Sample records for pattern electroretinogram optimized

  1. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    PubMed

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  2. Image projection optical system for measuring pattern electroretinograms

    NASA Astrophysics Data System (ADS)

    Starkey, Douglas E.; Taboada, John; Peters, Daniel

    1994-06-01

    The use of the pattern-electroretinogram (PERG) as a noninvasive diagnostic tool for the early detection of glaucoma has been supported by a number of recent studies. We have developed a unique device which uses a laser interferometer to generate a sinusoidal fringe pattern that is presented to the eye in Maxwellian view for the purpose of producing a PERG response. The projection system stimulates a large visual field and is designed to bypass the optics of the eye in order to measure the true retinal response to a temporally alternating fringe pattern. The contrast, spatial frequency, total power output, orientation, alternating temporal frequency, and field location of the fringe pattern presented to the eye can all be varied by the device. It is critical for these parameters to be variable so that optimal settings may be determined for the normal state and any deviation from it, i.e. early or preclinical glaucoma. Several interferometer designs and optical projection systems were studied in order to design a compact system which provided the desired variable pattern stimulus to the eye. This paper will present a description of the clinical research instrument and its performance with the primary emphasis on the optical system design as it relates to the fringe pattern generation and other optical parameters. Examples of its use in the study of glaucoma diagnosis will also be presented.

  3. Pattern-reversal electroretinograms in unilateral glaucoma.

    PubMed

    Wanger, P; Persson, H E

    1983-06-01

    Pattern-reversal and flash electroretinograms (ERG) and oscillatory potentials (OP) were recorded from 11 patients with unilateral glaucoma. All glaucomatous eyes had reduced amplitudes both compared to the opposite eye in the same patient and to reference values. In 10 of the 11 cases this reduction was below the level of normal variation. The difference in pattern-reversal ERG amplitude means from glaucomatous and opposite eyes was statistically significant. No differences were observed in flash ERGs or OPs. The histopathologic correlate to the visual field defects in glaucoma is retinal ganglion cell degeneration. The present electrophysiologic findings support the view, based on results from animal experiments, that the pattern-reversal ERG reflects ganglion cell activity.

  4. Cone photopigment variations in Cebus apella monkeys evidenced by electroretinogram measurements and genetic analysis

    PubMed Central

    Soares, Juliana G.M.; Fiorani, Mario; Araujo, Eduardo A.; Zana, Yossi; Bonci, Daniela M.O.; Neitz, Maureen; Ventura, Dora F.; Gattass, Ricardo

    2011-01-01

    We investigated the color vision pattern in male and female Cebus apella monkeys by means of electroretinogram measurements and genetic analysis. Our objective was to establish a simple, fast and efficient protocol in order to determine the chromatic vision pattern in Cebus monkeys. We found five among ten possible different phenotypes, two trichromats and three dichromats. We also found that Cebus present a new allele with spectral peak near 552 nm, with the amino acid combination SFT at positions 180, 277 and 285 of the opsin gene, in addition to the previously described SYT, AFT and AFA alleles. PMID:19883678

  5. Normative Data for a User-friendly Paradigm for Pattern Electroretinogram Recording

    PubMed Central

    Porciatti, Vittorio; Ventura, Lori M.

    2009-01-01

    Purpose To provide normative data for a user-friendly paradigm for the pattern electroretinogram (PERG) optimized for glaucoma screening (PERGLA). Design Prospective nonrandomized case series. Participants Ninety-three normal subjects ranging in age between 22 and 85 years. Methods A circular black–white grating of 25° visual angle, reversing 16.28 times per second, was presented on a television monitor placed inside a Ganzfeld bowl. The PERG was recorded simultaneously from both eyes with undilated pupils by means of skin cup electrodes taped over the lower eyelids. Reference electrodes were taped on the ipsilateral temples. Electrophysiologic signals were conventionally amplified, filtered, and digitized. Six hundred artifact-free repetitions were averaged. The response component at the reversal frequency was isolated automatically by digital Fourier transforms and was expressed as a deviation from the age-corrected average. The procedure took approximately 4 minutes. Main Outcome Measures Pattern electroretinogram amplitude (μV) and phase (π rad); response variability (coefficient of variation [CV] = standard deviation [SD] / mean × 100) of amplitude and phase of 2 partial averages that build up the PERG waveform; amplitude (μV) of background noise waveform, obtained by multiplying alternate sweeps by +1 and −1; and interocular asymmetry (CV of amplitude and phase of the PERG of the 2 eyes). Results On average, the PERG has a signal-to-noise ratio of more than 13:1. The CVs of intrasession and intersession variabilities in amplitude and phase are lower than 10% and 2%, respectively, and do not depend on the operator. The CV of interocular asymmetries in amplitude and phase are 9.8±8.8% and 1.5±1.4%, respectively. The PERG amplitude and phase decrease with age. Residuals of linear regression lines have normal distribution, with an SD of 0.1 log units for amplitude and 0.019 log units for phase. Age-corrected confidence limits (P<0.05) are defined as ±2 SD of residuals. Conclusions The PERGLA paradigm yields responses as reliable as the best previously reported using standard protocols. The ease of execution and interpretation of results of PERGLA indicate a potential value for objective screening and follow-up of glaucoma. PMID:14711729

  6. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers.

    PubMed

    Tay, Su Ann; Sanjay, Srinivasan

    2012-07-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.

  7. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers

    PubMed Central

    Tay, Su Ann; Sanjay, Srinivasan

    2012-01-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia. PMID:22824610

  8. Objective Measures of Visual Function in Papilledema

    PubMed Central

    Moss, Heather E.

    2016-01-01

    Synopsis Visual function is an important parameter to consider when managing patients with papilledema. Though the current standard of care uses standard automated perimetry (SAP) to obtain this information, this test is inherently subjective and prone to patient errors. Objective visual function tests including the visual evoked potential, pattern electroretinogram, photopic negative response of the full field electroretinogram, and pupillary light response have the potential to replace or supplement subjective visual function tests in papilledema management. This article reviews the evidence for use of objective visual function tests to assess visual function in papilledema and discusses future investigations needed to develop them as clinically practical and useful measures for this purpose. PMID:28451649

  9. Usher syndrome type 1: early detection of electroretinographic changes.

    PubMed

    Flores-Guevara, Roberto; Renault, Francis; Loundon, Natalie; Marlin, Sandrine; Pelosse, Béatrice; Momtchilova, Martha; Auzoux-Chevé, Monique; Vermersch, Anne Isabelle; Richard, Pascal

    2009-11-01

    Usher syndrome type 1 needs to be diagnosed at early age in order to timely manage speech therapy, cochlear implantation, and genetic counseling. Few data are available regarding electroretinographic testing before the age of six years. To describe electroretinographic changes in young children with Usher syndrome type 1. Retrospective study of fourteen patients. Age at first neurophysiologic testing was between 17 months and 5 years 4 months. Electroretinogram was performed using flash stimulation in mesopic conditions in the conscious child. Analysis was focused on the amplitudes and latencies of a- and b-waves. Whatever the age, an abnormal fundus was always confirmed with an absent electroretinogram. The youngest patient with absent electroretinogram was 17 month-old. When recorded on and after the 29th month of age, electroretinogram was absent in all cases, including 6 patients with normal fundus. In three patients a low-amplitude electroretinogram was present at first recording within the 26th and 27th months. Electroretinogram showed retinopathy in young children with Usher syndrome type 1, even in the absence of fundoscopic signs of retinal degeneration.

  10. [No X-chromosome linked juvenile foveal retinoschisis].

    PubMed

    Pérez Alvarez, M J; Clement Fernández, F

    2002-08-01

    To describe the clinical characteristics of two cases of juvenile foveal retinoschisis in women with an atypical hereditary pattern, no X-chromosome linked. An autosomal recessive inheritance is proposed. Two generations of a family (5 members) in which only two sisters were evaluated. The complete examination of these two cases includes retinography, fluorescein angiography, automated perimetry, color vision testing, electroretinogram, electrooculogram and visually evoked potentials. Comparing our cases with the classic form of X-linked juvenile retinoschisis, they are less severely affected. The best visual acuity and the less disturbed or even normal electroretinogram confirm this fact. We emphasise the existence of isolated plaques of retinal pigment epithelium atrophy with perivascular pigment clumps without foveal schisis in one patient, which could represent an evolved form of this entity. The hereditary foveal juvenile retinoschisis in women suggests an autosomal inheritance (autosomal recessive in our cases) and presents less severe involvement (Arch Soc Esp Oftalmol 2002; 77: 443-448).

  11. Natural sleep modifies the rat electroretinogram.

    PubMed Central

    Galambos, R; Juhász, G; Kékesi, A K; Nyitrai, G; Szilágyi, N

    1994-01-01

    We show here electroretinograms (ERGs) recorded from freely moving rats during sleep and wakefulness. Bilateral ERGs were evoked by flashes delivered through a light-emitting diode implanted under the skin above one eye and recorded through electrodes inside each orbit near the optic nerve. Additional electrodes over each visual cortex monitored the brain waves and collected flash-evoked cortical potentials to compare with the ERGs. Connections to the stimulating and recording instruments through a plug on the head made data collection possible at any time without physically disturbing the animal. The three major findings are (i) the ERG amplitude during slow-wave sleep can be 2 or more times that of the waking response; (ii) the ERG patterns in slow-wave and REM sleep are different; and (iii) the sleep-related ERG changes closely mimic those taking place at the same time in the responses evoked from the visual cortex. We conclude that the mechanisms that alter the visual cortical-evoked responses during sleep operate also and similarly at the retinal level. PMID:8197199

  12. Evaluation of retinal ganglion cell function after intraocular pressure reduction measured by pattern electroretinogram in patients with primary open-angle glaucoma.

    PubMed

    Karaśkiewicz, Joanna; Penkala, Krzysztof; Mularczyk, Maciej; Lubiński, Wojciech

    2017-04-01

    To evaluate retinal ganglion cell (RGC) function after intraocular pressure (IOP) reduction measured by pattern electroretinogram (PERG) in patients with newly diagnosed, non-treated preperimetric and early stages of primary open-angle glaucoma (POAG). Twenty-four eyes from 24 patients with POAG: 11 eyes with preperimetric glaucoma and 13 eyes with early glaucoma received Ganfort ® (bimatoprost + timolol) once a day for a period of 1 month. Before and after the treatment, following measurements were analyzed: IOP, mean ocular perfusion pressure (MOPP), peak time of P50 and amplitude of P50 and N95 waves in PERG (ISCEV standard 2012). Correlations between PERG P50 and N95 waves, IOP and MOPP were calculated. After therapy, IOP significantly decreased in all eyes, on average 31%. Significant increase in MOPP in all eyes on average 14% was detected. PERG amplitude of P50 and N95 waves increased in 75 and 79% eyes, respectively, on average P50 by 28% and N95 by 38%. There were no significant interactions between the change of PERG parameters in time and stage of glaucoma. Significant IOP-lowering therapy can improve RGC function measured by PERG, in patients with preperimetric and early stages of POAG.

  13. Rod Electroretinograms Elicited by Silent Substitution Stimuli from the Light-Adapted Human Eye

    PubMed Central

    Maguire, John; Parry, Neil R. A.; Kremers, Jan; Kommanapalli, Deepika; Murray, Ian J.; McKeefry, Declan J.

    2016-01-01

    Purpose To demonstrate that silent substitution stimuli can be used to generate electroretinograms (ERGs) that effectively isolate rod photoreceptor function in humans without the need for dark adaptation, and that this approach constitutes a viable alternative to current clinical standard testing protocols. Methods Rod-isolating and non-isolating sinusoidal flicker stimuli were generated on a 4 primary light-emitting diode (LED) Ganzfeld stimulator to elicit ERGs from participants with normal and compromised rod function who had not undergone dark-adaptation. Responses were subjected to Fourier analysis, and the amplitude and phase of the fundamental were used to examine temporal frequency and retinal illuminance response characteristics. Results Electroretinograms elicited by rod-isolating silent substitution stimuli exhibit low-pass temporal frequency response characteristics with an upper response limit of 30 Hz. Responses are optimal between 5 and 8 Hz and between 10 and 100 photopic trolands (Td). There is a significant correlation between the response amplitudes obtained with the silent substitution method and current standard clinical protocols. Analysis of signal-to-noise ratios reveals significant differences between subjects with normal and compromised rod function. Conclusions Silent substitution provides an effective method for the isolation of human rod photoreceptor function in subjects with normal as well as compromised rod function when stimuli are used within appropriate parameter ranges. Translational Relevance This method of generating rod-mediated ERGs can be achieved without time-consuming periods of dark adaptation, provides improved isolation of rod- from cone-based activity, and will lead to the development of faster clinical electrophysiologic testing protocols with improved selectivity. PMID:27617180

  14. Usher syndrome and cochlear implantation.

    PubMed

    Loundon, Natalie; Marlin, Sandrine; Busquet, Denise; Denoyelle, Françoise; Roger, Gilles; Renaud, Francis; Garabedian, Erea Noel

    2003-03-01

    To evaluate the symptoms leading to diagnosis and the quality of rehabilitation after cochlear implantation in Usher syndrome. Retrospective cohort study. ENT department of a tertiary referral hospital. Among 210 patients given an implantation in the Ear, Nose, and Throat department, 185 were congenitally deaf and 13 had Usher syndrome (7.0%). Five had a family history of Usher, and eight were sporadic cases. Eleven cases were Usher type I, one was Usher type III, and one was not classified. The age at implantation ranged from 18 months to 44 years (mean, 6 years 1 month). The mean follow-up was 52 months (range, 9 months to 9 years). All patients had audiophonological and clinical examination, computed tomography scan of the temporal bones, ophthalmologic examination with fundoscopy, and an electroretinogram. Cerebral magnetic resonance imaging and vestibular examination were performed in 9 of 13 and 10 of 13 cases, respectively. Logopedic outcome measured preimplant and postimplant closed- and open-set word recognition and oral expression at follow-up. The most frequent initial sign of Usher syndrome was delayed walking, with a mean age of 20 months. Among the 172 other congenitally deaf children with implants, when deafness was not associated with other neurologic disorders, the mean age at walking was 14 months (p < 0.001). The fundoscopy was always abnormal after the age of 5 years, and the electroretinogram was abnormal in all cases. Vestibular function was abnormal in all but one case (nonclassified). The computed tomography scan and the magnetic resonance imaging were always normal. Logopedic results with cochlear implants showed good perception skills in all but one case. The best perceptive results were obtained in children implanted before the age of 9 years. Oral language had significantly progressed in 9 of 13 at follow-up. There was no relation between the visual acuity and the logopedic results. The earliest clinical sign associated with deafness evoking Usher syndrome is late walking. The electroretinogram is the only reliable examination to enable the diagnosis. When severe profound deafness is associated with late walking, the electroretinogram should be systematically proposed. Logopedic results are linked to precocity of implantation, and early Usher's diagnosis contributes to optimize speech therapy.

  15. Fundus autofluorescence, optical coherence tomography, and electroretinogram findings in choroidal sclerosis.

    PubMed

    Hwang, John C; Kim, David Y; Chou, Chai Lin; Tsang, Stephen H

    2010-01-01

    The purpose of this study was to describe fundus autofluorescence (FAF), optical coherence tomography, and electroretinogram findings in choroidal sclerosis. This is a retrospective case series. Eight eyes of four patients with choroidal sclerosis were evaluated with FAF, optical coherence tomography, and electroretinogram testing. In all eight eyes, FAF imaging showed hypofluorescent placoid lesions corresponding to areas of chorioretinal atrophy seen on stereo biomicroscopy. Prominent hyperfluorescent linear markings underlying regions of atrophic disease were observed in all eyes, likely representative of normal choroidal vessel autofluorescence. In two eyes, FAF showed punctate hypofluorescent lesions in the fovea that were not visualized on biomicroscopy. In one eye, FAF identified a central island of preserved retinal pigment epithelium that was not realized on ophthalmoscopic examination. Optical coherence imaging was significant for loss of choroidal fine tubular structures, retinal pigment epithelium, and outer nuclear layer in regions of chorioretinal atrophy. Full-field electroretinogram testing showed generalized rod-cone dysfunction in all patients with a lower B- to A-wave ratio in two patients. Fundus autofluorescence and optical coherence tomography are nonin-vasive diagnostic adjuncts that can aid in the diagnosis of choroidal sclerosis. Fundus autofluorescence may be a more sensitive marker of disease extent and progression than clinical examination alone. Electroretinogram testing can result in an electronegative maximal response.

  16. A Study of Low Level Laser Retinal Damage.

    DTIC Science & Technology

    1983-03-15

    Diffusions Multiples Internes" Rev Opt 244 1, (1945) 31. Hochheimer, B. F. "Radiation Pattern for A Diffuse Wall Cavity, Nonuniform in Temperature and...Radiation" LAIR Report #31 42. Armington, J. C. The Electroretinogram Academic Press, New York 1974 43. Vos, J.J., Munnik, A.A. and Boogaard, J...Carter M and Talsma, D.M. "Retinal Alterations Produced by Low Level Gallium Arsenide Laser Exposure" LAIR Report #38, Feb., 1977 APPLIED PHYWSICS

  17. The effect of topical anesthesia on the rat electroretinogram.

    PubMed

    Sandalon, Shai; Ofri, Ron

    2009-04-01

    Topical anesthetics are recommended when electroretinograms (ERGs) are recorded using contact lens electrodes. However, these drugs act by blocking voltage-gated Na+ channels. Since such channels have been located in both the inner and outer retina of many species, topical anesthesia could affect the ERG recordings in these subjects. The purpose of this study was to evaluate the effects of oxybuprocaine, a commonly used ester local anesthetic, on the rat ERG. Full-field scotopic and pattern ERGs (PERGs) were recorded successively from both eyes of seven rats. One eye was randomly treated with oxybuprocaine 15 min prior to recording. In 10 rats unilateral full-field photopic ERG recordings were conducted prior to, and 15 min after, treatment. B-wave amplitude ratios of the experimental/control eyes were 1.13, 1.30, and 1.35 for the three intensities used to record scotopic ERG responses, and 1.04 for the photopic ERG responses. PERG amplitude ratios of the experimental/control eyes were 1.10, 1.21, 1.21, 1.24, and 1.26 for the five patterns used. Treatment had no significant negative effect on signal amplitude or implicit time of the full-field ERG or PERG. In fact, amplitudes of signals from treated eyes tended to be (insignificantly) higher, though this might reflect better position of the active electrode rather than a biological effect. We conclude that oxybuprocaine has no negative effect on the rat ERG.

  18. The diagnostic usefulness of the negative electroretinogram.

    PubMed

    Fuente García, C; González-López, J J; Muñoz-Negrete, F J; Rebolleda, G

    2018-03-01

    The definition of the negative response of the full field electroretinogram is the presence of a b-wave with less amplitude than the a-wave (b/a ratio<1) in the combined response of cones and rods. The presence of this pattern reflects an alteration in the bipolar cells, the Müller cells, or in the transmission of the stimulus from the photoreceptors to the bipolar cells, with preserved photoreceptor function. This finding can be seen bilaterally and symmetrically in different hereditary conditions, such as congenital stationary night blindness, juvenile X-linked retinoschisis, and Duchenne and Becker muscular dystrophies. On the other hand, it can also be found unilaterally (or asymmetrically) in acquired pathologies, such as some types of immuno-mediated retinitis (Birdshot retinochoroiditis), autoimmune retinopathies, cancer/melanoma associated retinopathy, or retinal toxicity. The objective of this review is to summarise the characteristics of the pathologies in which this finding can be observed, in order to highlight its usefulness in the differential diagnosis of retinal conditions. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. An electrode to record the mouse cornea electroretinogram.

    PubMed

    Goto, Y

    The mouse has become a popular model for the study of retinal degeneration, but an electrode suitable for recording electroretinograms from the mouse cornea is not available commercially. I developed a simple electrode suitable for the relatively small mouse eye by attaching a thin stainless-steel wire through the barrel of a 1-cc syringe. The end of the wire is formed into a coil by wrapping it around a 0.5- or 1.0-mm pin. The syringe barrel serves as a convenient way to hold the electrode in a goose-neck holder. This electrode has been used successfully to obtain electroretinograms from hundreds of mice as young as 14 days.

  20. EVALUATION OF FULL-FIELD ELECTRORETINOGRAM REDUCTIONS AFTER OCRIPLASMIN TREATMENT

    PubMed Central

    Benz, Matthew S.; Miller, Daniel M.; Antoszyk, Andrew N.; Markoff, Joseph; Kozma, Petra; Meunier, Esmeralda; Sergott, Robert C.

    2018-01-01

    Purpose: To explore a possible association between full-field electroretinograms with vitreomacular adhesion resolution and best-corrected visual acuity as part of the prospective, randomized, double-masked, sham-controlled Ocriplasmin for Treatment for Symptomatic Vitreomacular Adhesion Including Macular Hole (OASIS) trial studying ocriplasmin. Methods: The ERG substudy enrolled 62 of 220 OASIS subjects (randomized 2:1) and analyzed full-field electroretinograms and their association with both vitreomacular adhesion resolution and best-corrected visual acuity from baseline through Month 24. Electroretinogram reductions were defined as acute full-field electroretinogram reductions in amplitude of ≥40% from baseline occurring at postinjection Day 7 or Day 28. Results: In the ocriplasmin group, 16/40 (40%) subjects developed ERG reductions, compared to 1/21 (4.8%) in the sham group; 13/16 (81.3%) and 1/1 (100%) resolved by study end, respectively. A total of 11/16 (68.8%) ocriplasmin-treated subjects with ERG reductions achieved vitreomacular adhesion resolution, compared to those without (9/24, 37.5%). The ocriplasmin-treated subjects with ERG reductions also gained more letters on average (11.3 vs. 9.3 letters) from baseline and had a difference of 6.7 letters in mean best-corrected visual acuity by study end compared to those without ERG reductions. Conclusion: Ocriplasmin-treated subjects with ERG reductions had a higher rate of vitreomacular adhesion resolution and showed better visual improvement than their counterparts without ERG reductions or sham subjects by study end. PMID:28198785

  1. Identification of a novel mutation in the PTCH gene in a patient with Gorlin-Goltz syndrome with unusual ocular disorders.

    PubMed

    Romano, Mary; Iacovello, Daniela; Cascone, Nikhil C; Contestabile, Maria Teresa

    2011-01-01

    To document the clinical, functional, and in vivo microanatomic characteristics of a patient with Gorlin-Goltz syndrome with a novel nonsense mutation in PTCH (patched). Optical coherence tomography (OCT), fluorescein angiography, electrophysiologic testing, visual field, magnetic resonance imaging, and mutation screening of PTCH gene. Visual acuity was 20/20 in the right eye and 20/25 in the left. Fundus examination revealed myelinated nerve fibers in the left eye and bilateral epiretinal membranes with lamellar macular hole also documented with macular OCT. A reduction of the retinal nerve fiber layers in both eyes was found with fiber nervous OCT. Fluorescein angiography showed bilaterally foveal hyperfluorescence and the visual field revealed inferior hemianopia in the right eye. Pattern visual evoked potentials registered a reduction of amplitude in both eyes and latency was delayed in the left eye. Pattern electroretinogram showed a reduction in P50 and N95 peak time and a delay in P50 peak time in the left eye. Flash electroretinogram was reduced in rod response, maximal response, and oscillatory potentials in both eyes. Cone response was normal and 30-Hz flicker was slightly reduced in both eyes. Mutation screening identified a novel nonsense mutation in PTCH. A novel nonsense mutation in the PTCH gene was found. We report the occurrence of epiretinal membranes and the persistence of myelinated nerve fibers. Electrophysiologic and visual field alterations, supporting a neuroretinal dysfunction, were also documented.

  2. A simple integrated system for electrophysiologic recordings in animals

    PubMed Central

    Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.

    2009-01-01

    This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347

  3. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability

    PubMed Central

    Wu, Zhichao; Hadoux, Xavier; Hui, Flora; Sarossy, Marc G.; Crowston, Jonathan G.

    2016-01-01

    Purpose To determine the measure of the photopic negative response (PhNR) of the full-field electroretinogram (ERG) that exhibits the optimal level of test-retest repeatability, and examine its repeatability under different conditions using a handheld, nonmydriatic ERG system and self-adhering skin electrodes. Methods Multiple ERG recordings (using 200 sweeps each) were performed in both eyes of 20 normal participants at two different sessions to compare its coefficient of repeatability (CoR; where 95% of the test-retest difference is expected to lie) between different PhNR measures and under different testing conditions (within and between examiners, and between sessions). Results The ratio between the PhNR trough to b-wave peak and b-wave peak to a-wave trough amplitude (PhNR/B ratio) exhibited the lowest CoR relative to its effective dynamic range (30 ± 4%) when including three recordings. There were no significant changes in the PhNR/B ratio over seven measurements (4 right and 3 left eyes) at either session (P ≥ 0.100), or significant difference in its CoR between different testing conditions (P = 0.314). Conclusion The PhNR/B ratio was the measure that minimized variability, and its measurements using a novel handheld ERG system with self-adhering skin electrodes and the protocols described in this study were comparable under different testing conditions and over multiple recordings. Translational Relevance The PhNR can be measured for clinical and research purposes using a simple-to-implement technique that is consistent within and between visits, and also between examiners. PMID:27540494

  4. Clinical characteristics of occult macular dystrophy in family with mutation of RP1l1 gene.

    PubMed

    Tsunoda, Kazushige; Usui, Tomoaki; Hatase, Tetsuhisa; Yamai, Satoshi; Fujinami, Kaoru; Hanazono, Gen; Shinoda, Kei; Ohde, Hisao; Akahori, Masakazu; Iwata, Takeshi; Miyake, Yozo

    2012-06-01

    To report the clinical characteristics of occult macular dystrophy (OMD) in members of one family with a mutation of the RP1L1 gene. Fourteen members with a p.Arg45Trp mutation in the RP1L1 gene were examined. The visual acuity, visual fields, fundus photographs, fluorescein angiograms, full-field electroretinograms, multifocal electroretinograms, and optical coherence tomographic images were examined. The clinical symptoms and signs and course of the disease were documented. All the members with the RP1L1 mutation except one woman had ocular symptoms and signs of OMD. The fundus was normal in all the patients during the entire follow-up period except in one patient with diabetic retinopathy. Optical coherence tomography detected the early morphologic abnormalities both in the photoreceptor inner/outer segment line and cone outer segment tip line. However, the multifocal electroretinograms were more reliable in detecting minimal macular dysfunction at an early stage of OMD. The abnormalities in the multifocal electroretinograms and optical coherence tomography observed in the OMD patients of different durations strongly support the contribution of RP1L1 mutation to the presence of this disease.

  5. Correlation of Macular Focal Electroretinogram with Ellipsoid Zone Extension in Stargardt Disease

    PubMed Central

    Placidi, Giorgio; Calandriello, Luigi; Piccardi, Marco; Campagna, Francesca; Minnella, Angelo Maria; Savastano, Maria Cristina; Falsini, Benedetto

    2017-01-01

    Stargardt disease (STGD1) is the most common cause of inherited juvenile macular degeneration. This disease is characterized by a progressive accumulation of lipofuscin in the outer retina and subsequent loss of photoreceptors and retinal pigment epithelium. The aim of this study was to evaluate the relationship between cone photoreceptor function and structure in STGD1. Macular function was assessed by visual acuity measurement and focal electroretinogram (FERG) recording while spectral domain optical coherence tomography (SD-OCT) imaging was performed to evaluate the integrity of photoreceptors. FERG amplitude was significantly reduced in patients with Stargardt disease (p < 0.0001). The amplitude of FERG showed a negative relationship with interruption of ellipsoid zone (EZ) (R2 = 0.54, p < 0.0001) and a positive correlation with average macular thickness (AMT). Conversely, visual acuity was only weakly correlated with central macular thickness (CMT) (R2 = 0.12, p = 0.04). In conclusion, this study demonstrates that FERG amplitude is a reliable indicator of macular cone function while visual acuity reflects the activity of the foveal region. A precise assessment of macular cone function by FERG recording may be useful to monitor the progression of STGD1 and to select the optimal candidates to include in future clinical trials to treat this disease. PMID:28912967

  6. Correlation of Macular Focal Electroretinogram with Ellipsoid Zone Extension in Stargardt Disease.

    PubMed

    Abed, Edoardo; Placidi, Giorgio; Calandriello, Luigi; Piccardi, Marco; Campagna, Francesca; Bertelli, Matteo; Minnella, Angelo Maria; Savastano, Maria Cristina; Falsini, Benedetto

    2017-01-01

    Stargardt disease (STGD1) is the most common cause of inherited juvenile macular degeneration. This disease is characterized by a progressive accumulation of lipofuscin in the outer retina and subsequent loss of photoreceptors and retinal pigment epithelium. The aim of this study was to evaluate the relationship between cone photoreceptor function and structure in STGD1. Macular function was assessed by visual acuity measurement and focal electroretinogram (FERG) recording while spectral domain optical coherence tomography (SD-OCT) imaging was performed to evaluate the integrity of photoreceptors. FERG amplitude was significantly reduced in patients with Stargardt disease ( p < 0.0001). The amplitude of FERG showed a negative relationship with interruption of ellipsoid zone (EZ) ( R 2 = 0.54, p < 0.0001) and a positive correlation with average macular thickness (AMT). Conversely, visual acuity was only weakly correlated with central macular thickness (CMT) ( R 2 = 0.12, p = 0.04). In conclusion, this study demonstrates that FERG amplitude is a reliable indicator of macular cone function while visual acuity reflects the activity of the foveal region. A precise assessment of macular cone function by FERG recording may be useful to monitor the progression of STGD1 and to select the optimal candidates to include in future clinical trials to treat this disease.

  7. Oral Administration of Forskolin, Homotaurine, Carnosine, and Folic Acid in Patients with Primary Open Angle Glaucoma: Changes in Intraocular Pressure, Pattern Electroretinogram Amplitude, and Foveal Sensitivity.

    PubMed

    Mutolo, Maria Giulia; Albanese, Giuseppe; Rusciano, Dario; Pescosolido, Nicola

    2016-04-01

    To evaluate the effects of a food supplement containing forskolin, homotaurine, carnosine, folic acid, vitamins B1, B2, B6, and magnesium in patients with primary open angle glaucoma (POAG) already in treatment and compensated by intraocular pressure (IOP)-lowering drugs, during a period of 12 months. Twenty-two patients (44 eyes) with POAG, with their IOP compensated by topical drugs, were enrolled and randomly assigned to the food supplement or control treatment group. The additional food supplement treatment consisted of 2 tablets per day (1 in the morning, 1 in the evening) given for 1 year of a balanced association of homotaurine, Coleus forskohlii root extract, L-carnosine, folic acid, vitamins B1, B2, B6, and magnesium. Pattern Electroretinogram (PERG) amplitude, foveal sensitivity obtained with the visual field analyzer frequency doubling technology, and IOP were detected at enrollment (T0), 3 months (T1), 6 months (T2), 9 months (T3), and 12 months (T4). We observed in treated patients a significant further decrease of IOP and an improvement of PERG amplitude at 6, 9, and 12 months, and foveal sensitivity at 12 months. All values remained substantially stable in control patients. The results of the present pilot study indicate that the components of the food supplement reach the eye in a detectable manner, as evidenced by the effects on the IOP. Moreover, they suggest a short-term neuroactive effect, as indicated by the improvement of PERG amplitude and foveal sensitivity in treated, but not in control patients.

  8. Microperimetric assessment of the two optical coherence tomography subtypes of acute macular neuroretinopathy.

    PubMed

    Battaglia Parodi, Maurizio; Iacono, Pierluigi; Panico, Daniele; Cascavilla, Marialucia; Bandello, Francesco

    2015-01-01

    This study evaluates the morpho-functional alterations associated with acute macular neuroretinopathy (AMNR). Prospective observational case series study carried out at the University Vita-Salute, Scientific Institute San Raffaele. Five out of six eyes (three patients) showed the typical features of AMNR. The patients underwent an ophthalmological examination, including best-corrected visual acuity (BCVA) measurement, electroretinogram and electroculogram (ERG/EOG), multifocal electroretinogram (mfERG), infrared reflectance, short wavelength and near-infrared-fundus autofluorescence (SW-FAF/NIR-FAF), spectral-domain optical coherence tomography (SD-OCT) and microperimetry. Microperimetric alterations in the two SD-OCT subtypes of AMNR. The BCVA was 20/20 in all patients. ERG and EOG were normal; mfERG revealed a generally reduced response with a more reduced signal in the areas corresponding to the macular lesions. SD-OCT demonstrated two different patterns of retinal alterations. In case 1, SD-OCT revealed a hyperreflective, plaque-like band at the junction of the outer plexiform layer (OPL) and the inner nuclear layer (INL), extending into the INL (type 1 lesion). In cases 2 and 3, SD-OCT disclosed a hyperreflectivity of the OPL associated with outer nuclear layer thinning and disruption of the outer segment/retinal pigment epithelium junction (type 2 lesion). Microperimetry revealed a wide scotoma involving the entire macular area in all eyes, including the unaffected eye of case 1. The reduction in retinal sensitivity was greatest in type 1. SD-OCT confirms that AMNR may occur in different patterns. Microperimetry demonstrated that functional alterations are also discernible in apparently uninvolved areas. Both examinations are extremely valuable in characterizing the changes associated with AMNR. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  9. Data supporting Boyes et al., Neurotoxicology 53, 257-270, 2016

    EPA Pesticide Factsheets

    Visual evoked potential data from rats exposed to tolueneElectroretinogram data from rats exposed to tolueneCounts of rod and m-cone photoreceptor cells in retinas of rats exposed to tolueneThis dataset is associated with the following publication:Boyes , W., M. Bercegeay, L. Degn , T. Beasley , P. Evansky , J.C. Mwanza, A. Geller , C. Pinckney, M.T. Nork, and P.J. Bushnell. Toluene Inhalation Exposure for 13 Weeks Causes Persistent Changes in Electroretinograms of Long-Evans Rats. NEUROTOXICOLOGY. Elsevier B.V., Amsterdam, NETHERLANDS, 53: 257-270, (2016).

  10. Frequency spectrum might act as communication code between retina and visual cortex I

    PubMed Central

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156

  11. Frequency spectrum might act as communication code between retina and visual cortex I.

    PubMed

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.

  12. Unilateral retinitis pigmentosa. A case report.

    PubMed

    Nazar, C; Feldman, M; González, R; Espinoza, R

    2017-06-01

    A 27-year-old woman with a history of nyctalopia and constriction of visual field of the right eye. The ophthalmological examination showed a visual field and electroretinogram that were compatible with unilateral retinitis pigmentosa (RP). After a one year follow-up, the unilateral condition remained. Unilateral retinitis pigmentosa is a rare condition, with a frequency between 0.2%-5% of the RP. It mainly affects women and older age groups than bilateral RP. For a definitive diagnosis, it is necessary to have a funduscopy and electroretinogram (ERG) altered unilaterally, and exclude infectious, inflammatory, and vascular causes. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Effect of indocyanine green angiography using infrared fundus camera on subsequent dark adaptation and electroretinogram.

    PubMed

    Wen, Feng; Yu, Minzhong; Wu, Dezheng; Ma, Juanmei; Wu, Lezheng

    2002-07-01

    To observe the effect of indocyanine green angiography (ICGA) with infrared fundus camera on subsequent dark adaptation and the Ganzfeld electroretinogram (ERG), the ERGs of 38 eyes with different retinal diseases were recorded before and after ICGA during a 40-min dark adaptation period. ICGA was performed with Topcon 50IA retina camera. Ganzfeld ERG was recorded with Neuropack II evoked response recorder. The results showed that ICGA did not affect the latencies and the amplitudes in ERG of rod response, cone response and mixed maximum response (p>0.05). It suggests that ICGA using infrared fundus camera could be performed prior to the recording of the Ganzfeld ERG.

  14. STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF BENIGN FLECK RETINA USING MULTIMODAL IMAGING.

    PubMed

    Neriyanuri, Srividya; Rao, Chetan; Raman, Rajiv

    2017-01-01

    To report structural and functional features in a case series of benign fleck retina using multimodal imaging. Four cases with benign fleck retina underwent complete ophthalmic examination that included detailed history, visual acuity, and refractive error testing, FM-100 hue test, dilated fundus evaluation, full field electroretinogram, fundus photography with autofluorescence, fundus fluorescein angiography, and swept-source optical coherence tomography. Age group of the cases ranged from 19 years to 35 years (3 males and 1 female). Parental consanguinity was reported in two cases. All of them were visually asymptomatic with best-corrected visual acuity of 20/20 (moderate astigmatism) in both the eyes. Low color discrimination was seen in two cases. Fundus photography showed pisciform flecks which were compactly placed on posterior pole and were discrete, diverging towards periphery. Lesions were seen as smaller dots within 1500 microns from fovea and were hyperfluorescent on autofluorescence. Palisading retinal pigment epithelium defects were seen in posterior pole on fundus fluorescein angiography imaging; irregular hyper fluorescence was also noted. One case had reduced cone responses on full field electroretinogram; the other three cases had normal electroretinogram. On optical coherence tomography, level of lesions varied from retinal pigment epithelium, inner segment to outer segment extending till external limiting membrane. Functional and structural deficits in benign fleck retina were picked up using multimodal imaging.

  15. Ocular Biocompatibility of Nitinol Intraocular Clips

    PubMed Central

    Velez-Montoya, Raul; Erlanger, Michael

    2012-01-01

    Purpose. To evaluate the tolerance and biocompatibility of a preformed nitinol intraocular clip in an animal model after anterior segment surgery. Methods. Yucatan mini-pigs were used. A 30-gauge prototype injector was used to attach a shape memory nitinol clip to the iris of five pigs. Another five eyes received conventional polypropylene suture with a modified Seipser slip knot. The authors compared the surgical time of each technique. All eyes underwent standard full-field electroretinogram at baseline and 8 weeks after surgery. The animals were euthanized and eyes collected for histologic analysis after 70 days (10 weeks) postsurgery. The corneal thickness, corneal endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram parameters were compared between the groups. A two sample t-test for means and a P value of 0.05 were use for assessing statistical differences between measurements. Results. The injection of the nitinol clip was 15 times faster than conventional suturing. There were no statistical differences between the groups for corneal thickness, endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram measurements. Conclusions. The nitinol clip prototype is well tolerated and showed no evidence of toxicity in the short-term. The injectable delivery system was faster and technically less challenging than conventional suture techniques. PMID:22064995

  16. Multifocal electroretinogram contributes to differentiation of various clinical pictures within a family with Bardet-Biedl syndrome.

    PubMed

    Praidou, A; Hagan, R; Nayak, H; Chandna, A

    2014-09-01

    To demonstrate the use of the multifocal electroretinogram (mfERG) in addition to the full-field electroretinogram (ERG) in defining varying clinical pictures in children within a family with Bardet-Biedl syndrome (BBS). All members from a family generation underwent a detailed history and examination before proceeding to a detailed ERG in accordance with the International Society of Clinical Electrophysiology for Vision protocol and a rapid, low-resolution mfERG. Of the sibling pair, the 13-year-old boy showed reduced vision and atypical maculopathy and the 10-year-old sister showed normal vision and atrophic maculopathy. Parents had normal ocular examination. The male sibling had reduced rod and cone full-field ERG responses with a relatively spared central response from the mfERG suggesting central macular sparing. In contrast, for the female sibling, the ERG was normal for the cone pathway although reduced for rod pathway, with mfERG showing central involvement. The mother had rod responses at the lower end of normal range, a normal cone pathway, and a normal mfERG. The father showed a normal ERG and mfERG. The mfERG is a useful adjunct to full-field ERG in the paediatric population and in family studies.

  17. Toluene Inhalation Exposure for 13 Weeks Causes Persistent Changes in Electroretinograms of Long-Evans Rats

    PubMed Central

    Boyes, William K.; Bercegeay, Mark; Degn, Laura; Beasley, Tracey E.; Evansky, Paul A.; Mwanza, Jean Claude; Geller, Andrew M.; Pinckney, Charles; Nork, T. Michael; Bushnell, Philip J.

    2016-01-01

    Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000 ppm toluene by inhalation (6 hr/d, 5 d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m2) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000 ppm toluene for 4 weeks were tested approximately 1 year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1 year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic connections. These data provide experimental evidence that repeated exposure to toluene may lead to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the rat visual cortex. PMID:26899397

  18. Validation of the colour difference plot scoring system analysis of the 103 hexagon multifocal electroretinogram in the evaluation of hydroxychloroquine retinal toxicity.

    PubMed

    Graves, Gabrielle S; Adam, Murtaza K; Stepien, Kimberly E; Han, Dennis P

    2014-08-01

    To evaluate sensitivity, specificity and reproducibility of colour difference plot analysis (CDPA) of 103 hexagon multifocal electroretinogram (mfERG) in detecting established hydroxychloroquine (HCQ) retinal toxicity. Twenty-three patients taking HCQ were divided into those with and without retinal toxicity and were compared with a control group without retinal disease and not taking HCQ. CDPA with two masked examiners was performed using age-corrected mfERG responses in the central ring (Rc ; 0-5.5 degrees from fixation) and paracentral ring (Rp ; 5.5-11 degrees from fixation). An abnormal ring was defined as containing any hexagons with a difference in two or more standard deviations from normal (colour blue or black). Categorical analysis (ring involvement or not) showed Rc had 83% sensitivity and 93% specificity. Rp had 89% sensitivity and 82% specificity. Requiring abnormal hexagons in both Rc and Rp yielded sensitivity and specificity of 83% and 95%, respectively. If required in only one ring, they were 89% and 80%, respectively. In this population, there was complete agreement in identifying toxicity when comparing CDPA using Rp with ring ratio analysis using R5/R4 P1 ring responses (89% sensitivity and 95% specificity). Continuous analysis of CDPA with receiver operating characteristic analysis showed optimized detection (83% sensitivity and 96% specificity) when ≥4 abnormal hexagons were present anywhere within the Rp ring outline. Intergrader agreement and reproducibility were good. Colour difference plot analysis had sensitivity and specificity that approached that of ring ratio analysis of R5/R4 P₁ responses. Ease of implementation and reproducibility are notable advantages of CDPA. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    PubMed

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  20. Negative electroretinograms in pericentral pigmentary retinal degeneration.

    PubMed

    Hotta, Kazuki; Kondo, Mineo; Nakamura, Makoto; Hotta, Junko; Terasaki, Hiroko; Miyake, Yozo; Hida, Tetsuo

    2006-01-01

    The clinical presentation and electrophysiological findings are described of three consecutive cases with pericentral pigmentary retinal degeneration. The responses to bright flashes after dark adaptation showed negative waveform shape in all cases. Rod responses were strongly reduced compared with cone responses. Cone electroretinograms elicited by long-duration stimuli showed greater loss of the on-response than the off-response. The ratio of the on-response amplitude to off-response amplitude of these patients (0.52 +/- 0.12; mean +/- SD, n = 6) was significantly smaller than that of normal subject (0.83 +/- 0.21; mean +/- SD, n = 8) (Mann-Whitney U-test, P < 0.01). The electrophysiological findings of these cases suggest a greater defect of inner retinal function, especially in transmission between photoreceptors and depolarizing bipolar cells.

  1. Use of the multifocal electroretinogram (mfERG) for assessing the response of 670 nm light emitting diodes (LED) photoillumination in an animal model with laser retinal injuries

    NASA Astrophysics Data System (ADS)

    DiCarlo, Cheryl D.; Brown, Jeremiah; Grado, Andres; Sankovich, James; Zwick, Harry; Lund, David J.; Stuck, Bruce E.

    2004-07-01

    There is no uniformly accepted objective method to diagnose the functional extent of retinal damage following laser eye injury and there is no uniform therapy for laser retinal injury. J.T. Eells, et al, reported the use of Light Emitting Diodes (LED) photoillumination (670 nm) for methanol-induced retinal toxicity in rats. The findings indicated a preservation of retinal architecture, as determined by histopathology and a partial functional recovery of photoreceptors, as determined by electroretinogram (ERG), in the LED exposed methanol-intoxicated rats. The purpose of this study is to use multifocal electroretinography (mfERG) to evaluate recovery of retinal function following treatment with LED photoillumination in a cynomolgus monkey laser retinal injury model. Control and LED array (670 nm) illuminated animals received macular Argon laser lesions (514 nm, 130 mW, 100 ms). LED array exposure was accomplished for 4 days for a total dose of 4 J/cm2 per day. Baseline and post-laser exposure mfERGs were performed. mfERG results for five animals post-laser injury but prior to treatment (Day 0) showed increased implicit times and P1 waveform amplitudes when compared to a combined laboratory normal and each animal's baseline normal values. In general, preliminary mfERG results of our first five subjects recorded using both the 103-hexagon and 509-hexagon patterns indicate a more rapid functional recovery in the LED illuminated animal as compared to the control by the end of the fourth day post-exposure. Research is continuing to determine if this difference in functional return is seen in additional subjects and if statistical significance exists.

  2. Abnormal dark-adapted electroretinogram in Best's vitelliform macular degeneration.

    PubMed

    Lachapelle, P; Quigley, M G; Polomeno, R C; Little, J M

    1988-10-01

    It is generally well accepted that in Best's vitelliform macular degeneration (BVMD) the electroretinogram (ERG) is normal whereas the electro-oculogram (EOG) is markedly abnormal. We describe a patient in whom BVMD was suspected on the basis of the clinical findings, EOG and family history (one of her daughters had the typical vitelliform lesion). However, her dark-adapted ERG was markedly abnormal. Similar anomalies were found in the dark-adapted ERG of the daughter. While the temporal features of the various ERG waves were well preserved, a substantial decrease in the amplitude of specific segments of the ERG signal was observed. A similar decrease in the amplitude of the oscillatory potentials was also found. We believe that this unusual combination of BVMD and abnormal dark-adapted ERG may be due to the reported reduced penetrance and variable expressivity of the BVMD gene(s).

  3. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer.

    PubMed

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2008-03-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.

