appears to match the observations very well. This interpretation does not alter the conclusion that the Alfvén surface must be at least 12 solar radii from the photosphere. Further observations should help constrain this process, never identified previously in this way, in the distance range from 7 to 12 solar radii.« less
Modelling the Diversity of Outer Planetary Systems. 1; Formation and Evolution
NASA Technical Reports Server (NTRS)
Lissauer, J. J.; Levison, H. F.; Duncan, M. J.; Young, Richard E. (Technical Monitor)
1998-01-01
The process of planetary growth is extremely complicated, involving a myriad of physical and chemical processes, many of which are poorly understood. The ultimate configuration that a planetary system attains depends upon the properties of the disk out of which it grew, of the star at the center of the disk and, at least in some cases, of the interstellar environment. However, this dependence is poorly understood. Thus, in an effort to numerically survey the possible diversity of planetary systems, we have constructed synthetic systems of giant planets and integrated their orbits to determine the dynamical lifetimes and thus the viability of these systems. Our construction algorithm begins with 110 -- 180 planetesimals located between 4 and 40 AU from a one solar mass star; most initial planetesimals have masses several tenths that of Earth. We integrate the orbits of these bodies subject to mutual gravitational perturbations and gas drag for $10^6 - 10^7$ years, merging any pair of planetesimals which passed within one-tenth of a Hill Sphere of one another and adding "gas" to embryos larger than 10 Earth masses. Use of such large planetesimal radii provided sufficient damping to prevent the system from excessive dynamical heating. Subsequently, systems were evolved without gas drag, either with the inflated radii or with more realistic radii. Systems took from a few million years to greater than ten billion years to become stable ($10^9$ years without mergers of ejections). Some of the systems produced with the inflated radii closely resemble our Solar System. Encounters in simulations using realistic radii resulted in ejections, typically leaving only a few planets per system, most of which were in highly eccentric orbits. The structure and dynamics of the resulting "stable" systems is discussed in detail in the abstract by Levison et al.
Investigating failure behavior and origins under supposed "shear bond" loading.
Sultan, Hassam; Kelly, J Robert; Kazemi, Reza B
2015-07-01
This study evaluated failure behavior when resin-composite cylinders bonded to dentin fractured under traditional "shear" testing. Failure was assessed by scaling of failure loads to changes in cylinder radii and fracture surface analysis. Three stress models were examined including failure by: bonded area; flat-on-cylinder contact; and, uniformly-loaded, cantilevered-beam. Nine 2-mm dentin occlusal dentin discs for each radii tested were embedded in resin and bonded to resin-composite cylinders; radii (mm)=0.79375; 1.5875; 2.38125; 3.175. Samples were "shear" tested at 1.0mm/min. Following testing, disks were finished with silicone carbide paper (240-600grit) to remove residual composite debris and tested again using different radii. Failure stresses were calculated for: "shear"; flat-on-cylinder contact; and, bending of a uniformly-loaded cantilevered beam. Stress equations and constants were evaluated for each model. Fracture-surface analysis was performed. Failure stresses calculated as flat-on-cylinder contact scaled best with its radii relationship. Stress equation constants were constant for failure from the outside surface of the loaded cylinders and not with the bonded surface area or cantilevered beam. Contact failure stresses were constant over all specimen sizes. Fractography reinforced that failures originated from loaded cylinder surface and were unrelated to the bonded surface area. "Shear bond" testing does not appear to test the bonded interface. Load/area "stress" calculations have no physical meaning. While failure is related to contact stresses, the mechanism(s) likely involve non-linear damage accumulation, which may only indirectly be influenced by the interface. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Pauling, Linus; Kamb, Barclay
1986-01-01
An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698
Hydrogen and hydrocarbon diffusion flames in a weightless environment
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.; Cochran, T. H.
1973-01-01
An experimental investigation was performed on laminar hydrogen-, ethylene-, and propylene-air diffusion burning in a weightless environment. The flames burned on nozzles with radii ranging from 0.051 to 0.186 cm with fuel Reynolds numbers at the nozzle exit from 9 to 410. Steady-state diffusion flames existed in a weightless environment for all the fuels tested. A correlation was obtained for their axial length as a function of Schmidt number, Reynolds numbers, and stoichiometric mole fraction. The maximum flame radii were correlated with the ratio of nozzle radius to average fuel velocity. The flames of ethylene and propylene on nozzles with radii 0.113 or larger appeared to be constantly changing color and/or length throughout the test. No extinguishment was observed for any of the gases tested within the 2.2 seconds of weightlessness.