  4. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer

    PubMed Central

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell’Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2010-01-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 × 1010 vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations. PMID:18209734

  5. Bilateral Glaucomatous Optic Neuropathy Caused by Eye Rubbing.

    PubMed

    Savastano, Alfonso; Savastano, Maria Cristina; Carlomusto, Laura; Savastano, Silvio

    2015-01-01

    In this report, we describe a particular condition of a 52-year-old man who showed advanced bilateral glaucomatous-like optic disc damage, even though the intraocular pressure resulted normal during all examinations performed. Visual field test, steady-state pattern electroretinogram, retinal nerve fiber layer and retinal tomographic evaluations were performed to evaluate the optic disc damage. Over a 4-year observational period, his visual acuity decreased to 12/20 in the right eye and counting fingers in the left eye. Visual fields were severely compromised, and intraocular pressure values were not superior to 14 mm Hg during routine examinations. An accurate anamnesis and the suspicion of this disease represent a crucial aspect to establish the correct diagnosis. In fact, our patient strongly rubbed his eyes for more than 10 h per day. Recurrent and continuous eye rubbing can induce progressive optic neuropathy, causing severe visual field damage similar to the pathology of advanced glaucoma.

  6. Light Modulates Ocular Complications in an Albino Rat Model of Type 1 Diabetes Mellitus.

    PubMed

    Andrawus, Elias; Veildbaum, Gizi; Zemel, Esther; Leibu, Rina; Perlman, Ido; Shehadeh, Naim

    2017-07-01

    The purpose of the study was to assess potential interactions of light exposure and hyperglycemia upon ocular complications in diabetic rats. Streptozotocin-induced (STZ-induced) diabetic rats ( N = 39) and non-diabetic rats ( N = 9) were distributed into eight groups according to the irradiance and color of the light phase during the 12/12-hour light/dark regime. Follow-up lasted 90 days and included assessment of cataract development and electroretinogram (ERG) recordings. Stress to the retina was also assessed by glial fibrillary acidic protein immunocytochemistry. Cataract development was fast in diabetic rats that were exposed to unattenuated white light or to bright colored lights during the light phase. Diabetic rats that were kept under attenuated brown or yellow light during the light phase exhibited slower rate of cataract development. Electroretinogram responses indicated very severe retinal damage in diabetic rats kept under bright colored lights in the blue-yellow range or bright white light during the light phase. Electroretinogram damage was milder in rats kept under bright red light or attenuated yellow or brown light during the light phase. Glial fibrillary acidic protein expression in retinal Müller cells was consistent with ERG assessment of retinal damage. Attenuating white light and filtering out short wavelengths have a protective effect on the eyes of diabetic rats as evident by slower rate of cataract formation and a smaller degree of retinal damage. Our findings suggest that special glasses attenuating light exposure and filtering out short wavelengths (400-530 nm) may be beneficial for diabetic patients.

  7. [Pattern-reversal electroretinogram (PERG): a normative study in adults].

    PubMed

    Alves, Letícia Dourado; Berezovsky, Adriana; Sacai, Paula Yuri; Pereira, Josenilson Martins; Salomão, Solange Rios

    2010-01-01

    To determine normative values for pattern-reversal electroretinogram (PERG) in healthy adult volunteers according to the standard protocol recommended by the International Society for Clinical Electrophysiology of Vision-ISCEV. Participants were 30 healthy volunteers (15 males) with ages from 18 to 61 years (mean= 30.8 +/- 8.7 yrs.; median= 29.5 yrs). Inclusion criteria were: visual acuity of 0.0 logMAR (20/20 Snellen) in each eye, absence of visual complaints, absence of media opacities, negative history for ocular or neurological diseases, negative family history for ocular and informed consent. PERG was recorded from each eye in a darkened room at 1 m from a high resolution display monitor. Stimuli were monochromatic checkerboards subtending 60, 15 e 7.5 minutes of visual angle reversing at 1.9 Hz. Responses were obtained from modified disposable fiber electrodes developed at UNIFESP. Latency (ms) for N35, P50 and N95 components as well as peak-to-peak amplitudes (microV) for N35-P50 and P50-N95 were determined. For normative values only one randomly chosen eye was included. Normal limits were calculated as 97.5% percentiles for latency and 2.5% percentile for amplitudes for each stimulus size. Normal limits for N35, P50 and N95 latencies for 60', 15' and 7.5' stimuli were respectively: N35 - 40.1; 39.9 and 41.3 ms; P50 - 60.5; 64.4 and 65.6 ms and N95 - 103.4; 104.6 and 104.6 ms. For amplitude the normative values for N35-P50 and P50-N95 for 60', 15' and 7.5' were respectively: N35-P50 - 1.7; 1.6 and 0.9 microV; P50-N95 - 3.8; 2.8 and 1.5 microV. No gender differences were found either for latency or for amplitude in the three stimulus sizes. There was no correlation between PERG latency and amplitude with age, except for P50 amplitude for stimulus 15'(r=0.39; P=0.035). Normative values were determined for PERG parameters of amplitude and latency for three stimulus sizes. These parameters are important for evaluating the normal functioning of retinal ganglion cells and the macula. The normative values obtained in this study are comparable to previous studies in the literature.

  8. Toluene Inhalation Exposure for 13 Weeks Causes Persistent Changes in Electroretinograms of Long-Evans Rats

    EPA Science Inventory

    Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To addre...

  9. Multifocal electroretinograms.

    PubMed

    Creel, Donnell J

    2011-12-04

    A limitation of traditional full-field electroretinograms (ERG) for the diagnosis of retinopathy is lack of sensitivity. Generally, ERG results are normal unless more than approximately 20% of the retina is affected. In practical terms, a patient might be legally blind as a result of macular degeneration or other scotomas and still appear normal, according to traditional full field ERG. An important development in ERGs is the multifocal ERG (mfERG). Erich Sutter adapted the mathematical sequences called binary m-sequences enabling the isolation from a single electrical signal an electroretinogram representing less than each square millimeter of retina in response to a visual stimulus. Results that are generated by mfERG appear similar to those generated by flash ERG. In contrast to flash ERG, which best generates data appropriate for whole-eye disorders. The basic mfERG result is based on the calculated mathematical average of an approximation of the positive deflection component of traditional ERG response, known as the b-wave. Multifocal ERG programs measure electrical activity from more than a hundred retinal areas per eye, in a few minutes. The enhanced spatial resolution enables scotomas and retinal dysfunction to be mapped and quantified. In the protocol below, we describe the recording of mfERGs using a bipolar speculum contact lens. Components of mfERG systems vary between manufacturers. For the presentation of visible stimulus, some suitable CRT monitors are available but most systems have adopted the use of flat-panel liquid crystal displays (LCD). The visual stimuli depicted here, were produced by a LCD microdisplay subtending 35-40 degrees horizontally and 30-35 degrees vertically of visual field, and calibrated to produce multifocal flash intensities of 2.7 cd s m(-2). Amplification was 50K. Lower and upper bandpass limits were 10 and 300 Hz. The software packages used were VERIS versions 5 and 6.

  10. Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A gene.

    PubMed

    Sandberg, Michael A; Rosner, Bernard; Weigel-DiFranco, Carol; McGee, Terri L; Dryja, Thaddeus P; Berson, Eliot L

    2008-12-01

    To estimate the mean rates of ocular function loss in patients with autosomal recessive retinitis pigmentosa due to USH2A mutations. In 125 patients with USH2A mutations, longitudinal regression was used to estimate mean rates of change in Snellen visual acuity, Goldmann visual field area (V4e white test light), and 30-Hz (cone) full-field electroretinogram amplitude. These rates were compared with those of previously studied cohorts with dominant retinitis pigmentosa due to RHO mutations and with X-linked retinitis pigmentosa due to RPGR mutations. Rates of change in patients with the Cys759Phe mutation, the USH2A mutation associated with nonsyndromic disease, were compared with rates of change in patients with the Glu767fs mutation, the most common USH2A mutation associated with Usher syndrome type II (i.e., retinitis pigmentosa and hearing loss). Mean annual exponential rates of decline for the USH2A patients were 2.6% for visual acuity, 7.0% for visual field area, and 13.2% for electroretinogram amplitude. The rate of acuity loss fell between the corresponding rates for the RHO and RPGR patients, whereas the rates for field and ERG amplitude loss were faster than those for the RHO and RPGR patients. No significant differences were found for patients with the Cys759Phe mutation versus patients with the Glu767fs mutation. On average, USH2A patients lose visual acuity faster than RHO patients and slower than RPGR patients. USH2A patients lose visual field and cone electroretinogram amplitude faster than patients with RHO or RPGR mutations. Patients with a nonsyndromic USH2A mutation have the same retinal disease course as patients with syndromic USH2A disease.

  11. [Sex-linked juvenile retinoschisis].

    PubMed

    François, P; Turut, P; Soltysik, C; Hache, J C

    1976-02-01

    About 13 observations of sexe linked juvenile retinoschisis, the authors describe the ophthalmoscopic, fluorographic and functional aspects of the disease whose caracteristics are:--its sexe linked recessive heredity; --its clinical characterestics associating: a microcystic macular degeneration, peripheral retinal lesions, vitreous body alterations, --an electroretinogram of the negative type.

  12. The effects of fundus photography on the multifocal electroretinogram.

    PubMed

    Suresh, Sandip; Tienor, Brian J; Smith, Scott D; Lee, Michael S

    2016-02-01

    To determine the effect of flash fundus photography (FFP) on the multifocal electroretinogram (mfERG). Ten subjects underwent mfERG testing on three separate dates. Subjects received either mfERG without FFP, mfERG at 5 and 15 min after FFP, or mfERG at 30 and 45 min after FFP on each date. The FFP groups received 10 fundus photographs followed by mfERG testing, first of the right eye then of the left eye 10 min later. Data were averaged and analyzed in six concentric rings at each time point. Average amplitude and implicit times of the N1, P1, and N2 peaks for each concentric ring at each time point after FFP were compared to baseline. Flash fundus photography did not lead to a significant change of amplitude or implicit times of N1, P1, or N2 at 5 min after light exposure. These findings suggest that it is acceptable to perform mfERG testing without delay after performance of FFP.

  13. Implantation and Recording of Wireless Electroretinogram and Visual Evoked Potential in Conscious Rats.

    PubMed

    Charng, Jason; He, Zheng; Bui, Bang; Vingrys, Algis; Ivarsson, Magnus; Fish, Rebecca; Gurrell, Rachel; Nguyen, Christine

    2016-06-29

    The full-field electroretinogram (ERG) and visual evoked potential (VEP) are useful tools to assess retinal and visual pathway integrity in both laboratory and clinical settings. Currently, preclinical ERG and VEP measurements are performed with anesthesia to ensure stable electrode placements. However, the very presence of anesthesia has been shown to contaminate normal physiological responses. To overcome these anesthesia confounds, we develop a novel platform to assay ERG and VEP in conscious rats. Electrodes are surgically implanted sub-conjunctivally on the eye to assay the ERG and epidurally over the visual cortex to measure the VEP. A range of amplitude and sensitivity/timing parameters are assayed for both the ERG and VEP at increasing luminous energies. The ERG and VEP signals are shown to be stable and repeatable for at least 4 weeks post surgical implantation. This ability to record ERG and VEP signals without anesthesia confounds in the preclinical setting should provide superior translation to clinical data.

  14. An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram.

    PubMed

    Barraco, R; Persano Adorno, D; Brai, M

    2011-12-01

    Most biomedical signals are non-stationary. The knowledge of their frequency content and temporal distribution is then useful in a clinical context. The wavelet analysis is appropriate to achieve this task. The present paper uses this method to reveal hidden characteristics and anomalies of the human a-wave, an important component of the electroretinogram since it is a measure of the functional integrity of the photoreceptors. We here analyse the time-frequency features of the a-wave both in normal subjects and in patients affected by Achromatopsia, a pathology disturbing the functionality of the cones. The results indicate the presence of two or three stable frequencies that, in the pathological case, shift toward lower values and change their times of occurrence. The present findings are a first step toward a deeper understanding of the features of the a-wave and possible applications to diagnostic procedures in order to recognise incipient photoreceptoral pathologies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. The determination of dark adaptation time using electroretinography in conscious Miniature Schnauzer dogs

    PubMed Central

    Yu, Hyung-Ah; Jeong, Man-Bok; Park, Shin-Ae; Kim, Won-Tae; Kim, Se-Eun; Chae, Je-Min; Yi, Na-Young

    2007-01-01

    The optimal dark adaptation time of electroretinograms (ERG's) performed on conscious dogs were determined using a commercially available ERG unit with a contact lens electrode and a built-in light source (LED-electrode). The ERG recordings were performed on nine healthy Miniature Schnauzer dogs. The bilateral ERG's at seven different dark adaptation times at an intensity of 2.5 cd·s/m2 was performed. Signal averaging (4 flashes of light stimuli) was adopted to reduce electrophysiologic noise. As the dark adaptation time increased, a significant increase in the mean a-wave amplitudes was observed in comparison to base-line levels up to 10 min (p < 0.05). Thereafter, no significant differences in amplitude occured over the dark adaptation time. Moreover, at this time the mean amplitude was 60.30 ± 18.47 µV. However, no significant changes were observed for the implicit times of the a-wave. The implicit times and amplitude of the b-wave increased significantly up to 20 min of dark adaptation (p < 0.05). Beyond this time, the mean b-wave amplitudes was 132.92 ± 17.79 µV. The results of the present study demonstrate that, the optimal dark adaptation time when performing ERG's, should be at least 20 min in conscious Miniature Schnauzer dogs. PMID:17993756

  16. The determination of dark adaptation time using electroretinography in conscious miniature Schnauzer dogs.

    PubMed

    Yu, Hyung-Ah; Jeong, Man-Bok; Park, Shin-Ae; Kim, Won-Tae; Kim, Se-Eun; Chae, Je-Min; Yi, Na-Young; Seo, Kang-Moon

    2007-12-01

    The optimal dark adaptation time of electroretinograms (ERG's) performed on conscious dogs were determined using a commercially available ERG unit with a contact lens electrode and a built-in light source (LED-electrode). The ERG recordings were performed on nine healthy Miniature Schnauzer dogs. The bilateral ERG's at seven different dark adaptation times at an intensity of 2.5 cd.s/m(2) was performed. Signal averaging (4 flashes of light stimuli) was adopted to reduce electrophysiologic noise. As the dark adaptation time increased, a significant increase in the mean a-wave amplitudes was observed in comparison to base-line levels up to 10 min (p < 0.05). Thereafter, no significant differences in amplitude occurred over the dark adaptation time. Moreover, at this time the mean amplitude was 60.30 +/- 18.47 microV. However, no significant changes were observed for the implicit times of the a-wave. The implicit times and amplitude of the b-wave increased significantly up to 20 min of dark adaptation (p < 0.05). Beyond this time, the mean b-wave amplitudes was 132.92 +/- 17.79 microV. The results of the present study demonstrate that, the optimal dark adaptation time when performing ERG's, should be at least 20 min in conscious Miniature Schnauzer dogs.

  17. ELECTRORETINOGRAMS ARE ALTERED BY SUBCHRONIC TOLUENE EXPOSURE TO LONG EVANS RATS: EXPERIMENTAL EVIDENCE SUPPORTING OBSERVATIONS FROM STUDIES OF EXPOSED HUMANS

    EPA Science Inventory

    Impaired visual functions, including low contrast sensitivity and reduced color discrimination, have been reported in studies of humans chronically exposed to several volatile organic solvents. These reports remain controversial, however, in part due to a lack of confirmation fro...

  18. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.

    PubMed

    Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos

    2017-01-01

    This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  19. Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa.

    PubMed

    Lam, Byron L; Züchner, Stephan L; Dallman, Julia; Wen, Rong; Alfonso, Eduardo C; Vance, Jeffery M; Peričak-Vance, Margaret A

    2014-01-01

    A single-nucleotide mutation in the gene that encodes DHDDS has been identified by whole exome sequencing as the cause of the non-syndromic recessive retinitis pigmentosa (RP) in a family of Ashkenazi Jewish origin in which three of the four siblings have early onset retinal degeneration. The peripheral retinal degeneration in the affected siblings was evident in the initial examination in 1992 and only one had detectable electroretinogram (ERG) that suggested cone-rod dysfunction. The pigmentary retinal degeneration subsequently progressed rapidly. The identified mutation changes the highly conserved residue Lys42 to Glu, resulting in lower catalytic efficiency. Patterns of plasma transferrin isoelectric focusing gel were normal in all family members, indicating no significant abnormality in protein glycosylation. Dolichols have been shown to influence the fluidity and of the membrane and promote vesicle fusion. Considering that photoreceptor outer segments contain stacks of membrane discs, we believe that the mutation may lead to low dolichol levels in photoreceptor outer segments, resulting in unstable membrane structure that leads to photoreceptor degeneration.

  20. Time-Dependent Decline in Multifocal Electroretinogram Requires Faster Recording Procedures in Anesthetized Pigs

    PubMed Central

    Sørensen, Nina Buus; Christiansen, Anders Tolstrup; Kjær, Troels Wesenberg; Klemp, Kristian; la Cour, Morten; Kiilgaard, Jens Folke

    2017-01-01

    Purpose The time-dependent effect of anesthetics on the retinal function is debated. We hypothesize that in anesthetized animals there is a time-dependent decline that requires optimized multifocal electroretinogram (mfERG) recording procedures. Methods Conventional and four-frame global-flash mfERG recordings were obtained approximately 15, 60, and 150 minutes after the induction of propofol anesthesia (20 pigs) and isoflurane anesthesia (nine pigs). In six of the propofol-anesthetized pigs, the mfERG recordings were split in 3-minute segments. Two to 4 weeks after initial recordings, an intraocular injection of tetrodotoxin (TTX) was given and the mfERG was rerecorded as described above. Data were analyzed using mixed models in SAS statistical software. Results Propofol significantly decreases the conventional and global-flash amplitudes over time. The only significant effect of isoflurane is a decrease in the global-flash amplitudes. At 15 minutes after TTX injection several of the mfERG amplitudes are significantly decreased. There is a linear correlation between the conventional P1 and the global-flash DR mfERG-amplitude (R2 = 0.82, slope = 0.72, P < 0.0001). There is no significant difference between the 3-minute and the prolonged mfERG recordings for conventional amplitudes and the global-flash direct response. The global flash–induced component significantly decreases with prolonged mfERG recordings. Conclusions A 3-minute mfERG recording and a single stimulation protocol is sufficient in anesthetized pigs. Recordings should be obtained immediately after the induction of anesthesia. The effect of TTX is significant 15 minutes after injection, but is contaminated by the effect of anesthesia 90 minutes after injection. Therefore, the quality of mfERG recordings can be further improved by determining the necessary time-of-delay from intraocular injection of a drug to full effect. Translational Relevance General anesthesia is a possible source of error in mfERG recordings. Therefore, it is important to investigate the translational relevance of the results to mfERG recordings in children in general anesthesia. PMID:28377845

  1. Response of Phlebotomine Sand Flies to Light-Emitting Diode-Modified Light Traps in Southern Egypt

    DTIC Science & Technology

    2007-04-01

    light. Only one study has been performed on a New World sand fly ( Lutzomyia Iongipalpis) measuring spectral sensitivity with an electroretinogram... Lutzomyia longipalpis sandflies. Med. Vet. Entomol. 10: 372-374. Muir, L.E., M.J. Thorne, and D.H. Kay. 1992. Aedes aegypti (Diptera: Culicidae) vision

  2. Dose-dependent effects of 6-hydroxy dopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens.

    PubMed

    Li, X X; Schaeffel, F; Kohler, K; Zrenner, E

    1992-11-01

    We found that a single intravitreal injection of 6-hydroxy dopamine (6-OHDA) is highly efficient in blocking the development of deprivation-induced myopia in young chickens. To investigate the effects of 6-OHDA on retinal function, we studied electroretinograms (ERGs) in chickens aged 15-25 days, 4 days subsequent to the injection. Both spectral sensitivity and oscillatory potentials were tested. In addition, a histological examination was performed of dopaminergic amacrine cells labeled by a monoclonal antibody against tyrosine hydroxylase. We found that, at doses of 6-OHDA sufficient to suppress deprivation myopia entirely, no effect could be detected on either the ERGs or on the density and appearance of dopaminergic amacrine cells. For higher doses, spectral sensitivity and the number of dopaminergic amacrine cells declined gradually. In contrast, as doses increased, oscillatory potentials 1 and 2 grew in amplitude only to decline at the highest doses. The results indicate that (1) development of deprivation myopia requires normal retinal function and that (2) slight changes in the gains of dopaminergic pathways are sufficient to block the development of deprivation myopia.

  3. Bilateral Symmetry of Visual Function Loss in Cone-Rod Dystrophies.

    PubMed

    Galli-Resta, Lucia; Falsini, Benedetto; Rossi, Giuseppe; Piccardi, Marco; Ziccardi, Lucia; Fadda, Antonello; Minnella, Angelo; Marangoni, Dario; Placidi, Giorgio; Campagna, Francesca; Abed, Edoardo; Bertelli, Matteo; Zuntini, Monia; Resta, Giovanni

    2016-07-01

    To investigate bilateral symmetry of visual impairment in cone-rod dystrophy (CRD) patients and understand the feasibility of clinical trial designs treating one eye and using the untreated eye as an internal control. This was a retrospective study of visual function loss measures in 436 CRD patients followed at the Ophthalmology Department of the Catholic University in Rome. Clinical measures considered were best-corrected visual acuity, focal macular cone electroretinogram (fERG), and Ganzfeld cone-mediated and rod-mediated electroretinograms. Interocular agreement in each of these clinical indexes was assessed by t- and Wilcoxon tests for paired samples, structural (Deming) regression analysis, and intraclass correlation. Baseline and follow-up measures were analyzed. A separate analysis was performed on the subset of 61 CRD patients carrying likely disease-causing mutations in the ABCA4 gene. Statistical tests show a very high degree of bilateral symmetry in the extent and progression of visual impairment in the fellow eyes of CRD patients. These data contribute to a better understanding of CRDs and support the feasibility of clinical trial designs involving unilateral eye treatment with the use of fellow eye as internal control.

  4. Electroretinogram (ERG) to photic stimuli should be carefully distinct from photic brainstem reflex in patients with deep coma.

    PubMed

    Mitsuhashi, Masahiro; Hitomi, Takefumi; Aoyama, Akihiro; Kaido, Toshimi; Ikeda, Akio; Takahashi, Ryosuke

    2017-08-31

    Patient 1: A 35-year-old woman became deep coma because of intracranial hemorrhage after pulmonary surgery. Patient 2: A 39-year-old woman became deep coma because of cerebellar hemorrhage after hepatic surgery. Scalp-recorded digital electroencephalography (EEG) showed electrocerebral inactivity in both cases. In addition, both EEG showed repetitive discharges at bilateral frontopolar electrodes in response to photic stimuli. The amplitude and latency of the discharges was 17 μV and 24 msec in case 1, and 9 μV and 27 msec in case 2 respectively. The activity at left frontopolar electrode disappeared after coverage of the ipsilateral eye. Based on these findings, we could exclude the possibility of brainstem response and judged it as electroretinogram (ERG). Photic stimulation is a useful activation method in EEG recording, and we can also evaluate brainstem function by checking photic blink reflex if it is evoked. However, we should be cautious about the distinction of ERG from photic blink reflex when brain death is clinically suspected.

  5. Neuroprotective Dose Response in RCS Rats Implanted with Microphotodiode Arrays

    PubMed Central

    Pardue, Machelle T.; Kim, Moon K.; Walker, Tiffany A.; Faulkner, Amanda E.; Chow, Alan Y.; Ciavatta, Vincent T.

    2012-01-01

    Purpose Neuropreservation of retinal function and structure in RCS rats following implantation of a microphotodiode array (MPA) has been shown in previous studies(Pardue et al. 2005a; Pardue et al. 2005b). Since microphotodiodes produce electrical currents in proportion to the intensity of incident light, increased light exposure may result in greater neuroprotective effects. Our previous studies suggested that the frequency of light exposure to electroretinogram (ERG) flash stimuli might provide increased neuroprotection. Thus, in this study, we examined the dose response of subretinal electrical stimulation by exposing RCS rats implanted with MPAs to variable durations and combinations of two different lighting regimens: pulsing incandescent bulbs and xenon stimuli from an ERG Ganzfeld. While incandescent light regimens did not produce any significant differences in ERG function, we found significantly greater dark-adapted ERG b-wave amplitudes in RCS rats that received weekly versus biweekly ERGs over the course of 8 weeks of follow-up. These results suggest that subretinal electrical stimulation may be optimized to produce greater neuroprotective effects by dosing with periodic higher current. PMID:22183323

  6. Assessment of Murine Retinal Function by Electroretinography

    PubMed Central

    Benchorin, Gillie; Calton, Melissa A.; Beaulieu, Marielle O.; Vollrath, Douglas

    2017-01-01

    The electroretinogram (ERG) is a sensitive and noninvasive method for testing retinal function. In this protocol, we describe a method for performing ERGs in mice. Contact lenses on the mouse cornea measure the electrical response to a light stimulus of photoreceptors and downstream retinal cells, and the collected data are analyzed to evaluate retinal function. PMID:29177186

  7. Neuroprotective Strategies for the Treatment of Blast-Induced Optic Neuropathy

    DTIC Science & Technology

    2016-09-01

    will examine alterations in the amacrine cells and ganglion cells as well as therapeutic outcome measures including electroretinogram, visual evoked...nerve degeneration.1-3 This suggests that degeneration of the retinal ganglion cell (RGC) axons in the optic nerve is a secondary event. Secondary...for neurodegenerations from trauma extending beyond optic neuropathy. 2. Keywords: retinal ganglion cell (RGC), traumatic optic neuropathy

  8. The scotopic electroretinogram of the sugar glider related to histological features of its retina.

    PubMed

    Akula, James D; Esdaille, Tricia M; Caffé, A Romeo; Naarendorp, Franklin

    2011-11-01

    The flash electroretinogram (ERG) was used to characterize the scotopic retinal function in a marsupial. Key parameter values of the a- and b-waves of adult male sugar gliders, Petaurus breviceps breviceps, elicited with ganzfeld flashes were determined under dark- and light-adapted conditions. Using standard histological methods, the thicknesses of the major layers of the retina were assessed to provide insight into the nature of the ERG responses. The ERG and histological results were compared to corresponding data for placental C57Bl/6 mice to establish whether the functional retinal specialization that underlies scotopic visual function in a marsupial parallels that of a placental mouse. The sensitivity of the a-wave assessed with the Lamb and Pugh (Invest Ophthalmol Vis Sci 47:5138-5152, 2006) "model" and that of the b-wave assessed with standard methods were lower in the sugar glider compared to the mouse. The thickness of the sugar glider retina was two-third of that of the mouse. The high-intensity flash ERG of the sugar glider substantially differed in shape from that of the mouse reflecting perhaps structural and functional differences between the two species at the level of the inner retina.

  9. Case of adult-onset neuronal intranuclear hyaline inclusion disease with negative electroretinogram.

    PubMed

    Yamada, Wataru; Takekoshi, Akira; Ishida, Kyoko; Mochizuki, Kiyofumi; Sone, Jun; Sobue, Gen; Hayashi, Yuichi; Inuzuka, Takashi; Miyake, Yozo

    2017-06-01

    To report the findings in a 72-year-old man with neuronal intranuclear hyaline inclusion disease (NIHID) with the negative-type electroretinogram (ERG) and without night blindness. Standard ophthalmological examinations including the medical history, measurements of the best-corrected visual acuity and intraocular pressures, slit-lamp biomicroscopy, ophthalmoscopy, spectral-domain optical coherence tomography, fundus autofluorescence, and perimetry were performed. In addition, neurological and electrophysiological examinations were performed. NIHID was confirmed by skin biopsy. The ophthalmologic examinations revealed sluggish pupillary reflexes without visual disturbances and retinal abnormalities. The amplitudes of the dark-adapted 0.01 ERG was absent, and light-adapted 3 ERG and light-adapted 30 Hz flicker ERG were reduced in amplitude and delayed in implicit time. The rod system was more severely affected than the cone system, indicating that NIHID is classified as one of rod-cone dysfunction syndrome. The dark-adapted 3 ERG consisted of a markedly reduced b-wave with larger a-wave (negative ERG), but the amplitude of a-wave was smaller than normal. Since the ophthalmoscopical findings and the subjective visual functions may be essentially normal, the characteristic ERG abnormalities can be an important findings in adult-onset NIHID without night blindness.

  10. Calculation and plotting of retinal nerve fiber paths based on Jansonius et al. 2009/2012 with an R program.

    PubMed

    Bach, M; Hoffmann, M B

    2018-06-01

    The data presented in this article are related to the research article entitled "Retinal conduction speed analysis reveals different origins of the P50 and N95 components of the (multifocal) pattern electroretinogram" (Bach et al., 2018) [1]. That analysis required the individual length data of the retinal nerve fibers (from ganglion cell body to optic nerve head, depending on the position of the ganglion cell body). Jansonius et al. (2009, 2012) [2,3] mathematically modeled the path morphology of the human retinal nerve fibers. We here present a working implementation with source code (for the free and open-source programming environment "R") of the Jansonius' formulas, including all errata. One file defines Jansonius et al.'s "phi" function. This function allows quantitative modelling of paths (and any measures derived from them) of the retinal nerve fibers. As a working demonstration, a second file contains a graph which plots samples of nerve fibers. The included R code runs in base R without the need of any additional packages.

  11. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    PubMed

    Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M

    2004-12-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.

  12. Comparison of human expert and computer-automated systems using magnitude-squared coherence (MSC) and bootstrap distribution statistics for the interpretation of pattern electroretinograms (PERGs) in infants with optic nerve hypoplasia (ONH).

    PubMed

    Fisher, Anthony C; McCulloch, Daphne L; Borchert, Mark S; Garcia-Filion, Pamela; Fink, Cassandra; Eleuteri, Antonio; Simpson, David M

    2015-08-01

    Pattern electroretinograms (PERGs) have inherently low signal-to-noise ratios and can be difficult to detect when degraded by pathology or noise. We compare an objective system for automated PERG analysis with expert human interpretation in children with optic nerve hypoplasia (ONH) with PERGs ranging from clear to undetectable. PERGs were recorded uniocularly with chloral hydrate sedation in children with ONH (aged 3.5-35 months). Stimuli were reversing checks of four sizes focused using an optical system incorporating the cycloplegic refraction. Forty PERG records were analysed; 20 selected at random and 20 from eyes with good vision (fellow eyes or eyes with mild ONH) from over 300 records. Two experts identified P50 and N95 of the PERGs after manually deleting trials with movement artefact, slow-wave EEG (4-8 Hz) or other noise from raw data for 150 check reversals. The automated system first identified present/not-present responses using a magnitude-squared coherence criterion and then, for responses confirmed as present, estimated the P50 and N95 cardinal positions as the turning points in local third-order polynomials fitted in the -3 dB bandwidth [0.25 … 45] Hz. Confidence limits were estimated from bootstrap re-sampling with replacement. The automated system uses an interactive Internet-available webpage tool (see http://clinengnhs.liv.ac.uk/esp_perg_1.htm). The automated system detected 28 PERG signals above the noise level (p ≤ 0.05 for H0). Good subjective quality ratings were indicative of significant PERGs; however, poor subjective quality did not necessarily predict non-significant signals. P50 and N95 implicit times showed good agreement between the two experts and between experts and the automated system. For the N95 amplitude measured to P50, the experts differed by an average of 13% consistent with differing interpretations of peaks within noise, while the automated amplitude measure was highly correlated with the expert measures but was proportionally larger. Trial-by-trial review of these data required approximately 6.5 h for each human expert, while automated data processing required <4 min, excluding overheads relating to data transfer. An automated computer system for PERG analysis, using a panel of signal processing and statistical techniques, provides objective present/not-present detection and cursor positioning with explicit confidence intervals. The system achieves, within an efficient and robust statistical framework, estimates of P50 and N95 amplitudes and implicit times similar to those of clinical experts.

  13. On optimal current patterns for electrical impedance tomography.

    PubMed

    Demidenko, Eugene; Hartov, Alex; Soni, Nirmal; Paulsen, Keith D

    2005-02-01

    We develop a statistical criterion for optimal patterns in planar circular electrical impedance tomography. These patterns minimize the total variance of the estimation for the resistance or conductance matrix. It is shown that trigonometric patterns (Isaacson, 1986), originally derived from the concept of distinguishability, are a special case of our optimal statistical patterns. New optimal random patterns are introduced. Recovering the electrical properties of the measured body is greatly simplified when optimal patterns are used. The Neumann-to-Dirichlet map and the optimal patterns are derived for a homogeneous medium with an arbitrary distribution of the electrodes on the periphery. As a special case, optimal patterns are developed for a practical EIT system with a finite number of electrodes. For a general nonhomogeneous medium, with no a priori restriction, the optimal patterns for the resistance and conductance matrix are the same. However, for a homogeneous medium, the best current pattern is the worst voltage pattern and vice versa. We study the effect of the number and the width of the electrodes on the estimate of resistivity and conductivity in a homogeneous medium. We confirm experimentally that the optimal patterns produce minimum conductivity variance in a homogeneous medium. Our statistical model is able to discriminate between a homogenous agar phantom and one with a 2 mm air hole with error probability (p-value) 1/1000.

  14. Simultaneous chromatic and luminance human electroretinogram responses.

    PubMed

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-07-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.

  15. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    PubMed Central

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  16. Multifocal electroretinogram and Optical Coherence tomography spectral-domain in arc welding macular injury: a case report.

    PubMed

    Cellini, Mauro; Gattegna, Roberto; Toschi, Pier Giorgio; Strobbe, Ernesto; Campos, Emilio C

    2011-12-30

    the purpose of this study was to report a binocular photic retinal injury induced by plasma arc welding and the follow-up after treatment with vitamin supplements for a month. In our study, we used different diagnostic tools such as fluorescein angiography (FA), optical coherence tomography (OCT) and multifocal electroretinogram (mfERG). in the first visit after five days from arc welding injury in the left eye (LE) the visual acuity was 0.9 and 1.0 in the right eye (RE). FA was normal in both eyes. OCT in the left eye showed normal profile and normal reflectivity and one month later, a hyperreflectivity appeared in the external limiting membrane (ELM). The mfERG signal in the LE was 102.30 nV/deg2 five days after the injury and 112.62 nV/deg2 after one month and in the RE respectively 142.70 nV/deg2 and 159.46 nV/deg2. in cases of retinal photo injury it is important for the ophthalmologist to evaluate tests such as OCT and the mfERG in the diagnosis and follow-up of the patient because the recovery of visual acuity cannot exclude the persistence of phototoxic damage charged to the complex inner-outer segment of photoreceptors.

  17. [Multifocal Electroretinography in Patients with Poppers Maculopathy].

    PubMed

    Pahlitzsch, Milena; Salchow, Daniel; Rossel, Mirjam; Bergholz, Richard

    2017-10-12

    Background Maculopathy is a potential side effect of amyl nitrite or "poppers" abuse. It is characterized by a sudden, painless decrease in visual acuity. While the funduscopic changes are subtle, optical coherence tomography shows alterations of the outer retinal layers in the fovea. However, the extent of retinal dysfunction remains poorly understood. Materials/Methods We compared the multifocal electroretinogram of 6 patients with poppers maculopathy to that of a control group consisting of 6 healthy subjects. Response densities and implicit times of N1 and P1 were analyzed. Results Response densities and implicit times of both N1 and P1 were lower in the patients with poppers maculopathy than in the control group, particularly in ring 1 and rings 4 and 5. The only statistically significant finding, however, was a reduced N1 response density of one hexagon in the patient group. No significant differences were found considering the sum response or the averaged rings 1 to 5. Conclusion Compared to a healthy control group, the multifocal electroretinogram of patients with poppers maculopathy shows no relevant impairment. This contrasts the marked effect of the disease on visual acuity. In clinical practice, poppers maculopathy cannot be diagnosed by multifocal electroretinography. Georg Thieme Verlag KG Stuttgart · New York.

  18. A dose related response of 6-OHDA on chicken spectral sensitivity and oscillatory potentials of recording electroretinograms.

    PubMed

    Li, X; Schaeffel, F; Konrad, K; Eberhart, Z

    1996-10-01

    To further study the contribution of dopamine system to the local growth controlling mechanisms, a dose related response of 6-hydroxydopamine (6-OHDA) was studied by recording electroretinograms (ERGs). The spectral sensitivity of the b-waves and spectral efficiency function of oscillatory potentials (OPs) including OP1, OP2 and OP3 in 4 different doses group were measured. The effect of ascorbate that must be contained in solution of 6-OHDA was first tested with the spectral sensitivity of the b-waves and a correlation between response of the OPs and age, as well as a difference in both own eyes was analyzed for determining an intra-subject and inter-subject variance. An enhanced response was found in OP1, OP2 with doses of 175 micrograms and OP3 with dose of 150 micrograms, and the effect of OPs was mainly in wavelength from 620 nm to 480 nm. No significant increase was found in the spectral sensitivity of the b-waves. The dose 200 micrograms seemed to be toxic to the retina estimated by both spectral sensitivity of the b-waves and spectral efficiency function of the OPs. The dose 175 micrograms and 150 micrograms of 6-OHDA yielded an effect on the chicken retina.

  19. Sustained and Transient Contributions to the Rat Dark-Adapted Electroretinogram b-Wave

    PubMed Central

    Dang, Trung M.; Vingrys, Algis J.; Bui, Bang V.

    2013-01-01

    The most dominant feature of the electroretinogram, the b-wave, is thought to reflect ON-bipolar cell responses. However, a number of studies suggest that the b-wave is made up of several components. We consider the composition of the rat b-wave by subtracting corneal negative components obtained using intravitreal application of pharmacological agents to remove postreceptoral responses. By analyzing the intensity-response characteristic of the PII across a range of fixed times during and after a light step, we find that the rat isolated PII has 2 components. The first has fast rise and decay characteristics with a low sensitivity to light. GABAc-mediated inhibitory pathways enhance this transient-ON component to manifest increased and deceased sensitivity to light at shorter (<160 ms) and longer times, respectively. The second component has slower temporal characteristics but is more sensitive to light. GABAc-mediated inhibition enhances this sustained-ON component but has little effect on its sensitivity to light. After stimulus offset, both transient and sustained components return to baseline, and a long latency sustained positive component becomes apparent. The light sensitivities of transient-ON and sustained-OFF components are consistent with activity arising from cone ON- and OFF-bipolar cells, whereas the sustained-ON component is likely to arise from rod bipolar cells. PMID:23533706

  20. Spontaneous occurrence of a potentially night blinding disorder in guinea pigs.

    PubMed

    Racine, Julie; Behn, Darren; Simard, Eric; Lachapelle, Pierre

    2003-07-01

    Several hereditary retinal disorders such as retinitis pigmentosa and congenital stationary night blindness compromise, sometimes exclusively, the activity of the rod pathway. Unfortunately, there are few animal models of these disorders that could help us better understand the pathophysiological processes involved. The purpose of this report is to present a pedigree of guinea pigs where, as a result of a consanguineous mating and subsequent selective breeding, we developed a new and naturally occurring animal model of a rod disorder. Analysis of the retinal function with the electroretinogram reveals that the threshold for rod-mediated electroretinograms (ERGs) is significantly increased by more than 2 log-units compared to that of normal guinea pigs. Furthermore, in response to a suprathreshold stimulus, also delivered under scotopic condition, which yield a mixed cone-rod response in normal guinea pigs, the ERG waveform in our mutant guinea pigs is almost identical (amplitude and timing of a- and b-waves) to that evoked in photopic condition. The above would thus suggest either a structural (abnormal development or absence) or a functional deficiency of the rod photoreceptors. We believe that our pedigree possibly represents a new animal model of a night blinding disorder, and that this condition is inherited as anautosomal recessive trait in the guinea pig population.

  1. Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates.

    PubMed

    Stensløkken, Kåre-Olav; Milton, Sarah L; Lutz, Peter L; Sundin, Lena; Renshaw, Gillian M C; Stecyk, Jonathan A W; Nilsson, Göran E

    2008-08-01

    To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle (Trachemys scripta), epaulette shark (Hemiscyllium ocellatum) and leopard frog (Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp (Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by approximately 50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by approximately 75% after 40 min in anoxia. The specific A(1) adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.

  2. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  3. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients.

    PubMed

    Garcia-Martin, E; Pueyo, V; Ara, J R; Almarcegui, C; Martin, J; Pablo, L; Dolz, I; Sancho, E; Fernandez, F J

    2011-07-01

    The objective of this research was to study the effect of optic neuritis (ON) on axonal damage in multiple sclerosis (MS) patients. Specifically, we compared changes over 2 years in the retinal nerve fibre layer (RNFL) between affected and contralateral eyes in MS patients with a prior history of ON. Thirty-four patients with one unilateral definitive episode of ON were included and underwent a complete ophthalmic examination, optical coherence tomography (OCT), scanning laser polarimetry, visual evoked potentials (VEP) and pattern electroretinogram (pERG). All patients were re-evaluated at 12 and 24 months. Parameters were compared between ON-affected and contralateral eyes in an initial exploration and over the course of the follow-up. Correlations between parameter changes were analysed. RNFL thickness and functional parameters showed more affection in ON eyes (p ≤ 0.05), but changes in measurements during the study were similar between both groups of eyes. Progressive axonal loss can be detected in the optic nerve, but ON is not a risk factor for increased chronic damage in MS patients without ophthalmic relapses. Loss of the RNFL is caused by progressive degeneration associated with the disease.

  4. Wavelet decomposition analysis in the two-flash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field.

    PubMed

    Brandao, Livia M; Monhart, Matthias; Schötzau, Andreas; Ledolter, Anna A; Palmowski-Wolfe, Anja M

    2017-08-01

    To further improve analysis of the two-flash multifocal electroretinogram (2F-mfERG) in glaucoma in regard to structure-function analysis, using discrete wavelet transform (DWT) analysis. Sixty subjects [35 controls and 25 primary open-angle glaucoma (POAG)] underwent 2F-mfERG. Responses were analyzed with the DWT. The DWT level that could best separate POAG from controls was compared to the root-mean-square (RMS) calculations previously used in the analysis of the 2F-mfERG. In a subgroup analysis, structure-function correlation was assessed between DWT, optical coherence tomography and automated perimetry (mf103 customized pattern) for the central 15°. Frequency level 4 of the wavelet variance analysis (144 Hz, WVA-144) was most sensitive (p < 0.003). It correlated positively with RMS but had a better AUC. Positive relations were found between visual field, WVA-144 and GCIPL thickness. The highest predictive factor for glaucoma diagnostic was seen in the GCIPL, but this improved further by adding the mean sensitivity and WVA-144. mfERG using WVA analysis improves glaucoma diagnosis, especially when combined with GCIPL and MS.

  5. Identification of XLRS1 gene mutation (608C > T) in a Portuguese family with juvenile retinoschisis.

    PubMed

    Teixeira, C; Rocha-Sousa, A; Trump, D; Brandão, E; Falcão-Reis, F

    2005-01-01

    To characterize electroretinogram (ERG) and molecular genetic findings in a family with XLRS1 mutation. The authors present two cases of a Portuguese family with juvenile retinoschisis with a mutation in exon 6. Two brothers and their parents, grandmother, and uncle underwent a full ophthalmic examination. The two brothers with ophthalmic disease were evaluated with color fundus photography, fluorescein angiography, optical coherence tomography (OCT), molecular genetic study (Group VI of Retinoschisis Consortium), pattern visual evoked potential (PVEP), and full field ERG. Both patients presented funduscopic manifestations of vitre o retinal degeneration. They presented peripheral schisis and retinal detachment. However, foveal schisis had never been observed at funduscopy. A negative ERG was recorded in both. Six months after that, the younger brother showed a typical foveal schisis at fundus examination. A retinoschisis gene (XLRS1) mutation with transition of cytosine by thymine at position 608 (608C > T) had been identified in both. Negative ERG is the most secure clinical marker to establish the diagnosis of juvenile retinoschisis. XLRS1 gene 608C > T mutation was described for the first time in a Portuguese family.

  6. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    PubMed

    Cantrup, Robert; Dixit, Rajiv; Palmesino, Elena; Bonfield, Stephan; Shaker, Tarek; Tachibana, Nobuhiko; Zinyk, Dawn; Dalesman, Sarah; Yamakawa, Kazuhiro; Stell, William K; Wong, Rachel O; Reese, Benjamin E; Kania, Artur; Sauvé, Yves; Schuurmans, Carol

    2012-01-01

    The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.

  7. [Tapeto-retinal degeneration combined with incomplete general albinism (author's transl)].

    PubMed

    Ivandić, T

    1975-05-01

    Report on a family, which presented the rare autosomal dominant transmitted, incomplete general albinism associated with autosomal recessive inherited, diffuse tapeto-retinal degeneration "sine pigmento". hypopigmentation of skin, eyebrows and hair, blue iris and fundus albinoticus with hypoplasia of the macula. In 3 cases additionally appeared: waxy pallor of optic disc, vascular narrowing, reflexless hypoplastic macula, pigmentless periphery, acquired blue-yellow blindness, concentric limitation of the visual field, reduced darkadaptation, abolished electroretinogram and myopic astigmatism.

  8. Simultaneous chromatic and luminance human electroretinogram responses

    PubMed Central

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-01-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211

  9. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6

    PubMed Central

    Dryja, Thaddeus P.; McGee, Terri L.; Berson, Eliot L.; Fishman, Gerald A.; Sandberg, Michael A.; Alexander, Kenneth R.; Derlacki, Deborah J.; Rajagopalan, Aruna S.

    2005-01-01

    We report three unrelated patients with mutations in the GRM6 gene that normally encodes the glutamate receptor mGluR6. This neurotransmitter receptor has been shown previously to be present only in the synapses of the ON bipolar cell dendrites, and it mediates synaptic transmission from rod and cone photoreceptors to this type of second-order neuron. Despite the synaptic defect, best visual acuities were normal or only moderately reduced (20/15 to 20/40). The patients were night blind from an early age, and when maximally dark-adapted, they could perceive lights only with an intensity equal to or slightly dimmer than that normally detected by the cone system (i.e., 2-3 log units above normal). Electroretinograms (ERGs) in response to single brief flashes of light had clearly detectable a-waves, which are derived from photoreceptors, and greatly reduced b-waves, which are derived from the second-order inner retinal neurons. ERGs in response to sawtooth flickering light indicated a markedly reduced ON response and a nearly normal OFF response. There was no subjective delay in the perception of suddenly appearing white vs. black objects on a gray background. These patients exemplify a previously unrecognized, autosomal recessive form of congenital night blindness associated with a negative ERG waveform. PMID:15781871

  10. Multifocal electroretinogram and central visual field testing in central areolar choroidal dystrophy.

    PubMed

    Gundogan, Fatih Cakir; Dinç, Umut Asli; Erdem, Uzeyir; Ozge, Gokhan; Sobaci, Gungor

    2010-01-01

    To study multifocal electroretinogram (mfERG) and its relation to retinal sensitivity assessed by Humphrey visual field (HVF) analysis in central areolar choroidal dystrophy (CACD). Seven eyes of 4 patients with CACD and 15 normal control subjects were examined. mfERG and central 30/2 HVF were tested for each participant. Ring analysis in mfERG was evaluated. HVF results were evaluated in 5 concentric rings in order to compare the results to concentric ring analysis in mfERG. The differences between control subjects and patients were evaluated by Mann-Whitney U test and the correlations were assessed by Spearman test. Mean Snellen acuity was 0.49+/-0.10 in patients. HVF revealed central scotoma in 6 of 7 eyes (85.7%), whereas a paracentral scotoma extending to fixation point was detected in 1 eye. The retinal sensitivities in 5 concentric rings in HVF were significantly lower (p<0.001 for ring 1 to ring 4, and p=0.017 in ring 5) in CACD patients. Similarly, CACD patients had lower P1/N1 amplitudes (p<0.05) and delayed P1/N1 implicit times (p<0.05). In CACD, in the areas of scotoma detected by HVF, mfERG values were depressed. However, both mfERG and HVF abnormalities were found outside the areas of ophthalmoscopically normal retinal areas.

  11. Eye injuries with metal missiles presenting to an emergency center: a three year study.

    PubMed

    Schwartz, J G; Somerset, J S; Harrison, J M; Garriott, J C; Castorena, J L

    1991-07-01

    The authors retrospectively evaluated 33 eye injuries due to metal missiles in 31 patients presenting to our emergency center over the last 3 years. Injuries occurred most frequently when the patients were grinding metal or working on their cars. The type of metal involved in the injury often dictates the type of ophthalmic reaction that will occur. A discussion of intraocular metallic foreign bodies with an emphasis on electroretinograms and metal analysis is presented.

  12. [Juvenile retinoschisis: case report].

    PubMed

    Cunha, Aline Amaral Fulgêncio da; Picanço, Bruno Carvalho; Almeida, Grazziella Acácio e; Rodrigues, Nara Helena Teixeira; Rocha, Guilherme Mourão Soares da

    2008-01-01

    We report a 30-year-old patient presenting a non-conclusive diagnosis of low progressive visual acuity for 8 years. A cystoid maculopathy (stellate striation) was observed in both eyes after a complete ophthalmologic examination performed in the emergency ward at the Clínica de Olhos da Sanata Casa de Belo Horizonte. The absence of contrast leakage in the foveal region identified by fluorescein angiography and the presence of cysts and increase of foveal thickness in optical coherence tomography suggested juvenile retinoschisis which could be confirmed through electroretinogram.

  13. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder.

    PubMed

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, "eagle-like" visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection.

  14. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  15. Statistical model for speckle pattern optimization.

    PubMed

    Su, Yong; Zhang, Qingchuan; Gao, Zeren

    2017-11-27

    Image registration is the key technique of optical metrologies such as digital image correlation (DIC), particle image velocimetry (PIV), and speckle metrology. Its performance depends critically on the quality of image pattern, and thus pattern optimization attracts extensive attention. In this article, a statistical model is built to optimize speckle patterns that are composed of randomly positioned speckles. It is found that the process of speckle pattern generation is essentially a filtered Poisson process. The dependence of measurement errors (including systematic errors, random errors, and overall errors) upon speckle pattern generation parameters is characterized analytically. By minimizing the errors, formulas of the optimal speckle radius are presented. Although the primary motivation is from the field of DIC, we believed that scholars in other optical measurement communities, such as PIV and speckle metrology, will benefit from these discussions.

  16. Focal macular electroretinograms after intravitreal injections of bevacizumab for age-related macular degeneration.

    PubMed

    Iwata, Eiji; Ueno, Shinji; Ishikawa, Kohei; Ito, Yasuki; Uetani, Ruka; Piao, Chang-Hua; Kondo, Mineo; Terasaki, Hiroko

    2012-06-28

    To evaluate the changes in the best-corrected visual acuity (BCVA), macular thickness, and focal macular electroretinograms (FMERGs) after three intravitreal injections of bevacizumab for a choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD). The medical records of 18 eyes of 18 patients who had received three consecutive monthly intravitreal injections of bevacizumab were retrospectively studied. The BCVA, macular thickness determined by optical coherence tomography (OCT), and FMERGs were measured before the first injection, and 10 days after each of the intravitreal bevacizumab injections. The number of eyes with improvement in BCVA after the first injection was one (6%), after the second injection was four (22%), and after the third injection was five (28%). The number of eyes with reduction in macular thickness was 4 (33%), 8 (44%), and 10 (56%) after each of the three injections. The number of eyes with increase in b-wave amplitude of the FMERGs was 7 (38%), 6 (33%), and 10 (56%) after each of the three each injections. The mean macular thickness was significantly thinner after the first injection, and the mean BCVA was significantly improved after the second injection. The mean amplitude and implicit time of the b-wave of the FMERGs were significantly improved only after the third injection (P<0.05). All parameters improved but the best was after the third injection, indicating that three monthly intravitreous injections with bevacizumab may be an effective treatment regimen for AMD.

  17. In vivo retinal and choroidal hypoxia imaging using a novel activatable hypoxia-selective near-infrared fluorescent probe.

    PubMed

    Fukuda, Shinichi; Okuda, Kensuke; Kishino, Genichiro; Hoshi, Sujin; Kawano, Itsuki; Fukuda, Masahiro; Yamashita, Toshiharu; Beheregaray, Simone; Nagano, Masumi; Ohneda, Osamu; Nagasawa, Hideko; Oshika, Tetsuro

    2016-12-01

    Retinal hypoxia plays a crucial role in ocular neovascular diseases, such as diabetic retinopathy, retinopathy of prematurity, and retinal vascular occlusion. Fluorescein angiography is useful for identifying the hypoxia extent by detecting non-perfusion areas or neovascularization, but its ability to detect early stages of hypoxia is limited. Recently, in vivo fluorescent probes for detecting hypoxia have been developed; however, these have not been extensively applied in ophthalmology. We evaluated whether a novel donor-excited photo-induced electron transfer (d-PeT) system based on an activatable hypoxia-selective near-infrared fluorescent (NIRF) probe (GPU-327) responds to both mild and severe hypoxia in various ocular ischemic diseases animal models. The ocular fundus examination offers unique opportunities for direct observation of the retina through the transparent cornea and lens. After injection of GPU-327 in various ocular hypoxic diseases of mouse and rabbit models, NIRF imaging in the ocular fundus can be performed noninvasively and easily by using commercially available fundus cameras. To investigate the safety of GPU-327, electroretinograms were also recorded after GPU-327 and PBS injection. Fluorescence of GPU-327 increased under mild hypoxic conditions in vitro. GPU-327 also yielded excellent signal-to-noise ratio without washing out in vivo experiments. By using near-infrared region, GPU-327 enables imaging of deeper ischemia, such as choroidal circulation. Additionally, from an electroretinogram, GPU-327 did not cause neurotoxicity. GPU-327 identified hypoxic area both in vivo and in vitro.

  18. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene.

    PubMed

    Wilkin, Justin; Kerr, Natalie C; Byrd, Kathryn W; Ward, Jewell C; Iannaccone, Alessandro

    2016-06-01

    To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.

  19. Optic nerve head component responses of the multifocal electroretinogram in MS.

    PubMed

    Frohman, Teresa C; Beh, Shin Chien; Saidha, Shiv; Schnurman, Zane; Conger, Darrel; Conger, Amy; Ratchford, John N; Lopez, Carmen; Galetta, Steven L; Calabresi, Peter A; Balcer, Laura J; Green, Ari J; Frohman, Elliot M

    2013-08-06

    To employ a novel stimulation paradigm in order to elicit multifocal electroretinography (mfERG)-induced optic nerve head component (ONHC) responses, believed to be contingent upon the transformation in electrical transmission properties of retinal ganglion cell axons from membrane to saltatory conduction mechanisms, as they traverse the lamina cribrosa and obtain oligodendrocyte myelin. We further sought to characterize abnormalities in ONHC responses in eyes from patients with multiple sclerosis (MS). In 10 normal subjects and 7 patients with MS (including eyes with and without a history of acute optic neuritis), we utilized a novel mfERG stimulation paradigm that included interleaved global flashes in order to elicit the ONHC responses from 103 retinal patches of pattern-reversal stimulation. The number of abnormal or absent ONHC responses was significantly increased in MS patient eyes compared to normal subject eyes (p < 0.001, by general estimating equation modeling, and accounting for age and within-subject, intereye correlations). Studying the relationship between ONHC abnormalities and alterations in validated structural and functional measures of the visual system may facilitate the ability to dissect and characterize the pathobiological mechanisms that contribute to tissue damage in MS, and may have utility to detect and monitor neuroprotective or restorative effects of novel therapies.

  20. HYPERAUTOFLUORESCENT RING IN AUTOIMMUNE RETINOPATHY

    PubMed Central

    LIMA, LUIZ H.; GREENBERG, JONATHAN P.; GREENSTEIN, VIVIENNE C.; SMITH, R. THEODORE; SALLUM, JULIANA M. F.; THIRKILL, CHARLES; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2015-01-01

    Purpose To report the presence of a hyperautofluorescent ring and corresponding spectral-domain optical coherence tomography (SD-OCT) features seen in patients with autoimmune retinopathy. Methods All eyes were evaluated by funduscopic examination, full-fleld electroretinography, fundus autofluorescence, and SD-OCT. Further confirmation of the diagnosis was obtained with immunoblot and immunohistochemistry testing of the patient’s serum. Humphrey visual fields and microperimetry were also performed. Results Funduscopic examination showed atrophic retinal pigment epithelium (RPE) associated with retinal artery narrowing but without pigment deposits. The scotopic and photopic full-field electroretinograms were nondetectable in three patients and showed a cone–rod pattern of dysfunction in one patient. Fundus autofluorescence revealed a hyperautofluorescent ring in the parafoveal region, and the corresponding SD-OCT demonstrated loss of the photoreceptor inner segment–outer segment junction with thinning of the outer nuclear layer from the region of the hyperautofluorescent ring toward the retinal periphery. The retinal layers were generally intact within the hyperautofluorescent ring, although the inner segment–outer segment junction was disrupted, and the outer nuclear layer and photoreceptor outer segment layer were thinned. Conclusion This case series revealed the structure of the hyperautofluorescent ring in autoimmune retinopathy using SD-OCT. Fundus autofluorescence and SD-OCT may aid in the diagnosis of autoimmune retinopathy and may serve as a tool to monitor its progression. PMID:22218149

  1. Two R7 RGS proteins shape retinal bipolar cell signaling

    PubMed Central

    Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G.

    2009-01-01

    RGS7, RGS11, and their binding partner Gβ5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Gαo. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography (ERG) in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas, RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587

  2. Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis.

    PubMed

    Rodriguez-Mena, Diego; Almarcegui, Carmen; Dolz, Isabel; Herrero, Raquel; Bambo, Maria P; Fernandez, Javier; Pablo, Luis E; Garcia-Martin, Elena

    2013-08-01

    To evaluate the ability of visual evoked potentials and pattern electroretinograms (PERG) to detect subclinical axonal damage in patients during the early diagnostic stage of multiple sclerosis (MS). The authors also compared the ability of optical coherence tomography (OCT), PERG, and visual evoked potentials to detect axonal loss in MS patients and correlated the functional and structural properties of the retinal nerve fiber layer. Two hundred twenty-eight eyes of 114 subjects (57 MS patients and 57 age- and sex-matched healthy controls) were included. The visual pathway was evaluated based on functional and structural assessments. All patients underwent a complete ophthalmic examination that included assessment of visual acuity, ocular motility, intraocular pressure, visual field, papillary morphology, OCT, visual evoked potentials, and PERG. Visual evoked potentials (P100 latency and amplitude), PERG (N95 amplitude and N95/P50 ratio), and OCT parameters differed significantly between MS patients and healthy subjects. Moderate significant correlations were found between visual evoked potentials or PERG parameters and OCT measurements. Axonal damage in ganglion cells of the visual pathway can be detected based on structural measures provided by OCT in MS patients and by the N95 component and N95/P50 index of PERG, thus providing good correlation between function and structure.

  3. Effects of maternal inhalation of gasoline evaporative ...

    EPA Pesticide Factsheets

    In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 h/day over GD9 – GD20. Sensory evaluations of male offspring began around PND106. Peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from dark-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable le

  4. Unilateral retinitis pigmentosa and cone-rod dystrophy

    PubMed Central

    Farrell, Donald F

    2009-01-01

    Purpose: The purpose of this paper is to report 14 new cases of unilateral retinitis pigmentosa and three new cases of cone-rod dystrophy and to compare the similarities and dissimilarities to those found in the bilateral forms of these disorders. Methods: A total of 272 cases of retinitis pigmentosa and 167 cases of cone-rod dystrophy were studied by corneal full field electroretinograms and electrooculograms. The student t-test was used to compare categories. Results: The percentage of familial and nonfamilial cases was the same for the bilateral and unilateral forms of the disease. In our series, unilateral retinitis pigmentosa makes up approximately 5% of the total population of retinitis pigmentosa, while unilateral cone-rod dystrophy makes up only about 2% of the total. In the familial forms of unilateral retinitis pigmentosa the most common inheritance pattern was autosomal dominant and all affected relatives had bilateral disease. Conclusion: Unilateral retinitis pigmentosa and cone-rod dystrophy appear to be directly related to the more common bilateral forms of these disorders. The genetic mechanisms which account for asymmetric disorders are not currently understood. It may be a different unidentified mutation at a single loci or it is possible that nonlinked mutations in multiple loci account for this unusual disorder. PMID:19668577

  5. Usher's syndrome--case report.

    PubMed

    Kwiecień, Sława; Sulak, Robert; Szaflik, Jerzy

    2008-01-01

    The aim of this study is to present a case of coincidence of sensorineural hearing loss with chronic recurrent bilateral cystoid macular oedema in a 32-year-old woman, who was admitted to the clinic for deterioration of visual acuity of four months' duration. The patient gave a history of hearing loss for 29 years. Visual field examination disclosed peripheral ring scotoma. Electrophysiological examination was performed: pattern visual evoked response was within normal limits and electroretinogram displayed diminished both photopic and scotopic response. As ophthalmoscopy demonstrated no pigment in the fundus of the eye, the findings were consisted with diagnosis of retinitis pigmentosis sine pigmento. The presence of loss of hearing indicated the necessity of performing the genetic examination for Usher's syndrome. In order to establish a final diagnosis of Usher's syndrome genetic examination must be performed, but family history is relevant. Early investigation for Usher's syndrome in children with sensorineural hearing impairment is of a great significance. The patient may develop symptoms of retinitis pigmentosa in second or even third decade of his life. The necessity of thorough investigation for detecting other systemic abnormalities should be emphasized. There is no effective treatment of this syndrome. A child with Usher's syndrome requires a comprehensive care of different medical specialties. Psychological, educational and sociological attitude is also of a great importance in the child development.

  6. Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency.

    PubMed

    Chen, Zhenning; Shao, Xinxing; Xu, Xiangyang; He, Xiaoyuan

    2018-02-01

    The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.

  7. Use of principle velocity patterns in the analysis of structural acoustic optimization.

    PubMed

    Johnson, Wayne M; Cunefare, Kenneth A

    2007-02-01

    This work presents an application of principle velocity patterns in the analysis of the structural acoustic design optimization of an eight ply composite cylindrical shell. The approach consists of performing structural acoustic optimizations of a composite cylindrical shell subject to external harmonic monopole excitation. The ply angles are used as the design variables in the optimization. The results of the ply angle design variable formulation are interpreted using the singular value decomposition of the interior acoustic potential energy. The decomposition of the acoustic potential energy provides surface velocity patterns associated with lower levels of interior noise. These surface velocity patterns are shown to correspond to those from the structural acoustic optimization results. Thus, it is demonstrated that the capacity to design multi-ply composite cylinders for quiet interiors is determined by how well the cylinder be can designed to exhibit particular surface velocity patterns associated with lower noise levels.

  8. Optimization of landscape pattern [Chapter 8

    Treesearch

    John Hof; Curtis Flather

    2007-01-01

    A fundamental assumption in landscape ecology is that spatial patterns have significant influences on the flows of materials, energy, and information while processes create, modify, and maintain spatial patterns. Thus, it is of paramount importance in both theory and practice to address the questions of landscape pattern optimization ... For example, can landscape...

  9. Optimizing countershading camouflage.

    PubMed

    Cuthill, Innes C; Sanghera, N Simon; Penacchio, Olivier; Lovell, Paul George; Ruxton, Graeme D; Harris, Julie M

    2016-11-15

    Countershading, the widespread tendency of animals to be darker on the side that receives strongest illumination, has classically been explained as an adaptation for camouflage: obliterating cues to 3D shape and enhancing background matching. However, there have only been two quantitative tests of whether the patterns observed in different species match the optimal shading to obliterate 3D cues, and no tests of whether optimal countershading actually improves concealment or survival. We use a mathematical model of the light field to predict the optimal countershading for concealment that is specific to the light environment and then test this prediction with correspondingly patterned model "caterpillars" exposed to avian predation in the field. We show that the optimal countershading is strongly illumination-dependent. A relatively sharp transition in surface patterning from dark to light is only optimal under direct solar illumination; if there is diffuse illumination from cloudy skies or shade, the pattern provides no advantage over homogeneous background-matching coloration. Conversely, a smoother gradation between dark and light is optimal under cloudy skies or shade. The demonstration of these illumination-dependent effects of different countershading patterns on predation risk strongly supports the comparative evidence showing that the type of countershading varies with light environment.

  10. Rigorous ILT optimization for advanced patterning and design-process co-optimization

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Kuechler, Bernd; Cai, Howard; Braam, Kyle; Hoppe, Wolfgang; Domnenko, Vitaly; Poonawala, Amyn; Xiao, Guangming

    2018-03-01

    Despite the large difficulties involved in extending 193i multiple patterning and the slow ramp of EUV lithography to full manufacturing readiness, the pace of development for new technology node variations has been accelerating. Multiple new variations of new and existing technology nodes have been introduced for a range of device applications; each variation with at least a few new process integration methods, layout constructs and/or design rules. This had led to a strong increase in the demand for predictive technology tools which can be used to quickly guide important patterning and design co-optimization decisions. In this paper, we introduce a novel hybrid predictive patterning method combining two patterning technologies which have each individually been widely used for process tuning, mask correction and process-design cooptimization. These technologies are rigorous lithography simulation and inverse lithography technology (ILT). Rigorous lithography simulation has been extensively used for process development/tuning, lithography tool user setup, photoresist hot-spot detection, photoresist-etch interaction analysis, lithography-TCAD interactions/sensitivities, source optimization and basic lithography design rule exploration. ILT has been extensively used in a range of lithographic areas including logic hot-spot fixing, memory layout correction, dense memory cell optimization, assist feature (AF) optimization, source optimization, complex patterning design rules and design-technology co-optimization (DTCO). The combined optimization capability of these two technologies will therefore have a wide range of useful applications. We investigate the benefits of the new functionality for a few of these advanced applications including correction for photoresist top loss and resist scumming hotspots.

  11. Research on the decision-making model of land-use spatial optimization

    NASA Astrophysics Data System (ADS)

    He, Jianhua; Yu, Yan; Liu, Yanfang; Liang, Fei; Cai, Yuqiu

    2009-10-01

    Using the optimization result of landscape pattern and land use structure optimization as constraints of CA simulation results, a decision-making model of land use spatial optimization is established coupled the landscape pattern model with cellular automata to realize the land use quantitative and spatial optimization simultaneously. And Huangpi district is taken as a case study to verify the rationality of the model.

  12. Well pattern optimization in a low permeability sandstone reservoir: a case study from Erlian Basin in China

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Fu, Lixia; Yan, Aihua; Guo, Fajun; Wu, Cong; Chen, Hong; Wang, Xinying; Lu, Ming

    2018-02-01

    Study on optimization of development well patterns is the core content of oilfield development and is a prerequisite for rational and effective development of oilfield. The study on well pattern optimization mainly includes types of well patterns and density of well patterns. This paper takes the Aer-3 fault block as an example. Firstly, models were built for diamond-shaped inverted 9-spot patterns, rectangular 5-spot patterns, square inverted 9-spot patterns and inverted 7-spot patterns under the same well pattern density to correlate the effect of different well patterns on development; secondly, comprehensive analysis was conducted to well pattern density in terms of economy and technology using such methods as oil reservoir engineering, numerical simulation, economic limits and economic rationality. Finally, the development mode of vertical well + horizontal well was presented according to the characteristics of oil reservoirs in some well blocks, which has realized efficient development of this fault block.

  13. Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements

    NASA Technical Reports Server (NTRS)

    Bomarito, G. F.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    The accuracy and precision of digital image correlation (DIC) is a function of three primary ingredients: image acquisition, image analysis, and the subject of the image. Development of the first two (i.e. image acquisition techniques and image correlation algorithms) has led to widespread use of DIC; however, fewer developments have been focused on the third ingredient. Typically, subjects of DIC images are mechanical specimens with either a natural surface pattern or a pattern applied to the surface. Research in the area of DIC patterns has primarily been aimed at identifying which surface patterns are best suited for DIC, by comparing patterns to each other. Because the easiest and most widespread methods of applying patterns have a high degree of randomness associated with them (e.g., airbrush, spray paint, particle decoration, etc.), less effort has been spent on exact construction of ideal patterns. With the development of patterning techniques such as microstamping and lithography, patterns can be applied to a specimen pixel by pixel from a patterned image. In these cases, especially because the patterns are reused many times, an optimal pattern is sought such that error introduced into DIC from the pattern is minimized. DIC consists of tracking the motion of an array of nodes from a reference image to a deformed image. Every pixel in the images has an associated intensity (grayscale) value, with discretization depending on the bit depth of the image. Because individual pixel matching by intensity value yields a non-unique scale-dependent problem, subsets around each node are used for identification. A correlation criteria is used to find the best match of a particular subset of a reference image within a deformed image. The reader is referred to references for enumerations of typical correlation criteria. As illustrated by Schreier and Sutton and Lu and Cary systematic errors can be introduced by representing the underlying deformation with under-matched shape functions. An important implication, as discussed by Sutton et al., is that in the presence of highly localized deformations (e.g., crack fronts), error can be reduced by minimizing the subset size. In other words, smaller subsets allow the more accurate resolution of localized deformations. Contrarily, the choice of optimal subset size has been widely studied and a general consensus is that larger subsets with more information content are less prone to random error. Thus, an optimal subset size balances the systematic error from under matched deformations with random error from measurement noise. The alternative approach pursued in the current work is to choose a small subset size and optimize the information content within (i.e., optimizing an applied DIC pattern), rather than finding an optimal subset size. In the literature, many pattern quality metrics have been proposed, e.g., sum of square intensity gradient (SSSIG), mean subset fluctuation, gray level co-occurrence, autocorrelation-based metrics, and speckle-based metrics. The majority of these metrics were developed to quantify the quality of common pseudo-random patterns after they have been applied, and were not created with the intent of pattern generation. As such, it is found that none of the metrics examined in this study are fit to be the objective function of a pattern generation optimization. In some cases, such as with speckle-based metrics, application to pixel by pixel patterns is ill-conditioned and requires somewhat arbitrary extensions. In other cases, such as with the SSSIG, it is shown that trivial solutions exist for the optimum of the metric which are ill-suited for DIC (such as a checkerboard pattern). In the current work, a multi-metric optimization method is proposed whereby quality is viewed as a combination of individual quality metrics. Specifically, SSSIG and two auto-correlation metrics are used which have generally competitive objectives. Thus, each metric could be viewed as a constraint imposed upon the others, thereby precluding the achievement of their trivial solutions. In this way, optimization produces a pattern which balances the benefits of multiple quality metrics. The resulting pattern, along with randomly generated patterns, is subjected to numerical deformations and analyzed with DIC software. The optimal pattern is shown to outperform randomly generated patterns.

  14. Peripheral Visual Fields in ABCA4 Stargardt Disease and Correlation With Disease Extent on Ultra-widefield Fundus Autofluorescence.

    PubMed

    Abalem, Maria Fernanda; Otte, Benjamin; Andrews, Chris; Joltikov, Katherine A; Branham, Kari; Fahim, Abigail T; Schlegel, Dana; Qian, Cynthia X; Heckenlively, John R; Jayasundera, Thiran

    2017-12-01

    To evaluate the disease extent on ultra-widefield fundus autofluorescence (UWF-FAF) in patients with ABCA4 Stargardt disease (STGD) and correlate these data with functional outcome measures. Retrospective cross-sectional study. Setting: Kellogg Eye Center, University of Michigan. Sixty-five patients with clinical diagnosis and proven pathogenic variants in the ABCA4 gene. Observational Procedures: The UWF-FAF images were obtained using Optos (200 degrees) and classified into 3 types. Functional testing included kinetic widefield perimetry, full-field electroretinogram (ffERG), and visual acuity (VA). All results were evaluated with respect to UWF-FAF classification. Classification of UWF-FAF; area comprising the I4e, III4e, and IV4e isopters; ffERG patterns; and VA. For UWF-FAF, 27 subjects (41.5%) were classified as type I, 17 (26.2%) as type II, and 21 (32.4%) as type III. The area of each isopter correlated inversely with the extent of the disease and all isopters were able to detect differences among UWF-FAF types (IV4e, P = .0013; III4e, P = .0003; I4e, P < .0001 = 3.93e -8 ). ffERG patterns and VA were also different among the 3 UWF-FAF types (P < .001 = 6.61e- 6 and P < .001 = 7.3e -5 , respectively). Patients with widespread disease presented with more constriction of peripheral visual fields and had more dysfunction on ffERG and worse VA compared to patients with disease confined to the macula. UWF-FAF images may provide information for estimating peripheral and central visual function in STGD. Copyright © 2017. Published by Elsevier Inc.

  15. RE-PERG, a new procedure for electrophysiologic diagnosis of glaucoma that may improve PERG specificity.

    PubMed

    Mavilio, Alberto; Sisto, Dario; Ferreri, Paolo; Cardascia, Nicola; Alessio, Giovanni

    2017-01-01

    A significant variability of the second harmonic (2ndH) phase of steady-state pattern electroretinogram (SS-PERG) in intrasession retest has been recently described in glaucoma patients (GP), which has not been found in healthy subjects. To evaluate the reliability of phase variability in retest (a procedure called RE-PERG or REPERG) in the presence of cataract, which is known to affect standard PERG, we tested this procedure in GP, normal controls (NC), and cataract patients (CP). The procedure was performed on 50 GP, 35 NC, and 27 CP. All subjects were examined with RE-PERG and SS-PERG and also with spectral domain optical coherence tomography and standard automated perimetry. Standard deviation of phase and amplitude value of 2ndH were correlated by means of one-way analysis of variance and Pearson correlation, with the mean deviation and pattern standard deviation assessed by standard automated perimetry and retinal nerve fiber layer and the ganglion cell complex thickness assessed by spectral domain optical coherence tomography. Receiver operating characteristics were calculated in cohort populations with and without cataract. Standard deviation of phase of 2ndH was significantly higher in GP with respect to NC ( P <0.001) and CP ( P <0.001), and it correlated with retinal nerve fiber layer ( r =-0.5, P <0.001) and ganglion cell complex ( r =-0.6, P <0.001) defects in GP. Receiver operating characteristic evaluation showed higher specificity of RE-PERG (86.4%; area under the curve 0.93) with respect to SS-PERG (54.5%; area under the curve 0.68) in CP. RE-PERG may improve the specificity of SS-PERG in clinical practice in the discrimination of GP.

  16. Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2008-04-01

    A random Lévy-looping model of searching is devised and optimal random Lévy-looping searching strategies are identified for the location of a single target whose position is uncertain. An inverse-square power law distribution of loop lengths is shown to be optimal when the distance between the centre of the search and the target is much shorter than the size of the longest possible loop in the searching pattern. Optimal random Lévy-looping searching patterns have recently been observed in the flight patterns of honeybees (Apis mellifera) when attempting to locate their hive and when searching after a known food source becomes depleted. It is suggested that the searching patterns of desert ants (Cataglyphis) are consistent with the adoption of an optimal Lévy-looping searching strategy.

  17. Investigation of Optimal Digital Image Correlation Patterns for Deformation Measurement

    NASA Technical Reports Server (NTRS)

    Bomarito, G. F.; Ruggles, T. J.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    Digital image correlation (DIC) relies on the surface texture of a specimen to measure deformation. When the specimen itself has little or no texture, a pattern is applied to the surface which deforms with the specimen and acts as an artificial surface texture. Because the applied pattern has an effect on the accuracy of DIC, an ideal pattern is sought for which the error introduced into DIC measurements is minimal. In this work, a study is performed in which several DIC pattern quality metrics from the literature are correlated to DIC measurement error. The resulting correlations give insight on the optimality of DIC patterns in general. Optimizations are then performed to produce patterns which are well suited for DIC. These patterns are tested to show their relative benefits. Chief among these benefits are a reduction in error of approximately 30 with respect to a randomly generated pattern.

  18. Rabbit electroretinograms evoked by 632.8nm laser flash stimuli

    NASA Astrophysics Data System (ADS)

    Yang, Zai-Fu; Chen, Hong-Xia; Wang, Jia-Rui; Guan, Bo-Lin; Yu, Guang-Yuan; Zhang, Xiao-Na; Zhang, Wen-Yuan; Yang, Jing-Geng

    2012-12-01

    The flash electroretinography is a standard electrophysiological method and widely employed in basic research and ophthalmology clinics, of which the stimulus is usually white flash from dome stimulator. However, little is known about the electroretinograms (ERGs) evoked by monochromatic laser flash stimuli. The goal of this research effort is to quantify the ERGs of dark-adapted New Zealand rabbits elicited by He-Ne laser flash with wavelength 632.8 nm. The flash field was a Maxwellian viewing disc with angular subtense of 8.5°, 13.3° or 20.2°. The stimulus duration was 12 ms, 22 ms, 70 ms or 220 ms. The laser flash power incident on the cornea varied from 2.2 nW through 22 mW. Under the condition of 20 ms stimulus duration and 20.2° flash field, the ERG of New Zealand rabbit was compared with that of Chinchilla gray rabbit. Results showed that for the ERG b-wave, with the increase of laser energy, the amplitude first increased, then met a trough and finally increased again, the implicit time decreased first and then met a platform. While for the ERG a-wave, the amplitude increased and the implicit time decreased monotonically. Longer stimulus duration led to lower b-wave amplitude under equal flash power level. The flash field size showed limited effect on the ERG, especially on the low energy end. As compared with the pigmented rabbit, the albino rabbit was more sensitive and the threshold energy for b-wave excitation was about 10 times lower.

  19. Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses

    PubMed Central

    Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Prasad, Ratna C.; Bizheva, Kostadinka; Joos, Karen M.

    2016-01-01

    Purpose Moderately elevated intraocular pressure (IOP) is a risk factor for open-angle glaucoma. Some patients suffer glaucoma despite clinically measured normal IOPs. Fluctuations in IOP may have a significant role since IOPs are higher during sleep and inversion activities. Controlled transient elevations of IOPs in rats over time lead to optic nerve structural changes that are similar to the early changes observed in constant chronic models of glaucoma. Because early intervention decreases glaucoma progression, this study was done to determine if early physiological changes to the retina could be detected with noninvasive electrophysiological and optical imaging tests during moderately elevated IOP. Methods Intraocular pressures were raised to moderately high levels (35 mm Hg) in one eye of Sprague-Dawley rats while the other (control) eye was untreated. One group of rats underwent scotopic threshold response (STR) and electroretinogram (ERG) testing, while another 3 groups underwent optical coherence tomography (OCT) imaging, Western blot, or histologic evaluation. Results The amplitudes of the STR and ERG responses in eyes with moderately elevated IOPs were enhanced compared to the values before IOP elevation, and compared to untreated contralateral eyes. Structural changes to the optic nerve also occurred during IOP elevation. Conclusions Although ischemic IOP elevations are well-known to globally reduce components of the scotopic ERG, acute elevation in rats to levels often observed in untreated glaucoma patients caused an increase in these parameters. Further exploration of these phenomena may be helpful in better understanding the mechanisms mediating early retinal changes during fluctuating or chronically elevated IOP. PMID:27100161

  20. Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice

    PubMed Central

    Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.

    2014-01-01

    Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582

  1. Facilitating the analysis of the multifocal electroretinogram using the free software environment R.

    PubMed

    Bergholz, Richard; Rossel, Mirjam; Dutescu, Ralf M; Vöge, Klaas P; Salchow, Daniel J

    2018-01-01

    The large amount of data rendered by the multifocal electroretinogram (mfERG) can be analyzed and visualized in various ways. The evaluation and comparison of more than one examination is time-consuming and prone to create errors. Using the free software environment R we developed a solution to average the data of multiple examinations and to allow a comparison of different patient groups. Data of single mfERG recordings as exported in .csv format from a RETIport 21 system (version 7/03, Roland Consult) or manually compiled .csv files are the basis for the calculations. The R software extracts response densities and implicit times of N1 and P1 for the sum response, each ring eccentricity, and each single hexagon. Averages can be calculated for as many subjects as needed. The mentioned parameters can then be compared to another group of patients or healthy subjects. Application of the software is illustrated by comparing 11 patients with chloroquine maculopathy to a control group of 7 healthy subjects. The software scripts display response density and implicit time 3D plots of each examination as well as of the group averages. Differences of the group averages are presented as 3D and grayscale 2D plots. Both groups are compared using the t-test with Bonferroni correction. The group comparison is furthermore illustrated by the average waveforms and by boxplots of each eccentricity. This software solution on the basis of the programming language R facilitates the clinical and scientific use of the mfERG and aids in interpretation and analysis.

  2. Progranulin, a Major Secreted Protein of Mouse Adipose-Derived Stem Cells, Inhibits Light-Induced Retinal Degeneration

    PubMed Central

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842

  3. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    PubMed

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  4. The rod-driven a-wave of the dark-adapted mammalian electroretinogram.

    PubMed

    Robson, John G; Frishman, Laura J

    2014-03-01

    The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Library-based illumination synthesis for critical CMOS patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen; Chao, Hsueh-Yung

    2013-07-01

    In optical microlithography, the illumination source for critical complementary metal-oxide-semiconductor layers needs to be determined in the early stage of a technology node with very limited design information, leading to simple binary shapes. Recently, the availability of freeform sources permits us to increase pattern fidelity and relax mask complexities with minimal insertion risks to the current manufacturing flow. However, source optimization across many patterns is often treated as a design-of-experiments problem, which may not fully exploit the benefits of a freeform source. In this paper, a rigorous source-optimization algorithm is presented via linear superposition of optimal sources for pre-selected patterns. We show that analytical solutions are made possible by using Hopkins formulation and quadratic programming. The algorithm allows synthesized illumination to be linked with assorted pattern libraries, which has a direct impact on design rule studies for early planning and design automation for full wafer optimization.

  6. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    NASA Astrophysics Data System (ADS)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.

  7. Optimal ciliary beating patterns

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej; Osterman, Natan

    2011-11-01

    We introduce a measure for energetic efficiency of single or collective biological cilia. We define the efficiency of a single cilium as Q2 / P , where Q is the volume flow rate of the pumped fluid and P is the dissipated power. For ciliary arrays, we define it as (ρQ) 2 / (ρP) , with ρ denoting the surface density of cilia. We then numerically determine the optimal beating patterns according to this criterion. For a single cilium optimization leads to curly, somewhat counterintuitive patterns. But when looking at a densely ciliated surface, the optimal patterns become remarkably similar to what is observed in microorganisms like Paramecium. The optimal beating pattern then consists of a fast effective stroke and a slow sweeping recovery stroke. Metachronal waves lead to a significantly higher efficiency than synchronous beating. Efficiency also increases with an increasing density of cilia up to the point where crowding becomes a problem. We finally relate the pumping efficiency of cilia to the swimming efficiency of a spherical microorganism and show that the experimentally estimated efficiency of Paramecium is surprisingly close to the theoretically possible optimum.

  8. Methyltestosterone-induced night blindness.

    PubMed

    Nisbett, S B; Parker, J A; Habal, F

    1985-12-01

    A 59-year-old man presented with a 3-month history of night blindness and a 9-month history of steatorrhea. Both symptoms had appeared after he had begun taking methyltestosterone. Investigations revealed low serum levels of carotene (0.1 mmol/L) and vitamin A (0.4 to 0.7 mmol/L), anomalous colour perception, elevation of the rod threshold by 3.5 log units in dark adaptometry, and decreased b-wave amplitudes in photopic and scotopic electroretinograms. No biochemical evidence of cholestasis was elicited. The symptoms and the biochemical and electrophysiologic abnormalities resolved within 9 months of the discontinuation of methyltestosterone.

  9. A novel mutation (ASn244Lys) in the peripherin/RDS gene causing autosomal dominant retinitis pigmentosa associated with bull's eye maculopathy detected by nonradioisotopic SSCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikawa, Emi; Nakazawa, Mitsuru; Chida, Yasushi

    1994-03-01

    Retinitis pigmentosa (RP) is characterized by night blindness, an eventual loss of visual field, a diminished response on the electroretinogram, and pigmentary retinal degeneration. These features are primarily explained by the degeneration of photoreceptors. The recent development of the molecular genetic approach has enabled the identification of genes responsible for parts of autosomal dominant RP (ADRP). Rhodopsin and peripherin/RDS genes, in particular, have been successfully shown to cosegregate with ADRP. The authors, therefore, screened 42 unrelated Japanese patients with ADRP to search for mutations in the peripherin/RDS gene. The method we employed for screening was a nonradioisotopic modification of single-strandmore » conformation polymorphism. Among 42 unrelated patients with ADRP, the DNA from one patient (SY) showed an abnormal pattern in exon 2 on SSCP. The DNA fragments were then amplified from affected and nonaffected members of the same family as SY. The alteration in the DNA sequence that was commonly found in the affected members of the family was identified as a heterozygous transversional change of C to A at the third nucleotide in codon 244, resulting in the amino acid replacement of asparagine residue with lysine residue. None of unaffected family members or 30 normal control individuals had this alteration.« less

  10. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  11. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Dongqing; Xu, Yidan; Hang, Hui; Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  12. Drosophila tan Encodes a Novel Hydrolase Required in Pigmentation and Vision

    PubMed Central

    True, John R; Yeh, Shu-Dan; Hovemann, Bernhard T; Kemme, Tobias; Meinertzhagen, Ian A; Edwards, Tara N; Liou, Shian-Ren; Han, Qian; Li, Jianyong

    2005-01-01

    Many proteins are used repeatedly in development, but usually the function of the protein is similar in the different contexts. Here we report that the classical Drosophila melanogaster locus tan encodes a novel enzyme required for two very different cellular functions: hydrolysis of N-β-alanyl dopamine (NBAD) to dopamine during cuticular melanization, and hydrolysis of carcinine to histamine in the metabolism of photoreceptor neurotransmitter. We characterized two tan-like P-element insertions that failed to complement classical tan mutations. Both are inserted in the 5′ untranslated region of the previously uncharacterized gene CG12120, a putative homolog of fungal isopenicillin-N N-acyltransferase (EC 2.3.1.164). Both P insertions showed abnormally low transcription of the CG12120 mRNA. Ectopic CG12120 expression rescued tan mutant pigmentation phenotypes and caused the production of striking black melanin patterns. Electroretinogram and head histamine assays indicated that CG12120 is required for hydrolysis of carcinine to histamine, which is required for histaminergic neurotransmission. Recombinant CG12120 protein efficiently hydrolyzed both NBAD to dopamine and carcinine to histamine. We conclude that D. melanogaster CG12120 corresponds to tan. This is, to our knowledge, the first molecular genetic characterization of NBAD hydrolase and carcinine hydrolase activity in any organism and is central to the understanding of pigmentation and photoreceptor function. PMID:16299587

  13. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  14. Optimization of Training Sets for Neural-Net Processing of Characteristic Patterns from Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.

  15. Optimization of Training Sets For Neural-Net Processing of Characteristic Patterns From Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J. (Inventor)

    2006-01-01

    An artificial neural network is disclosed that processes holography generated characteristic pattern of vibrating structures along with finite-element models. The present invention provides for a folding operation for conditioning training sets for optimally training forward-neural networks to process characteristic fringe pattern. The folding pattern increases the sensitivity of the feed-forward network for detecting changes in the characteristic pattern The folding routine manipulates input pixels so as to be scaled according to the location in an intensity range rather than the position in the characteristic pattern.

  16. A computational method for optimizing fuel treatment locations

    Treesearch

    Mark A. Finney

    2006-01-01

    Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...

  17. Layout optimization of DRAM cells using rigorous simulation model for NTD

    NASA Astrophysics Data System (ADS)

    Jeon, Jinhyuck; Kim, Shinyoung; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Kuechler, Bernd; Zimmermann, Rainer; Muelders, Thomas; Klostermann, Ulrich; Schmoeller, Thomas; Do, Mun-hoe; Choi, Jung-Hoe

    2014-03-01

    DRAM chip space is mainly determined by the size of the memory cell array patterns which consist of periodic memory cell features and edges of the periodic array. Resolution Enhancement Techniques (RET) are used to optimize the periodic pattern process performance. Computational Lithography such as source mask optimization (SMO) to find the optimal off axis illumination and optical proximity correction (OPC) combined with model based SRAF placement are applied to print patterns on target. For 20nm Memory Cell optimization we see challenges that demand additional tool competence for layout optimization. The first challenge is a memory core pattern of brick-wall type with a k1 of 0.28, so it allows only two spectral beams to interfere. We will show how to analytically derive the only valid geometrically limited source. Another consequence of two-beam interference limitation is a "super stable" core pattern, with the advantage of high depth of focus (DoF) but also low sensitivity to proximity corrections or changes of contact aspect ratio. This makes an array edge correction very difficult. The edge can be the most critical pattern since it forms the transition from the very stable regime of periodic patterns to non-periodic periphery, so it combines the most critical pitch and highest susceptibility to defocus. Above challenge makes the layout correction to a complex optimization task demanding a layout optimization that finds a solution with optimal process stability taking into account DoF, exposure dose latitude (EL), mask error enhancement factor (MEEF) and mask manufacturability constraints. This can only be achieved by simultaneously considering all criteria while placing and sizing SRAFs and main mask features. The second challenge is the use of a negative tone development (NTD) type resist, which has a strong resist effect and is difficult to characterize experimentally due to negative resist profile taper angles that perturb CD at bottom characterization by scanning electron microscope (SEM) measurements. High resist impact and difficult model data acquisition demand for a simulation model that hat is capable of extrapolating reliably beyond its calibration dataset. We use rigorous simulation models to provide that predictive performance. We have discussed the need of a rigorous mask optimization process for DRAM contact cell layout yielding mask layouts that are optimal in process performance, mask manufacturability and accuracy. In this paper, we have shown the step by step process from analytical illumination source derivation, a NTD and application tailored model calibration to layout optimization such as OPC and SRAF placement. Finally the work has been verified with simulation and experimental results on wafer.

  18. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  19. Dynamic Optimization

    NASA Technical Reports Server (NTRS)

    Laird, Philip

    1992-01-01

    We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.

  20. Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses

    PubMed Central

    He, Quanhua; Xu, Hong-ping; Wang, Ping; Tian, Ning

    2013-01-01

    Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina. PMID:24260267

  1. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in albino and pigmented rats.

    PubMed

    Lezmi, Stéphane; Rokh, Najla; Saint-Macary, Gérard; Pino, Michael; Sallez, Valérie; Thevenard, Françoise; Roome, Nigel; Rosolen, Serge

    2013-06-07

    Retinal toxicity of chloroquine has been known for several years, but the mechanism(s) of toxicity remain controversial; some author support the idea that the binding of chloroquine to melanin pigments in the retinal pigmented epithelium (RPE) play a major toxic role by concentrating the drug in the eye. In our study, 12 albinos Sprague-Dawley (SD) and 12 pigmented Brown Norway (BN) rats were treated orally for 3 months with chloroquine to compare functional and pathological findings. On Flash electroretinograms (ERG) performed in scotopic conditions, similar and progressive (time-dependent) delayed onset and decreased amplitudes of oscillatory potentials (from Day 71) and b-waves (on Day 92) were identified in both BN and SD rats. In both strains, identical morphological changes consisted of neuronal phospholipidosis associated with UV auto-fluorescence without evidence of retinal degeneration and gliosis; the RPE did not show any morphological lesions or autofluorescence. IHC analyses demonstrated a decrease in GABA expression in the inner nuclear layer. In addition, a marked accumulation of synaptic vesicles coupled with a marked disruption of neurofilaments in the optic nerve fibers was identified. In conclusion, ERG observations were very similar to those described in humans. Comparable ERG modifications, histopathology and immunohistochemistry findings were observed in the retina of both rat strains suggesting that melanin pigment is unlikely involved. chloroquine-induced impairment of synaptic vesicle transport, likely related to disruption of neurofilaments was identified and non-previously reported. This new mechanism of toxicity may also be responsible for the burry vision described in humans chronically treated with chloroquine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Electroretinogram analysis of the visual response in zebrafish larvae.

    PubMed

    Chrispell, Jared D; Rebrik, Tatiana I; Weiss, Ellen R

    2015-03-16

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals.

  3. Retinoschisislike alterations in the mouse eye caused by gene targeting of the Norrie disease gene.

    PubMed

    Ruether, K; van de Pol, D; Jaissle, G; Berger, W; Tornow, R P; Zrenner, E

    1997-03-01

    To investigate the retinal function and morphology of mice carrying a replacement mutation in exon 2 of the Norrie disease gene. Recently, Norrie disease mutant mice have been generated using gene targeting technology. The mutation removes the 56 N-terminal amino acids of the Norrie gene product. Ganzfeld electroretinograms (ERGs) were obtained in five animals hemizygous or homozygous for the mutant gene and in three female animals heterozygous for the mutant gene. As controls, three males carrying the wild-type gene were examined. Electroretinogram testing included rod a- and b-wave V-log I functions, oscillatory potentials, and cone responses. The fundus morphology has been visualized by scanning laser ophthalmoscopy. Rod and cone ERG responses and fundus morphology were not significantly different among female heterozygotes and wild-type mice. In contrast, the hemizygous mice displayed a severe loss of ERG b-wave, leading to a negatively shaped scotopic ERG and a marked reduction of oscillatory potentials. The a-wave was normal at low intensities, and only with brighter flashes was there a moderate amplitude loss. Cone amplitudes were barely recordable in the gene-targeted males. Ophthalmoscopy revealed snowflakelike vitreal changes, retinoschisis, and pigment epithelium irregularities in hemizygotes and homozygotes, but no changes in female heterozygotes. The negatively shaped scotopic ERG in male mice with a Norrie disease gene mutation probably was caused by retinoschisis. Pigment epithelial changes and degenerations of the outer retina are relatively mild. These findings may be a clue to the embryonal retinoschisislike pathogenesis of Norrie disease in humans or it may indicate a different expression of the Norrie disease gene defect in mice compared to that in humans.

  4. What monitor can replace the cathode-ray tube for visual stimulation to elicit multifocal electroretinograms?

    PubMed

    Matsumoto, Celso Soiti; Shinoda, Kei; Matsumoto, Harue; Seki, Keisuke; Nagasaka, Eiichiro; Iwata, Takeshi; Mizota, Atsushi

    2014-08-05

    To compare a conventional cathode-ray tube (CRT) screen to organic light-emitting diode (OLED) and liquid crystal display (LCD) screens as visual stimulators to elicit multifocal electroretinograms (mfERGs), mfERGs were recorded from seven eyes of seven healthy volunteers (21 ± 2 years). The mfERGs elicited by a conventional CRT screen (S710, Compaq Computer Co.) were compared to those elicited by a studio-grade master OLED monitor (PVM-1741, Sony, Japan) and a conventional LCD (S1721, Flexscan, Eizo Nanao Corp., Japan). The luminance changes of each monitor were measured with a photodiode. CRT, OLED, and LCD screens with a frame frequency of 60 Hz were studied. A hexagonal stimulus array with 61 stimulus elements was created on each monitor. The serial white stimuli of the OLED screen at 60 Hz did not fuse, and that of the LCD screens fused. The amplitudes of P1 and P2 of the first-order kernels of the mfERGs were not significantly different from those elicited by the CRT and OLED screens, and the P1 amplitude of the first-order kernel elicited by the LCD stimuli was significantly smaller than that elicited by the CRT in all the groups of the averaged hexagonal elements. The implicit times were approximately 10 ms longer in almost all components elicited by the LCD screen compared to those elicited by the CRT screen. The mfERGs elicited by monitors other than the CRT should be carefully interpreted, especially those elicited by LCD screens. The OLED had good performance, and we conclude that it can replace the CRT as a stimulator for mfERGs; however, a collection of normative data is recommended. © 2014 ARVO.

  5. Biological effects of blocking blue and other visible light on the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Kubota, Shunsuke; Yuki, Kenya; Nagai, Norihiro; Tsubota, Kazuo

    2014-08-01

    To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials. Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively. The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group. The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  6. Light-Regulated Thyroid Hormone Signaling Is Required for Rod Photoreceptor Development in the Mouse Retina.

    PubMed

    Sawant, Onkar; Horton, Amanda M; Shukla, Meenal; Rayborn, Mary E; Peachey, Neal S; Hollyfield, Joe G; Rao, Sujata

    2015-12-01

    Ambient light is both a stimulus for visual function and a regulator of photoreceptor physiology. However, it is not known if light can regulate any aspect of photoreceptor development. The purpose of this study was to investigate whether ambient light is required for the development of mouse rod photoreceptors. Newborn mouse pups (C57BL/6) were reared in either cyclic light (LD) or constant dark (DD). Pups were collected at postnatal day (P)5, P10, P17, or P24. We performed retinal morphometric and cell death analysis at P5, P10, and P17. Rhodopsin expression was assessed using immunofluorescence, Western blot, and quantitative RT-PCR analysis. Electroretinograms were performed at P17 and P24. Radioimmunoassay and ELISA were used to follow changes in thyroid hormone levels in the serum and vitreous. In the DD pups, the outer nuclear layer was significantly thinner at P10 and there were higher numbers of apoptotic cells at P5 compared to the LD pups. Rhodopsin expression was lower at P10 and P17 in DD pups. Electroretinogram a-waves were reduced in amplitude at P17 in the DD pups. The DD animals had lower levels of circulating thyroid hormones at P10. Light-mediated changes in thyroid hormones occur as early as P5, as we detected lower levels of total triiodothyronine in the vitreous from the DD animals. Drug-induced developmental hypothyroidism resulted in lower rhodopsin expression at P10. Our data demonstrate that light exposure during postnatal development is required for rod photoreceptor development and that this effect could be mediated by thyroid hormone signaling.

  7. Compound 49b Prevents Diabetes-Induced Apoptosis through Increased IGFBP-3 Levels

    PubMed Central

    Zhang, Qiuhua; Guy, Kimberly; Pagadala, Jayaprakash; Jiang, Youde; Walker, Robert J; Liu, Luhong; Soderland, Carl; Kern, Timothy S; Ferry, Robert; He, Hui; Yates, C. Ryan; Miller, Duane D; Steinle, Jena J

    2012-01-01

    Purpose. To determine whether Compound 49b, a novel PKA-activating drug, can prevent diabetic-like changes in the rat retina through increased insulin-like growth factor binding protein-3 (IGFBP-3) levels. Methods. For the cell culture studies, we used both human retinal endothelial cells (REC) and retinal Müller cells in either 5 mM (normal) or 25 mM (high) glucose. Cells were treated with 50 nM Compound 49b alone of following treatment with protein kinase A (PKA) siRNA or IGFBP-3 siRNA. Western blotting and ELISA analyses were done to verify PKA and IGFBP-3 knockdown, as well as to measure apoptotic markers. For animal studies, we used streptozotocin-treated rats after 2 and 8 months of diabetes. Some rats were treated topically with 1 mM Compound 49b. Analyses were done for retinal thickness, cell numbers in the ganglion cell layer, pericyte ghosts, and numbers of degenerate capillaries, as well as electroretinogram and heart morphology. Results. Compound 49b requires active PKA and IGFBP-3 to prevent apoptosis of REC. Compound 49b significantly reduced the numbers of degenerate capillaries and pericyte ghosts, while preventing the decreased retinal thickness and loss of cells in the ganglion cell layer. Compound 49b maintained a normal electroretinogram, with no changes in blood pressure, intraocular pressure, or heart morphological changes. Conclusions. Topical Compound 49b is able to prevent diabetic-like changes in the rat retina, without producing systemic changes. Compound 49b is able to prevent REC apoptosis through increasing IGFBP-3 levels, which are reduced in response to hyperglycemia. PMID:22467575

  8. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa.

    PubMed

    Wang, Nan-Kai; Tosi, Joaquin; Kasanuki, Jennifer Mie; Chou, Chai Lin; Kong, Jian; Parmalee, Nancy; Wert, Katherine J; Allikmets, Rando; Lai, Chi-Chun; Chien, Chung-Liang; Nagasaki, Takayuki; Lin, Chyuan-Sheng; Tsang, Stephen H

    2010-04-27

    To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.

  9. Effects of nicergoline on rabbit electroretinogram during recovery after ischaemia in light and dark.

    PubMed

    Blasco, G; Traversa, U; Drago, F

    1997-11-01

    Nicergoline is an ergot alkaloid derivative acting as a neuroprotective agent. In the present investigation, b-wave time-course recovery profiles under both light- and dark-adapted conditions, were studied in order to evaluate the possible effectiveness of nicergoline in the protection of the rabbit retina. Retinal ischaemia was induced by bilateral occlusion of common carotid artery in male rabbit of the Dutch strain. Groups of animals were subjected to 15-, 30- and 60-min periods of ischaemia under pentobarbital anaesthesia. Electroretinogram recordings were simultaneously obtained from both eyes, using, as the stimulus, the brightest flash from a stimulator positioned 15 cm in front of each eye. The treatment with nicergoline, administered immediately before the carotid occlusion, induced a significant protection only when the ischaemia seemed to cause retinal damage that the reperfusion alone was not able to recover completely. Nicergoline did not modify the recovery rate after 15-min or 30-min light-adapted and 15-min dark-adapted ischaemia; in these conditions the controls showed a full recovery. After 30-min dark-adapted ischaemia, the maximum recovery of the controls was 82%, and nicergoline significantly improved b-wave amplitude at all time points of reperfusion up to the complete recovery. Rabbit retina was irreversibly damaged by a 60-min ischaemia. In these conditions nicergoline significantly increased the percentage of b-wave recovery both in light- and dark-adapted ERG. Nicergoline, probably on the basis of its metabolic actions, seems to be effective in severe conditions of hypoxia and is more potent in dark than in light-adapted conditions. Its effectiveness in these experimental conditions could be justified by the different oxygen consumption of the photoreceptors in light and dark and the different sensitivity of cones and rods to the ischaemia.

  10. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  11. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    NASA Astrophysics Data System (ADS)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  12. Optimization of algorithm of coding of genetic information of Chlamydia

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Ulyanov, Sergey S.; Zaytsev, Sergey S.; Saltykov, Yury V.; Ulianova, Onega V.

    2018-04-01

    New method of coding of genetic information using coherent optical fields is developed. Universal technique of transformation of nucleotide sequences of bacterial gene into laser speckle pattern is suggested. Reference speckle patterns of the nucleotide sequences of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci serovar I as well are generated. Algorithm of coding of gene information into speckle pattern is optimized. Fully developed speckles with Gaussian statistics for gene-based speckles have been used as criterion of optimization.

  13. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.

    PubMed

    Dounskaia, Natalia; Shimansky, Yury

    2016-06-01

    Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed.

  14. Optimization of self-aligned double patterning (SADP)-compliant layout designs using pattern matching for sub-20nm metal routing

    NASA Astrophysics Data System (ADS)

    Wang, Lynn T.-N.; Schroeder, Uwe Paul; Madhavan, Sriram

    2017-03-01

    A pattern-based methodology for optimizing SADP-compliant layout designs is developed based on identifying cut mask patterns and replacing them with pre-characterized fixing solutions. A pattern-based library of difficult-tomanufacture cut patterns with pre-characterized fixing solutions is built. A pattern-based engine searches for matching patterns in the decomposed layouts. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution. The methodology was demonstrated on a 7nm routed metal2 block. A small library of 30 cut patterns increased the number of more manufacturable cuts by 38% and metal-via enclosure by 13% with a small parasitic capacitance impact of 0.3%.

  15. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice

    PubMed Central

    Choi, Vivian W; Bigelow, Chad E; McGee, Terri L; Gujar, Akshata N; Li, Hui; Hanks, Shawn M; Vrouvlianis, Joanna; Maker, Michael; Leehy, Barrett; Zhang, Yiqin; Aranda, Jorge; Bounoutas, George; Demirs, John T; Yang, Junzheng; Ornberg, Richard; Wang, Yu; Martin, Wendy; Stout, Kelly R; Argentieri, Gregory; Grosenstein, Paul; Diaz, Danielle; Turner, Oliver; Jaffee, Bruce D; Police, Seshidhar R; Dryja, Thaddeus P

    2015-01-01

    Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year. PMID:26199951

  16. A portable pattern-based design technology co-optimization flow to reduce optical proximity correction run-time

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chieh; Li, Tsung-Han; Lin, Hung-Yu; Chen, Kao-Tun; Wu, Chun-Sheng; Lai, Ya-Chieh; Hurat, Philippe

    2018-03-01

    Along with process improvement and integrated circuit (IC) design complexity increased, failure rate caused by optical getting higher in the semiconductor manufacture. In order to enhance chip quality, optical proximity correction (OPC) plays an indispensable rule in the manufacture industry. However, OPC, includes model creation, correction, simulation and verification, is a bottleneck from design to manufacture due to the multiple iterations and advanced physical behavior description in math. Thus, this paper presented a pattern-based design technology co-optimization (PB-DTCO) flow in cooperation with OPC to find out patterns which will negatively affect the yield and fixed it automatically in advance to reduce the run-time in OPC operation. PB-DTCO flow can generate plenty of test patterns for model creation and yield gaining, classify candidate patterns systematically and furthermore build up bank includes pairs of match and optimization patterns quickly. Those banks can be used for hotspot fixing, layout optimization and also be referenced for the next technology node. Therefore, the combination of PB-DTCO flow with OPC not only benefits for reducing the time-to-market but also flexible and can be easily adapted to diversity OPC flow.

  17. Evidence for light perception in a bioluminescent organ

    PubMed Central

    Tong, Deyan; Rozas, Natalia S.; Oakley, Todd H.; Mitchell, Jane; Colley, Nansi J.; McFall-Ngai, Margaret J.

    2009-01-01

    Here we show that bioluminescent organs of the squid Euprymna scolopes possess the molecular, biochemical, and physiological capability for light detection. Transcriptome analyses revealed expression of genes encoding key visual transduction proteins in light-organ tissues, including the same isoform of opsin that occurs in the retina. Electroretinograms demonstrated that the organ responds physiologically to light, and immunocytochemistry experiments localized multiple proteins of visual transduction cascades to tissues housing light-producing bacterial symbionts. These data provide evidence that the light-organ tissues harboring the symbionts serve as extraocular photoreceptors, with the potential to perceive directly the bioluminescence produced by their bacterial partners. PMID:19509343

  18. Unilateral retinitis pigmentosa: 30 years follow-up

    PubMed Central

    Weller, Julia M; Michelson, Georg; Juenemann, Anselm G

    2014-01-01

    This case report depicts the clinical course of a female patient with unilateral retinitis pigmentosa (RP), who presented first in 1984 at the age of 43 years. At the beginning, there were cells in the vitreous leading to the diagnosis of uveitis with vasculitis. Within 30 years, the complete clinical manifestation of RP developed with bone spicule-shaped pigment deposits, pale optic disc, narrowed arterioles, cystoid macular oedema, posterior subcapsular cataract, concentric narrowing of the visual field and undetectable electroretinogram signal. At the age of 72 years, there are still no signs of retinal dystrophy in the other eye. PMID:24515232

  19. Macular function and morphology in acute retinal pigment epithelitis.

    PubMed

    Gundogan, Fatih C; Diner, Oktay; Tas, Ahmet; Ilhan, Abdullah; Yolcu, Umit

    2014-12-01

    A 20-year-old man applied with vision loss in the left eye. Right eye examination was unremarkable. Best-corrected visual acuity (BCVA) in the left eye was 20/200. Fundus examination revealed a few yellow spots within a round-shaped macular lesion. Autofluorescence imaging showed hyperautofluorescence in the lesion. Central amplitudes in multifocal electroretinogram (mfERG) were depressed. The patient reported a rhinopharyngitis 7-10 days before the visual loss. The patient was diagnosed as acute retinal pigment epithelitis. BCVA improved gradually up to 20/20 in 4 weeks. mfERG amplitudes returned to normal. A slight pigmentary distortion was the only residual fundus finding.

  20. Two patients with spinocerebellar ataxia type 7 presenting with profound binocular visual loss yet minimal ophthalmoscopic findings

    PubMed Central

    Thurtell, Matthew J.; Fraser, J. Alexander; Bala, Elisa; Tomsak, Robert L.; Biousse, Valérie; Leigh, R. John; Newman, Nancy J.

    2010-01-01

    We report two patients with genetically-confirmed spinocerebellar ataxia type 7 (SCA-7), who presented with progressive central visual loss and dyschromatopsia. Ocular funduscopic changes were subtle, with only mild retinal artery attenuation and subtle macular changes. Despite this, the electroretinogram (ERG) was abnormal in both patients. Both patients also had slowing of saccades and partially limited ductions, although neither reported diplopia. Although the older patient had cerebellar ataxia, the younger only had an unsteady tandem gait. This constellation of signs should indicate SCA-7 as a diagnostic possibility, and prompt further investigation with ERG and genetic studies. PMID:19726939

  1. A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns.

    PubMed

    Wenk, Jonathan F; Wall, Samuel T; Peterson, Robert C; Helgerson, Sam L; Sabbah, Hani N; Burger, Mike; Stander, Nielen; Ratcliffe, Mark B; Guccione, Julius M

    2009-12-01

    Heart failure continues to present a significant medical and economic burden throughout the developed world. Novel treatments involving the injection of polymeric materials into the myocardium of the failing left ventricle (LV) are currently being developed, which may reduce elevated myofiber stresses during the cardiac cycle and act to retard the progression of heart failure. A finite element (FE) simulation-based method was developed in this study that can automatically optimize the injection pattern of the polymeric "inclusions" according to a specific objective function, using commercially available software tools. The FE preprocessor TRUEGRID((R)) was used to create a parametric axisymmetric LV mesh matched to experimentally measured end-diastole and end-systole metrics from dogs with coronary microembolization-induced heart failure. Passive and active myocardial material properties were defined by a pseudo-elastic-strain energy function and a time-varying elastance model of active contraction, respectively, that were implemented in the FE software LS-DYNA. The companion optimization software LS-OPT was used to communicate directly with TRUEGRID((R)) to determine FE model parameters, such as defining the injection pattern and inclusion characteristics. The optimization resulted in an intuitive optimal injection pattern (i.e., the one with the greatest number of inclusions) when the objective function was weighted to minimize mean end-diastolic and end-systolic myofiber stress and ignore LV stroke volume. In contrast, the optimization resulted in a nonintuitive optimal pattern (i.e., 3 inclusions longitudinallyx6 inclusions circumferentially) when both myofiber stress and stroke volume were incorporated into the objective function with different weights.

  2. Patterning control strategies for minimum edge placement error in logic devices

    NASA Astrophysics Data System (ADS)

    Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim

    2017-03-01

    In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.

  3. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems.

    PubMed

    Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz

    2008-02-01

    A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.

  4. Designing optimal food intake patterns to achieve nutritional goals for Japanese adults through the use of linear programming optimization models.

    PubMed

    Okubo, Hitomi; Sasaki, Satoshi; Murakami, Kentaro; Yokoyama, Tetsuji; Hirota, Naoko; Notsu, Akiko; Fukui, Mitsuru; Date, Chigusa

    2015-06-06

    Simultaneous dietary achievement of a full set of nutritional recommendations is difficult. Diet optimization model using linear programming is a useful mathematical means of translating nutrient-based recommendations into realistic nutritionally-optimal food combinations incorporating local and culture-specific foods. We used this approach to explore optimal food intake patterns that meet the nutrient recommendations of the Dietary Reference Intakes (DRIs) while incorporating typical Japanese food selections. As observed intake values, we used the food and nutrient intake data of 92 women aged 31-69 years and 82 men aged 32-69 years living in three regions of Japan. Dietary data were collected with semi-weighed dietary record on four non-consecutive days in each season of the year (16 days total). The linear programming models were constructed to minimize the differences between observed and optimized food intake patterns while also meeting the DRIs for a set of 28 nutrients, setting energy equal to estimated requirements, and not exceeding typical quantities of each food consumed by each age (30-49 or 50-69 years) and gender group. We successfully developed mathematically optimized food intake patterns that met the DRIs for all 28 nutrients studied in each sex and age group. Achieving nutritional goals required minor modifications of existing diets in older groups, particularly women, while major modifications were required to increase intake of fruit and vegetables in younger groups of both sexes. Across all sex and age groups, optimized food intake patterns demanded greatly increased intake of whole grains and reduced-fat dairy products in place of intake of refined grains and full-fat dairy products. Salt intake goals were the most difficult to achieve, requiring marked reduction of salt-containing seasoning (65-80%) in all sex and age groups. Using a linear programming model, we identified optimal food intake patterns providing practical food choices and meeting nutritional recommendations for Japanese populations. Dietary modifications from current eating habits required to fulfil nutritional goals differed by age: more marked increases in food volume were required in younger groups.

  5. Optimism, Positive and Negative Affect, and Goal Adjustment Strategies: Their Relationship to Activity Patterns in Patients with Chronic Musculoskeletal Pain.

    PubMed

    Esteve, Rosa; López-Martínez, Alicia E; Peters, Madelon L; Serrano-Ibáñez, Elena R; Ruiz-Párraga, Gema T; Ramírez-Maestre, Carmen

    2018-01-01

    Activity patterns are the product of pain and of the self-regulation of current goals in the context of pain. The aim of this study was to investigate the association between goal management strategies and activity patterns while taking into account the role of optimism/pessimism and positive/negative affect. Two hundred and thirty-seven patients with chronic musculoskeletal pain filled out questionnaires on optimism, positive and negative affect, pain intensity, and the activity patterns they employed in dealing with their pain. Questionnaires were also administered to assess their general goal management strategies: goal persistence, flexible goal adjustment, and disengagement and reengagement with goals. Structural equation modelling showed that higher levels of optimism were related to persistence, flexible goal management, and commitment to new goals. These strategies were associated with higher positive affect, persistence in finishing tasks despite pain, and infrequent avoidance behaviour in the presence or anticipation of pain. The strategies used by the patients with chronic musculoskeletal pain to manage their life goals are related to their activity patterns.

  6. Optimal management strategies in variable environments: Stochastic optimal control methods

    USGS Publications Warehouse

    Williams, B.K.

    1985-01-01

    Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both the discount rate and the climatic patterns on optimal harvest strategics. In general, decreases in either the discount rate or in the frequency of favorable weather patterns lcd to a more conservative defoliation policy. This did not hold, however, for plants in states of low vigor. Optimal control for shadscale and winterfat tended to stabilize on a policy of heavy defoliation stress, followed by one or more seasons of rest. Big sagebrush required a policy of heavy summer defoliation when sufficient active shoot material is present at the beginning of the growing season. The comparison of fixed and optimal strategies indicated considerable improvement in defoliation yields when optimal strategies are followed. The superior performance was attributable to increased defoliation of plants in states of high vigor. Improvements were found for both discounted and undiscounted yields.

  7. Co-optimization of lithographic and patterning processes for improved EPE performance

    NASA Astrophysics Data System (ADS)

    Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane

    2017-03-01

    Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.

  8. Optimality approaches to describe characteristic fluvial patterns on landscapes

    PubMed Central

    Paik, Kyungrock; Kumar, Praveen

    2010-01-01

    Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257

  9. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Kyle; Marleau, Peter; Brubaker, Erik

    In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed imagemore » quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.« less

  11. Variability-aware double-patterning layout optimization for analog circuits

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Lee, Zhao Chuan; Tseng, I.-Lun; Ong, Jonathan Yoong Seang

    2018-03-01

    The semiconductor industry has adopted multi-patterning techniques to manage the delay in the extreme ultraviolet lithography technology. During the design process of double-patterning lithography layout masks, two polygons are assigned to different masks if their spacing is less than the minimum printable spacing. With these additional design constraints, it is very difficult to find experienced layout-design engineers who have a good understanding of the circuit to manually optimize the mask layers in order to minimize color-induced circuit variations. In this work, we investigate the impact of double-patterning lithography on analog circuits and provide quantitative analysis for our designers to select the optimal mask to minimize the circuit's mismatch. To overcome the problem and improve the turn-around time, we proposed our smart "anchoring" placement technique to optimize mask decomposition for analog circuits. We have developed a software prototype that is capable of providing anchoring markers in the layout, allowing industry standard tools to perform automated color decomposition process.

  12. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhenhuan; Boyuka, David; Zou, X

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less

  13. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-07-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for themore » refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)« less

  14. A novel method for repeatedly generating speckle patterns used in digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Sweedy, Ahmed; Gitzhofer, François; Baroud, Gamal

    2018-01-01

    Speckle patterns play a key role in Digital Image Correlation (DIC) measurement, and generating an optimal speckle pattern has been the goal for decades now. The usual method of generating a speckle pattern is by manually spraying the paint on the specimen. However, this makes it difficult to reproduce the optimal pattern for maintaining identical testing conditions and achieving consistent DIC results. This study proposed and evaluated a novel method using an atomization system to repeatedly generate speckle patterns. To verify the repeatability of the speckle patterns generated by this system, simulation and experimental studies were systematically performed. The results from both studies showed that the speckle patterns and, accordingly, the DIC measurements become highly accurate and repeatable using the proposed atomization system.

  15. Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degeneration.

    PubMed

    Olson, Jeffrey L; Velez-Montoya, Raul; Mandava, Naresh; Stoldt, Conrad R

    2012-08-17

    To study the intravitreal application of silicon quantum dots (QDs) and their capabilities to deliver electrical stimulation to the retinal cells and to assess the potential effect on retinal electrophysiology and anatomy. A Royal College of Surgeon rat model of retinal degeneration was used in this study. A total of 32 eyes were used, divided in four groups of 8 eyes each; the first group received the silicon-based QD, the second group received an inactive gold-based QD, the third group received a sham injection, and the fourth group was used as a control. An electroretinogram (ERG) was done at baseline and thereafter every week for 9 weeks. At the end of the follow-up, eyes were collected for further pathologic analysis and nuclei cell counts. Eyes within the silicon-based QD group showed a definite but transient increase in the waves of the ERG, especially in the rod response compared with the sham and control groups (P < 0.05). The pathologic examination demonstrated a higher nuclei count in the QD group, consistent with a higher cell survival rate than that in the sham and control groups in which cells degenerated as expected. Intravitreal injection of silicon-based QD seems to be safe and well tolerated, with no evident toxic reaction and demonstrates a beneficial effect by prolonging cell survival rate and improving ERG patterns in a well-established model of retinal degeneration. (ClinicalTrials.gov numbers NCT00407602, NCT01490827.).

  16. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.

    PubMed

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H; Harper, Matthew M

    2013-05-15

    To evaluate retina and optic nerve damage following experimental blast injury. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.

  17. An integrated domain specific language for post-processing and visualizing electrophysiological signals in Java.

    PubMed

    Strasser, T; Peters, T; Jagle, H; Zrenner, E; Wilke, R

    2010-01-01

    Electrophysiology of vision - especially the electroretinogram (ERG) - is used as a non-invasive way for functional testing of the visual system. The ERG is a combined electrical response generated by neural and non-neuronal cells in the retina in response to light stimulation. This response can be recorded and used for diagnosis of numerous disorders. For both clinical practice and clinical trials it is important to process those signals in an accurate and fast way and to provide the results as structured, consistent reports. Therefore, we developed a freely available and open-source framework in Java (http://www.eye.uni-tuebingen.de/project/idsI4sigproc). The framework is focused on an easy integration with existing applications. By leveraging well-established software patterns like pipes-and-filters and fluent interfaces as well as by designing the application programming interfaces (API) as an integrated domain specific language (DSL) the overall framework provides a smooth learning curve. Additionally, it already contains several processing methods and visualization features and can be extended easily by implementing the provided interfaces. In this way, not only can new processing methods be added but the framework can also be adopted for other areas of signal processing. This article describes in detail the structure and implementation of the framework and demonstrate its application through the software package used in clinical practice and clinical trials at the University Eye Hospital Tuebingen one of the largest departments in the field of visual electrophysiology in Europe.

  18. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases.

    PubMed

    Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard

    2010-12-01

    Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  20. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Optimization of a multi-well array SERS chip

    NASA Astrophysics Data System (ADS)

    Abell, J. L.; Driskell, J. D.; Dluhy, R. A.; Tripp, R. A.; Zhao, Y.-P.

    2009-05-01

    SERS-active substrates are fabricated by oblique angle deposition and patterned by a polymer-molding technique to provide a uniform array for high throughput biosensing and multiplexing. Using a conventional SERS-active molecule, 1,2-Bis(4-pyridyl)ethylene (BPE), we show that this device provides a uniform Raman signal enhancement from well to well. The patterning technique employed in this study demonstrates a flexibility allowing for patterning control and customization, and performance optimization of the substrate. Avian influenza is analyzed to demonstrate the ability of this multi-well patterned SERS substrate for biosensing.

  2. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina

    PubMed Central

    Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael

    2018-01-01

    Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880

  3. The Relationship between Distributed Leadership and Teachers' Academic Optimism

    ERIC Educational Resources Information Center

    Mascall, Blair; Leithwood, Kenneth; Straus, Tiiu; Sacks, Robin

    2008-01-01

    Purpose: The goal of this study was to examine the relationship between four patterns of distributed leadership and a modified version of a variable Hoy et al. have labeled "teachers' academic optimism." The distributed leadership patterns reflect the extent to which the performance of leadership functions is consciously aligned across…

  4. OPTIMIZATION METHODOLOGY FOR LAND USE PATTERNS-EVALUATION BASED ON MULTISCALE HABITAT PATTERN COMPARISON. (R827169)

    EPA Science Inventory

    In this paper, the methodological concept of landscape optimization presented by Seppelt and Voinov [Ecol. Model. 151 (2/3) (2002) 125] is analyzed. Two aspects are chosen for detailed study. First, we generalize the performance criterion to assess a vector of ecosystem functi...

  5. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.

    PubMed

    Fisker, Christian; Pedersen, Thomas Garm

    2013-03-11

    We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

  6. Effect of elimination of nitrogen and/or hypoxia or restricted visual environment on color vision and range of accommodation

    NASA Technical Reports Server (NTRS)

    Wolbarsht, M. L.; White, C. W.; Anderson, W. B., Jr.

    1973-01-01

    The effects upon range of accommodation and color vision of reduced atmospheric pressure, at partial and complete elimination of nitrogen, of hypoxia, and of exposure for varying periods of time to restricted visual environment, have been studied alone or in various combinations. Measurements were made on the electroretinogram, the electrooculogram, and the diameter of the retinal vessels as an indicator of blood flow to the retina at the time of total elimination of nitrogen. An objective method was used to test range of accommodation. In the color vision test the flicker colors of a Benham's top were matched with a colorimeter.

  7. Optimal pattern distributions in Rete-based production systems

    NASA Technical Reports Server (NTRS)

    Scott, Stephen L.

    1994-01-01

    Since its introduction into the AI community in the early 1980's, the Rete algorithm has been widely used. This algorithm has formed the basis for many AI tools, including NASA's CLIPS. One drawback of Rete-based implementation, however, is that the network structures used internally by the Rete algorithm make it sensitive to the arrangement of individual patterns within rules. Thus while rules may be more or less arbitrarily placed within source files, the distribution of individual patterns within these rules can significantly affect the overall system performance. Some heuristics have been proposed to optimize pattern placement, however, these suggestions can be conflicting. This paper describes a systematic effort to measure the effect of pattern distribution on production system performance. An overview of the Rete algorithm is presented to provide context. A description of the methods used to explore the pattern ordering problem area are presented, using internal production system metrics such as the number of partial matches, and coarse-grained operating system data such as memory usage and time. The results of this study should be of interest to those developing and optimizing software for Rete-based production systems.

  8. Histologic Grading of Prostatic Adenocarcinoma Can Be Further Optimized: Analysis of the Relative Prognostic Strength of Individual Architectural Patterns in 1275 Patients From the Canary Retrospective Cohort.

    PubMed

    McKenney, Jesse K; Wei, Wei; Hawley, Sarah; Auman, Heidi; Newcomb, Lisa F; Boyer, Hilary D; Fazli, Ladan; Simko, Jeff; Hurtado-Coll, Antonio; Troyer, Dean A; Tretiakova, Maria S; Vakar-Lopez, Funda; Carroll, Peter R; Cooperberg, Matthew R; Gleave, Martin E; Lance, Raymond S; Lin, Dan W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Feng, Ziding; Brooks, James D

    2016-11-01

    Histologic grading remains the gold standard for prognosis in prostate cancer, and assessment of Gleason score plays a critical role in active surveillance management. We sought to optimize the prognostic stratification of grading and developed a method of recording and studying individual architectural patterns by light microscopic evaluation that is independent of standard Gleason grade. Some of the evaluated patterns are not assessed by current Gleason grading (eg, reactive stromal response). Individual histologic patterns were correlated with recurrence-free survival in a retrospective postradical prostatectomy cohort of 1275 patients represented by the highest-grade foci of carcinoma in tissue microarrays. In univariable analysis, fibromucinous rupture with varied epithelial complexity had a significantly lower relative risk of recurrence-free survival in cases graded as 3+4=7. Cases having focal "poorly formed glands," which could be designated as pattern 3+4=7, had lower risk than cribriform patterns with either small cribriform glands or expansile cribriform growth. In separate multivariable Cox proportional hazard analyses of both Gleason score 3+3=6 and 3+4=7 carcinomas, reactive stromal patterns were associated with worse recurrence-free survival. Decision tree models demonstrate potential regrouping of architectural patterns into categories with similar risk. In summary, we argue that Gleason score assignment by current consensus guidelines are not entirely optimized for clinical use, including active surveillance. Our data suggest that focal poorly formed gland and cribriform patterns, currently classified as Gleason pattern 4, should be in separate prognostic groups, as the latter is associated with worse outcome. Patterns with extravasated mucin are likely overgraded in a subset of cases with more complex epithelial bridges, whereas stromogenic cancers have a worse outcome than conveyed by Gleason grade alone. These findings serve as a foundation to facilitate optimization of histologic grading and strongly support incorporating reactive stroma into routine assessment.

  9. Efficient discovery of risk patterns in medical data.

    PubMed

    Li, Jiuyong; Fu, Ada Wai-chee; Fahey, Paul

    2009-01-01

    This paper studies a problem of efficiently discovering risk patterns in medical data. Risk patterns are defined by a statistical metric, relative risk, which has been widely used in epidemiological research. To avoid fruitless search in the complete exploration of risk patterns, we define optimal risk pattern set to exclude superfluous patterns, i.e. complicated patterns with lower relative risk than their corresponding simpler form patterns. We prove that mining optimal risk pattern sets conforms an anti-monotone property that supports an efficient mining algorithm. We propose an efficient algorithm for mining optimal risk pattern sets based on this property. We also propose a hierarchical structure to present discovered patterns for the easy perusal by domain experts. The proposed approach is compared with two well-known rule discovery methods, decision tree and association rule mining approaches on benchmark data sets and applied to a real world application. The proposed method discovers more and better quality risk patterns than a decision tree approach. The decision tree method is not designed for such applications and is inadequate for pattern exploring. The proposed method does not discover a large number of uninteresting superfluous patterns as an association mining approach does. The proposed method is more efficient than an association rule mining method. A real world case study shows that the method reveals some interesting risk patterns to medical practitioners. The proposed method is an efficient approach to explore risk patterns. It quickly identifies cohorts of patients that are vulnerable to a risk outcome from a large data set. The proposed method is useful for exploratory study on large medical data to generate and refine hypotheses. The method is also useful for designing medical surveillance systems.

  10. Graph rigidity, cyclic belief propagation, and point pattern matching.

    PubMed

    McAuley, Julian J; Caetano, Tibério S; Barbosa, Marconi S

    2008-11-01

    A recent paper [1] proposed a provably optimal polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Its fundamental result is that the chordal graph in question is shown to be globally rigid, implying that exact inference provides the same matching solution as exact inference in a complete graphical model. This implies that the algorithm is optimal when there is no noise in the point patterns. In this paper, we present a new graph that is also globally rigid but has an advantage over the graph proposed in [1]: Its maximal clique size is smaller, rendering inference significantly more efficient. However, this graph is not chordal, and thus, standard Junction Tree algorithms cannot be directly applied. Nevertheless, we show that loopy belief propagation in such a graph converges to the optimal solution. This allows us to retain the optimality guarantee in the noiseless case, while substantially reducing both memory requirements and processing time. Our experimental results show that the accuracy of the proposed solution is indistinguishable from that in [1] when there is noise in the point patterns.

  11. Simultaneous optimization of loading pattern and burnable poison placement for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alim, F.; Ivanov, K.; Yilmaz, S.

    2006-07-01

    To solve in-core fuel management optimization problem, GARCO-PSU (Genetic Algorithm Reactor Core Optimization - Pennsylvania State Univ.) is developed. This code is applicable for all types and geometry of PWR core structures with unlimited number of fuel assembly (FA) types in the inventory. For this reason an innovative genetic algorithm is developed with modifying the classical representation of the genotype. In-core fuel management heuristic rules are introduced into GARCO. The core re-load design optimization has two parts, loading pattern (LP) optimization and burnable poison (BP) placement optimization. These parts depend on each other, but it is difficult to solve themore » combined problem due to its large size. Separating the problem into two parts provides a practical way to solve the problem. However, the result of this method does not reflect the real optimal solution. GARCO-PSU achieves to solve LP optimization and BP placement optimization simultaneously in an efficient manner. (authors)« less

  12. A rational eating model of binges, diets and obesity.

    PubMed

    Dragone, Davide

    2009-07-01

    This paper addresses the rapid diffusion of obesity and the existence of different individual patterns of food consumption between non-dieters and chronic dieters. I propose a rational eating model where a forward-looking agent optimizes the intertemporal satisfaction from eating, taking into account the cost of changing consumption habits and the negative health consequences of having a non-optimal body weight. Consistent with the evidence, I show that the intertemporal maximization problem leads to a condition of overweightness, and that heterogeneity in the individual relevance of habits in consumption can determine the observed differences in the individual intertemporal patterns of food consumption and body weight. Sufficient conditions for determining when the convergence to the steady state implies oscillations or is monotonic are given. In the former case, the agent optimally alternates diets and binges until the steady state is reached, in the latter a regular intertemporal pattern of food consumption is optimal.

  13. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    NASA Astrophysics Data System (ADS)

    Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.

    2013-05-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem.

  14. Soy foods: are they useful for optimal bone health?

    PubMed Central

    2011-01-01

    Numerous studies have investigated the relationship between soy foods, soy protein, or isoflavone extracts and markers of bone health and osteoporosis prevention, and have come to conflicting conclusions. Research on dietary patterns, rather than on specific food ingredients or individual foods, may offer an opportunity for better understanding the role of soy foods in bone health. Evidence is reviewed regarding the question of whether soy foods contribute to a dietary pattern in humans that supports and promotes bone health. Soy foods are associated with improved markers of bone health and improved outcomes, especially among Asian women. Although the optimal amounts and types of soy foods needed to support bone health are not yet clear, dietary pattern evidence suggests that regular consumption of soy foods is likely to be useful for optimal bone health as an integral part of a dietary pattern that is built largely from whole plant foods. PMID:22870487

  15. Soy foods: are they useful for optimal bone health?

    PubMed

    Lanou, Amy J

    2011-12-01

    Numerous studies have investigated the relationship between soy foods, soy protein, or isoflavone extracts and markers of bone health and osteoporosis prevention, and have come to conflicting conclusions. Research on dietary patterns, rather than on specific food ingredients or individual foods, may offer an opportunity for better understanding the role of soy foods in bone health. Evidence is reviewed regarding the question of whether soy foods contribute to a dietary pattern in humans that supports and promotes bone health. Soy foods are associated with improved markers of bone health and improved outcomes, especially among Asian women. Although the optimal amounts and types of soy foods needed to support bone health are not yet clear, dietary pattern evidence suggests that regular consumption of soy foods is likely to be useful for optimal bone health as an integral part of a dietary pattern that is built largely from whole plant foods.

  16. Sedentary Behaviour Profiling of Office Workers: A Sensitivity Analysis of Sedentary Cut-Points

    PubMed Central

    Boerema, Simone T.; Essink, Gerard B.; Tönis, Thijs M.; van Velsen, Lex; Hermens, Hermie J.

    2015-01-01

    Measuring sedentary behaviour and physical activity with wearable sensors provides detailed information on activity patterns and can serve health interventions. At the basis of activity analysis stands the ability to distinguish sedentary from active time. As there is no consensus regarding the optimal cut-point for classifying sedentary behaviour, we studied the consequences of using different cut-points for this type of analysis. We conducted a battery of sitting and walking activities with 14 office workers, wearing the Promove 3D activity sensor to determine the optimal cut-point (in counts per minute (m·s−2)) for classifying sedentary behaviour. Then, 27 office workers wore the sensor for five days. We evaluated the sensitivity of five sedentary pattern measures for various sedentary cut-points and found an optimal cut-point for sedentary behaviour of 1660 × 10−3 m·s−2. Total sedentary time was not sensitive to cut-point changes within ±10% of this optimal cut-point; other sedentary pattern measures were not sensitive to changes within the ±20% interval. The results from studies analyzing sedentary patterns, using different cut-points, can be compared within these boundaries. Furthermore, commercial, hip-worn activity trackers can implement feedback and interventions on sedentary behaviour patterns, using these cut-points. PMID:26712758

  17. Sparse Substring Pattern Set Discovery Using Linear Programming Boosting

    NASA Astrophysics Data System (ADS)

    Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki

    In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.

  18. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    NASA Astrophysics Data System (ADS)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  19. Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem

    NASA Astrophysics Data System (ADS)

    Octarina, Sisca; Radiana, Mutia; Bangun, Putra B. J.

    2018-01-01

    Two dimensional cutting stock problem (CSP) is a problem in determining the cutting pattern from a set of stock with standard length and width to fulfill the demand of items. Cutting patterns were determined in order to minimize the usage of stock. This research implemented pattern generation algorithm to formulate Gilmore and Gomory model of two dimensional CSP. The constraints of Gilmore and Gomory model was performed to assure the strips which cut in the first stage will be used in the second stage. Branch and Cut method was used to obtain the optimal solution. Based on the results, it found many patterns combination, if the optimal cutting patterns which correspond to the first stage were combined with the second stage.

  20. Patterns of Movement in Foster Care: An Optimal Matching Analysis

    PubMed Central

    Havlicek, Judy

    2011-01-01

    Placement instability remains a vexing problem for child welfare agencies across the country. This study uses child welfare administrative data to retrospectively follow the entire placement histories (birth to age 17.5) of 474 foster youth who reached the age of majority in the state of Illinois and to search for patterns in their movement through the child welfare system. Patterns are identified through optimal matching and hierarchical cluster analyses. Multiple logistic regression is used to analyze administrative and survey data in order to examine covariates related to patterns. Five distinct patterns of movement are differentiated: Late Movers, Settled with Kin, Community Care, Institutionalized, and Early Entry. These patterns suggest high but variable rates of movement. Implications for child welfare policy and service provision are discussed. PMID:20873020

  1. Subadditive responses to extremely short blue and green pulsed light on visual evoked potentials, pupillary constriction and electroretinograms.

    PubMed

    Lee, Soomin; Uchiyama, Yuria; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2017-11-17

    The simultaneous exposure to blue and green light was reported to result in less melatonin suppression than monochromatic exposure to blue or green light. Here, we conducted an experiment using extremely short blue- and green-pulsed light to examine their visual and nonvisual effects on visual evoked potentials (VEPs), pupillary constriction, electroretinograms (ERGs), and subjective evaluations. Twelve adult male subjects were exposed to three light conditions: blue-pulsed light (2.5-ms pulse width), green-pulsed light (2.5-ms pulse width), and simultaneous blue- and green-pulsed light with white background light. We measured the subject's pupil diameter three times in each condition. Then, after 10 min of rest, the subject was exposed to the same three light conditions. We measured the averaged ERG and VEP during 210 pulsed-light exposures in each condition. We also determined subjective evaluations using a visual analog scale (VAS) method. The pupillary constriction during the simultaneous exposure to blue- and green-pulsed light was significantly lower than that during the blue-pulsed light exposure despite the double irradiance intensity of the combination. We also found that the b/|a| wave of the ERGs during the simultaneous exposure to blue- and green-pulsed light was lower than that during the blue-pulsed light exposure. We confirmed the subadditive response to pulsed light on pupillary constriction and ERG. However, the P100 of the VEPs during the blue-pulsed light were smaller than those during the simultaneous blue- and green-pulsed light and green-pulsed light, indicating that the P100 amplitude might depend on the luminance of light. Our findings demonstrated the effect of the subadditive response to extremely short pulsed light on pupillary constriction and ERG responses. The effects on ipRGCs by the blue-pulsed light exposure are apparently reduced by the simultaneous irradiation of green light. The blue versus yellow (b/y) bipolar cells in the retina might be responsible for this phenomenon.

  2. Therapeutic effect of the NMDA antagonist MK-801 on low-level laser induced retinal injury

    NASA Astrophysics Data System (ADS)

    Yan, W.-H.; Wu, J.; Chen, P.; Dou, J.-T.; Pan, C.-Y.; Mu, Y.-M.; Lu, J.-M.

    2009-03-01

    The aim of this article was to explore the mechanism of injury in rat retina after constant low-level helium-neon (He-Ne) laser exposure and therapeutic effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, on laser-induced retinal injury. He-Ne laser lesions were created in the central retina of adult Wistar Kyoto rats and were followed immediately by intraperitoneal injection of MK-801 (2 mg/kg) or saline, macroscopical and microscopical lesion were observed by funduscope and light microscope. Ultrastructural changes of the degenerating cells were examined by electron microscopy. Photoreceptor apoptosis was evaluated by TdT-mediated dUTP nick end-labeling (TUNEL). mRNA levels were measured by in situ hybridization and NMDA receptor expression was determined by immunohistochemistry. Laser induced damage was histologically quantified by image-analysis morphometry. Electroretinograms (ERGs) were recorded at different time point after the cessation of exposure to constant irradiation. There was no visible bleeding, exudation or necrosis under funduscope. TUNEL and electron microscopy showed photoreceptor apoptosis after irradiation. MK-801-treated animals had significantly fewer TUNEL-positive cells in the photoreceptors than saline-treated animals after exposure to laser. In situ hybridization (ISH) showed that the NMDAR mRNA level of MK-801-treated rats decreased in the inner plexiform layer 6 h after the cessation of exposure to constant irradiation when compared with that of saline-treated rats. So did Immunohistochemistry (IHC). Electroretinogram showed that b-wave amplitudes of MK-801-treated group were higher than that of saline-treated group after laser exposure. These findings suggest that Low level laser may cause the retinal pathological changes under given conditions. High expression of NMDAR is one of the possible mechanisms causing experimental retinal laser injury of rats. MK-801 exhibits the therapeutic effect due to promote the recovery of structure and function of injured retina.

  3. Comparison of the human multifocal electroretinogram a-wave response and adaptive optics imaging of cone photoreceptor numbers

    NASA Astrophysics Data System (ADS)

    Klein, Michael W.

    Studies that have used pharmacological agents in non human primates (e.g., Hood et al., IOVS 2002) indicate that electrical activity of cone photoreceptors, depolarizing cone bipolar cells and horizontal cells are all likely to contribute to the multifocal electroretinogram (mfERG) a-wave. The purpose of this study was to examine the relationship between the mfERG a-wave and co-localized cone spatial density individually measured in young healthy human subjects. mfERGs (0.1-300Hz) were recorded from 4 subjects (20-29 years) with a system from Veris Science (EDI, Inc.) using 2.4 degree unstretched hexagons from 206 retinal locations presented at 30 frames per m-step on a 75Hz monitor with m-sequence exponent of 9 and flash strength 9.9 cd-s/m 2. mfERG a-wave amplitude was measured from baseline at 10 milliseconds on the leading edge of the a-wave. In vivo cone images were obtained at 24 retinal locations using a custom-built Adaptive Optics Confocal Scanning Laser Ophthalmoscope. Cone spatial density was measured from a 100x100mum centered on the mfERG hexagons at 24 retinal locations. mfERG a-wave amplitude as well as cone density reduced with increase in retinal eccentricity from the fovea and the a-wave amplitude and cone density were positively correlated for each subject (r2=0.35 to 0.49 and p = 0.0049 to 0.0002). The coefficient of variation (CV) of the mfERG a-wave amplitude across subjects at each retinal location (16-62%) was larger than the CV of the cone density (8-37%) at the same location. The results indicate that underlying cone density accounts for a significant portion (up to nearly 70%) of the variance in the mfERG a-wave amplitude across retinal eccentricity. Other factors likely contribute to the variance (approximately 30%) of the measured mfERG parameters.

  4. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.

    PubMed

    Lei, Bo

    2012-01-01

    The rodent retina does not exhibit a positive OFF-response in the electroretinogram (ERG), which makes it difficult to evaluate its OFF-pathway functions in vivo. We studied the rod-driven OFF pathway responses by using a dark-adapted 10-Hz flicker ERG procedure in mouse. Conventional ERGs and 10-Hz dark-adapted flicker ERGs were obtained in wild-type mice (C57BL/6), in mice with pure rod (cpfl1) or pure cone (rho(-/-)) function, and in nob1 mice which have a selective ON-pathway defect. To isolate the response from ON or OFF pathway, glutamate analogs 2-amino-4-phosphobutyric acid (APB, an ON pathway blocker) and cis-2, 3-piperidine-dicarboxylic acid (PDA, an OFF pathway blocker), were injected intravitreally. The amplitude-intensity profile of the dark-adapted 10-Hz flicker ERG in the wild-type mice exhibits two peaks at middle and high light intensities. The two peaks represent rod- and cone-driven responses respectively. In APB-treated C57BL/6 mice and in nob1 mice, the dark-adapted ERG b-waves were absent. However, both rod- and cone-driven OFF pathway responses were evident with flicker ERG recording. At middle light intensities that activate only rod system, the flicker ERG responses in saline-injected nob1 mice were similar to those in APB-injected cpfl1 mice and wild-type mice. These responses are sensitive to PDA. The amplitudes of these rod-driven OFF pathway responses were approximately 20% of the total rod-driven flicker ERG responses. We demonstrate that the rod-OFF bipolar cell pathway is functional in the outer retina. The dark-adapted flicker ERG is practical for the evaluation of rod- and cone-driven responses, and the residual OFF pathway signals in subjects with ON pathway defects.

  5. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    PubMed Central

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  6. Original Research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model.

    PubMed

    Wang, Yi; Qin, Shucun; Pen, Guoqing; Chen, Di; Han, Chao; Miao, Chunrun; Lu, Baojin; Su, Chao; Feng, Shanlong; Li, Wen; Han, Jingjing; Cho, Nam C; Si, Yanhong

    2017-01-01

    Ocular complications associated with diabetes mellitus are progressive and becoming one of the most important causes of morbidity worldwide. The purpose of the study is to evaluate the protective effect of Polygonatum sibiricum polysaccharide, an important component of Polygonatum sibiricum, on ocular complications in streptozotocin-induced diabetes mellitus rats. Sprague Dawley rats were made diabetic with streptozotocin(60 mg/kg, i.v.) and then the rats were treated with Polygonatum sibiricum polysaccharide 200, 400 and 800 mg/kg.d by gavage for 12 weeks. Biochemical analysis indicated that Polygonatum sibiricum polysaccharide lowered the levels of fasting blood glucose and glycated hemoglobin in blood and elevated the levels of insulin and C-peptide in plasma of diabetes mellitus rats in a dose-dependent manner. Physical measurements revealed that Polygonatum sibiricum polysaccharide improved clinical symptoms of polydipsia, polyphagia, polyuria and weight loss in diabetes mellitus rats. The content of malondialdehyde and activity of superoxide dismutase in plasma were determined, and the data showed Polygonatum sibiricum polysaccharide suppressed oxidative stress reaction. Lens opacification was observed using slit lamp illumination, and the data showed Polygonatum sibiricum polysaccharide delayed cataract progression in a dose-dependent manner. Electroretinogram showed Polygonatum sibiricum polysaccharide treatment reversed the decrease of electroretinogram b and OPs2 waves' amplitudes. Flash-visual evoked potential test indicated that the peak time of P2 wave was prolonged, and the amplitude of N2-P2 was lowered in diabetes mellitus group, and Polygonatum sibiricum polysaccharide suppressed these changes. Fundus fluorescein angiography showed Polygonatum sibiricum polysaccharide alleviated the retinal vasculopathy in a dose-dependent manner. In conclusion, these results suggest that the administration of Polygonatum sibiricum polysaccharide slows the progression of diabetic retinopathy and cataract through alleviating hyperglycemia and reducing oxidative stress in streptozotocin-induced diabetes mellitus rats. © 2016 by the Society for Experimental Biology and Medicine.

  7. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    PubMed

    Yao, Lu; Zhang, Lei; Qi, Lin-Song; Liu, Wei; An, Jing; Wang, Bin; Xue, Jun-Hui; Zhang, Zuo-Ming

    2016-01-01

    Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  8. Electroretinogram responses of the normal thoroughbred horse sedated with detomidine hydrochloride.

    PubMed

    Church, Melanie L; Norman, Joanna C

    2012-09-01

    The main objective was to record electroretinogram (ERG) parameters of normal thoroughbred mares using the HMsERG, a mini-Ganzfeld electroretinographic unit, and a contact lens electrode. The second objective was to determine whether IV detomidine hydrochloride at 0.015 mg/kg is consistently an effective choice for sedation of horses undergoing this ERG protocol. The study population consisted of 30 normal thoroughbred mares. ERG data were harvested using a protocol that included three different light intensities (10, 3000, and 10,000 mcd s/m(2)) and a 30-Hz flicker at 3000 mcd s/m(2). Mean, median, standard deviation, and estimated normal ranges using the 5-95% of the data for a- and b-wave implicit times (IT), amplitudes (AMP), and b/a ratios were reported. Scotopic results at low intensity (10 mcd s/m(2)) had estimated ranges for b-wave IT of 41.8-72.9 ms and AMP of 19.8-173.3 μV. Middle intensity (3000 mcd s/m(2)) a-wave IT was 13.2-14.7 ms with a-wave AMP of 68.4-144 μV; the b-wave IT was 28.7-41.5 ms with b-wave AMP of 105.7-271.5 μV; and the b/a ratio was 0.95-2.71. The high-intensity (10,000 mcd s/m(2)) average recordings showed an a-wave IT of 13-14.9 ms, a-wave AMP of 85.7-186.8 μV; b-wave IT of 26.6-45.4 ms, b-wave AMP of 104.7-250.6 μV; and a b/a wave ratio of 0.7-2.0. The 30-Hz cone flicker showed an IT of 22.8-28.9 ms and AMP of 44.1-117.1 μV. Results of normal thoroughbred ERG responses are reported. The protocol proved to be simple and safe and provided consistent results. © 2012 American College of Veterinary Ophthalmologists.

  9. Original Research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats’ model

    PubMed Central

    Wang, Yi; Qin, Shucun; Pen, Guoqing; Chen, Di; Han, Chao; Miao, Chunrun; Lu, Baojin; Su, Chao; Feng, Shanlong; Li, Wen; Han, Jingjing

    2016-01-01

    Ocular complications associated with diabetes mellitus are progressive and becoming one of the most important causes of morbidity worldwide. The purpose of the study is to evaluate the protective effect of Polygonatum sibiricum polysaccharide, an important component of Polygonatum sibiricum, on ocular complications in streptozotocin-induced diabetes mellitus rats. Sprague Dawley rats were made diabetic with streptozotocin(60 mg/kg, i.v.) and then the rats were treated with Polygonatum sibiricum polysaccharide 200, 400 and 800 mg/kg.d by gavage for 12 weeks. Biochemical analysis indicated that Polygonatum sibiricum polysaccharide lowered the levels of fasting blood glucose and glycated hemoglobin in blood and elevated the levels of insulin and C-peptide in plasma of diabetes mellitus rats in a dose-dependent manner. Physical measurements revealed that Polygonatum sibiricum polysaccharide improved clinical symptoms of polydipsia, polyphagia, polyuria and weight loss in diabetes mellitus rats. The content of malondialdehyde and activity of superoxide dismutase in plasma were determined, and the data showed Polygonatum sibiricum polysaccharide suppressed oxidative stress reaction. Lens opacification was observed using slit lamp illumination, and the data showed Polygonatum sibiricum polysaccharide delayed cataract progression in a dose-dependent manner. Electroretinogram showed Polygonatum sibiricum polysaccharide treatment reversed the decrease of electroretinogram b and OPs2 waves’ amplitudes. Flash-visual evoked potential test indicated that the peak time of P2 wave was prolonged, and the amplitude of N2-P2 was lowered in diabetes mellitus group, and Polygonatum sibiricum polysaccharide suppressed these changes. Fundus fluorescein angiography showed Polygonatum sibiricum polysaccharide alleviated the retinal vasculopathy in a dose-dependent manner. In conclusion, these results suggest that the administration of Polygonatum sibiricum polysaccharide slows the progression of diabetic retinopathy and cataract through alleviating hyperglycemia and reducing oxidative stress in streptozotocin-induced diabetes mellitus rats. PMID:27510582

  10. Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels

    PubMed Central

    2017-01-01

    Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike’s information criterion (AICc) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis, the branchiopod water flea, Daphnia magna, normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus, which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei. The modeling approach presented here will be useful in selecting the most likely alternative hypotheses of opsin-based spectral photoreceptor classes, using relative opsin expression and extracellular electroretinography. PMID:28740757

  11. Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels.

    PubMed

    Lessios, Nicolas

    2017-01-01

    Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike's information criterion (AIC c ) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis , the branchiopod water flea, Daphnia magna , normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus , which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei . The modeling approach presented here will be useful in selecting the most likely alternative hypotheses of opsin-based spectral photoreceptor classes, using relative opsin expression and extracellular electroretinography.

  12. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  13. Field-design optimization with triangular heliostat pods

    NASA Astrophysics Data System (ADS)

    Domínguez-Bravo, Carmen-Ana; Bode, Sebastian-James; Heiming, Gregor; Richter, Pascal; Carrizosa, Emilio; Fernández-Cara, Enrique; Frank, Martin; Gauché, Paul

    2016-05-01

    In this paper the optimization of a heliostat field with triangular heliostat pods is addressed. The use of structures which allow the combination of several heliostats into a common pod system aims to reduce the high costs associated with the heliostat field and therefore reduces the Levelized Cost of Electricity value. A pattern-based algorithm and two pattern-free algorithms are adapted to handle the field layout problem with triangular heliostat pods. Under the Helio100 project in South Africa, a new small-scale Solar Power Tower plant has been recently constructed. The Helio100 plant has 20 triangular pods (each with 6 heliostats) whose positions follow a linear pattern. The obtained field layouts after optimization are compared against the reference field Helio100.

  14. Patterning optimization for 55nm design rule DRAM/flash memory using production-ready customized illuminations

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Van Den Broeke, Doug; Hsu, Stephen; Hsu, Michael; Park, Sangbong; Berger, Gabriel; Coskun, Tamer; de Vocht, Joep; Chen, Fung; Socha, Robert; Park, JungChul; Gronlund, Keith

    2005-11-01

    Illumination optimization, often combined with optical proximity corrections (OPC) to the mask, is becoming one of the critical components for a production-worthy lithography process for 55nm-node DRAM/Flash memory devices and beyond. At low-k1, e.g. k1<0.31, both resolution and imaging contrast can be severely limited by the current imaging tools while using the standard illumination sources. Illumination optimization is a process where the source shape is varied, in both profile and intensity distribution, to achieve enhancement in the final image contrast as compared to using the non-optimized sources. The optimization can be done efficiently for repetitive patterns such as DRAM/Flash memory cores. However, illumination optimization often produces source shapes that are "free-form" like and they can be too complex to be directly applicable for production and lack the necessary radial and annular symmetries desirable for the diffractive optical element (DOE) based illumination systems in today's leading lithography tools. As a result, post-optimization rendering and verification of the optimized source shape are often necessary to meet the production-ready or manufacturability requirements and ensure optimal performance gains. In this work, we describe our approach to the illumination optimization for k1<0.31 DRAM/Flash memory patterns, using an ASML XT:1400i at NA 0.93, where the all necessary manufacturability requirements are fully accounted for during the optimization. The imaging contrast in the resist is optimized in a reduced solution space constrained by the manufacturability requirements, which include minimum distance between poles, minimum opening pole angles, minimum ring width and minimum source filling factor in the sigma space. For additional performance gains, the intensity within the optimized source can vary in a gray-tone fashion (eight shades used in this work). Although this new optimization approach can sometimes produce closely spaced solutions as gauged by the NILS based metrics, we show that the optimal and production-ready source shape solution can be easily determined by comparing the best solutions to the "free-form" solution and more importantly, by their respective imaging fidelity and process latitude ranking. Imaging fidelity and process latitude simulations are performed to analyze the impact and sensitivity of the manufacturability requirements on pattern specific illumination optimizations using ASML XT:1400i and other latest imaging systems. Mask model based OPC (MOPC) is applied and optimized sequentially to ensure that the CD uniformity requirements are met.

  15. Design technology co-optimization for 14/10nm metal1 double patterning layer

    NASA Astrophysics Data System (ADS)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  16. Design optimization of large-size format edge-lit light guide units

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original method of dot pattern generation dedicated to large-size format light guide plate (LGP) design optimization, such as photo-bioreactors, the number of dots greatly exceeds the maximum allowable number of optical objects supported by most common ray-tracing software. In the proposed method, in order to simplify the computational problem, the original optical system is replaced by an equivalent one. Accordingly, an original dot pattern is splitted into multiple small sections, inside which the dot size variation is less than the ink dots printing typical resolution. Then, these sections are replaced by equivalent cells with continuous diffusing film. After that, we adjust the TIS (Total Integrated Scatter) two-dimensional distribution over the grid of equivalent cells, using an iterative optimization procedure. Finally, the obtained optimal TIS distribution is converted into the dot size distribution by applying an appropriate conversion rule. An original semi-empirical equation dedicated to rectangular large-size LGPs is proposed for the initial guess of TIS distribution. It allows significantly reduce the total time needed to dot pattern optimization.

  17. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    NASA Astrophysics Data System (ADS)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  18. Muscle coordination is habitual rather than optimal.

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2012-05-23

    When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."

  19. Optimal Design for Hetero-Associative Memory: Hippocampal CA1 Phase Response Curve and Spike-Timing-Dependent Plasticity

    PubMed Central

    Miyata, Ryota; Ota, Keisuke; Aonishi, Toru

    2013-01-01

    Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons. PMID:24204822

  20. Thin films with disordered nanohole patterns for solar radiation absorbers

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Lou, Minhan; Bao, Hua; Zhao, C. Y.

    2015-06-01

    The radiation absorption in thin films with three disordered nanohole patterns, i.e., random position, non-uniform radius, and amorphous pattern, are numerically investigated by finite-difference time-domain (FDTD) simulations. Disorder can alter the absorption spectra and has an impact on the broadband absorption performance. Compared to random position and non-uniform radius nanoholes, amorphous pattern can induce a much better integrated absorption. The power density spectra indicate that amorphous pattern nanoholes reduce the symmetry and provide more resonance modes that are desired for the broadband absorption. The application condition for amorphous pattern nanoholes shows that they are much more appropriate in absorption enhancement for weak absorption materials. Amorphous silicon thin films with disordered nanohole patterns are applied in solar radiation absorbers. Four configurations of thin films with different nanohole patterns show that interference between layers in absorbers will change the absorption performance. Therefore, it is necessary to optimize the whole radiation absorbers although single thin film with amorphous pattern nanohole has reached optimal absorption.

  1. A model for optimizing file access patterns using spatio-temporal parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible filemore » access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.« less

  2. Fuzzy usage pattern in customizing public transport fleet and its maintenance options

    NASA Astrophysics Data System (ADS)

    Husniah, H.; Herdiani, L.; Kusmaya; Supriatna, A. K.

    2018-05-01

    In this paper we study a two-dimensional maintenance contract for a fleet of public transport, such as buses, shuttle etc. The buses are sold with a two-dimensional warranty. The warranty and the maintenance contract are characterized by two parameters – age and usage – which define a two-dimensional region. However, we use one dimensional approach to model these age and usage of the buses. The under-laying maintenance service contracts is the one which offers policy limit cost to protect a service provider (an agent) from over claim and to pursue the owner to do maintenance under specified cost in house. This in turn gives benefit for both the owner of the buses and the agent of service contract. The decision problem for an agent is to determine the optimal price for each option offered, and for the owner is to select the best contract option. We use a Nash game theory formulation in order to obtain a win-win solution – i.e. the optimal price for the agent and the optimal option for the owner. We further assume that there will be three different usage pattern of the buses, i.e. low, medium, and high pattern of the usage rate. In many situations it is often that we face a blur boundary between the adjacent patterns. In this paper we look for the optimal price for the agent and the optimal option for the owner, which minimizes the expected total cost while considering the fuzziness of the usage rate pattern.

  3. Printing line/space patterns on nonplanar substrates using a digital micromirror device-based point-array scanning technique

    NASA Astrophysics Data System (ADS)

    Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin

    2018-02-01

    This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.

  4. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.

  5. Decision Aids for Naval Air ASW

    DTIC Science & Technology

    1980-03-15

    Algorithm for Zone Optimization Investigation) NADC Developing Sonobuoy Pattern for Air ASW Search DAISY (Decision Aiding Information System) Wharton...sion making behavior. 0 Artificial intelligence sequential pattern recognition algorithm for reconstructing the decision maker’s utility functions. 0...display presenting the uncertainty area of the target. 3.1.5 Algorithm for Zone Optimization Investigation (AZOI) -- Naval Air Development Center 0 A

  6. Analysis of dynamically stable patterns in a maze-like corridor using the Wasserstein metric.

    PubMed

    Ishiwata, Ryosuke; Kinukawa, Ryota; Sugiyama, Yuki

    2018-04-23

    The two-dimensional optimal velocity (2d-OV) model represents a dissipative system with asymmetric interactions, thus being suitable to reproduce behaviours such as pedestrian dynamics and the collective motion of living organisms. In this study, we found that particles in the 2d-OV model form optimal patterns in a maze-like corridor. Then, we estimated the stability of such patterns using the Wasserstein metric. Furthermore, we mapped these patterns into the Wasserstein metric space and represented them as points in a plane. As a result, we discovered that the stability of the dynamical patterns is strongly affected by the model sensitivity, which controls the motion of each particle. In addition, we verified the existence of two stable macroscopic patterns which were cohesive, stable, and appeared regularly over the time evolution of the model.

  7. Bio-inspired Optimal Locomotion Reconfigurability of Quadruped Rovers using Central Pattern Generators

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza

    Legged rovers are often considered as viable solutions for traversing unknown terrain. This work addresses the optimal locomotion reconfigurability of quadruped rovers, which consists of obtaining optimal locomotion modes, and transitioning between them. A 2D sagittal plane rover model is considered based on a domestic cat. Using a Genetic Algorithm, the gait, pose and control variables that minimize torque or maximize speed are found separately. The optimization approach takes into account the elimination of leg impact, while considering the entire variable spectrum. The optimal solutions are consistent with other works on gait optimization, and are similar to gaits found in quadruped animals as well. An online model-free gait planning framework is also implemented, that is based on Central Pattern Generators is implemented. It is used to generate joint and control trajectories for any arbitrarily varying speed profile, and shown to regulate locomotion transition and speed modulation, both endogenously and continuously.

  8. Routing performance analysis and optimization within a massively parallel computer

    DOEpatents

    Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen

    2013-04-16

    An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.

  9. Polymorphic New World monkeys with more than three M/L cone types

    NASA Astrophysics Data System (ADS)

    Jacobs, Gerald H.; Deegan, Jess F.

    2005-10-01

    Most New World (platyrrhine) monkeys have M/L cone photopigment polymorphisms that map directly into individual variations in visual sensitivity and color vision. We used electroretinogram flicker photometry to examine M/L cone photopigments in the New World monkey Callicebus moloch (the dusky Titi). Like other New World monkeys, this species has an M/L cone photopigment polymorphism that reflects the presence of X-chromosome opsin gene alleles. However, unlike other platyrrhines in which three M/L photopigments are typical, Callicebus has a total of five M/L cone photopigments. The peak sensitivity values for these pigments extend across the range from 530 to 562 nm. The result is an enhanced array of potential color vision phenotypes in this species.

  10. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-10-15

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies suchmore » as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  11. Pixel-based OPC optimization based on conjugate gradients.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  12. Performance improvements of binary diffractive structures via optimization of the photolithography and dry etch processes

    NASA Astrophysics Data System (ADS)

    Welch, Kevin; Leonard, Jerry; Jones, Richard D.

    2010-08-01

    Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.

  13. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  14. Retinal Ganglion Cell Damage in an Experimental Rodent Model of Blast-Mediated Traumatic Brain Injury

    PubMed Central

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H.; Harper, Matthew M.

    2013-01-01

    Purpose. To evaluate retina and optic nerve damage following experimental blast injury. Methods. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Results. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Conclusions. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify. PMID:23620426

  15. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors.

    PubMed

    Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W

    2014-01-01

    Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.

  16. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity.

    PubMed

    Garcia-Martin, Elena; Rodriguez-Mena, Diego; Satue, Maria; Almarcegui, Carmen; Dolz, Isabel; Alarcia, Raquel; Seral, Maria; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E

    2014-02-04

    To evaluate correlations between visual evoked potentials (VEP), pattern electroretinogram (PERG), and macular and retinal nerve fiber layer (RNFL) thickness measured by optical coherence tomography (OCT) and the severity of Parkinson disease (PD). Forty-six PD patients and 33 age and sex-matched healthy controls were enrolled, and underwent VEP, PERG, and OCT measurements of macular and RNFL thicknesses, and evaluation of PD severity using the Hoehn and Yahr scale to measure PD symptom progression, the Schwab and England Activities of Daily Living Scale (SE-ADL) to evaluate patient quality of life (QOL), and disease duration. Logistical regression was performed to analyze which measures, if any, could predict PD symptom progression or effect on QOL. Visual functional parameters (best corrected visual acuity, mean deviation of visual field, PERG positive (P) component at 50 ms -P50- and negative (N) component at 95 ms -N95- component amplitude, and PERG P50 component latency) and structural parameters (OCT measurements of RNFL and retinal thickness) were decreased in PD patients compared with healthy controls. OCT measurements were significantly negatively correlated with the Hoehn and Yahr scale, and significantly positively correlated with the SE-ADL scale. Based on logistical regression analysis, fovea thickness provided by OCT equipment predicted PD severity, and QOL and amplitude of the PERG N95 component predicted a lower SE-ADL score. Patients with greater damage in the RNFL tend to have lower QOL and more severe PD symptoms. Foveal thicknesses and the PERG N95 component provide good biomarkers for predicting QOL and disease severity.

  17. Influence of cataract surgery on optical coherence tomography and neurophysiology measurements in patients with retinitis pigmentosa.

    PubMed

    Garcia-Martin, Elena; Rodriguez-Mena, Diego; Dolz, Isabel; Almarcegui, Carmen; Gil-Arribas, Laura; Bambo, Maria P; Larrosa, Jose M; Polo, Vicente; Pablo, Luis E

    2013-08-01

    To evaluate the effect of uncomplicated cataract phacoemulsification on the measurements of visual evoked potentials (VEP), pattern electroretinogram (PERG), and macular and retinal nerve fiber layer (RNFL) using 2 spectral-domain optical coherence tomography (OCT) instruments, the Cirrus OCT (Carl Zeiss Meditech) and Spectralis OCT (Heidelberg Engineering), in patients with retinitis pigmentosa (RP), and to assess the reliability of the OCT measurements before and after cataract surgery. Observational cross-sectional study. Thirty-five eyes of 35 patients with RP (20 men and 15 women, 45-66 years) who underwent cataract phacoemulsification were studied. At 1 month before and 1 month after surgery, visual acuity, VEP, PERG, and 3 repetitions of scans using the RNFL and macular analysis protocols of the Cirrus and Spectralis OCT instruments were performed. The differences in measurements between the 2 visits were analyzed. Repeatability of OCT measurements was evaluated by calculating the coefficients of variation. VEP amplitude, RNFL thicknesses provided by Cirrus and Spectralis, and macular measurements provided by Cirrus OCT differed between the 2 visits. VEP latency, PERG measurements, and macular thicknesses provided by the Spectralis OCT before surgery did not differ significantly from those after surgery. The OCT repeatability was better after surgery, with lower coefficients of variation for scans performed after surgical removal of the cataract. The nuclear, cortical, and posterior subcapsular types of cataracts did not show different repeatability. The presence of cataracts affects VEP amplitude, RNFL, and macular measurements performed with OCT in eyes with RP. Image repeatability significantly improves after cataract phacoemulsification. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Toward an optimal online checkpoint solution under a two-level HPC checkpoint model

    DOE PAGES

    Di, Sheng; Robert, Yves; Vivien, Frederic; ...

    2016-03-29

    The traditional single-level checkpointing method suffers from significant overhead on large-scale platforms. Hence, multilevel checkpointing protocols have been studied extensively in recent years. The multilevel checkpoint approach allows different levels of checkpoints to be set (each with different checkpoint overheads and recovery abilities), in order to further improve the fault tolerance performance of extreme-scale HPC applications. How to optimize the checkpoint intervals for each level, however, is an extremely difficult problem. In this paper, we construct an easy-to-use two-level checkpoint model. Checkpoint level 1 deals with errors with low checkpoint/recovery overheads such as transient memory errors, while checkpoint level 2more » deals with hardware crashes such as node failures. Compared with previous optimization work, our new optimal checkpoint solution offers two improvements: (1) it is an online solution without requiring knowledge of the job length in advance, and (2) it shows that periodic patterns are optimal and determines the best pattern. We evaluate the proposed solution and compare it with the most up-to-date related approaches on an extreme-scale simulation testbed constructed based on a real HPC application execution. Simulation results show that our proposed solution outperforms other optimized solutions and can improve the performance significantly in some cases. Specifically, with the new solution the wall-clock time can be reduced by up to 25.3% over that of other state-of-the-art approaches. Lastly, a brute-force comparison with all possible patterns shows that our solution is always within 1% of the best pattern in the experiments.« less

  19. Impact of lesion characteristics on the prediction of optimal poststent fractional flow reserve.

    PubMed

    Ando, Hirohiko; Takashima, Hiroaki; Suzuki, Akihiro; Sakurai, Shinichiro; Kumagai, Soichiro; Kurita, Akiyoshi; Waseda, Katsuhisa; Amano, Tetsuya

    2016-12-01

    Poststent fractional flow reserve (FFR) is a useful indicator of optimal percutaneous coronary intervention, and higher poststent FFR is associated with favorable long-term clinical outcome. However, little is known about the factors influencing poststent FFR. The purpose of this study was to determine the impact of lesion characteristics on poststent FFR. For patients who had scheduled stent implantation for stable angina, FFR measurements at maximum hyperemia were performed before and after coronary stent implantation. As one of lesion characteristics, the FFR pressure drop pattern was evaluated and classified as either an abrupt or a gradual pattern according to the pullback curve of FFR. A total of 205 lesions with physiological significant stenosis were evaluated. Fractional flow reserve value increased from 0.67±0.10 to 0.87±0.07 after stent implantation. Optimal poststent FFR was achieved in 75 lesions (36.6%). Logistic regression analysis demonstrated that optimal poststent FFR was positively correlated with an abrupt pressure drop pattern (hazard ratio [HR] 2.11, 95% CI 1.06-4.15, P=.03) and prestent FFR (HR 1.04, 95% CI 1.03-2.04, P=.03; per 0.1 increase), and negatively correlated with lesion localization to the left anterior descending artery (HR 0.18, 95% CI 0.09-0.36, P<.0001). The c statistic for predicting optimal poststent FFR was 0.763 (95% CI 0.702-0.819). Abrupt pressure drop patterns, prestent FFR, and lesion localization to the left anterior descending artery were independent predictors of optimal poststent FFR. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Optimization of the temporal pattern of applied dose for a single fraction of radiation: Implications for radiation therapy

    NASA Astrophysics Data System (ADS)

    Altman, Michael B.

    The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a given radiation pattern by concentrating the highest doses in the middle of a fraction (a "Triangle" pattern), or minimizing cell kill by placing the highest doses near the beginning and end (a "V-shaped" pattern). The conditions under which temporal optimization effects are most acute are also identified: irradiation of low alpha/beta tissues, long fraction durations, and high doses/fx. An in vitro study is then performed which verifies that the temporal effects and trends predicted by the modeling study are clearly manifested in human cells. Following this a phantom which could allow similar in vitro radiobiological experiments in a 3-dimensional clinically-based environment is designed, created, and dosimetrically assessed using TLDs, film, and biological assay-based techniques. The phantom is found to be a useful and versatile tool for such experiments. A scheme for utilizing the phantom in a clinical treatment environment is then developed. This includes a demonstration of prototype methods for optimizing the temporal pattern of applied dose in clinical IMRT plans to manipulate tissue-dependent effects. Looking toward future experimental validation of such plans using the phantom, an analysis of the suitability of biological assays for use in phantom-based in vitro experiments is performed. Finally, a discussion is provided about the steps necessary to integrate temporal optimization into in vivo experiments and ultimately into a clinical radiation therapy environment. If temporal optimization is ultimately shown to have impact in vivo, the successful implementation of the methods developed in this study could enhance the efficacy and care of thousands of patients receiving radiotherapy.

  1. The Optimization Design of An AC-Electroosmotic Micro mixer

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Suh, Yongkweon; Kang, Sangmo

    2007-11-01

    We propose the optimization design of an AC-electroosmotic micro-mixer, which is composed of a channel and a series of pairs of electrodes attached on the bottom wall in zigzag patterns. The AC electric field is applied to the electrodes so that a fluid flow takes place around the electrodes across the channel, thus contributing to the mixing of the fluid within the channel. We have performed numerical simulations by using a commercial code (CFX 10) to optimize the shape and pattern of the electrodes via the concept of mixing index. It is found that the best combination of two kinds of electrodes, which leads to good mixing performance, is not simply harmonic one. When the length ratio of the two kinds of electrodes closes to 2:1, we can get the best mixing effect. Furthermore, we will visualize the flow pattern and measure the velocity field with a PTV technique to validate the numerical simulations. In addition, the mixing pattern will be visualized via the experiment.

  2. A Neuro-Musculo-Skeletal Model for Insects With Data-driven Optimization.

    PubMed

    Guo, Shihui; Lin, Juncong; Wöhrl, Toni; Liao, Minghong

    2018-02-01

    Simulating the locomotion of insects is beneficial to many areas such as experimental biology, computer animation and robotics. This work proposes a neuro-musculo-skeletal model, which integrates the biological inspirations from real insects and reproduces the gait pattern on virtual insects. The neural system is a network of spiking neurons, whose spiking patterns are controlled by the input currents. The spiking pattern provides a uniform representation of sensory information, high-level commands and control strategy. The muscle models are designed following the characteristic Hill-type muscle with customized force-length and force-velocity relationships. The model parameters, including both the neural and muscular components, are optimized via an approach of evolutionary optimization, with the data captured from real insects. The results show that the simulated gait pattern, including joint trajectories, matches the experimental data collected from real ants walking in the free mode. The simulated character is capable of moving at different directions and traversing uneven terrains.

  3. Repurposing Blu-ray movie discs as quasi-random nanoimprinting templates for photon management

    NASA Astrophysics Data System (ADS)

    Smith, Alexander J.; Wang, Chen; Guo, Dongning; Sun, Cheng; Huang, Jiaxing

    2014-11-01

    Quasi-random nanostructures have attracted significant interests for photon management purposes. To optimize such patterns, typically very expensive fabrication processes are needed to create the pre-designed, subwavelength nanostructures. While quasi-random photonic nanostructures are abundant in nature (for example, in structural coloration), interestingly, they also exist in Blu-ray movie discs, an already mass-produced consumer product. Here we uncover that Blu-ray disc patterns are surprisingly well suited for light-trapping applications. While the algorithms in the Blu-ray industrial standard were developed with the intention of optimizing data compression and error tolerance, they have also created quasi-random arrangement of islands and pits on the final media discs that are nearly optimized for photon management over the solar spectrum, regardless of the information stored on the discs. As a proof-of-concept, imprinting polymer solar cells with the Blu-ray patterns indeed increases their efficiencies. Simulation suggests that Blu-ray patterns could be broadly applied for solar cells made of other materials.

  4. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease

    PubMed Central

    Uribe, Mary Luz; Haro, Carmen; Campello, Laura; Cruces, Jesús; Martín-Nieto, José

    2016-01-01

    Purpose The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene’s lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. Methods Using reverse transcription (RT)–PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. Results POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. Conclusions Our results indicate that POMGnT1 participates not only in the synthesis of O-mannosyl glycans added to α-DG in the Golgi complex but also in the glycosylation of other yet-to-be-identified proteins in the nucleus of mouse photoreceptors. PMID:27375352

  5. A "healthy diet-optimal sleep" lifestyle pattern is inversely associated with liver stiffness and insulin resistance in patients with nonalcoholic fatty liver disease.

    PubMed

    Katsagoni, Christina N; Papatheodoridis, George V; Papageorgiou, Maria-Vasiliki; Ioannidou, Panagiota; Deutsch, Melanie; Alexopoulou, Alexandra; Papadopoulos, Nikolaos; Fragopoulou, Elisabeth; Kontogianni, Meropi D

    2017-03-01

    Several lifestyle habits have been described as risk factors for nonalcoholic fatty liver disease (NAFLD). Given that both healthy and unhealthy habits tend to cluster, the aim of this study was to identify lifestyle patterns and explore their potential associations with clinical characteristics of individuals with NAFLD. One hundred and thirty-six consecutive patients with ultrasound-proven NAFLD were included. Diet and physical activity level were assessed through appropriate questionnaires. Habitual night sleep hours and duration of midday naps were recorded. Optimal sleep duration was defined as sleep hours ≥ 7 and ≤ 9 h/day. Lifestyle patterns were identified using principal component analysis. Eight components were derived explaining 67% of total variation of lifestyle characteristics. Lifestyle pattern 3, namely high consumption of low-fat dairy products, vegetables, fish, and optimal sleep duration was negatively associated with insulin resistance (β = -1.66, P = 0.008) and liver stiffness (β = -1.62, P = 0.05) after controlling for age, sex, body mass index, energy intake, smoking habits, adiponectin, and tumor necrosis factor-α. Lifestyle pattern 1, namely high consumption of full-fat dairy products, refined cereals, potatoes, red meat, and high television viewing time was positively associated with insulin resistance (β = 1.66, P = 0.005), although this association was weakened after adjusting for adiponectin and tumor necrosis factor-α. A "healthy diet-optimal sleep" lifestyle pattern was beneficially associated with insulin resistance and liver stiffness in NAFLD patients independent of body weight status and energy intake.

  6. Automation for pattern library creation and in-design optimization

    NASA Astrophysics Data System (ADS)

    Deng, Rock; Zou, Elain; Hong, Sid; Wang, Jinyan; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua; Huang, Jason

    2015-03-01

    Semiconductor manufacturing technologies are becoming increasingly complex with every passing node. Newer technology nodes are pushing the limits of optical lithography and requiring multiple exposures with exotic material stacks for each critical layer. All of this added complexity usually amounts to further restrictions in what can be designed. Furthermore, the designs must be checked against all these restrictions in verification and sign-off stages. Design rules are intended to capture all the manufacturing limitations such that yield can be maximized for any given design adhering to all the rules. Most manufacturing steps employ some sort of model based simulation which characterizes the behavior of each step. The lithography models play a very big part of the overall yield and design restrictions in patterning. However, lithography models are not practical to run during design creation due to their slow and prohibitive run times. Furthermore, the models are not usually given to foundry customers because of the confidential and sensitive nature of every foundry's processes. The design layout locations where a model flags unacceptable simulated results can be used to define pattern rules which can be shared with customers. With advanced technology nodes we see a large growth of pattern based rules. This is due to the fact that pattern matching is very fast and the rules themselves can be very complex to describe in a standard DRC language. Therefore, the patterns are left as either pattern layout clips or abstracted into pattern-like syntax which a pattern matcher can use directly. The patterns themselves can be multi-layered with "fuzzy" designations such that groups of similar patterns can be found using one description. The pattern matcher is often integrated with a DRC tool such that verification and signoff can be done in one step. The patterns can be layout constructs that are "forbidden", "waived", or simply low-yielding in nature. The patterns can also contain remedies built in so that fixing happens either automatically or in a guided manner. Building a comprehensive library of patterns is a very difficult task especially when a new technology node is being developed or the process keeps changing. The main dilemma is not having enough representative layouts to use for model simulation where pattern locations can be marked and extracted. This paper will present an automatic pattern library creation flow by using a few known yield detractor patterns to systematically expand the pattern library and generate optimized patterns. We will also look at the specific fixing hints in terms of edge movements, additive, or subtractive changes needed during optimization. Optimization will be shown for both the digital physical implementation and custom design methods.

  7. Adapted random sampling patterns for accelerated MRI.

    PubMed

    Knoll, Florian; Clason, Christian; Diwoky, Clemens; Stollberger, Rudolf

    2011-02-01

    Variable density random sampling patterns have recently become increasingly popular for accelerated imaging strategies, as they lead to incoherent aliasing artifacts. However, the design of these sampling patterns is still an open problem. Current strategies use model assumptions like polynomials of different order to generate a probability density function that is then used to generate the sampling pattern. This approach relies on the optimization of design parameters which is very time consuming and therefore impractical for daily clinical use. This work presents a new approach that generates sampling patterns by making use of power spectra of existing reference data sets and hence requires neither parameter tuning nor an a priori mathematical model of the density of sampling points. The approach is validated with downsampling experiments, as well as with accelerated in vivo measurements. The proposed approach is compared with established sampling patterns, and the generalization potential is tested by using a range of reference images. Quantitative evaluation is performed for the downsampling experiments using RMS differences to the original, fully sampled data set. Our results demonstrate that the image quality of the method presented in this paper is comparable to that of an established model-based strategy when optimization of the model parameter is carried out and yields superior results to non-optimized model parameters. However, no random sampling pattern showed superior performance when compared to conventional Cartesian subsampling for the considered reconstruction strategy.

  8. Analysis of a Compressed Thin Film Bonded to a Compliant Substrate: The Energy Scaling Law

    NASA Astrophysics Data System (ADS)

    Kohn, Robert V.; Nguyen, Hoai-Minh

    2013-06-01

    We consider the deformation of a thin elastic film bonded to a thick compliant substrate, when the (compressive) misfit is far beyond critical. We take a variational viewpoint—focusing on the total elastic energy, i.e. the membrane and bending energy of the film plus the elastic energy of the substrate—viewing the buckling of the film as a problem of energy-driven pattern formation. We identify the scaling law of the minimum energy with respect to the physical parameters of the problem, and we prove that a herringbone pattern achieves the optimal scaling. These results complement previous numerical studies, which have shown that an optimized herringbone pattern has lower energy than a number of other patterns. Our results are different, because (i) we make the scaling law achieved by the herringbone pattern explicit, and (ii) we give an elementary, ansatz-free proof that no pattern can achieve a better law.

  9. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  10. Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand.

    PubMed

    Wilson, Nick; Nghiem, Nhung; Ni Mhurchu, Cliona; Eyles, Helen; Baker, Michael G; Blakely, Tony

    2013-01-01

    Global health challenges include non-communicable disease burdens, ensuring food security in the context of rising food prices, and environmental constraints around food production, e.g., greenhouse gas [GHG] emissions. We therefore aimed to consider optimized solutions to the mix of food items in daily diets for a developed country population: New Zealand (NZ). We conducted scenario development and linear programming to model 16 diets (some with uncertainty). Data inputs included nutrients in foods, food prices, food wastage and food-specific GHG emissions. This study identified daily dietary patterns that met key nutrient requirements for as little as a median of NZ$ 3.17 per day (US$ 2.41/d) (95% simulation interval [SI] = NZ$ 2.86 to 3.50/d). Diets that included "more familiar meals" for New Zealanders, increased the cost. The optimized diets also had low GHG emission profiles compared with the estimate for the 'typical NZ diet' e.g., 1.62 kg CO2e/d for one scenario (95%SI = 1.39 to 1.85 kg CO2e) compared with 10.1 kg CO2e/d, respectively. All of the optimized low-cost and low-GHG dietary patterns had likely health advantages over the current NZ dietary pattern, i.e., lower cardiovascular disease and cancer risk. We identified optimal foods and dietary patterns that would lower the risk of non-communicable diseases at low cost and with low greenhouse gas emission profiles. These results could help guide central and local government decisions around which foods to focus policies on. That is which foods are most suitable for: food taxes (additions and exemptions); healthy food vouchers and subsidies; and for increased use by public institutions involved in food preparation.

  11. Intermodal transport and distribution patterns in ports relationship to hinterland

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Dragu, V.; Ruscă, F.; Ilie, A.; Oprea, C.

    2017-08-01

    It is of great importance to examine all interactions between ports, terminals, intermodal transport and logistic actors of distribution channels, as their optimization can lead to operational improvement. Proposed paper starts with a brief overview of different goods types and allocation of their logistic costs, with emphasis on storage component. Present trend is to optimize storage costs by means of port storage area buffer function, by making the best use of free storage time available, most of the ports offer. As a research methodology, starting point is to consider the cost structure of a generic intermodal transport (storage, handling and transport costs) and to link this to intermodal distribution patterns most frequently cast-off in port relationship to hinterland. The next step is to evaluate storage costs impact on distribution pattern selection. For a given value of port free storage time, a corresponding value of total storage time in the distribution channel can be identified, in order to substantiate a distribution pattern shift. Different scenarios for transport and handling costs variation, recorded when distribution pattern shift, are integrated in order to establish the reaction of the actors involved in port related logistic and intermodal transport costs evolution is analysed in order to optimize distribution pattern selection.

  12. New well pattern optimization methodology in mature low-permeability anisotropic reservoirs

    NASA Astrophysics Data System (ADS)

    Qin, Jiazheng; Liu, Yuetian; Feng, Yueli; Ding, Yao; Liu, Liu; He, Youwei

    2018-02-01

    In China, lots of well patterns were designed before people knew the principal permeability direction in low-permeability anisotropic reservoirs. After several years’ production, it turns out that well line direction is unparallel with principal permeability direction. However, traditional well location optimization methods (in terms of the objective function such as net present value and/or ultimate recovery) are inapplicable, since wells are not free to move around in a mature oilfield. Thus, the well pattern optimization (WPO) of mature low-permeability anisotropic reservoirs is a significant but challenging task, since the original well pattern (WP) will be distorted and reconstructed due to permeability anisotropy. In this paper, we investigate the destruction and reconstruction of WP when the principal permeability direction and well line direction are unparallel. A new methodology was developed to quantitatively optimize the well locations of mature large-scale WP through a WPO algorithm on the basis of coordinate transformation (i.e. rotating and stretching). For a mature oilfield, large-scale WP has settled, so it is not economically viable to carry out further infill drilling. This paper circumvents this difficulty by combining the WPO algorithm with the well status (open or shut-in) and schedule adjustment. Finally, this methodology is applied to an example. Cumulative oil production rates of the optimized WP are higher, and water-cut is lower, which highlights the potential of the WPO methodology application in mature large-scale field development projects.

  13. Derivation of Optimal Cropping Pattern in Part of Hirakud Command using Cuckoo Search

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Biswal, Sudarsan; Samantaray, Sandeep; Swain, Prakash Chandra, PROF.

    2017-08-01

    The economicgrowth of a Nation depends on agriculture which relies on the obtainable water resources, available land and crops. The contribution of water in an appropriate quantity at appropriate time plays avitalrole to increase the agricultural production. Optimal utilization of available resources can be achieved by proper planning and management of water resources projects and adoption of appropriate technology. In the present work, the command area of Sambalpur distribrutary System is taken up for investigation. Further, adoption of a fixed cropping pattern causes the reduction of yield. The present study aims at developing different crop planning strategies to increase the net benefit from the command area with minimum investment. Optimization models are developed for Kharif season using LINDO and Cuckoo Search (CS) algorithm for maximization of the net benefits. In process of development of Optimization model the factors such as cultivable land, seeds, fertilizers, man power, water cost, etc. are taken as constraints. The irrigation water needs of major crops and the total available water through canals in the command of Sambalpur Distributary are estimated. LINDO and Cuckoo Search models are formulated and used to derive the optimal cropping pattern yielding maximum net benefits. The net benefits of Rs.585.0 lakhs in Kharif Season are obtained by adopting LINGO and 596.07 lakhs from Cuckoo Search, respectively, whereas the net benefits of 447.0 lakhs is received by the farmers of the locality with the adopting present cropping pattern.

  14. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Polarization control in flexible interference lithography for nano-patterning of different photonic structures with optimized contrast.

    PubMed

    He, Jianfang; Fang, Xiaohui; Lin, Yuanhai; Zhang, Xinping

    2015-05-04

    Half-wave plates were introduced into an interference-lithography scheme consisting of three fibers that were arranged into a rectangular triangle. Such a flexible and compact geometry allows convenient tuning of the polarizations of both the UV laser source and each branch arm. This not only enables optimization of the contrast of the produced photonic structures with expected square lattices, but also multiplies the nano-patterning functions of a fixed design of fiber-based interference lithography. The patterns of the photonic structures can be thus tuned simply by rotating a half-wave plate.

  16. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Storyline Visualization: A Compelling Way to Understand Patterns over Time and Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-10-16

    Storyline visualization is a compelling way to understand patterns over time and space. Much effort has been spent developing efficient and aesthetically pleasing layout optimization algorithms. But what if those algorithms are optimizing the wrong things? To answer this question, we conducted a design study with different storyline layout algorithms. We found that users with our new design principles for storyline visualization outperform existing methods.

  18. X-ray Polarimetry with a Micro-Pattern Gas Detector

    NASA Technical Reports Server (NTRS)

    Hill, Joe

    2005-01-01

    Topics covered include: Science drivers for X-ray polarimetry; Previous X-ray polarimetry designs; The photoelectric effect and imaging tracks; Micro-pattern gas polarimeter design concept. Further work includes: Verify results against simulator; Optimize pressure and characterize different gases for a given energy band; Optimize voltages for resolution and sensitivity; Test meshes with 80 micron pitch; Characterize ASIC operation; and Quantify quantum efficiency for optimum polarization sensitivity.

  19. Extreme ultraviolet patterning of tin-oxo cages

    NASA Astrophysics Data System (ADS)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-07-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.

  20. Derivation of an optimal directivity pattern for sweet spot widening in stereo sound reproduction

    NASA Astrophysics Data System (ADS)

    Ródenas, Josep A.; Aarts, Ronald M.; Janssen, A. J. E. M.

    2003-01-01

    In this paper the correction of the degradation of the stereophonic illusion during sound reproduction due to off-center listening is investigated. The main idea is that the directivity pattern of a loudspeaker array should have a well-defined shape such that a good stereo reproduction is achieved in a large listening area. Therefore, a mathematical description to derive an optimal directivity pattern opt that achieves sweet spot widening in a large listening area for stereophonic sound applications is described. This optimal directivity pattern is based on parametrized time/intensity trading data coming from psycho-acoustic experiments within a wide listening area. After the study, the required digital FIR filters are determined by means of a least-squares optimization method for a given stereo base setup (two pair of drivers for the loudspeaker arrays and 2.5-m distance between loudspeakers), which radiate sound in a broad range of listening positions in accordance with the derived opt. Informal listening tests have shown that the opt worked as predicted by the theoretical simulations. They also demonstrated the correct central sound localization for speech and music for a number of listening positions. This application is referred to as ``Position-Independent (PI) stereo.''

  1. Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization

    NASA Astrophysics Data System (ADS)

    Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper; Hattel, Jesper Henri

    2012-06-01

    A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.

  2. Derivation of an optimal directivity pattern for sweet spot widening in stereo sound reproduction.

    PubMed

    Ródenas, Josep A; Aarts, Ronald M; Janssen, A J E M

    2003-01-01

    In this paper the correction of the degradation of the stereophonic illusion during sound reproduction due to off-center listening is investigated. The main idea is that the directivity pattern of a loudspeaker array should have a well-defined shape such that a good stereo reproduction is achieved in a large listening area. Therefore, a mathematical description to derive an optimal directivity pattern l(opt) that achieves sweet spot widening in a large listening area for stereophonic sound applications is described. This optimal directivity pattern is based on parametrized time/intensity trading data coming from psycho-acoustic experiments within a wide listening area. After the study, the required digital FIR filters are determined by means of a least-squares optimization method for a given stereo base setup (two pair of drivers for the loudspeaker arrays and 2.5-m distance between loudspeakers), which radiate sound in a broad range of listening positions in accordance with the derived l(opt). Informal listening tests have shown that the l(opt) worked as predicted by the theoretical simulations. They also demonstrated the correct central sound localization for speech and music for a number of listening positions. This application is referred to as "Position-Independent (PI) stereo."

  3. Early stage hot spot analysis through standard cell base random pattern generation

    NASA Astrophysics Data System (ADS)

    Jeon, Joong-Won; Song, Jaewan; Kim, Jeong-Lim; Park, Seongyul; Yang, Seung-Hune; Lee, Sooryong; Kang, Hokyu; Madkour, Kareem; ElManhawy, Wael; Lee, SeungJo; Kwan, Joe

    2017-04-01

    Due to limited availability of DRC clean patterns during the process and RET recipe development, OPC recipes are not tested with high pattern coverage. Various kinds of pattern can help OPC engineer to detect sensitive patterns to lithographic effects. Random pattern generation is needed to secure robust OPC recipe. However, simple random patterns without considering real product layout style can't cover patterning hotspot in production levels. It is not effective to use them for OPC optimization thus it is important to generate random patterns similar to real product patterns. This paper presents a strategy for generating random patterns based on design architecture information and preventing hotspot in early process development stage through a tool called Layout Schema Generator (LSG). Using LSG, we generate standard cell based on random patterns reflecting real design cell structure - fin pitch, gate pitch and cell height. The output standard cells from LSG are applied to an analysis methodology to assess their hotspot severity by assigning a score according to their optical image parameters - NILS, MEEF, %PV band and thus potential hotspots can be defined by determining their ranking. This flow is demonstrated on Samsung 7nm technology optimizing OPC recipe and early enough in the process avoiding using problematic patterns.

  4. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  5. Optimality Principles for Model-Based Prediction of Human Gait

    PubMed Central

    Ackermann, Marko; van den Bogert, Antonie J.

    2010-01-01

    Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient’s gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like cost functions produced realistic gait, with stance phase knee flexion, as opposed to energy-related cost functions which avoided knee flexion during the stance phase. We conclude that fatigue minimization may be one of the primary optimality principles governing human gait. PMID:20074736

  6. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  7. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less

  8. spsann - optimization of sample patterns using spatial simulated annealing

    NASA Astrophysics Data System (ADS)

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a computationally intensive method. As such, many strategies were used to reduce the computation time and memory usage: a) bottlenecks were implemented in C++, b) a finite set of candidate locations is used for perturbing the sample points, and c) data matrices are computed only once and then updated at each iteration instead of being recomputed. spsann is available at GitHub under a licence GLP Version 2.0 and will be further developed to: a) allow the use of a cost surface, b) implement other sensitive parts of the source code in C++, c) implement other optimizing criteria, d) allow to add or delete points to/from an existing point pattern.

  9. Design Method of Digital Optimal Control Scheme and Multiple Paralleled Bridge Type Current Amplifier for Generating Gradient Magnetic Fields in MRI Systems

    NASA Astrophysics Data System (ADS)

    Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo

    This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.

  10. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images.

    PubMed

    Raghavendra, U; Gudigar, Anjan; Maithri, M; Gertych, Arkadiusz; Meiburger, Kristen M; Yeong, Chai Hong; Madla, Chakri; Kongmebhol, Pailin; Molinari, Filippo; Ng, Kwan Hoong; Acharya, U Rajendra

    2018-04-01

    Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    NASA Astrophysics Data System (ADS)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  12. Modeling of urban growth using cellular automata (CA) optimized by Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Khalilnia, M. H.; Ghaemirad, T.; Abbaspour, R. A.

    2013-09-01

    In this paper, two satellite images of Tehran, the capital city of Iran, which were taken by TM and ETM+ for years 1988 and 2010 are used as the base information layers to study the changes in urban patterns of this metropolis. The patterns of urban growth for the city of Tehran are extracted in a period of twelve years using cellular automata setting the logistic regression functions as transition functions. Furthermore, the weighting coefficients of parameters affecting the urban growth, i.e. distance from urban centers, distance from rural centers, distance from agricultural centers, and neighborhood effects were selected using PSO. In order to evaluate the results of the prediction, the percent correct match index is calculated. According to the results, by combining optimization techniques with cellular automata model, the urban growth patterns can be predicted with accuracy up to 75 %.

  13. Optimization of forest wildlife objectives

    Treesearch

    John Hof; Robert Haight

    2007-01-01

    This chapter presents an overview of methods for optimizing wildlife-related objectives. These objectives hinge on landscape pattern, so we refer to these methods as "spatial optimization." It is currently possible to directly capture deterministic characterizations of the most basic spatial relationships: proximity relationships (including those that lead to...

  14. Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.

    2004-07-01

    The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.

  15. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    PubMed

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.

  16. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle

    PubMed Central

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints. PMID:27303311

  17. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle.

    PubMed

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.

  18. Effects of the AMPA Antagonist ZK 200775 on Visual Function: A Randomized Controlled Trial

    PubMed Central

    Bergholz, Richard; Staks, Thomas; Rüther, Klaus

    2010-01-01

    Background ZK 200775 is an antagonist at the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor and had earned attention as a possible neuroprotective agent in cerebral ischemia. Probands receiving the agent within phase I trials reported on an alteration of visual perception. In this trial, the effects of ZK 200775 on the visual system were analyzed in detail. Methodology In a randomised controlled trial we examined eyes and vision before and after the intravenous administration of two different doses of ZK 200775 and placebo. There were 3 groups of 6 probands each: Group 1 recieved 0.03 mg/kg/h, group 2 0.75 mg/kg/h of ZK 200775, the control group received 0.9% sodium chloride solution. Probands were healthy males aged between 57 and 69 years. The following methods were applied: clinical examination, visual acuity, ophthalmoscopy, colour vision, rod absolute threshold, central visual field, pattern-reversal visual evoked potentials (pVEP), ON-OFF and full-field electroretinogram (ERG). Principal Findings No effect of ZK 200775 was seen on eye position or motility, stereopsis, pupillary function or central visual field testing. Visual acuity and dark vision deteriorated significantly in both treated groups. Color vision was most remarkably impaired. The dark-adapted ERG revealed a reduction of oscillatory potentials (OP) and partly of the a- and b-wave, furthermore an alteration of b-wave morphology and an insignificantly elevated b/a-ratio. Cone-ERG modalities showed decreased amplitudes and delayed implicit times. In the ON-OFF ERG the ON-answer amplitudes increased whereas the peak times of the OFF-answer were reduced. The pattern VEP exhibited lower amplitudes and prolonged peak times. Conclusions The AMPA receptor blockade led to a strong impairment of typical OFF-pathway functions like color vision and the cone ERG. On the other hand the ON-pathway as measured by dark vision and the scotopic ERG was affected as well. This further elucidates the interdependence of both pathways. Trial Registration ClinicalTrials.gov NCT00999284 PMID:20711429

  19. Noise assisted pattern fabrication

    NASA Astrophysics Data System (ADS)

    Roy, Tanushree; Agarwal, V.; Singh, B. P.; Parmananda, P.

    2018-04-01

    Pre-selected patterns on an n-type Si surface are fabricated by electrochemical etching in the presence of a weak optical signal. The constructive role of noise, namely, stochastic resonance (SR), is exploited for these purposes. SR is a nonlinear phenomenon wherein at an optimal amplitude of noise, the information transfer from weak input sub-threshold signals to the system output is maximal. In the present work, the amplitude of internal noise was systematically regulated by varying the molar concentration of hydrofluoric acid (HF) in the electrolyte. Pattern formation on the substrate for two different amplitudes (25 ± 2 and 11 ± 1 mW) of the optical template (sub-threshold signal) was considered. To quantify the fidelity/quality of pattern formation, the spatial cross-correlation coefficient (CCC) between the constructed pattern and the template of the applied signal was calculated. The maximum CCC is obtained for the pattern formed at an optimal HF concentration, indicating SR. Simulations, albeit using external noise, on a spatial array of coupled FitzHugh-Nagumo oscillators revealed similar results.

  20. Dictionary Indexing of Electron Channeling Patterns.

    PubMed

    Singh, Saransh; De Graef, Marc

    2017-02-01

    The dictionary-based approach to the indexing of diffraction patterns is applied to electron channeling patterns (ECPs). The main ingredients of the dictionary method are introduced, including the generalized forward projector (GFP), the relevant detector model, and a scheme to uniformly sample orientation space using the "cubochoric" representation. The GFP is used to compute an ECP "master" pattern. Derivative free optimization algorithms, including the Nelder-Mead simplex and the bound optimization by quadratic approximation are used to determine the correct detector parameters and to refine the orientation obtained from the dictionary approach. The indexing method is applied to poly-silicon and shows excellent agreement with the calibrated values. Finally, it is shown that the method results in a mean disorientation error of 1.0° with 0.5° SD for a range of detector parameters.

  1. Neural mechanism of optimal limb coordination in crustacean swimming

    PubMed Central

    Zhang, Calvin; Guy, Robert D.; Mulloney, Brian; Zhang, Qinghai; Lewis, Timothy J.

    2014-01-01

    A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior. PMID:25201976

  2. Advanced Modeling System for Optimization of Wind Farm Layout and Wind Turbine Sizing Using a Multi-Level Extended Pattern Search Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick

    This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at eachmore » turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.« less

  3. Identification of Shearer Cutting Patterns Using Vibration Signals Based on a Least Squares Support Vector Machine with an Improved Fruit Fly Optimization Algorithm

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing

    2016-01-01

    Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615

  4. Towards high efficiency heliostat fields

    NASA Astrophysics Data System (ADS)

    Arbes, Florian; Wöhrbach, Markus; Gebreiter, Daniel; Weinrebe, Gerhard

    2017-06-01

    CSP power plants have great potential to substantially contribute to world energy supply. To set this free, cost reductions are required for future projects. Heliostat field layout optimization offers a great opportunity to improve field efficiency. Field efficiency primarily depends on the positions of the heliostats around the tower, commonly known as the heliostat field layout. Heliostat shape also influences efficiency. Improvements to optical efficiency results in electricity cost reduction without adding any extra technical complexity. Due to computational challenges heliostat fields are often arranged in patterns. The mathematical models of the radial staggered or spiral patterns are based on two parameters and thus lead to uniform patterns. Optical efficiencies of a heliostat field do not change uniformly with the distance to the tower, they even differ in the northern and southern field. A fixed pattern is not optimal in many parts of the heliostat field, especially when used as large scaled heliostat field. In this paper, two methods are described which allow to modify field density suitable to inconsistent field efficiencies. A new software for large scale heliostat field evaluation is presented, it allows for fast optimizations of several parameters for pattern modification routines. It was used to design a heliostat field with 23,000 heliostats, which is currently planned for a site in South Africa.

  5. Role of optimization criterion in static asymmetric analysis of lumbar spine load.

    PubMed

    Daniel, Matej

    2011-10-01

    A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.

  6. [The extraction and analysis of a- and b- wave from electroretinogram in human].

    PubMed

    Chen, Zi-he; Zheng, Chang-wei; Lei, Bo

    2013-12-01

    To determine the frequency range of a-b wave complex in the dark- and light-adapted electroretinogram (ERG) and to isolate the pure a- and b- waves. Case series study. Full-field ERGs were recorded in 16 eyes of 8 normal volunteers from October to November 2011. Digital filtering technique was used to extract the a- and b-waves from dark- and light-adapted ERG responses. The timings of a- and b-wave were measured to determine the frequency range of a-b wave complex. Major frequency components were determined from power spectra using fast Fourier transform (FFT). The effect of different order settings in the digital filter were compared to investigate the optimum condition, where the oscillatory potential (OP) was completely removed while the amplitudes and phases of the a- and b- waves were less affected. The Student-t test was used to compare the frequency range of a-b wave complex in dark- and light-adapted ERG. The averaged frequency range of the dark-adapted a-b wave complex was from (14.99 ± 2.39) to (25.35 ± 3.77) Hz, compared with (25.22 ± 6.56) to (32.47 ± 3.68) Hz for the light-adapted a-b wave complex, respectively, indicating the frequency range of the dark-adapted a-b wave complex was significantly less than the light-adapted a-b wave complex (t = 7.910, 7.693; both P < 0.01). The third order of the digital filter and a passband of 1 to 45 Hz was the best choice in term of removing the high frequency OP from the waveform of ERG and keeping the amplitude and phase of the a- and b- waves. The frequency of a-b wave complex is lower than that of OP. Therefore the a- and b- waves can be isolated from OP using different digital filter settings in human ERG. A third order and a passband of 1 to 45 Hz is the best choice to extract pure a- and b- waves from the original ERG.

  7. Foods and Dietary Patterns That Are Healthy, Low-Cost, and Environmentally Sustainable: A Case Study of Optimization Modeling for New Zealand

    PubMed Central

    Wilson, Nick; Nghiem, Nhung; Ni Mhurchu, Cliona; Eyles, Helen; Baker, Michael G.; Blakely, Tony

    2013-01-01

    Objective Global health challenges include non-communicable disease burdens, ensuring food security in the context of rising food prices, and environmental constraints around food production, e.g., greenhouse gas [GHG] emissions. We therefore aimed to consider optimized solutions to the mix of food items in daily diets for a developed country population: New Zealand (NZ). Methods We conducted scenario development and linear programming to model 16 diets (some with uncertainty). Data inputs included nutrients in foods, food prices, food wastage and food-specific GHG emissions. Findings This study identified daily dietary patterns that met key nutrient requirements for as little as a median of NZ$ 3.17 per day (US$ 2.41/d) (95% simulation interval [SI] = NZ$ 2.86 to 3.50/d). Diets that included “more familiar meals” for New Zealanders, increased the cost. The optimized diets also had low GHG emission profiles compared with the estimate for the ‘typical NZ diet’ e.g., 1.62 kg CO2e/d for one scenario (95%SI = 1.39 to 1.85 kg CO2e) compared with 10.1 kg CO2e/d, respectively. All of the optimized low-cost and low-GHG dietary patterns had likely health advantages over the current NZ dietary pattern, i.e., lower cardiovascular disease and cancer risk. Conclusions We identified optimal foods and dietary patterns that would lower the risk of non-communicable diseases at low cost and with low greenhouse gas emission profiles. These results could help guide central and local government decisions around which foods to focus policies on. That is which foods are most suitable for: food taxes (additions and exemptions); healthy food vouchers and subsidies; and for increased use by public institutions involved in food preparation. PMID:23544082

  8. Quantitative approach for optimizing e-beam condition of photoresist inspection and measurement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Jen; Teng, Chia-Hao; Cheng, Po-Chung; Sato, Yoshishige; Huang, Shang-Chieh; Chen, Chu-En; Maruyama, Kotaro; Yamazaki, Yuichiro

    2018-03-01

    Severe process margin in advanced technology node of semiconductor device is controlled by e-beam metrology system and e-beam inspection system with scanning electron microscopy (SEM) image. By using SEM, larger area image with higher image quality is required to collect massive amount of data for metrology and to detect defect in a large area for inspection. Although photoresist is the one of the critical process in semiconductor device manufacturing, observing photoresist pattern by SEM image is crucial and troublesome especially in the case of large image. The charging effect by e-beam irradiation on photoresist pattern causes deterioration of image quality, and it affect CD variation on metrology system and causes difficulties to continue defect inspection in a long time for a large area. In this study, we established a quantitative approach for optimizing e-beam condition with "Die to Database" algorithm of NGR3500 on photoresist pattern to minimize charging effect. And we enhanced the performance of measurement and inspection on photoresist pattern by using optimized e-beam condition. NGR3500 is the geometry verification system based on "Die to Database" algorithm which compares SEM image with design data [1]. By comparing SEM image and design data, key performance indicator (KPI) of SEM image such as "Sharpness", "S/N", "Gray level variation in FOV", "Image shift" can be retrieved. These KPIs were analyzed with different e-beam conditions which consist of "Landing Energy", "Probe Current", "Scanning Speed" and "Scanning Method", and the best e-beam condition could be achieved with maximum image quality, maximum scanning speed and minimum image shift. On this quantitative approach of optimizing e-beam condition, we could observe dependency of SEM condition on photoresist charging. By using optimized e-beam condition, measurement could be continued on photoresist pattern over 24 hours stably. KPIs of SEM image proved image quality during measurement and inspection was stabled enough.

  9. HERCULES: A Pattern Driven Code Transformation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss themore » design, implementation and an initial evaluation of HERCULES.« less

  10. Modeling surgical tool selection patterns as a "traveling salesman problem" for optimizing a modular surgical tool system.

    PubMed

    Nelson, Carl A; Miller, David J; Oleynikov, Dmitry

    2008-01-01

    As modular systems come into the forefront of robotic telesurgery, streamlining the process of selecting surgical tools becomes an important consideration. This paper presents a method for optimal queuing of tools in modular surgical tool systems, based on patterns in tool-use sequences, in order to minimize time spent changing tools. The solution approach is to model the set of tools as a graph, with tool-change frequency expressed as edge weights in the graph, and to solve the Traveling Salesman Problem for the graph. In a set of simulations, this method has shown superior performance at optimizing tool arrangements for streamlining surgical procedures.

  11. Functional and cellular responses to laser injury in the rat snake retina

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Elliott, W. Rowe, III; Kumar, Neeru

    2007-02-01

    Acute (1-hr, 6-hr) and longer term (24-hr) effects of laser injury on retinal function and cellular responses have been studied in the Great Plains rat snake, Elaphe guttata emoryi. This animal is of interest for vision research because its eye has an all-cone retina. A linear array of 5 thermal lesions was placed in the retina of anesthetized animals, near the area centralis, using a Nd:VO 4 laser (532 nm), that delivered 50 mW per 10-msec pulse. Retinal function was assessed with the pattern electroretinogram (PERG), recorded before and after the placement of the lesions. PERGs were elicited with counterphased square-wave gratings, and were analyzed by Fourier analysis. The fate of lesioned cells was assessed by immunohistological staining for the transcription factor, NF-κB (which is activated by ionizing and nonionizing radiation), as well as for the apoptosis marker, caspase-9. The normal snake PERG had the maximum, real amplitude frequency component, determined by Fourier analysis, at the reversal frequency of the grating (i.e. shifts/sec). In the hour following the lesion-producing laser exposures, the PERG response exhibited frequency doubling, i.e. a new response waveform appeared at twice the reversal frequency. By 24-hr post exposure, many lesioned photoreceptors stained positively for both NF-κB and caspase 9. Because the PERG largely reflects retinal ganglion cell activity, the appearance of frequency doubling in the PERG suggests that complementary (push-pull) inputs to ganglion cells are disrupted by the laser lesions. The immunohistological results indicate that activation of NF- B is not necessarily associated with photoreceptor survival after a laser injury.

  12. Head-down posture in glaucoma suspects induces changes in IOP, systemic pressure and PERG that predict future loss of optic nerve tissue

    PubMed Central

    Porciatti, Vittorio; Feuer, William J.; Monsalve, Pedro; Triolo, Giacinto; Vazquez, Luis; McSoley, John; Ventura, Lori M.

    2017-01-01

    Purpose To obtain pilot data on posture-induced changes of IOP, systemic pressure and pattern electroretinogram (PERG) predictive of future optic nerve tissue loss glaucoma suspects (GS). Methods Mean peripapillary retinal fiber layer thickness (RNFLT) was measured with OCT two times/year in 28 GS aged 58 ± 8.9 years over 5.0 ± 0.73 years. All patients had a baseline PERG, IOP and brachial blood pressure measurements in the seated and – 10 degrees head-down-body-tilt position (HDT). Outcome measures were seated/HDT PERG amplitude and phase, IOP, mean arterial blood pressure (MAP), and estimated ocular perfusion pressure (OPP). An additional group of 11 similarly-aged controls (SAC) aged 56.9 ± 13 years was tested for comparison. Results While all GS had initial RNFLT in the normal range, 9/28 of them developed significant (P < 0.05) loss of mean RNFLT (thinners, T) over the follow-up period as opposed to 19/28 who did not (non-thinners, NT). Significant (P<0.05) differences between SAC, NT and T were found in PERG amplitude, PERG phase, MAP, IOP, and OPP. A nominal logistic regression using baseline PERG and hemodynamic variables was able to distinguish T from NT with an AUROC of 0.89 (SE 0.07). Conclusions Baseline PERG, IOP, and systemic blood pressure, together with their changes upon HDT, may have predictive value for future loss of optic nerve tissue in GS. This study supports the rationale for a full-scale clinical trial to identify patients at high-risk of development of glaucoma. PMID:28263259

  13. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss.

    PubMed

    Bonafede, Lucas; Ficicioglu, Can H; Serrano, Leona; Han, Grace; Morgan, Jessica I W; Mills, Monte D; Forbes, Brian J; Davidson, Stefanie L; Binenbaum, Gil; Kaplan, Paige B; Nichols, Charles W; Verloo, Patrick; Leroy, Bart P; Maguire, Albert M; Aleman, Tomas S

    2015-12-01

    To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC.

  14. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    PubMed

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. © 2016 The Authors.

  15. A preliminary study of the neuroprotective role of citicoline eye drops in glaucomatous optic neuropathy

    PubMed Central

    Roberti, Gloria; Tanga, Lucia; Parisi, Vincenzo; Sampalmieri, Massimo; Centofanti, Marco; Manni, Gianluca

    2014-01-01

    Purpose: To study the neuroprotective effect of topical citicoline. Materials and Methods: Experimental phase to evaluate the ability of citicoline eye drops to reach the vitreous and the retina: The right eyes of 5 mice CD1 were treated with two drops per day for three days of citicoline 1% and 2% (OMK1, Omikron Italia s.r.l.), and then the vitreous was analyzed with the liquid chromatography and spectrometry mass (LC-MS/MS). Clinical phase to determine if topical citicoline is able to delay glaucoma progression, considering perimetric parameters and electro functional tests. Patients were randomized in two groups, OMK1 and OAG. The first group was treated with OMK1 three times per day, plus hypotensive therapy for two months and one month of wash out. The second group was treated only with hypotensive treatment for three months. Results: LC-MS/MS detected the molecule very well, and only OMK1 showed systemic absorption. Thirty-four patients were enrolled, 16 in the OMK1 and 18 in the OAG group. Perimetric parameters showed a positive trend in individual eyes of patients in OMK1 group, but these values were not statistically significant in the whole group. Retinal ganglion cells function improved as shown by reduced P50 latency (P = 0.04) and increased P50-N95 amplitude (P < 0.0001) of pattern electroretinogram, up to 30 days after the washout (P = 0.01; P = 0.002). Visual evoked potential and retino-cortical time improvement regressed after 30 days of washout. In OAG group, there was any change during the follow-up. No adverse reactions were reported in both groups. Conclusions: Topical citicoline seems to have a neuroprotective action. PMID:24881599

  16. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    PubMed Central

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  17. Concentric retinitis pigmentosa: clinicopathologic correlations.

    PubMed

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective or modify photoreceptor degeneration in concentric retinitis pigmentosa.

  18. Effects of abnormal light-rearing conditions on retinal physiology in larvae zebrafish.

    PubMed

    Saszik, S; Bilotta, J

    1999-11-01

    Anatomic studies have found that zebrafish retinal neurons develop in a sequential fashion. In addition, exposure to abnormal light-rearing conditions produces deficits in visual behavior of larvae zebrafish, even though there appears to be little effect of the light-rearing conditions on the gross morphology of the retina. The purpose of this study was to assess the effects of abnormal light-rearing conditions on larvae zebrafish retinal physiology. Larvae zebrafish (Danio rerio) were exposed to constant light (LL), constant dark (DD), or normal cyclic light (LD) from fertilization to 6 days postfertilization (dpf). After 6 days, the animals were placed into normal cyclic light and tested at 6 to 8, 13 to 15, and 21 to 24 dpf. Electroretinogram (ERG) responses to visual stimuli, consisting of various wavelengths and irradiances, were recorded. Comparisons were made across the three age groups and the three light-rearing conditions. Deficits from the light-rearing conditions were seen immediately after exposure (6 8 dpf). The LL-condition subjects showed the greatest deficit in the UV and short-wavelength areas and the DD-condition subjects showed a slight deficit across the entire spectrum. At 13 to 15 dpf, the LL and DD groups showed an increase in sensitivity and by 21 to 24 dpf, the groups no longer differed from controls. Abnormal lighting environments can adversely influence the physiological development of the larvae zebrafish retina. The pattern of damage that was seen in zebrafish is similar to that found in other vertebrates, including higher vertebrates. However, unlike higher vertebrates, the zebrafish appears to be capable of regeneration. This suggests that the zebrafish would be a viable model for light environment effects and neural regeneration.

  19. Missing Optomotor Head-Turning Reflex in the DBA/2J Mouse

    PubMed Central

    Huang, Wei; Chen, Hui; Koehler, Christopher L.; Howell, Gareth; John, Simon W. M.; Tian, Ning; Rentería, René C.; Križaj, David

    2011-01-01

    Purpose. The optomotor reflex of DBA/2J (D2), DBA/2J-Gpnmb+ (D2-Gpnmb+), and C57BL/6J (B6) mouse strains was assayed, and the retinal ganglion cell (RGC) firing patterns, direction selectivity, vestibulomotor function and central vision was compared between the D2 and B6 mouse lines. Methods. Intraocular pressure (IOP) measurements, real-time PCR, and immunohistochemical analysis were used to assess the time course of glaucomatous changes in D2 retinas. Behavioral analyses of optomotor head-turning reflex, visible platform Morris water maze and Rotarod measurements were conducted to test vision and vestibulomotor function. Electroretinogram (ERG) measurements were used to assay outer retinal function. The multielectrode array (MEA) technique was used to characterize RGC spiking and direction selectivity in D2 and B6 retinas. Results. Progressive increase in IOP and loss of Brn3a signals in D2 animals were consistent with glaucoma progression starting after 6 months of age. D2 mice showed no response to visual stimulation that evoked robust optomotor responses in B6 mice at any age after eye opening. Spatial frequency threshold was also not measurable in the D2-Gpnmb+ strain control. ERG a- and b-waves, central vision, vestibulomotor function, the spiking properties of ON, OFF, ON-OFF, and direction-selective RGCs were normal in young D2 mice. Conclusions. The D2 strain is characterized by a lack of optomotor reflex before IOP elevation and RGC degeneration are observed. This behavioral deficit is D2 strain–specific, but is independent of retinal function and glaucoma. Caution is advised when using the optomotor reflex to follow glaucoma progression in D2 mice. PMID:21757588

  20. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats.

    PubMed

    Cuenca, Nicolás; Pinilla, Isabel; Sauvé, Yves; Lund, Raymond

    2005-09-01

    The Royal College of Surgeons (RCS) rat has a retinal pigment epithelial cell defect that causes progressive loss of photoreceptors. Although it is extensively used in retinal degeneration and repair studies, how photoreceptor degeneration affects retinal circuitry has not been fully explored. This study examined the changes in synaptic connectivity between photoreceptors and their target cells using immunocytochemistry and correlated these changes with retinal function using the electroretinogram (ERG). Immunostaining with bassoon and synaptophysin (as presynaptic markers) and metabotropic glutamate receptor (mGluR6, a postsynaptic marker for ON-bipolar dendrites) was already impaired at postnatal day (P) 21 and progressively lost with infrequent pairing of presynaptic and postsynaptic elements at P60. By P90 to P120, staining became increasingly patchy and was eventually restricted to sparsely and irregularly distributed foci in which the normal pairing of presynaptic and postsynaptic markers was lost. ERG results showed that mixed scotopic a-waves and b-waves were already reduced by P21 but not oscillatory potentials. While cone-driven responses (photopic b-wave) reached normal levels at P30, they were impaired by P60 but could still be recorded at P120, although with reduced amplitude; rod responses never reached normal amplitudes. Thus, only cone-driven activity attained normal levels, but declined rapidly thereafter. In conclusion, the synaptic markers associated with photoreceptors and processes of bipolar and horizontal cells show abnormalities prior to significant photoreceptor loss. These changes are paralleled with the deterioration of specific aspects of ERG responsiveness with age. Besides providing information on the effects of photoreceptor dysfunction and loss on connection patterns in the retina, the work addresses the more general issue of how disorder of input neurons affects downstream circuitry.

  1. Reduction of severe visual loss and complications following intra-arterial chemotherapy (IAC) for refractory retinoblastoma.

    PubMed

    Reddy, M Ashwin; Naeem, Zishan; Duncan, Catriona; Robertson, Fergus; Herod, Jane; Rennie, Adam; Liasis, Alki; Thompson, Dorothy Ann; Sagoo, Mandeep

    2017-12-01

    Intra-arterial chemotherapy (IAC) for retinoblastoma has been documented as causing visual loss and ocular motility problems. A lack of safety data has precluded its acceptance in all centres. Retrospective cohort study of patients with retinoblastoma from 2013 to 2015 who had a healthy foveola and relapsed following systemic chemotherapy. All required IAC. The correlation of complications with doses of melphalan +/- topotecan used and putative catheterisation complications was assessed. Ocular complications were determined using vision, macular (including pattern visual evoked potentials (PVEPs)), retinal electroretinograms (ERGs) and ocular motility functions. Efficacy (tumour control) was also assessed. All eyes had age appropriate doses of melphalan with five having additional doses of topotecan. Severe physiological reactions requiring adrenaline were seen in six patients during the catheterisation procedure. Difficulty was documented in accessing the ophthalmic artery in 7/27 catheterisations. The median/mean number of courses of chemotherapy was three. No child had severe visual loss as assessed by age appropriate tests (median follow-up 20.9 months, range 3.7-35.2 months). One child had nasal choroidal ischaemia and a sixth nerve palsy. Post-IAC PVEPs were performed in eight and reported as normal. All post-IAC ERGs were normal apart from one (total dose 20 mg melphalan 0.8 mg topotecan). Tumour control was achieved in six of nine cases. The proportion of visual and ocular motility complications may be reduced by providing age-adjusted doses of melphalan. Dose rather than complications from catheterisation is the most important risk factor for ocular injury. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Clinical presentations of X-linked retinoschisis in Taiwanese patients confirmed with genetic sequencing

    PubMed Central

    Liu, Laura; Chen, Ho-Min; Tsai, Shawn; Chang, Tsong-Chi; Tsai, Tzu-Hsun; Yang, Chung-May; Chao, An-Ning; Chen, Kuan-Jen; Kao, Ling-Yuh; Yeung, Ling; Yeh, Lung-Kun; Hwang, Yih-Shiou; Wu, Wei-Chi; Lai, Chi-Chun

    2015-01-01

    Purpose To investigate the clinical characteristics of X-linked retinoschisis (XLRS) and identify genetic mutations in Taiwanese patients with XLRS. Methods This study included 23 affected males from 16 families with XLRS. Fundus photography, spectral domain optical coherent tomography (SD-OCT), fundus autofluorescence (FAF), and full-field electroretinograms (ERGs) were performed. The coding regions of the RS1 gene that encodes retinoschisin were sequenced. Results The median age at diagnosis was 18 years (range 4–58 years). The best-corrected visual acuity ranged from no light perception to 20/25. The typical spoke-wheel pattern in the macula was present in 61% of the patients (14/23) while peripheral retinoschisis was present in 43% of the patients (10/23). Four eyes presented with vitreous hemorrhage, and two eyes presented with leukocoria that mimics Coats’ disease. Macular schisis was identified with SD-OCT in 82% of the eyes (31/38) while foveal atrophy was present in 18% of the eyes (7/38). Concentric area of high intensity was the most common FAF abnormality observed. Seven out of 12 patients (58%) showed electronegative ERG findings. Sequencing of the RS1 gene identified nine mutations, six of which were novel. The mutations are all located in exons 4–6, including six missense mutations, two nonsense mutations, and one deletion-caused frameshift mutation. Conclusions XLRS is a clinically heterogeneous disease with profound phenotypic inter- and intrafamiliar variability. Genetic sequencing is valuable as it allows a definite diagnosis of XLRS to be made without the classical clinical features and ERG findings. This study showed the variety of clinical features of XLRS and reported novel mutations. PMID:25999676

  3. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  4. Optimal design of the satellite constellation arrangement reconfiguration process

    NASA Astrophysics Data System (ADS)

    Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid

    2016-08-01

    In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.

  5. Design of a bullet beam pattern of a micro ultrasound transducer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roh, Yongrae; Lee, Seongmin

    2016-04-01

    Ultrasonic imaging transducer is often required to compose a beam pattern of a low sidelobe level and a small beam width over a long focal region to achieve good image resolution. Normal ultrasound transducers have many channels along its azimuth, which allows easy formation of the sound beam into a desired shape. However, micro-array transducers have no control of the beam pattern along their elevation. In this work, a new method is proposed to manipulate the beam pattern by using an acoustic multifocal lens and a shaded electrode on top of the piezoelectric layer. The shading technique split an initial uniform electrode into several segments and combined those segments to compose a desired beam pattern. For a given elevation width and frequency, the optimal pattern of the split electrodes was determined by means of the OptQuest-Nonlinear Program (OQ-NLP) algorithm to achieve the lowest sidelobe level. The requirement to achieve a small beam width with a long focal region was satisfied by employing an acoustic lens of three multiple focuses. Optimal geometry of the multifocal lens such as the radius of curvature and aperture diameter for each focal point was also determined by the OQ-NLP algorithm. For the optimization, a new index was devised to evaluate the on-axis response: focal region ratio = focal region / minimum beam width. The larger was the focal region ratio, the better was the beam pattern. Validity of the design has been verified through fabricating and characterizing an experimental prototype of the transducer.

  6. CHIP-Coping Health Inventory for Parents: An Assessment of Parental Coping Patterns in the Care of the Chronically Ill Child.

    ERIC Educational Resources Information Center

    McCubbin, Hamilton I.; And Others

    1983-01-01

    Studied coping patterns in families (N=100) of children with cystic fibrosis. Three coping patterns emerged: (1) maintaining family integration and optimism; (2) maintaining social support, self-esteem, and psychological stability; and (3) understanding the medical situation. These patterns were validated against measures of the child's health and…

  7. Women's Occupational Career Patterns over 27 Years: Relations to Family of Origin, Life Careers, and Wellness

    ERIC Educational Resources Information Center

    Huang, Qinghai; Sverke, Magnus

    2007-01-01

    This study aimed at identifying and describing occupational career patterns (OCPs) from age 16 to 43 by applying optimal matching techniques to sequence data obtained from a sample of Swedish women. Women's occupational trajectories were found to be diverse. Upward mobility (3 patterns) and stable careers (4 patterns) were prevalent, but there…

  8. Optimizing a Workplace Learning Pattern: A Case Study from Aviation

    ERIC Educational Resources Information Center

    Mavin, Timothy John; Roth, Wolff-Michael

    2015-01-01

    Purpose: This study aims to contribute to current research on team learning patterns. It specifically addresses some negative perceptions of the job performance learning pattern. Design/methodology/approach: Over a period of three years, qualitative and quantitative data were gathered on pilot learning in the workplace. The instructional modes…

  9. Collecting conditions usage metadata to optimize current and future ATLAS software and processing

    NASA Astrophysics Data System (ADS)

    Rinaldi, L.; Barberis, D.; Formica, A.; Gallas, E. J.; Oda, S.; Rybkin, G.; Verducci, M.; ATLAS Collaboration

    2017-10-01

    Conditions data (for example: alignment, calibration, data quality) are used extensively in the processing of real and simulated data in ATLAS. The volume and variety of the conditions data needed by different types of processing are quite diverse, so optimizing its access requires a careful understanding of conditions usage patterns. These patterns can be quantified by mining representative log files from each type of processing and gathering detailed information about conditions usage for that type of processing into a central repository.

  10. A comparative study of corrugated horn design by evolutionary techniques

    NASA Technical Reports Server (NTRS)

    Hoorfar, A.

    2003-01-01

    Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.

  11. Optimal dietary patterns designed from local foods to achieve maternal nutritional goals.

    PubMed

    Raymond, Jofrey; Kassim, Neema; Rose, Jerman W; Agaba, Morris

    2018-04-04

    Achieving nutritional requirements for pregnant and lactating mothers in rural households while maintaining the intake of local and culture-specific foods can be a difficult task. Deploying a linear goal programming approach can effectively generate optimal dietary patterns that incorporate local and culturally acceptable diets. The primary objective of this study was to determine whether a realistic and affordable diet that achieves nutritional goals for rural pregnant and lactating women can be formulated from locally available foods in Tanzania. A cross sectional study was conducted to assess dietary intakes of 150 pregnant and lactating women using a weighed dietary record (WDR), 24 h dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are frequently consumed in the study population. Dietary survey and market data were then used to define linear programming (LP) model parameters for diet optimisation. All LP analyses were done using linear program solver to generate optimal dietary patterns. Our findings showed that optimal dietary patterns designed from locally available foods would improve dietary adequacy for 15 and 19 selected nutrients in pregnant and lactating women, respectively, but inadequacies remained for iron, zinc, folate, pantothenic acid, and vitamin E, indicating that these are problem nutrients (nutrients that did not achieve 100% of their RNIs in optimised diets) in the study population. These findings suggest that optimal use of local foods can improve dietary adequacy for rural pregnant and lactating women aged 19-50 years. However, additional cost-effective interventions are needed to ensure adequate intakes for the identified problem nutrients.

  12. ILP-based co-optimization of cut mask layout, dummy fill, and timing for sub-14nm BEOL technology

    NASA Astrophysics Data System (ADS)

    Han, Kwangsoo; Kahng, Andrew B.; Lee, Hyein; Wang, Lutong

    2015-10-01

    Self-aligned multiple patterning (SAMP), due to its low overlay error, has emerged as the leading option for 1D gridded back-end-of-line (BEOL) in sub-14nm nodes. To form actual routing patterns from a uniform "sea of wires", a cut mask is needed for line-end cutting or realization of space between routing segments. Constraints on cut shapes and minimum cut spacing result in end-of-line (EOL) extensions and non-functional (i.e. dummy fill) patterns; the resulting capacitance and timing changes must be consistent with signoff performance analyses and their impacts should be minimized. In this work, we address the co-optimization of cut mask layout, dummy fill, and design timing for sub-14nm BEOL design. Our central contribution is an optimizer based on integer linear programming (ILP) to minimize the timing impact due to EOL extensions, considering (i) minimum cut spacing arising in sub-14nm nodes; (ii) cut assignment to different cut masks (color assignment); and (iii) the eligibility to merge two unit-size cuts into a bigger cut. We also propose a heuristic approach to remove dummy fills after the ILP-based optimization by extending the usage of cut masks. Our heuristic can improve critical path performance under minimum metal density and mask density constraints. In our experiments, we study the impact of number of cut masks, minimum cut spacing and metal density under various constraints. Our studies of optimized cut mask solutions in these varying contexts give new insight into the tradeoff of performance and cost that is afforded by cut mask patterning technology options.

  13. Optimizing human activity patterns using global sensitivity analysis.

    PubMed

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  14. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  15. Isotretinoin Oil-Based Capsule Formulation Optimization

    PubMed Central

    Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886

  16. An optimized one-step wet etching process of Pb(Zr0.52Ti0.48)O3 thin films for microelectromechanical system applications

    NASA Astrophysics Data System (ADS)

    Che, L.; Halvorsen, E.; Chen, X.

    2011-10-01

    The existence of insoluble residues as intermediate products produced during the wet etching process is the main quality-reducing and structure-patterning issue for lead zirconate titanate (PZT) thin films. A one-step wet etching process using the solutions of buffered HF (BHF) and HNO3 acid was developed for patterning PZT thin films for microelectomechanical system (MEMS) applications. PZT thin films with 1 µm thickness were prepared on the Pt/Ti/SiO2/Si substrate by the sol-gel process for compatibility with Si micromachining. Various compositions of the etchant were investigated and the patterns were examined to optimize the etching process. The optimal result is demonstrated by a high etch rate (3.3 µm min-1) and low undercutting (1.1: 1). The patterned PZT thin film exhibits a remnant polarization of 24 µC cm-2, a coercive field of 53 kV cm-1, a leakage current density of 4.7 × 10-8 A cm-2 at 320 kV cm-1 and a dielectric constant of 1100 at 1 KHz.

  17. Favorable effect of optimal lipid-lowering therapy on neointimal tissue characteristics after drug-eluting stent implantation: qualitative optical coherence tomographic analysis.

    PubMed

    Jang, Ji-Yong; Kim, Jung-Sun; Shin, Dong-Ho; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo; Hong, Myeong-Ki

    2015-10-01

    Serial follow-up optical coherence tomography (OCT) was used to evaluate the effect of optimal lipid-lowering therapy on qualitative changes in neointimal tissue characteristics after drug-eluting stent (DES) implantation. DES-treated patients (n = 218) who received statin therapy were examined with serial follow-up OCT. First and second follow-up OCT evaluations were performed approximately 6 and 18 months after the index procedure, respectively. Patients were divided into two groups, based on the level of low-density lipoprotein-cholesterol (LDL-C), which was measured at the second follow-up. The optimal lipid-lowering group (n = 121) had an LDL-C reduction of ≥50% or an LDL-C level ≤70 mg/dL, and the conventional group (n = 97). Neointimal characteristics were qualitatively categorized as homogeneous or non-homogeneous patterns using OCT. The non-homogeneous group included heterogeneous, layered, or neoatherosclerosis patterns. Qualitative changes in neointimal tissue characteristics between the first and second follow-up OCT examinations were assessed. Between the first and second follow-up OCT procedures, the neointimal cross-sectional area increased more substantially in the conventional group (0.4 mm(2) vs. 0.2 mm(2) in the optimal lipid-lowering group, p = 0.01). The neointimal pattern changed from homogeneous to non-homogeneous less often in the optimal lipid-lowering group (1.3%, 1/77, p < 0.001) than in the conventional group (15.3%, 11/72, p = 0.44). Optimal LDL-C reduction was an independent predictor for the prevention of neointimal pattern change from homogeneous to non-homogeneous (odds ratio: 0.05, 95% confidence interval: 0.01∼0.46, p = 0.008). Our findings suggest that an intensive reduction in LDL-C levels can prevent non-homogeneous changes in the neointima and increases in neointimal cross-sectional area compared with conventional LDL-C controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems.

    PubMed

    Schymanski, Stanislaus J; Kleidon, Axel; Stieglitz, Marc; Narula, Jatin

    2010-05-12

    Feedbacks between water use, biomass and infiltration capacity in semiarid ecosystems have been shown to lead to the spontaneous formation of vegetation patterns in a simple model. The formation of patterns permits the maintenance of larger overall biomass at low rainfall rates compared with homogeneous vegetation. This results in a bias of models run at larger scales neglecting subgrid-scale variability. In the present study, we investigate the question whether subgrid-scale heterogeneity can be parameterized as the outcome of optimal partitioning between bare soil and vegetated area. We find that a two-box model reproduces the time-averaged biomass of the patterns emerging in a 100 x 100 grid model if the vegetated fraction is optimized for maximum entropy production (MEP). This suggests that the proposed optimality-based representation of subgrid-scale heterogeneity may be generally applicable to different systems and at different scales. The implications for our understanding of self-organized behaviour and its modelling are discussed.

  19. Global Simulation of Aviation Operations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua

    2016-01-01

    The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.

  20. Adaptive sampling of information in perceptual decision-making.

    PubMed

    Cassey, Thomas C; Evens, David R; Bogacz, Rafal; Marshall, James A R; Ludwig, Casimir J H

    2013-01-01

    In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy.

  1. Motion patterns and phase-transition of a defender-intruder problem and optimal interception strategy of the defender

    NASA Astrophysics Data System (ADS)

    Wang, Jiangliu; Li, Wei

    2015-10-01

    In this paper, we consider a defense-intrusion interaction, in which an intruder is attracted by a protected stationary target but repulsed by a defender; while the defender tries to move towards an appropriate interception position (IP) between the intruder and the target in order to intercept the intruder and expel the intruder away from the target as maximum as possible. Intuitionally, to keep the intruder further away, one may wonder that: is it a better strategy for the defender trying to approach the intruder as near as possible? Unexpectedly and interestingly enough, this is not always the case. We first introduce the flexibility for IP selection, then investigate the system dynamics and the stable motion patterns, and characterize the phase-transition surface for the motion patterns. We show that, the phase-transition surface just defines the optimal interception strategy of the defender for IP selection; and from the perspective of mobility of agents, the optimal strategy just depends on relative mobility of the two agents.

  2. Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Barsoum, N.

    2010-06-01

    In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.

  3. Developing quartz wafer mold manufacturing process for patterned media

    NASA Astrophysics Data System (ADS)

    Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa

    2009-04-01

    Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.

  4. Unilateral blindness with third cranial nerve palsy and abnormal enhancement of extraocular muscles on magnetic resonance imaging of orbit after the ingestion of methanol.

    PubMed

    Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol

    2010-05-01

    Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.

  5. Comparative investigation of stimulus-evoked rod outer segment movement and retinal electrophysiological activity

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Wang, Benquan; Yao, Xincheng

    2017-02-01

    Transient retinal phototropism (TRP) has been observed in rod photoreceptors activated by oblique visible light flashes. Time-lapse confocal microscopy and optical coherence tomography (OCT) revealed rod outer segment (ROS) movements as the physical source of TRP. However, the physiological source of TRP is still not well understood. In this study, concurrent TRP and electroretinogram (ERG) measurements disclosed a remarkably earlier onset time of the ROS movements (<=10 ms) than that ( 38 ms) of the ERG a-wave. Furthermore, low sodium treatment reversibly blocked the photoreceptor ERG a-wave, which is known to reflect hyperpolarization of retinal photoreceptors, but preserved the TRP associated rod OS movements well. Our experimental results and theoretical analysis suggested that the physiological source of TRP might be attributed to early stages of phototransduction, before the hyperpolarization of retinal photoreceptors.

  6. Pseudo retinitis pigmentosa in a case of missed intraocular foreign body.

    PubMed

    Temkar, Shreyas; Mukhija, Ritika; Venkatesh, Pradeep; Chawla, Rohan

    2017-07-31

    A 35-year-old man presented with history of painless, progressive loss of vision in the left eye for the past 7 years. There was history of trauma to the same eye with an iron object 7 years prior. Fundus examination revealed pigmentary retinopathy (unilateral advanced retinitis pigmentosa (RP)-like picture). X-ray orbits were suspicious of retained intraocular foreign body (IOFB). CT orbits confirmed the presence of IOFB. Electroretinogram revealed depressed responses. Right eye examination was within normal limits. A diagnosis of siderosis bulbi with unilateral pseudo RP-like fundus was made. No surgical intervention was planned for IOFB in view of poor visual prognosis. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Optic disc pit with sectorial retinitis pigmentosa.

    PubMed

    Balikoglu-Yilmaz, Melike; Taskapili, Muhittin; Yilmaz, Tolga; Teke, Mehmet Yasin

    2013-01-01

    Sectorial retinitis pigmentosa (RP) and optic disc pit (ODP) are rare clinical conditions. We present a 40-year-old woman with a history of mild night blindness and decreased vision in the right eye for about 5 years. Fundus examination revealed retinal pigmentary changes in the superior and inferotemporal sectors covering the macula and reduced arterial calibre and ODP at the temporal edge of the optic disc. In addition, fundus autofluorescence, spectral-domain optical coherence tomography, fluorescein angiography, and multifocal electroretinogram scans confirmed these clinical findings. Visual acuity was decreased due to an atrophic-appearing foveal lesion. No intervention was suggested because of the poor visual potential. To the best of our knowledge, the present study is the first to describe coexistent optic disc pit and sectorial RP in the superior and inferotemporal sectors covering the macula in the same eye with figures.

  8. [Transcranial magnetotherapy for the correction of initial manifestations of diabetic retinopathy in children].

    PubMed

    Nikolaeva, N V; Bolotova, N V; Kamenskikh, T G; Raĭgorodskiĭ, Iu M; Kolbenev, I O; Luk'ianov, V F

    2009-01-01

    This study included 45 children at the age from 5 to 17 years with type I diabetes mellitus complicated by diabetic retinopathy. All the patients showed retinal thickening at the macula and reduced amplitude of local electroretinogram suggesting compromised capillary circulation. The capillary blood flow was corrected by transcranial magnetotherapy with the use of an AMO-ATOS Ogolovie unit. The results of the treatment were evaluated from characteristics of laser Doppler flometry. A course of transcranial magnetotherapy comprising 10 daily seances resulted in a significant increase of microcirculation index, respiratory rhythm, and myogenic tone (by 1.64, 1.35, and 1.16 times respectively). In addition, morphometric and electrophysiological properties of the retina underwent positive changes. Transcranial exposure to the traveling magnetic field is recommended for the correction of intraocular microcirculation and prevention of diabetic macular oedema.

  9. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  10. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    PubMed

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  11. Optimal tree-stem bucking of northeastern species of China

    Treesearch

    Jingxin Wang; Chris B. LeDoux; Joseph McNeel

    2004-01-01

    An application of optimal tree-stem bucking to the northeastern tree species of China is reported. The bucking procedures used in this region are summarized, which are the basic guidelines for the optimal bucking design. The directed graph approach was adopted to generate the bucking patterns by using the network analysis labeling algorithm. A computer-based bucking...

  12. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  13. An intracellular analysis of the visual responses of neurones in cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Extracellular and intracellular recordings were made from neurones in the visual cortex of the cat in order to compare the subthreshold membrane potentials, reflecting the input to the neurone, with the output from the neurone seen as action potentials. 2. Moving bars and edges, generated under computer control, were used to stimulate the neurones. The membrane potential was digitized and averaged for a number of trials after stripping the action potentials. Comparison of extracellular and intracellular discharge patterns indicated that the intracellular impalement did not alter the neurones' properties. Input resistance of the neurone altered little during stable intracellular recordings (30 min-2 h 50 min). 3. Intracellular recordings showed two distinct patterns of membrane potential changes during optimal visual stimulation. The patterns corresponded closely to the division of S-type (simple) and C-type (complex) receptive fields. Simple cells had a complex pattern of membrane potential fluctuations, involving depolarizations alternating with hyperpolarizations. Complex cells had a simple single sustained plateau of depolarization that was often followed but not preceded by a hyperpolarization. In both simple and complex cells the depolarizations led to action potential discharges. The hyperpolarizations were associated with inhibition of action potential discharge. 4. Stimulating simple cells with non-optimal directions of motion produced little or no hyperpolarization of the membrane in most cases, despite a lack of action potential output. Directional complex cells always produced a single plateau of depolarization leading to action potential discharge in both the optimal and non-optimal directions of motion. The directionality could not be predicted on the basis of the position of the hyperpolarizing inhibitory potentials found in the optimal direction. 5. Stimulation of simple cells with non-optimal orientations occasionally produced slight hyperpolarizations and inhibition of action potential discharge. Complex cells, which had broader orientation tuning than simple cells, could show marked hyperpolarization for non-optimal orientations, but this was not generally the case. 6. The data do not support models of directionality and orientation that rely solely on strong inhibitory mechanisms to produce stimulus selectivity. PMID:1804981

  14. Optimization technique for problems with an inequality constraint

    NASA Technical Reports Server (NTRS)

    Russell, K. J.

    1972-01-01

    General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.

  15. Optimization of planting pattern plan in Logung irrigation area using linear program

    NASA Astrophysics Data System (ADS)

    Wardoyo, Wasis; Setyono

    2018-03-01

    Logung irrigation area is located in Kudus Regency, Central Java Province, Indonesia. Irrigation area with 2810 Ha of extent is getting water supply from Logung dam. Yet, the utilization of water at Logung dam is not optimal and the distribution of water is still not evenly distributed. Therefore, this study will discuss about the optimization of irrigation water utilization based on the beginning of plant season. This optimization begins with the analysis of hydrology, climatology and river discharge in order to determine the irrigation water needs. After determining irrigation water needs, six alternatives of planting patterns with the different early planting periods, i.e. 1st November, 2nd November, 3rd November, 1st December, 2nd December, and 3rd December with the planting pattern of rice-secondary crop-sugarcane is introduced. It is continued by the analysis of water distribution conducted using linear program assisted by POM-Quantity method for Windows 3 with the reliable discharge limit and the available land area. Output of this calculation are to determine the land area that can be planted based on the type of plant and growing season, and to obtaine the profits of harvest yields. Based on the optimum area of each plant species with 6 alternatives, the most optimum area was obtained at the early planting periods on 3rd December with the production profit of Rp 113.397.338.854,- with the planting pattern of rice / beans / sugarcane-rice / beans / sugarcane-beans / sugarcane.

  16. Student Athlete Persistence Patterns: An Analysis of Retention Factors at a Small, Faith-Based Institution

    ERIC Educational Resources Information Center

    Couch, Charlie D.

    2011-01-01

    The persistence patterns of student athletes continues to gain interest among the higher education community, particularly among private, faith-based institutions belonging to the NAIA who continue to rely on student athlete recruitment to optimize overall enrollment patterns. Unfortunately, few studies exist in the literature surrounding student…

  17. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  18. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  19. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  20. Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Moorthy, H. T.

    1997-01-01

    This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.

  1. Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masound

    1999-01-01

    This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).

  2. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less

  3. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  4. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  5. Quality quandaries: Understanding aspects influencing different types of multiple response optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine M.; Cao, Yongtao; Lu, Lu

    In this study, optimizing with several responses can benefit from an objective approach of eliminating non-contenders, understanding trade-offs between competing responses, and then identifying a final choice that matches optimization priorities. To offer insights that help guide thoughtful decisions, we explore and summarize different patterns of solution sets and their trade-offs for different types of optimization with responses that are to be maximized and/or to achieve a target.

  6. Quality quandaries: Understanding aspects influencing different types of multiple response optimization

    DOE PAGES

    Anderson-Cook, Christine M.; Cao, Yongtao; Lu, Lu

    2016-08-26

    In this study, optimizing with several responses can benefit from an objective approach of eliminating non-contenders, understanding trade-offs between competing responses, and then identifying a final choice that matches optimization priorities. To offer insights that help guide thoughtful decisions, we explore and summarize different patterns of solution sets and their trade-offs for different types of optimization with responses that are to be maximized and/or to achieve a target.

  7. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.

  8. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  9. Circadian rhythms, time-restricted feeding, and healthy aging.

    PubMed

    Manoogian, Emily N C; Panda, Satchidananda

    2017-10-01

    Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Vicinal light inspection of translucent materials

    DOEpatents

    Burns, Geroge R [Albuquerque, NM; Yang, Pin [Albuquerque, NM

    2010-01-19

    The present invention includes methods and apparatus for inspecting vicinally illuminated non-patterned areas of translucent materials. An initial image of the material is received. A second image is received following a relative translation between the material being inspected and a device generating the images. Each vicinally illuminated image includes a portion having optimal illumination, that can be extracted and stored in a composite image of the non-patterned area. The composite image includes aligned portions of the extracted image portions, and provides a composite having optimal illumination over a non-patterned area of the material to be inspected. The composite image can be processed by enhancement and object detection algorithms, to determine the presence of, and characterize any inhomogeneities present in the material.

  11. Toward a More Efficient Implementation of Antifibrillation Pacing

    PubMed Central

    Wilson, Dan; Moehlis, Jeff

    2016-01-01

    We devise a methodology to determine an optimal pattern of inputs to synchronize firing patterns of cardiac cells which only requires the ability to measure action potential durations in individual cells. In numerical bidomain simulations, the resulting synchronizing inputs are shown to terminate spiral waves with a higher probability than comparable inputs that do not synchronize the cells as strongly. These results suggest that designing stimuli which promote synchronization in cardiac tissue could improve the success rate of defibrillation, and point towards novel strategies for optimizing antifibrillation pacing. PMID:27391010

  12. Relationship between dysfunctional breathing patterns and ability to achieve target heart rate variability with features of "coherence" during biofeedback.

    PubMed

    Courtney, Rosalba; Cohen, Marc; van Dixhoorn, Jan

    2011-01-01

    Heart rate variability (HRV) biofeedback is a self-regulation strategy used to improve conditions including asthma, stress, hypertension, and chronic obstructive pulmonary disease. Respiratory muscle function affects hemodynamic influences on respiratory sinus arrhythmia (RSA), and HRV and HRV-biofeedback protocols often include slow abdominal breathing to achieve physiologically optimal patterns of HRV with power spectral distribution concentrated around the 0.1-Hz frequency and large amplitude. It is likely that optimal balanced breathing patterns and ability to entrain heart rhythms to breathing reflect physiological efficiency and resilience and that individuals with dysfunctional breathing patterns may have difficulty voluntarily modulating HRV and RSA. The relationship between breathing movement patterns and HRV, however, has not been investigated. This study examines how individuals' habitual breathing patterns correspond with their ability to optimize HRV and RSA. Breathing pattern was assessed using the Manual Assessment of Respiratory Motion (MARM) and the Hi Lo manual palpation techniques in 83 people with possible dysfunctional breathing before they attempted HRV biofeedback. Mean respiratory rate was also assessed. Subsequently, participants applied a brief 5-minute biofeedback protocol, involving breathing and positive emotional focus, to achieve HRV patterns proposed to reflect physiological "coherence" and entrainment of heart rhythm oscillations to other oscillating body systems. Thoracic-dominant breathing was associated with decreased coherence of HRV (r = -.463, P = .0001). Individuals with paradoxical breathing had the lowest HRV coherence (t(8) = 10.7, P = .001), and the negative relationship between coherence of HRV and extent of thoracic breathing was strongest in this group (r = -.768, P = .03). Dysfunctional breathing patterns are associated with decreased ability to achieve HRV patterns that reflect cardiorespiratory efficiency and autonomic nervous system balance. This suggests that dysfunctional breathing patterns are not only biomechanically inefficient but also reflect decreased physiological resilience. Breathing assessment using simple manual techniques such as the MARM and Hi Lo may be useful in HRV biofeedback to identify if poor responders require more emphasis on correction of dysfunctional breathing.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Heng, E-mail: hengli@mdanderson.org; Zhu, X. Ronald; Zhang, Xiaodong

    Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization,more » the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.« less

  14. Optimizing a reconfigurable material via evolutionary computation

    NASA Astrophysics Data System (ADS)

    Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-08-01

    Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.

  15. Optimization in Ecology

    ERIC Educational Resources Information Center

    Cody, Martin L.

    1974-01-01

    Discusses the optimality of natural selection, ways of testing for optimum solutions to problems of time - or energy-allocation in nature, optimum patterns in spatial distribution and diet breadth, and how best to travel over a feeding area so that food intake is maximized. (JR)

  16. Fuel management optimization using genetic algorithms and expert knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1996-09-01

    The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.

  17. Intrinsic Lévy behaviour in organisms - searching for a mechanism. Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds

    NASA Astrophysics Data System (ADS)

    Sims, David W.

    2015-09-01

    The seminal papers by Viswanathan and colleagues in the late 1990s [1,2] proposed not only that scale-free, superdiffusive Lévy walks can describe the free-ranging movement patterns observed in animals such as the albatross [1], but that the Lévy walk was optimal for searching for sparsely and randomly distributed resource targets [2]. This distinct advantage, now shown to be present over a much broader set of conditions than originally theorised [3], implied that the Lévy walk is a search strategy that should be found very widely in organisms [4]. In the years since there have been several influential empirical studies showing that Lévy walks can indeed be detected in the movement patterns of a very broad range of taxa, from jellyfish, insects, fish, reptiles, seabirds, humans [5-10], and even in the fossilised trails of extinct invertebrates [11]. The broad optimality and apparent deep evolutionary origin of movement (search) patterns that are well approximated by Lévy walks led to the development of the Lévy flight foraging (LFF) hypothesis [12], which states that "since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have led to adaptations for Lévy flight foraging".

  18. Motion generation of peristaltic mobile robot with particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Homma, Takahiro; Kamamichi, Norihiro

    2015-03-01

    In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.

  19. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  20. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics

    PubMed Central

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2012-01-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836

  1. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  2. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    PubMed

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  3. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927

  4. Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface.

    PubMed

    Bakardjian, Hovagim; Tanaka, Toshihisa; Cichocki, Andrzej

    2010-01-18

    This study pursues the optimization of the brain responses to small reversing patterns in a Steady-State Visual Evoked Potentials (SSVEP) paradigm, which could be used to maximize the efficiency of applications such as Brain-Computer Interfaces (BCI). We investigated the SSVEP frequency response for 32 frequencies (5-84 Hz), and the time dynamics of the brain response at 8, 14 and 28 Hz, to aid the definition of the optimal neurophysiological parameters and to outline the onset-delay and other limitations of SSVEP stimuli in applications such as our previously described four-command BCI system. Our results showed that the 5.6-15.3 Hz pattern reversal stimulation evoked the strongest responses, peaking at 12 Hz, and exhibiting weaker local maxima at 28 and 42 Hz. After stimulation onset, the long-term SSVEP response was highly non-stationary and the dynamics, including the first peak, was frequency-dependent. The evaluation of the performance of a frequency-optimized eight-command BCI system with dynamic neurofeedback showed a mean success rate of 98%, and a time delay of 3.4s. Robust BCI performance was achieved by all subjects even when using numerous small patterns clustered very close to each other and moving rapidly in 2D space. These results emphasize the need for SSVEP applications to optimize not only the analysis algorithms but also the stimuli in order to maximize the brain responses they rely on. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  5. Hierarchical random walks in trace fossils and the origin of optimal search behavior

    PubMed Central

    Sims, David W.; Reynolds, Andrew M.; Humphries, Nicolas E.; Southall, Emily J.; Wearmouth, Victoria J.; Metcalfe, Brett; Twitchett, Richard J.

    2014-01-01

    Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa. PMID:25024221

  6. Optimizing density patterns to achieve desired light extraction for displays

    NASA Astrophysics Data System (ADS)

    Davenport, T. L. R.; Cassarly, W. J.

    2007-01-01

    In displays such as backlights and signage, it is often desirable to produce a particular spatial luminance distribution of light. This work demonstrates an iterative optimization technique for determining the density of light extractors required to produce desired luminance distributions.

  7. Optimization of Connector Position Offset for Bandwidth Enhancement of a Multimode Optical Fiber Link

    NASA Technical Reports Server (NTRS)

    Rawat, Banmali

    2000-01-01

    The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.

  8. Design of a backlighting structure for very large-area luminaries

    NASA Astrophysics Data System (ADS)

    Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.

    2017-02-01

    A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.

  9. Simultaneous beam sampling and aperture shape optimization for SPORT.

    PubMed

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.

  10. Simultaneous beam sampling and aperture shape optimization for SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less

  11. Adaptive Origami for Efficiently Folded Structures

    DTIC Science & Technology

    2016-02-01

    design optimization to find optimal origami patterns for in-plane compression. 3. Self-folding and programmable material systems were developed for...2014, 1st place in the Midwest and 2nd place in the National 2014 SAMPE student research symposium). • Design of self-folding and programmable ... material systems: Nafion SMP Programming: To integrate active materials into origami, mechanical analysis and optimization tools where applied to the

  12. Modeling forest stand dynamics from optimal balances of carbon and nitrogen

    Treesearch

    Harry T. Valentine; Annikki Makela

    2012-01-01

    We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...

  13. Applying machine learning to pattern analysis for automated in-design layout optimization

    NASA Astrophysics Data System (ADS)

    Cain, Jason P.; Fakhry, Moutaz; Pathak, Piyush; Sweis, Jason; Gennari, Frank; Lai, Ya-Chieh

    2018-04-01

    Building on previous work for cataloging unique topological patterns in an integrated circuit physical design, a new process is defined in which a risk scoring methodology is used to rank patterns based on manufacturing risk. Patterns with high risk are then mapped to functionally equivalent patterns with lower risk. The higher risk patterns are then replaced in the design with their lower risk equivalents. The pattern selection and replacement is fully automated and suitable for use for full-chip designs. Results from 14nm product designs show that the approach can identify and replace risk patterns with quantifiable positive impact on the risk score distribution after replacement.

  14. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    NASA Astrophysics Data System (ADS)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  15. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering

    PubMed Central

    Zheng, Peng; Cushing, Scott K.; Suri, Savan; Wu, Nianqiang

    2015-01-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  16. Sparse bursts optimize information transmission in a multiplexed neural code.

    PubMed

    Naud, Richard; Sprekeler, Henning

    2018-06-22

    Many cortical neurons combine the information ascending and descending the cortical hierarchy. In the classical view, this information is combined nonlinearly to give rise to a single firing-rate output, which collapses all input streams into one. We analyze the extent to which neurons can simultaneously represent multiple input streams by using a code that distinguishes spike timing patterns at the level of a neural ensemble. Using computational simulations constrained by experimental data, we show that cortical neurons are well suited to generate such multiplexing. Interestingly, this neural code maximizes information for short and sparse bursts, a regime consistent with in vivo recordings. Neurons can also demultiplex this information, using specific connectivity patterns. The anatomy of the adult mammalian cortex suggests that these connectivity patterns are used by the nervous system to maintain sparse bursting and optimal multiplexing. Contrary to firing-rate coding, our findings indicate that the physiology and anatomy of the cortex may be interpreted as optimizing the transmission of multiple independent signals to different targets. Copyright © 2018 the Author(s). Published by PNAS.

  17. Shifts in growth strategies reflect tradeoffs in cellular economics

    PubMed Central

    Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas

    2009-01-01

    The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218

  18. A New MI-Based Visualization Aided Validation Index for Mining Big Longitudinal Web Trial Data

    PubMed Central

    Zhang, Zhaoyang; Fang, Hua; Wang, Honggang

    2016-01-01

    Web-delivered clinical trials generate big complex data. To help untangle the heterogeneity of treatment effects, unsupervised learning methods have been widely applied. However, identifying valid patterns is a priority but challenging issue for these methods. This paper, built upon our previous research on multiple imputation (MI)-based fuzzy clustering and validation, proposes a new MI-based Visualization-aided validation index (MIVOOS) to determine the optimal number of clusters for big incomplete longitudinal Web-trial data with inflated zeros. Different from a recently developed fuzzy clustering validation index, MIVOOS uses a more suitable overlap and separation measures for Web-trial data but does not depend on the choice of fuzzifiers as the widely used Xie and Beni (XB) index. Through optimizing the view angles of 3-D projections using Sammon mapping, the optimal 2-D projection-guided MIVOOS is obtained to better visualize and verify the patterns in conjunction with trajectory patterns. Compared with XB and VOS, our newly proposed MIVOOS shows its robustness in validating big Web-trial data under different missing data mechanisms using real and simulated Web-trial data. PMID:27482473

  19. Particle Swarm Optimization with Double Learning Patterns.

    PubMed

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  20. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  1. Metal stack optimization for low-power and high-density for N7-N5

    NASA Astrophysics Data System (ADS)

    Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.

    2016-03-01

    One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.

  2. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    PubMed

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting search patterns that are approximated as optimal in response to encountered changes in prey type and abundance, and across diverse marine habitats, from the surf zone to the deep ocean. 5. Our results provide some support for the LFF hypothesis. However, it is possible that the observed Lévy patterns of white sharks may not arise from an adaptive behaviour but could be an emergent property arising from simple, straight-line movements between complex (e.g. fractal) distributions of prey. Experimental studies are needed in vertebrates to test for the presence of Lévy behaviour patterns in the absence of complex prey distributions. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  3. Automated sample plan selection for OPC modeling

    NASA Astrophysics Data System (ADS)

    Casati, Nathalie; Gabrani, Maria; Viswanathan, Ramya; Bayraktar, Zikri; Jaiswal, Om; DeMaris, David; Abdo, Amr Y.; Oberschmidt, James; Krause, Andreas

    2014-03-01

    It is desired to reduce the time required to produce metrology data for calibration of Optical Proximity Correction (OPC) models and also maintain or improve the quality of the data collected with regard to how well that data represents the types of patterns that occur in real circuit designs. Previous work based on clustering in geometry and/or image parameter space has shown some benefit over strictly manual or intuitive selection, but leads to arbitrary pattern exclusion or selection which may not be the best representation of the product. Forming the pattern selection as an optimization problem, which co-optimizes a number of objective functions reflecting modelers' insight and expertise, has shown to produce models with equivalent quality to the traditional plan of record (POR) set but in a less time.

  4. DfM requirements and ROI analysis for system-on-chip

    NASA Astrophysics Data System (ADS)

    Balasinski, Artur

    2005-11-01

    DfM (Design-for-Manufacturability) has become staple requirement beyond 100 nm technology node for efficient generation of mask data, cost reduction, and optimal circuit performance. Layout pattern has to comply to many requirements pertaining to database structure and complexity, suitability for image enhancement by the optical proximity correction, and mask data pattern density and distribution over the image field. These requirements are of particular complexity for Systems-on-Chip (SoC). A number of macro-, meso-, and microscopic effects such as reticle macroloading, planarization dishing, and pattern bridging or breaking would compromise fab yield, device performance, or both. In order to determine the optimal set of DfM rules applicable to the particular designs, Return-on-Investment and Failure Mode and Effect Analysis (FMEA) are proposed.

  5. Design principles for morphologies of antireflection patterns for solar absorbing applications.

    PubMed

    Moon, Yoon-Jong; Na, Jin-Young; Kim, Sun-Kyung

    2015-07-01

    Two-dimensional surface texturing is a widespread technology for imparting broadband antireflection, yet its design rules are not completely understood. The dependence of the reflectance spectrum of a periodically patterned glass film on various structural parameters (e.g., pitch, height, shape, and fill factor) has been investigated by means of full-vectorial numerical simulations. An average weighted reflectivity accounting for the AM1.5G solar spectrum (λ=300-1000  nm) was sinusoidally modulated by a rod pattern's height, and was minimized for pitches of 400-600 nm. When a rationally optimized cone pattern was used, the average weighted reflectivity was less than 0.5%, for incident angles of up to 40° off normal. The broadband antireflection of a cone pattern was reproduced well by a graded refractive index film model corresponding to its geometry, with the addition of a diffraction effect resulting from its periodicity. The broadband antireflection ability of optimized cone patterns is not limited to the glass material, but rather is generically applicable to other semiconductor materials, including Si and GaAs. The design rules developed herein represent a key step in the development of light-absorbing devices, such as solar cells.

  6. [Oguchi disease or stationary congenital night blindness: a case report].

    PubMed

    Boissonnot, M; Robert, M F; Gilbert-Dussardier, B; Dighiero, P

    2007-01-01

    Oguchi disease, originally described in Japanese people, is a rare form of stationary night blindness in patients with normal acuity. We report the case of an 8-year-old girl who presented with an abnormal terrified behavior in the dark. Thorough questioning revealed hemeralopia. Her clinical examination (visual acuity, Goldmann visual field, and color vision) were normal. The fundus examination showed golden-brown color, grayish, almost greenish yellow discoloration in the peripheral area with no osteoclast. This abnormality disappeared after prolonged dark adaptation. The electroretinogram showed a reduced b wave amplitude under scotopic conditions. Her parents were cousins. This diagnosis should be suggested when hemeralopia is associated with typical fundus aspect resolving after dark adaptation (so called Mizuo-Nakamura phenomenon). The long-term prognosis in these patients is good in the absence of clinical progression. This is a genetic autosomal recessive disease caused by mutations in the gene coding for arrestin located in 2q37.1.

  7. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    PubMed

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  8. Retinal network adaptation to bright light requires tyrosinase.

    PubMed

    Page-McCaw, Patrick S; Chung, S Clare; Muto, Akira; Roeser, Tobias; Staub, Wendy; Finger-Baier, Karin C; Korenbrot, Juan I; Baier, Herwig

    2004-12-01

    The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.

  9. A technique for in vivo measurement of photoreceptor orientation in the chicken retina.

    PubMed

    Beresford, J A; Crewther, S G; Crewther, D P

    1999-01-01

    The aim of the current study was to develop a method for simultaneously assessing central and peripheral photoreceptor alignment in vivo in animal models. The stimulus apparatus consisted of nine light-emitting diodes (LED) positioned 7.5 degrees apart around an arc. The stimulus was viewed through a pinhole imaged into the entrance pupil of the eye using a telecentric lens system. Photodiodes placed over an array of the VERIS imaging system stimulated the electroretinogram. Data were obtained by positioning the pinhole at 0.25-mm intervals across the pupil and recording (Volk Optical, Mentor, OH, USA) at each location. Orientation assessed in normal chickens demonstrates that photoreceptors orientate towards a locus near the centre of the pupil and that there is a systematic change in peak location with eccentricity. This technique provides a valuable method for determining photoreceptor orientation properties in vivo and can be applied to animal models of pathology.

  10. Initial neuro-ophthalmological manifestations in Churg–Strauss syndrome

    PubMed Central

    Vallet, Anne-Evelyne; Didelot, Adrien; Guebre-Egziabher, Fitsum; Bernard, Martine; Mauguière, François

    2010-01-01

    Churg–Strauss syndrome (CSS) is a systemic vasculitis with frequent respiratory tract involvement. It can also affect the nervous system, notably the optic tract. The present work reports the case of a 65-year-old man diagnosed as having CSS in the context of several acute onset neurological symptoms including muscle weakness and signs of temporal arteritis, including bilateral anterior ischaemic optic neuropathy (ON). Electroretinograms (ERGs) and visual evoked potentials (VEPs) were performed. Flash ERGs were normal whereas VEPs were highly abnormal, showing a dramatic voltage reduction, thus confirming the ON. The vision outcome was poor. Ophthalmological presentations of CSS have rarely been reported, but no previous case of sudden blindness documented by combined ERG and VEP investigations were found in the literature. The present case strongly suggests that the occurrence of visual loss in the context of systemic inflammation with hypereosinophilia should lead to considering the diagnosis of CSS. PMID:22789694

  11. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  12. Optic Disc Pit with Sectorial Retinitis Pigmentosa

    PubMed Central

    Taskapili, Muhittin; Yilmaz, Tolga; Teke, Mehmet Yasin

    2013-01-01

    Sectorial retinitis pigmentosa (RP) and optic disc pit (ODP) are rare clinical conditions. We present a 40-year-old woman with a history of mild night blindness and decreased vision in the right eye for about 5 years. Fundus examination revealed retinal pigmentary changes in the superior and inferotemporal sectors covering the macula and reduced arterial calibre and ODP at the temporal edge of the optic disc. In addition, fundus autofluorescence, spectral-domain optical coherence tomography, fluorescein angiography, and multifocal electroretinogram scans confirmed these clinical findings. Visual acuity was decreased due to an atrophic-appearing foveal lesion. No intervention was suggested because of the poor visual potential. To the best of our knowledge, the present study is the first to describe coexistent optic disc pit and sectorial RP in the superior and inferotemporal sectors covering the macula in the same eye with figures. PMID:23781365

  13. Unilateral retinitis pigmentosa occurring in an individual with a mutation in the CLRN1 gene.

    PubMed

    Sim, Peng Yong; Jeganathan, V Swetha E; Wright, Alan F; Cackett, Peter

    2018-03-15

    This case report depicts the clinical course of a female patient with unilateral retinitis pigmentosa, who first presented at the age of 12 years. Fundus photography at the time revealed unilateral pigmentary retinopathy, which was associated with extinguished electroretinogram (ERG) signal. At 35 years of age, fundus examination revealed deterioration of pre-existing unilateral pigmentary retinopathy with progressive visual field defect detected on Goldmann visual field testing. ERG findings remained unchanged and multifocal ERG showed unilateral decrease in amplitude in the affected eye. The patient was referred for genetic counselling. Next-generation sequencing identified a deleterious heterozygous c.118T>G (p.Cys40Gly) mutation in the CLRN1 gene. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic.

    PubMed

    Carroll, Joseph; Rossi, Ethan A; Porter, Jason; Neitz, Jay; Roorda, Austin; Williams, David R; Neitz, Maureen

    2010-09-15

    Blue cone monochromacy (BCM) is an X-linked condition in which long- (L) and middle- (M) wavelength-sensitive cone function is absent. Due to the X-linked nature of the condition, female carriers are spared from a full manifestation of the associated defects but can show visual symptoms, including abnormal cone electroretinograms. Here we imaged the cone mosaic in four females carrying an L/M array with deletion of the locus control region, resulting in an absence of L/M opsin gene expression (effectively acting as a cone opsin knockout). On average, they had cone mosaics with reduced density and disrupted organization compared to normal trichromats. This suggests that the absence of opsin in a subset of cones results in their early degeneration, with X-inactivation the likely mechanism underlying phenotypic variability in BCM carriers. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats.

    PubMed

    Sauvé, Y; Pinilla, I; Lund, R D

    2006-04-01

    We quantified rod- and cone-related electroretinogram (ERG) responses following subretinal injections of the human-derived retinal pigment epithelial (hRPE) cell line ARPE-19 at age P23 to prevent progressive photoreceptor loss in the Royal College of Surgeons (RCS) rat. Culture medium-injected eyes served as sham controls. At P60, in comparison with sham-injected eyes, all recordings from hRPE-injected eyes showed preserved scotopic a- and b-waves, oscillatory potentials, double-flash-derived rod b-waves and photopic cone b-waves, and flicker critical fusion frequencies and amplitudes. Although the actual preservation did not exceed 10% of a-wave and 20% of b-wave amplitude values in non-dystrophic RCS and deteriorated rapidly by P90, rod- and cone-related ERG parameters were still recordable up to P120 unlike the virtually unresponsive sham-injected eyes.

  16. The multifocal electroretinogram in X-linked juvenile retinoschisis.

    PubMed

    Huang, Shizhou; Wu, Dezheng; Jiang, Futian; Luo, Guangwei; Liang, Jiongji; Wen, Feng; Yu, Minzhong; Long, Shixian; Wu, Lezheng

    2003-05-01

    To measure and compare the multifocal electroretinography in normal control and X-linked juvenile retinoschisis, 13 cases (13 right eyes) of normal control and nine cases (17 eyes) of X-linked juvenile retinoschisis were measured with VERIS Science 4.0. Four cases (eight eyes) out of the nine retinoschisis cases were tested with Ganzfeld ERG at the same day. The results showed statistically significant difference of average response densities and latencies in six ring retinal regions between the normal control and retinoschisis. The trace array and 3-D topography of multifocal ERG showed multi-area amplitude decrease with absence or reduction of central peak amplitude in patients with retinoschisis. The P1/N1 ratio of multifocal ERG average response densities in six ring retinal regions was different from the b/a ratio of Ganzfeld ERG. The multifocal ERG and Ganzfeld ERG each had its advantage in the diagnosis of retinoschisis.

  17. Macular hole in juvenile X-linked retinoschisis.

    PubMed

    Al-Swaina, Nayef; Nowilaty, Sawsan R

    2013-10-01

    An 18 year-old male with no antecedent of trauma, systemic syndrome or myopia was referred for surgical treatment of a full thickness macular hole in the left eye. A more careful inspection revealed discrete foveal cystic changes in the fellow eye and subtle peripheral depigmented retinal pigment epithelial changes in both eyes. A spectral-domain optical coherence tomography (SD-OCT) scan confirmed, in addition to the full thickness macular hole in the left eye, microcystic spaces in the nuclear layers of both retinae. The diagnosis of X-linked retinoschisis was confirmed with a full field electroretinogram displaying the typical negative ERG. Macular holes are uncommon in the young and those complicating X-linked retinoschisis are rare. This report highlights the importance of investigating the presence of a macular hole in a young patient and illustrates the clinical and SD-OCT clues beyond the foveal center which led to the correct diagnosis of X-linked juvenile retinoschisis.

  18. The Role of mf-ERG in the Diagnosis and Treatment of Age-Related Macular Degeneration: Electrophysiological Features of AMD.

    PubMed

    Moschos, Marilita M; Nitoda, Eirini

    2018-01-01

    Age-related macular cegeneration (AMD) is the leading cause of visual dysfunction worldwide, affecting 9-25% of individuals between 65 and 75 years old. We have reviewed the published articles investigating the role of multifocal electroretinogram (mf-ERG) in the diagnosis and treatment of AMD. Visual evoked potentials have revealed decreased amplitudes and higher latencies in patients with AMD, while the degeneration of photoreceptors and abnormalities of retinal pigment epithelium can be identified by electro-oculogram recordings. Moreover, ERG can detect the functional abnormalities observed in AMD and evaluate each therapeutic approach. The record of local electrophysiological responses coming from different retinal areas can be accurately performed by mfERG. The accuracy of mfERG in detecting the degeneration of photoreceptors, as well the disturbances of macular function, could be useful both in the early diagnosis of AMD and the assessment of treatment efficacy.

  19. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    NASA Astrophysics Data System (ADS)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  20. Design and development of bio-inspired framework for reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  1. Precision process calibration and CD predictions for low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Park, Sangbong; Berger, Gabriel; Coskun, Tamer H.; de Vocht, Joep; Chen, Fung; Yu, Linda; Hsu, Stephen; van den Broeke, Doug; Socha, Robert; Park, Jungchul; Gronlund, Keith; Davis, Todd; Plachecki, Vince; Harris, Tom; Hansen, Steve; Lambson, Chuck

    2005-06-01

    Leading resist calibration for sub-0.3 k1 lithography demands accuracy <2nm for CD through pitch. An accurately calibrated resist process is the prerequisite for establishing production-worthy manufacturing under extreme low k1. From an integrated imaging point of view, the following key components must be simultaneously considered during the calibration - high numerical aperture (NA>0.8) imaging characteristics, customized illuminations (measured vs. modeled pupil profiles), resolution enhancement technology (RET) mask with OPC, reticle metrology, and resist thin film substrate. For imaging at NA approaching unity, polarized illumination can impact significantly the contrast formation in the resist film stack, and therefore it is an important factor to consider in the CD-based resist calibration. For aggressive DRAM memory core designs at k1<0.3, pattern-specific illumination optimization has proven to be critical for achieving the required imaging performance. Various optimization techniques from source profile optimization with fixed mask design to the combined source and mask optimization have been considered for customer designs and available imaging capabilities. For successful low-k1 process development, verification of the optimization results can only be made with a sufficiently tunable resist model that can predicate the wafer printing accurately under various optimized process settings. We have developed, for resist patterning under aggressive low-k1 conditions, a novel 3D diffusion model equipped with double-Gaussian convolution in each dimension. Resist calibration with the new diffusion model has demonstrated a fitness and CD predication accuracy that rival or outperform the traditional 3D physical resist models. In this work, we describe our empirical approach to achieving the nm-scale precision for advanced lithography process calibrations, using either measured 1D CD through-pitch or 2D memory core patterns. We show that for ArF imaging, the current resist development and diffusion modeling can readily achieve ~1-2nm max CD errors for common 1D through-pitch and aggressive 2D memory core resist patterns. Sensitivities of the calibrated models to various process parameters are analyzed, including the comparison between the measured and modeled (Gaussian or GRAIL) pupil profiles. We also report our preliminary calibration results under selected polarized illumination conditions.

  2. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    PubMed Central

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  3. Swarm intelligence in bioinformatics: methods and implementations for discovering patterns of multiple sequences.

    PubMed

    Cui, Zhihua; Zhang, Yi

    2014-02-01

    As a promising and innovative research field, bioinformatics has attracted increasing attention recently. Beneath the enormous number of open problems in this field, one fundamental issue is about the accurate and efficient computational methodology that can deal with tremendous amounts of data. In this paper, we survey some applications of swarm intelligence to discover patterns of multiple sequences. To provide a deep insight, ant colony optimization, particle swarm optimization, artificial bee colony and artificial fish swarm algorithm are selected, and their applications to multiple sequence alignment and motif detecting problem are discussed.

  4. Cell and module formation research area

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1982-01-01

    Metallization is discussed. The influence of hydrogen on the firing of base-metal pastes in reducing atmospheres is reported. A method for optimization of metallization patterns is presented. A process sequence involving an AR coating and thick-film metallization system capable of penetrating the AR coating during firing is reported. Design and construction of the NMA implantation machine is reported. Implanted back-surface fields and NMA primary (front) junctions are discussed. The use of glass beads, a wave-soldering device, and ion milling is reported. Processing through the module fabrication and environmental testing of its design are reported. Metallization patterns by mathematical optimization are assessed.

  5. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  6. An auxiliary optimization method for complex public transit route network based on link prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian

    2018-02-01

    Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.

  7. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison.

    PubMed

    Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard

    2016-10-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.

  8. Variational optimization analysis of temperature and moisture advection in a severe storm environment

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    Horizontal wind components, potential temperature, and mixing ratio fields associated with a severe storm environment in the south central U.S. were analyzed from synoptic upper air observations with a nonhomogeneous, anisotropic weighting function. Each data field was filtered with variational optimization analysis techniques. Variational optimization analysis was also performed on the vertical motion field and was used to produce advective forecasts of the potential temperature and mixing ratio fields. Results show that the dry intrusion is characterized by warm air, the advection of which produces a well-defined upward motion pattern. A corresponding downward motion pattern comprising a deep vertical circulation in the warm air sector of the low pressure system was detected. The axes alignment of maximum dry and warm advection with the axis of the tornado-producing squall line also resulted.

  9. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    PubMed

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  10. Impact of mobility structure on optimization of small-world networks of mobile agents

    NASA Astrophysics Data System (ADS)

    Lee, Eun; Holme, Petter

    2016-06-01

    In ad hoc wireless networking, units are connected to each other rather than to a central, fixed, infrastructure. Constructing and maintaining such networks create several trade-off problems between robustness, communication speed, power consumption, etc., that bridges engineering, computer science and the physics of complex systems. In this work, we address the role of mobility patterns of the agents on the optimal tuning of a small-world type network construction method. By this method, the network is updated periodically and held static between the updates. We investigate the optimal updating times for different scenarios of the movement of agents (modeling, for example, the fat-tailed trip distances, and periodicities, of human travel). We find that these mobility patterns affect the power consumption in non-trivial ways and discuss how these effects can best be handled.

  11. A fast process development flow by applying design technology co-optimization

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chieh; Yeh, Shin-Shing; Ou, Tsong-Hua; Lin, Hung-Yu; Mai, Yung-Ching; Lin, Lawrence; Lai, Jun-Cheng; Lai, Ya Chieh; Xu, Wei; Hurat, Philippe

    2017-03-01

    Beyond 40 nm technology node, the pattern weak points and hotspot types increase dramatically. The typical patterns for lithography verification suffers huge turn-around-time (TAT) to handle the design complexity. Therefore, in order to speed up process development and increase pattern variety, accurate design guideline and realistic design combinations are required. This paper presented a flow for creating a cell-based layout, a lite realistic design, to early identify problematic patterns which will negatively affect the yield. A new random layout generating method, Design Technology Co-Optimization Pattern Generator (DTCO-PG), is reported in this paper to create cell-based design. DTCO-PG also includes how to characterize the randomness and fuzziness, so that it is able to build up the machine learning scheme which model could be trained by previous results, and then it generates patterns never seen in a lite design. This methodology not only increases pattern diversity but also finds out potential hotspot preliminarily. This paper also demonstrates an integrated flow from DTCO pattern generation to layout modification. Optical Proximity Correction, OPC and lithographic simulation is then applied to DTCO-PG design database to detect hotspots and then hotspots or weak points can be automatically fixed through the procedure or handled manually. This flow benefits the process evolution to have a faster development cycle time, more complexity pattern design, higher probability to find out potential hotspots in early stage, and a more holistic yield ramping operation.

  12. Regular Deployment of Wireless Sensors to Achieve Connectivity and Information Coverage

    PubMed Central

    Cheng, Wei; Li, Yong; Jiang, Yi; Yin, Xipeng

    2016-01-01

    Coverage and connectivity are two of the most critical research subjects in WSNs, while regular deterministic deployment is an important deployment strategy and results in some pattern-based lattice WSNs. Some studies of optimal regular deployment for generic values of rc/rs were shown recently. However, most of these deployments are subject to a disk sensing model, and cannot take advantage of data fusion. Meanwhile some other studies adapt detection techniques and data fusion to sensing coverage to enhance the deployment scheme. In this paper, we provide some results on optimal regular deployment patterns to achieve information coverage and connectivity as a variety of rc/rs, which are all based on data fusion by sensor collaboration, and propose a novel data fusion strategy for deployment patterns. At first the relation between variety of rc/rs and density of sensors needed to achieve information coverage and connectivity is derived in closed form for regular pattern-based lattice WSNs. Then a dual triangular pattern deployment based on our novel data fusion strategy is proposed, which can utilize collaborative data fusion more efficiently. The strip-based deployment is also extended to a new pattern to achieve information coverage and connectivity, and its characteristics are deduced in closed form. Some discussions and simulations are given to show the efficiency of all deployment patterns, including previous patterns and the proposed patterns, to help developers make more impactful WSN deployment decisions. PMID:27529246

  13. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  14. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2013-01-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms. PMID:24077658

  15. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks.

    PubMed

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2012-02-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.

  16. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts.

    PubMed

    Münch, Mirjam; Ladaique, Myriam; Roemer, Ségolène; Hashemi, Kattayoon; Kawasaki, Aki

    2017-01-01

    Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group, visual function was not impaired yet these participants showed a lack of seasonal changes in the pupil response to blue light and poorer sleep in winter. These findings raise the question for tailored lighting conditions for cataract patients in order to counter potentially deleterious effects of living with chronically lower light exposure.

  17. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts

    PubMed Central

    Münch, Mirjam; Ladaique, Myriam; Roemer, Ségolène; Hashemi, Kattayoon; Kawasaki, Aki

    2017-01-01

    Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group, visual function was not impaired yet these participants showed a lack of seasonal changes in the pupil response to blue light and poorer sleep in winter. These findings raise the question for tailored lighting conditions for cataract patients in order to counter potentially deleterious effects of living with chronically lower light exposure. PMID:28955293

  18. Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram

    PubMed Central

    Thomas, M M; Lamb, T D

    1999-01-01

    We recorded the a-wave of the human electroretinogram from subjects with normal vision, using a corneal electrode and ganzfeld (full-field) light stimulation. From analysis of the rising phase of rod-isolated flash responses we determined the maximum size (amax) of the a-wave, a measure of the massed circulating current of the rods, and the amplification constant (A) of transduction within the rod photoreceptors.During light adaptation by steady backgrounds the maximal response was reduced, as reported previously. amax declined approximately as I0/(I0+IB), where IB is retinal illuminance and I0 is a constant. In different subjects I0 ranged from 40 to 100 trolands, with a mean of 70 trolands, corresponding to about 600 photoisomerizations s−1 per rod. (1 troland is the retinal illuminance that results when a surface luminance of 1 cd m−2 is viewed through a pupil area of 1 mm2.) The amplification constant A decreased only slightly in the presence of steady backgrounds.Following a full bleach amax recovered along an S-shaped curve over a period of 30 min. There was no detectable response for the first 5 min, and half-maximal recovery took 13-17 min.The apparent amplification constant decreased at early times after large bleaches. However, upon correction for reduced light absorption due to loss of pigment, with regeneration of rhodopsin occurring with a time constant of 9-15 min in different subjects, it appeared that the true value of A was probably unchanged by bleaching.The recovery of amax following a bleach could be converted into recovery of equivalent background intensity, using a ‘Crawford transformation’ derived from the light adaptation results. Following bleaches ranging from 10 to > 99 %, the equivalent background intensity decayed approximately exponentially, with a time constant of about 3 min.The time taken for amax to recover to a fixed proportion of its original level increased approximately linearly (rather than logarithmically) with fractional bleach, with a slope of about 12 min per 100 % bleach. Similar behaviour has previously been seen in psychophysical dark adaptation experiments, for the dependence of the ‘second component’ of recovery on the level of bleaching. PMID:10381594

  19. How the prior information shapes couplings in neural fields performing optimal multisensory integration

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Wen-Hao; Wong, K. Y. Michael; Wu, Si

    Extensive studies suggest that the brain integrates multisensory signals in a Bayesian optimal way. However, it remains largely unknown how the sensory reliability and the prior information shape the neural architecture. In this work, we propose a biologically plausible neural field model, which can perform optimal multisensory integration and encode the whole profile of the posterior. Our model is composed of two modules, each for one modality. The crosstalks between the two modules can be carried out through feedforwad cross-links and reciprocal connections. We found that the reciprocal couplings are crucial to optimal multisensory integration in that the reciprocal coupling pattern is shaped by the correlation in the joint prior distribution of the sensory stimuli. A perturbative approach is developed to illustrate the relation between the prior information and features in coupling patterns quantitatively. Our results show that a decentralized architecture based on reciprocal connections is able to accommodate complex correlation structures across modalities and utilize this prior information in optimal multisensory integration. This work is supported by the Research Grants Council of Hong Kong (N_HKUST606/12 and 605813) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).

  20. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    PubMed

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Optimal foraging by birds: feeder-based experiments for secondary and post-secondary students

    USDA-ARS?s Scientific Manuscript database

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. Here, we describe three exercises designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These e...

  2. The mean-square error optimal linear discriminant function and its application to incomplete data vectors

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1979-01-01

    In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.

  3. Instructional versus schedule control of humans' choices in situations of diminishing returns

    PubMed Central

    Hackenberg, Timothy D.; Joker, Veronica R.

    1994-01-01

    Four adult humans chose repeatedly between a fixed-time schedule (of points later exchangeable for money) and a progressive-time schedule that began at 0 s and increased by a fixed number of seconds with each point delivered by that schedule. Each point delivered by the fixed-time schedule reset the requirements of the progressive-time schedule to its minimum value. Subjects were provided with instructions that specified a particular sequence of choices. Under the initial conditions, the instructions accurately specified the optimal choice sequence. Thus, control by instructions and optimal control by the programmed contingencies both supported the same performance. To distinguish the effects of instructions from schedule sensitivity, the correspondence between the instructed and optimal choice patterns was gradually altered across conditions by varying the step size of the progressive-time schedule while maintaining the same instructions. Step size was manipulated, typically in 1-s units, first in an ascending and then in a descending sequence of conditions. Instructions quickly established control in all 4 subjects but, by narrowing the range of choice patterns, they reduced subsequent sensitivity to schedule changes. Instructional control was maintained across the ascending sequence of progressive-time values for each subject, but eventually diminished, giving way to more schedule-appropriate patterns. The transition from instruction-appropriate to schedule-appropriate behavior was characterized by an increase in the variability of choice patterns and local increases in point density. On the descending sequence of progressive-time values, behavior appeared to be schedule sensitive, sometimes even optimally sensitive, but it did not always change systematically with the contingencies, suggesting the involvement of other factors. PMID:16812747

  4. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.

  5. Design intent optimization at the beyond 7nm node: the intersection of DTCO and EUVL stochastic mitigation techniques

    NASA Astrophysics Data System (ADS)

    Crouse, Michael; Liebmann, Lars; Plachecki, Vince; Salama, Mohamed; Chen, Yulu; Saulnier, Nicole; Dunn, Derren; Matthew, Itty; Hsu, Stephen; Gronlund, Keith; Goodwin, Francis

    2017-03-01

    The initial readiness of EUV patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. Thus, Design Technology Co-optimization (DTCO) has become a critical part of technology enablement as scaling has become more challenging and the industry pushes the limits of EUV lithography. The working partnership between the design teams and the process development teams typically involves an iterative approach to evaluate the manufacturability of proposed designs, subsequent modifications to those designs and finally a design manual for the technology. While this approach has served the industry well for many generations, the challenges at the Beyond 7nm node require a more efficient approach. In this work, we describe the use of "Design Intent" lithographic layout optimization where we remove the iterative component of DTCO and replace it with an optimization that achieves both a "patterning friendly" design and minimizes the well-known EUV stochastic effects. Solved together, this "design intent" approach can more quickly achieve superior lithographic results while still meeting the original device's functional specifications. Specifically, in this work we will demonstrate "design intent" optimization for critical BEOL layers using design tolerance bands to guide the source mask co-optimization. The design tolerance bands can be either supplied as part of the original design or derived from some basic rules. Additionally, the EUV stochastic behavior is mitigated by enhancing the image log slope (ILS) for specific key features as part of the overall optimization. We will show the benefit of the "design intent approach" on both bidirectional and unidirectional 28nm min pitch standard logic layouts and compare the more typical iterative SMO approach. Thus demonstrating the benefit of allowing the design to float within the specified range. Lastly, we discuss how the evolution of this approach could lead to layout optimization based entirely on some minimal set of functional requirements and process constraints.

  6. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  7. Optimizing congestion and emissions via tradable credit charge and reward scheme without initial credit allocations

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang

    2017-01-01

    This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bales, Benjamin B; Barrett, Richard F

    In almost all modern scientific applications, developers achieve the greatest performance gains by tuning algorithms, communication systems, and memory access patterns, while leaving low level instruction optimizations to the compiler. Given the increasingly varied and complicated x86 architectures, the value of these optimizations is unclear, and, due to time and complexity constraints, it is difficult for many programmers to experiment with them. In this report we explore the potential gains of these 'last mile' optimization efforts on an AMD Barcelona processor, providing readers with relevant information so that they can decide whether investment in the presented optimizations is worthwhile.

  9. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  10. A genetic programming approach for Burkholderia Pseudomallei diagnostic pattern discovery

    PubMed Central

    Yang, Zheng Rong; Lertmemongkolchai, Ganjana; Tan, Gladys; Felgner, Philip L.; Titball, Richard

    2009-01-01

    Motivation: Finding diagnostic patterns for fighting diseases like Burkholderia pseudomallei using biomarkers involves two key issues. First, exhausting all subsets of testable biomarkers (antigens in this context) to find a best one is computationally infeasible. Therefore, a proper optimization approach like evolutionary computation should be investigated. Second, a properly selected function of the antigens as the diagnostic pattern which is commonly unknown is a key to the diagnostic accuracy and the diagnostic effectiveness in clinical use. Results: A conversion function is proposed to convert serum tests of antigens on patients to binary values based on which Boolean functions as the diagnostic patterns are developed. A genetic programming approach is designed for optimizing the diagnostic patterns in terms of their accuracy and effectiveness. During optimization, it is aimed to maximize the coverage (the rate of positive response to antigens) in the infected patients and minimize the coverage in the non-infected patients while maintaining the fewest number of testable antigens used in the Boolean functions as possible. The final coverage in the infected patients is 96.55% using 17 of 215 (7.4%) antigens with zero coverage in the non-infected patients. Among these 17 antigens, BPSL2697 is the most frequently selected one for the diagnosis of Burkholderia Pseudomallei. The approach has been evaluated using both the cross-validation and the Jack–knife simulation methods with the prediction accuracy as 93% and 92%, respectively. A novel approach is also proposed in this study to evaluate a model with binary data using ROC analysis. Contact: z.r.yang@ex.ac.uk PMID:19561021

  11. A spectral model for signal elements isolated from zebrafish photopic electroretinogram

    PubMed Central

    Nelson, Ralph; Singla, Nirmish

    2009-01-01

    The zebrafish photopic ERG sums isolatable elements. In each element red, blue, green and UV (r, g, b, u) cone signals combine in a way that reflects retinal organization. ERG responses to monochromatic stimuli of different wavelengths and irradiances were recorded on a white, rod suppressing background using superfused eyecups. Onset elements were isolated with glutamatergic blockers and response subtractions. CNQX blocked ionotropic (AMPA/kainate) glutamate receptors; L-AP4 or CPPG blocked metabotropic (mGluR6) glutamate receptors; TBOA blocked glutamate transporters; and L-Aspartate inactivated all glutamatergic mechanisms. Seven elements emerged: photopic PIII, the L-Aspartate-isolated cone response; b1, a CNQX-sensitive early b-wave element of inner retinal origin; PII, a photopic, CNQX-insensitive, composite b-wave element from ON bipolar cells; PIIm, an L-AP4/CPPG-sensitive, CNQX-insensitive metabotropic sub-element of PII; PIInm, an L-AP4/CPPG/CNQX-insensitive, non-metabotropic sub-element of PII; a1nm, a TBOA-sensitive, CNQX/L-AP4/CPPG-insensitive, non-metabotropic, post-photoreceptor a-wave element; and a2, a CNQX-sensitive a-wave element linked to OFF bipolar cells. The first five elements were fit with a spectral model that demonstrates independence of cone color pathways. From this Vmax and half-saturation values (k) for the contributing r- g- b- and u-cone signals were calculated. Two signal patterns emerged. For PIII or PIInm the Vmax order was Vr > Vg ≫ Vb ≈ Vu. For b1, PII, and PIIm the Vmax order was Vr ≈ Vb > Vg > Vu. In either pattern u-cone amplitude (Vu) was smallest, but u-cone sensitivity (ku362) was greatest, some 10-30 times greater than r-cone (kr570). The spectra of b1/PII/PIIm elements peaked near b-cone and u-cone absorbance maxima regardless of criteria, but the spectra of PIII/PIInm elements shifted from b- towards r-cone absorbance maxima as criterion levels increased. The greatest gains in Vmax relative to PIII occurred for the b- and u-cone signals in the b1/PII/PIIm b-wave elements. This suggests a high-gain, prolific metabotropic circuitry for b- and u-cone bipolar cells. PMID:19723365

  12. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

    PubMed

    Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio

    2012-03-12

    We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

  13. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies.

    PubMed

    Willmott, Keith R; Robinson Willmott, Julia C; Elias, Marianne; Jiggins, Chris D

    2017-05-31

    Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. © 2017 The Author(s).

  14. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies

    PubMed Central

    Robinson Willmott, Julia C.

    2017-01-01

    Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. PMID:28539522

  15. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    PubMed

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  16. Method for depleting BWRs using optimal control rod patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1991-01-01

    Control rod (CR) programming is an essential core management activity for boiling water reactors (BWRs). After establishing a core reload design for a BWR, CR programming is performed to develop a sequence of exposure-dependent CR patterns that assure the safe and effective depletion of the core through a reactor cycle. A time-variant target power distribution approach has been assumed in this study. The authors have developed OCTOPUS to implement a new two-step method for designing semioptimal CR programs for BWRs. The optimization procedure of OCTOPUS is based on the method of approximation programming and uses the SIMULATE-E code for nucleonicsmore » calculations.« less

  17. Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables

    NASA Astrophysics Data System (ADS)

    Khellat, M. R.; Mirjalili, A.

    2017-03-01

    We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.

  18. Generalized Pattern Search methods for a class of nonsmooth optimization problems with structure

    NASA Astrophysics Data System (ADS)

    Bogani, C.; Gasparo, M. G.; Papini, A.

    2009-07-01

    We propose a Generalized Pattern Search (GPS) method to solve a class of nonsmooth minimization problems, where the set of nondifferentiability is included in the union of known hyperplanes and, therefore, is highly structured. Both unconstrained and linearly constrained problems are considered. At each iteration the set of poll directions is enforced to conform to the geometry of both the nondifferentiability set and the boundary of the feasible region, near the current iterate. This is the key issue to guarantee the convergence of certain subsequences of iterates to points which satisfy first-order optimality conditions. Numerical experiments on some classical problems validate the method.

  19. Patterns of Entrepreneurial Career Development: An Optimal Matching Analysis Approach

    ERIC Educational Resources Information Center

    Zacher, Hannes; Biemann, Torsten; Gielnik, Michael M.; Frese, Michael

    2012-01-01

    Longitudinal studies of entrepreneurial career development are rare, and current knowledge of self-employment patterns and their relationships with individual difference characteristics is limited. In this study, the authors analyzed employment data from a subsample of 514 participants from the German Socio-Economic Panel study (1984-2008).…

  20. VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN

    EPA Science Inventory

    Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...

  1. Adolescent Sleep Patterns: Biological, Social, and Psychological Influences.

    ERIC Educational Resources Information Center

    Carskadon, Mary A., Ed.

    Noting that healthy, adequate sleep fosters longevity and the optimal use of waking hours, and that adolescents, although rarely included in previous studies of sleep, are among the most sleep-deprived populations, this book explores the genesis and development of sleep patterns during adolescence, including biological and cultural factors that…

  2. Particle Swarm Optimization with Double Learning Patterns

    PubMed Central

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  3. The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.

    PubMed

    Norris, Dennis

    2006-04-01

    This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).

  4. Implementing the optimal provision of ecosystem services

    PubMed Central

    Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Nelson, Erik

    2014-01-01

    Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners’ costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information. PMID:24722635

  5. Implementing the optimal provision of ecosystem services.

    PubMed

    Polasky, Stephen; Lewis, David J; Plantinga, Andrew J; Nelson, Erik

    2014-04-29

    Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners' costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information.

  6. Advanced fast 3D DSA model development and calibration for design technology co-optimization

    NASA Astrophysics Data System (ADS)

    Lai, Kafai; Meliorisz, Balint; Muelders, Thomas; Welling, Ulrich; Stock, Hans-Jürgen; Marokkey, Sajan; Demmerle, Wolfgang; Liu, Chi-Chun; Chi, Cheng; Guo, Jing

    2017-04-01

    Direct Optimization (DO) of a 3D DSA model is a more optimal approach to a DTCO study in terms of accuracy and speed compared to a Cahn Hilliard Equation solver. DO's shorter run time (10X to 100X faster) and linear scaling makes it scalable to the area required for a DTCO study. However, the lack of temporal data output, as opposed to prior art, requires a new calibration method. The new method involves a specific set of calibration patterns. The calibration pattern's design is extremely important when temporal data is absent to obtain robust model parameters. A model calibrated to a Hybrid DSA system with a set of device-relevant constructs indicates the effectiveness of using nontemporal data. Preliminary model prediction using programmed defects on chemo-epitaxy shows encouraging results and agree qualitatively well with theoretical predictions from a strong segregation theory.

  7. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGES

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; ...

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  8. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  9. Vasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular vasopressin neurons.

    PubMed

    Gouzènes, L; Desarménien, M G; Hussy, N; Richard, P; Moos, F C

    1998-03-01

    Vasopressin (AVP) magnocellular neurons of hypothalamic nuclei express specific phasic firing (successive periods of activity and silence), which conditions the mode of neurohypophyseal vasopression release. In situations favoring plasmatic secretion of AVP, the hormone is also released at the somatodendritic level, at which it is believed to modulate the activity of AVP neurons. We investigated the nature of this autocontrol by testing the effects of juxtamembrane applications of AVP on the extracellular activity of presumed AVP neurons in paraventricular and supraoptic nuclei of anesthetized rats. AVP had three effects depending on the initial firing pattern: (1) excitation of faintly active neurons (periods of activity of <10 sec), which acquired or reinforced their phasic pattern; (2) inhibition of quasi-continuously active neurons (periods of silences of <10 sec), which became clearly phasic; and (3) no effect on neurons already showing an intermediate phasic pattern (active and silent periods of 10-30 sec). Consequently, AVP application resulted in a narrower range of activity patterns of the population of AVP neurons, with a Gaussian distribution centered around a mode of 57% of time in activity, indicating a homogenization of the firing pattern. The resulting phasic pattern had characteristics close to those established previously for optimal release of AVP from neurohypophyseal endings. These results suggest a new role for AVP as an optimizing factor that would foster the population of AVP neurons to discharge with a phasic pattern known to be most efficient for hormone release.

  10. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    PubMed

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without compromising on food and biofuel production. Optimization runs yielded an optimal cropping pattern with 32% of watershed area in stover removal, 15% in switchgrass and 2% in Miscanthus. The optimal scenario resulted in 14% reduction in nitrate and 22% reduction in total phosphorus from the baseline. This framework can be used as an effective tool to take decisions regarding environmentally and economically sustainable strategies to minimize the nutrient delivery at minimal biomass production cost, while simultaneously meeting food and biofuel production targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Design of a device for sky light polarization measurements.

    PubMed

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  12. Design of a Device for Sky Light Polarization Measurements

    PubMed Central

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  13. Influence of Guidelines and Passageways on Tunneling Behavior of Reticulitermes flavipes (Kollar) and R, virginicus (Banks) (Isoptera: Rhinotermitidae)

    Treesearch

    Theresa L. Pitts-Singer; Brian T. Forschler

    2000-01-01

    Tunneling behavior of laboratory-maintained cultures of Reticulitermes flavipes (Kollar) and R. virginicus (Banks) was examined to determine (1) if the termites build tunnels along preexisting wires or tunnels, and (2) whether tunnels are arranged, to optimize search efficiency. Tunnel patterns were considered optimal if ,...

  14. Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students

    ERIC Educational Resources Information Center

    Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.

    2015-01-01

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…

  15. Self-Protective Optimism: Children's Biased Beliefs about the Stability of Traits

    ERIC Educational Resources Information Center

    Diesendruck, Gil; Lindenbaum, Tali

    2009-01-01

    Studies indicate that children believe that positive behaviors are more likely than negative ones to remain stable across time and situations. The present study assessed whether children hold such optimism equally regarding their own vs. others' behavioral patterns. Thirty five-year-olds answered questions about the extent to which they viewed…

  16. Comparison of Nanohole-Type and Nanopillar-Type Patterned Metallic Electrodes Incorporated in Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Wenyan; Cui, Yanxia; Fung, Kin Hung; Zhang, Ye; Ji, Ting; Hao, Yuying

    2017-09-01

    Both the nanohole- and nanopillar-type patterned metallic electrodes (PMEs) have been introduced in organic solar cells (OSCs) for improving device performances experimentally, but there is few work addressing the similarities and differences between them. In this theoretical work, we systematically compare the impact of the nanohole- and nanopillar-type PMEs on the performance of an OSC based on hybridized cavity resonances. By optimizing the geometrical parameters of each PME, we obtained an interesting result that the integrated absorption efficiencies in the active layer with different optimized PMEs are almost the same (both are equal to 82.4%), outperforming that of the planar control by 9.9%. Though the absorption enhancement spectra of the two different optimal devices are similar as well, the mechanisms of light trapping at the corresponding enhancement peaks are distinct from each other. In a comprehensive view, the nanopillar-type PME is suggested to be applied in the present system, since its optimal design has a moderate filling ratio, which is much easier to fabricate than its counterpart. This work could contribute to the development of high-efficiency OSCs.

  17. Changes in Optimism Are Associated with Changes in Health Over Time Among Older Adults.

    PubMed

    Chopik, William J; Kim, Eric S; Smith, Jacqui

    2015-09-01

    Little is known about how optimism differs by age and changes over time, particularly among older adults. Even less is known about how changes in optimism are related to changes in physical health. We examined age differences and longitudinal changes in optimism in 9,790 older adults over a four-year period. We found an inverted U-shaped pattern between optimism and age both cross-sectionally and longitudinally, such that optimism generally increased in older adults before decreasing. Increases in optimism over a four-year period were associated with improvements in self-rated health and fewer chronic illnesses over the same time frame. The findings from the current study are consistent with changes in emotion regulation strategies employed by older adults and age-related changes in well-being.

  18. The design of a toll plaza

    NASA Astrophysics Data System (ADS)

    Dong, Haibin

    2017-04-01

    In this paper, a model is established to find the optimal shape, size and merging pattern of the toll plaza. The main work is how to take the aspects such as the accident prevention, throughput and cost into consideration to make the model of the toll plaza optimal. By analyzing the match of the number of tollbooths (B) and travel lanes (L) considering safety and cost, the optimal toll plaza model is established when the traffic flow is given.

  19. Applicability of the iterative technique for cardiac resynchronization therapy optimization: full-disclosure, 50-sequential-patient dataset of transmitral Doppler traces, with implications for future research design and guidelines.

    PubMed

    Jones, Siana; Shun-Shin, Matthew J; Cole, Graham D; Sau, Arunashis; March, Katherine; Williams, Suzanne; Kyriacou, Andreas; Hughes, Alun D; Mayet, Jamil; Frenneaux, Michael; Manisty, Charlotte H; Whinnett, Zachary I; Francis, Darrel P

    2014-04-01

    Full-disclosure study describing Doppler patterns during iterative atrioventricular delay (AVD) optimization of biventricular pacemakers (cardiac resynchronization therapy, CRT). Doppler traces of the first 50 eligible patients undergoing iterative Doppler AVD optimization in the BRAVO trial were examined. Three experienced observers classified conformity to guideline-described patterns. Each observer then selected the optimum AVD on two separate occasions: blinded and unblinded to AVD. Four Doppler E-A patterns occurred: A (always merged, 18% of patients), B (incrementally less fusion at short AVDs, 12%), C (full separation at short AVDs, as described by the guidelines, 28%), and D (always separated, 42%). In Groups A and D (60%), the iterative guidelines therefore cannot specify one single AVD. On the kappa scale (0 = chance alone; 1 = perfect agreement), observer agreement for the ideal AVD in Classes B and C was poor (0.32) and appeared worse in Groups A and D (0.22). Blinding caused the scattering of the AVD selected as optimal to widen (standard deviation rising from 37 to 49 ms, P < 0.001). By blinding 28% of the selected optimum AVDs were ≤60 or ≥200 ms. All 50 Doppler datasets are presented, to support future methodological testing. In most patients, the iterative method does not clearly specify one AVD. In all the patients, agreement on the ideal AVD between skilled observers viewing identical images is poor. The iterative protocol may successfully exclude some extremely unsuitable AVDs, but so might simply accepting factory default. Irreproducibility of the gold standard also prevents alternative physiological optimization methods from being validated honestly.

  20. Ultra-high enhancement of light focusing through disordered media controlled by mega-pixel modes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun

    2017-02-01

    Developing an efficient strategy for light focusing through scattering media is an important topic in the study of multiple light scattering. The enhancement factor of the light focusing, defined as the ratio between the optimized intensity and the background intensity is proportional to the number of controlling modes in a spatial light modulator (SLM). The demonstrated enhancement factors in previous studies are typically less than 1,000 due to several limiting factors, such as the slow refresh rate of a LCoS SLM, long optimization time, and lack of an efficient algorithm for high controlling modes. A digital micro-mirror device is an amplitude modulator, which is recently widely used for fast optimization through dynamic biological tissues. The fast frame rate of the DMD up to 16 kHz can also be exploited for increasing the number of controlling modes. However, the manipulation of large pattern data and efficient calculation of the optimized pattern remained as an issue. In this work, we demonstrate the enhancement factor more than 100,000 in focusing through scattering media by using 1 Mega controlling modes of a DMD. Through careful synchronization between a DMD, a photo-detector and an additional computer for parallel optimization, we achieved the unprecedented enhancement factor with 75 mins of the optimization time. We discuss the design principles of the system and the possible applications of the enhanced light focusing.

  1. Concurrent design of quasi-random photonic nanostructures

    PubMed Central

    Lee, Won-Kyu; Yu, Shuangcheng; Engel, Clifford J.; Reese, Thaddeus; Rhee, Dongjoon; Chen, Wei

    2017-01-01

    Nanostructured surfaces with quasi-random geometries can manipulate light over broadband wavelengths and wide ranges of angles. Optimization and realization of stochastic patterns have typically relied on serial, direct-write fabrication methods combined with real-space design. However, this approach is not suitable for customizable features or scalable nanomanufacturing. Moreover, trial-and-error processing cannot guarantee fabrication feasibility because processing–structure relations are not included in conventional designs. Here, we report wrinkle lithography integrated with concurrent design to produce quasi-random nanostructures in amorphous silicon at wafer scales that achieved over 160% light absorption enhancement from 800 to 1,200 nm. The quasi-periodicity of patterns, materials filling ratio, and feature depths could be independently controlled. We statistically represented the quasi-random patterns by Fourier spectral density functions (SDFs) that could bridge the processing–structure and structure–performance relations. Iterative search of the optimal structure via the SDF representation enabled concurrent design of nanostructures and processing. PMID:28760975

  2. An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

    PubMed

    Yang, Yifei; Tan, Minjia; Dai, Yuewei

    2017-01-01

    A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.

  3. Systematic study of source mask optimization and verification flows

    NASA Astrophysics Data System (ADS)

    Ben, Yu; Latypov, Azat; Chua, Gek Soon; Zou, Yi

    2012-06-01

    Source mask optimization (SMO) emerged as powerful resolution enhancement technique (RET) for advanced technology nodes. However, there is a plethora of flow and verification metrics in the field, confounding the end user of the technique. Systemic study of different flows and the possible unification thereof is missing. This contribution is intended to reveal the pros and cons of different SMO approaches and verification metrics, understand the commonality and difference, and provide a generic guideline for RET selection via SMO. The paper discusses 3 different type of variations commonly arise in SMO, namely pattern preparation & selection, availability of relevant OPC recipe for freeform source and finally the metrics used in source verification. Several pattern selection algorithms are compared and advantages of systematic pattern selection algorithms are discussed. In the absence of a full resist model for SMO, alternative SMO flow without full resist model is reviewed. Preferred verification flow with quality metrics of DOF and MEEF is examined.

  4. Exploring the patterns and evolution of self-organized urban street networks through modeling

    NASA Astrophysics Data System (ADS)

    Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan

    2013-03-01

    As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.

  5. Study on loading coefficient in steam explosion process of corn stalk.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Modelling Carbon Emissions in Calluna vulgaris-Dominated Ecosystems when Prescribed Burning and Wildfires Interact.

    PubMed

    Santana, Victor M; Alday, Josu G; Lee, HyoHyeMi; Allen, Katherine A; Marrs, Rob H

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions.

  7. Parallel Algorithms and Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, Robert W.

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  8. Optimal Ranking Regime Analysis of TreeFlow Dendrohydrological Reconstructions

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.

    2017-12-01

    The Optimal Ranking Regime (ORR) method was used to identify 6-100 year time windows containing significant ranking sequences in 55 western U.S. streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method's ability to identify optimally significant and non-overlapping runs of low and high rankings allows it to re-express a reconstruction time series as a simplified sequence of regime segments marking intra- to multi-decadal (IMD) periods of low or high streamflow, lake level, or salinity. Those ORR sequences, referred to here as Z-lines, can be plotted to identify consistent regime patterns in the analysis of numerous reconstructions. The Z-lines for the 57 reconstructions evaluated here show a common pattern of IMD cycles of drought and pluvial periods during the late 16th and 17th centuries, a relatively dormant period during the 18th century, and the reappearance of alternating dry and wet IMD periods during the 19th and early 20th centuries. Although this pattern suggests the possibility of similarly active and inactive oceanic modes in the North Pacific and North Atlantic, such centennial-scale patterns are not evident in the ORR analyses of reconstructed Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation, and North Atlantic seas-surface temperature variation. But given the inconsistency in the analyses of four PDO reconstructions the possible role of centennial-scale oceanic mechanisms is uncertain. In future research the ORR method might be applied to climate reconstructions around the Pacific Basin to try to resolve this uncertainty. Given its ability to compare regime patterns in climate reconstructions derived using different methods and proxies, the method may also be used in future research to evaluate long-term regional temperature reconstructions.

  9. Career Patterns: A Twenty-Year Panel Study

    ERIC Educational Resources Information Center

    Biemann, Torsten; Zacher, Hannes; Feldman, Daniel C.

    2012-01-01

    Using 20years of employment and job mobility data from a representative German sample (N = 1259), we employ optimal matching analysis (OMA) to identify six career patterns which deviate from the traditional career path of long-term, full-time employment in one organization. Then, in further analyses, we examine which socio-demographic predictors…

  10. USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative

    DTIC Science & Technology

    2012-11-01

    gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture Overloading the bone due to excessive running...Excessively tight iliotibial band Hip musculature weakness (e.g. gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture ...Anatomic Location Specific Injuries Probable Causes All lower extremity is at risk for injury during this exercise Foot fractures Improper

  11. Optimal Scaling of HIV-Related Sexual Risk Behaviors in Ethnically Diverse Homosexually Active Men.

    ERIC Educational Resources Information Center

    Cochran, Susan D.; And Others

    1995-01-01

    Used homogeneity analysis and latent class analysis to analyze sexual behavior patterns in two samples of homosexually active men. Results support the existence of a single, nonlinear, latent dimension underlying male homosexual behaviors consistent with HIV-related risk taking, providing an efficient means to scale sexual behavior patterns. (RJM)

  12. A musculoskeletal foot model for clinical gait analysis.

    PubMed

    Saraswat, Prabhav; Andersen, Michael S; Macwilliams, Bruce A

    2010-06-18

    Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion-extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6+/-1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns. Published by Elsevier Ltd.

  13. Hydrodynamics of freely swimming flagellates

    NASA Astrophysics Data System (ADS)

    Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders

    2016-11-01

    Flagellates are a diverse group of unicellular organisms forming an important part of the marine ecosystem. The arrangement of flagella around the cell serves as a key trait optimizing and compromising essential functions. With micro-particle image velocimetry we observed time-resolved near-cell flows around freely swimming flagellates, and we developed an analytical model based on the Stokes flow around a solid sphere propelled by a variable number of differently placed, temporally varying point forces, each representing one flagellum. The model allows us to reproduce the observed flow patterns and swimming dynamics, and to extract quantities such as swimming velocities and prey clearance rates as well as flow disturbances revealing the organism to flow-sensing predators. Our results point to optimal flagellar arrangements and beat patterns, and essential trade-offs. For biflagellates with two symmetrically arranged flagella we contrasted two species using undulatory and ciliary beat patterns, respectively, and found breast-stroke type beat patterns with equatorial power strokes to be favorable for fast as well as quiet swimming. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  14. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused uponmore » covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.« less

  15. Modeling optimal treatment strategies in a heterogeneous mixing model.

    PubMed

    Choe, Seoyun; Lee, Sunmi

    2015-11-25

    Many mathematical models assume random or homogeneous mixing for various infectious diseases. Homogeneous mixing can be generalized to mathematical models with multi-patches or age structure by incorporating contact matrices to capture the dynamics of the heterogeneously mixing populations. Contact or mixing patterns are difficult to measure in many infectious diseases including influenza. Mixing patterns are considered to be one of the critical factors for infectious disease modeling. A two-group influenza model is considered to evaluate the impact of heterogeneous mixing on the influenza transmission dynamics. Heterogeneous mixing between two groups with two different activity levels includes proportionate mixing, preferred mixing and like-with-like mixing. Furthermore, the optimal control problem is formulated in this two-group influenza model to identify the group-specific optimal treatment strategies at a minimal cost. We investigate group-specific optimal treatment strategies under various mixing scenarios. The characteristics of the two-group influenza dynamics have been investigated in terms of the basic reproduction number and the final epidemic size under various mixing scenarios. As the mixing patterns become proportionate mixing, the basic reproduction number becomes smaller; however, the final epidemic size becomes larger. This is due to the fact that the number of infected people increases only slightly in the higher activity level group, while the number of infected people increases more significantly in the lower activity level group. Our results indicate that more intensive treatment of both groups at the early stage is the most effective treatment regardless of the mixing scenario. However, proportionate mixing requires more treated cases for all combinations of different group activity levels and group population sizes. Mixing patterns can play a critical role in the effectiveness of optimal treatments. As the mixing becomes more like-with-like mixing, treating the higher activity group in the population is almost as effective as treating the entire populations since it reduces the number of disease cases effectively but only requires similar treatments. The gain becomes more pronounced as the basic reproduction number increases. This can be a critical issue which must be considered for future pandemic influenza interventions, especially when there are limited resources available.

  16. Stochastic many-body problems in ecology, evolution, neuroscience, and systems biology

    NASA Astrophysics Data System (ADS)

    Butler, Thomas C.

    Using the tools of many-body theory, I analyze problems in four different areas of biology dominated by strong fluctuations: The evolutionary history of the genetic code, spatiotemporal pattern formation in ecology, spatiotemporal pattern formation in neuroscience and the robustness of a model circadian rhythm circuit in systems biology. In the first two research chapters, I demonstrate that the genetic code is extremely optimal (in the sense that it manages the effects of point mutations or mistranslations efficiently), more than an order of magnitude beyond what was previously thought. I further show that the structure of the genetic code implies that early proteins were probably only loosely defined. Both the nature of early proteins and the extreme optimality of the genetic code are interpreted in light of recent theory [1] as evidence that the evolution of the genetic code was driven by evolutionary dynamics that were dominated by horizontal gene transfer. I then explore the optimality of a proposed precursor to the genetic code. The results show that the precursor code has only limited optimality, which is interpreted as evidence that the precursor emerged prior to translation, or else never existed. In the next part of the dissertation, I introduce a many-body formalism for reaction-diffusion systems described at the mesoscopic scale with master equations. I first apply this formalism to spatially-extended predator-prey ecosystems, resulting in the prediction that many-body correlations and fluctuations drive population cycles in time, called quasicycles. Most of these results were previously known, but were derived using the system size expansion [2, 3]. I next apply the analytical techniques developed in the study of quasi-cycles to a simple model of Turing patterns in a predator-prey ecosystem. This analysis shows that fluctuations drive the formation of a new kind of spatiotemporal pattern formation that I name "quasi-patterns." These quasi-patterns exist over a much larger range of physically accessible parameters than the patterns predicted in mean field theory and therefore account for the apparent observations in ecology of patterns in regimes where Turing patterns do not occur. I further show that quasi-patterns have statistical properties that allow them to be distinguished empirically from mean field Turing patterns. I next analyze a model of visual cortex in the brain that has striking similarities to the activator-inhibitor model of ecosystem quasi-pattern formation. Through analysis of the resulting phase diagram, I show that the architecture of the neural network in the visual cortex is configured to make the visual cortex robust to unwanted internally generated spatial structure that interferes with normal visual function. I also predict that some geometric visual hallucinations are quasi-patterns and that the visual cortex supports a new phase of spatially scale invariant behavior present far from criticality. In the final chapter, I explore the effects of fluctuations on cycles in systems biology, specifically the pervasive phenomenon of circadian rhythms. By exploring the behavior of a generic stochastic model of circadian rhythms, I show that the circadian rhythm circuit exploits leaky mRNA production to safeguard the cycle from failure. I also show that this safeguard mechanism is highly robust to changes in the rate of leaky mRNA production. Finally, I explore the failure of the deterministic model in two different contexts, one where the deterministic model predicts cycles where they do not exist, and another context in which cycles are not predicted by the deterministic model.

  17. Signatures of active and passive optimized Lévy searching in jellyfish.

    PubMed

    Reynolds, Andy M

    2014-10-06

    Some of the strongest empirical support for Lévy search theory has come from telemetry data for the dive patterns of marine predators (sharks, bony fishes, sea turtles and penguins). The dive patterns of the unusually large jellyfish Rhizostoma octopus do, however, sit outside of current Lévy search theory which predicts that a single search strategy is optimal. When searching the water column, the movement patterns of these jellyfish change over time. Movement bouts can be approximated by a variety of Lévy and Brownian (exponential) walks. The adaptive value of this variation is not known. On some occasions movement pattern data are consistent with the jellyfish prospecting away from a preferred depth, not finding an improvement in conditions elsewhere and so returning to their original depth. This 'bounce' behaviour also sits outside of current Lévy walk search theory. Here, it is shown that the jellyfish movement patterns are consistent with their using optimized 'fast simulated annealing'--a novel kind of Lévy walk search pattern--to locate the maximum prey concentration in the water column and/or to locate the strongest of many olfactory trails emanating from more distant prey. Fast simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a large search space. This new finding shows that the notion of active optimized Lévy walk searching is not limited to the search for randomly and sparsely distributed resources, as previously thought, but can be extended to embrace other scenarios, including that of the jellyfish R. octopus. In the presence of convective currents, it could become energetically favourable to search the water column by riding the convective currents. Here, it is shown that these passive movements can be represented accurately by Lévy walks of the type occasionally seen in R. octopus. This result vividly illustrates that Lévy walks are not necessarily the result of selection pressures for advantageous searching behaviour but can instead arise freely and naturally from simple processes. It also shows that the family of Lévy walkers is vastly larger than previously thought and includes spores, pollens, seeds and minute wingless arthropods that on warm days disperse passively within the atmospheric boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Post-decomposition optimizations using pattern matching and rule-based clustering for multi-patterning technology

    NASA Astrophysics Data System (ADS)

    Wang, Lynn T.-N.; Madhavan, Sriram

    2018-03-01

    A pattern matching and rule-based polygon clustering methodology with DFM scoring is proposed to detect decomposition-induced manufacturability detractors and fix the layout designs prior to manufacturing. A pattern matcher scans the layout for pre-characterized patterns from a library. If a pattern were detected, rule-based clustering identifies the neighboring polygons that interact with those captured by the pattern. Then, DFM scores are computed for the possible layout fixes: the fix with the best score is applied. The proposed methodology was applied to two 20nm products with a chip area of 11 mm2 on the metal 2 layer. All the hotspots were resolved. The number of DFM spacing violations decreased by 7-15%.

  19. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  20. Socially Optimized Learning in a Virtual Environment: Reducing Risky Sexual Behavior among Men Who Have Sex with Men

    ERIC Educational Resources Information Center

    Read, Stephen J.; Miller, Lynn C.; Appleby, Paul Robert; Nwosu, Mary E.; Reynaldo, Sadina; Lauren, Ada; Putcha, Anila

    2006-01-01

    A socially optimized learning approach, which integrates diverse theoretical perspectives, places men who have sex with men (MSM) in an interactive virtual environment designed to simulate the emotional, interpersonal, and contextual narrative of an actual sexual encounter while challenging and changing MSM's more automatic patterns of risky…

  1. A Model for Determining School District Cash Flow Needs.

    ERIC Educational Resources Information Center

    Dembowski, Frederick L.

    This paper discusses a model to optimize cash management in school districts. A brief discussion of the cash flow pattern of school districts is followed by an analysis of the constraints faced by the school districts in their investment planning process. A linear programming model used to optimize net interest earnings on investments is developed…

  2. A Systematic Software, Firmware, and Hardware Codesign Methodology for Digital Signal Processing

    DTIC Science & Technology

    2014-03-01

    possible mappings ...................................................60 Table 25. Possible optimal leaf -nodes... size weight and power UAV unmanned aerial vehicle UHF ultra-high frequency UML universal modeling language Verilog verify logic VHDL VHSIC...optimal leaf -nodes to some design patterns for embedded system design. Software and hardware partitioning is a very difficult challenge in the field of

  3. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.

  4. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    PubMed

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  5. The unusual association of inverse retinitis pigmentosa and Fuchs' heterochromic iridocyclitis.

    PubMed

    Díez-Cattini, Gian Franco; Ancona-Lezama, David Arturo; Valdés-Lara, Carlos; Morales-Cantón, Virgilio

    2017-01-01

    Classic retinitis pigmentosa (RP) and other syndromic variants have previously been associated to Fuchs' heterochromic iridocyclitis (FHI). Common immunogenic and inflammatory pathways have been proposed to explain the higher incidence of this uveitic phenomenon in patients with retinal dystrophies without definitive answers. Infrequent variants of RP such as inverse RP have not been previously reported in association with FHI. We believe that finding the way these entities connect can shed some light into their complex pathogenesis and help find ways to foresee and prevent the appearance of complications such as cataract and macular edema. We present a 15 year old mexican male with history of nyctalopia and rapid, progressive visual loss since infancy who had profound hyper and hypopigmented retinal pigment epithelium changes in the posterior pole together with pigment clumping in the macula of both eyes and an electroretinogram pattern consistent of rod-cone dystrophy. He was diagnosed with inverse RP. Three years after his first visit he was found to have a mild asymptomatic non granulomatous anterior uveitis in the right eye with fine stellate keratic precipitates and subtle iris stromal atrophy not associated with iris synechiae and without evidence of posterior uveitis or findings consistent with infectious etiology. Findings were consistent with FHI. As the patient was normotensive, the lens was transparent and there was no clinical evidence of macular edema, the patient was kept under observation without treatment. Patients with RP are prone to develop chronic, low grade inflammation responses similar to the ones present in FHI. This association makes us believe that immunogenetic pathways involved in the degenerative process that leads to photoreceptor loss may become a target in the prevention and treatment of inflammatory complications in RP and disease progression. It also suggests FHI may be a triggered response predisposed by an unidentified genetic factor that may be related to genes affected in RP and thus be identified before irreversible complications such as glaucoma occur.

  6. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families

    PubMed Central

    Srilekha, Sundaramurthy; Arokiasamy, Tharigopala; Srikrupa, Natarajan N.; Umashankar, Vetrivel; Meenakshi, Swaminathan; Sen, Parveen; Kapur, Suman; Soumittra, Nagasamy

    2015-01-01

    Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 – 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier. PMID:26147992

  7. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families.

    PubMed

    Srilekha, Sundaramurthy; Arokiasamy, Tharigopala; Srikrupa, Natarajan N; Umashankar, Vetrivel; Meenakshi, Swaminathan; Sen, Parveen; Kapur, Suman; Soumittra, Nagasamy

    2015-01-01

    Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 - 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier.

  8. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system function after developmental exposure to gasoline, E15, and E85 vapors.

    PubMed

    Herr, David W; Freeborn, Danielle L; Degn, Laura; Martin, Sheppard A; Ortenzio, Jayna; Pantlin, Lara; Hamm, Charles W; Boyes, William K

    2016-01-01

    The use of gasolines blended with a range of ethanol concentrations may result in inhalation of vapors containing a variable combination of ethanol with other volatile gasoline constituents. The possibility of exposure and potential interactions between vapor constituents suggests the need to evaluate the possible risks of this complex mixture. Previously we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Here we report an evaluation using the same battery of sensory function testing in offspring of pregnant dams exposed during gestation to condensed vapors of gasoline (E0), gasoline blended with 15% ethanol (E15) or gasoline blended with 85% ethanol (E85). Pregnant Long-Evans rats were exposed to target concentrations 0, 3000, 6000, or 9000 ppm total hydrocarbon vapors for 6.5h/day over GD9 - GD20. Sensory evaluations of male offspring began as adults. The electrophysiological testing battery included tests of: peripheral nerve (compound action potentials, nerve conduction velocity [NCV]), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual functions. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, dark-adapted (scotopic) electroretinograms (ERGs), light-adapted (photopic) ERGs, and green flicker ERGs. The results included sporadic statistically significant effects, but the observations were not consistently concentration-related and appeared to be statistical Type 1 errors related to multiple dependent measures evaluated. The exposure concentrations were much higher than can be reasonably expected from typical exposures to the general population during refueling or other common exposure situations. Overall the results indicate that gestational exposure of male rats to ethanol/gasoline vapor combinations did not cause detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.

  9. Effects of nicergoline on the retinal and cortical electrophysiological responses in glaucoma patients: a preliminary open study.

    PubMed

    Parisi, V; Colacino, G; Milazzo, G; Scuderi, A C; Manni, G

    1999-09-01

    The retinal dysfunction and the delayed visual cortex responses shown by patients affected by glaucoma can be objectively assessed by Pattern Electroretinogram (PERG) and Visual Evoked Potentials (VEP) recordings. The present study aims to evaluate the effects of nicergoline on the retinal function and on the visual cortical responses in glaucoma patients. Sixty patients (mean age 44.6+/-3.7) with open angle glaucoma were enrolled. The patients were divided into two groups: NG Group, where 30 patients were treated with nicergoline (Cebran((R)), 2 cps day) for 30 days; and CG Group, where 30 patients were not treated. Simultaneous recordings of PERG and VEP were performed in NG patients at the baseline, at 30 days after treatment with nicergoline (day 30), and at 45 days from the end of the treatment (day 75). PERG and VEP were recorded in CG patients at the baseline and after 30 and 75 days. The visual stimulus for recording PERGs and VEPs was a checkerboard whose elements subtended a visual arc of 60' and 15' with a 70% contrast, and alternated at a frequency of 2 Hz. At the baseline none of the electrophysiological parameters observed in NG Group patients differed (P>0.05) from those of CG Group patients. At days 30 and 75, in CG Group patients the values of the PERG and VEP parameters were unmodified (P>0.05) with respect to the baseline. In NG Group patients, the 30-day treatment period with nicergoline induced a significant (P<0.01) improvement of the PERG and VEP parameters. At day 75 all the electrophysiological parameters of NG Group did not differ significantly (P>0.05) from those at the baseline. Treatment with nicergoline induces an improvement of the retinal function and of the visual cortical responses in patients affected by glaucoma. This effect disappears within 45 days after the suspension of the treatment. Copyright 1999 Academic Press.

  10. Doping dependence of the anisotropic quasiparticle interference in NaFe(1-x)Co(x)As iron-based superconductors.

    PubMed

    Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu

    2014-03-28

    We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.

  11. Changes in Optimism Are Associated with Changes in Health Over Time Among Older Adults

    PubMed Central

    Chopik, William J.; Kim, Eric S.; Smith, Jacqui

    2016-01-01

    Little is known about how optimism differs by age and changes over time, particularly among older adults. Even less is known about how changes in optimism are related to changes in physical health. We examined age differences and longitudinal changes in optimism in 9,790 older adults over a four-year period. We found an inverted U-shaped pattern between optimism and age both cross-sectionally and longitudinally, such that optimism generally increased in older adults before decreasing. Increases in optimism over a four-year period were associated with improvements in self-rated health and fewer chronic illnesses over the same time frame. The findings from the current study are consistent with changes in emotion regulation strategies employed by older adults and age-related changes in well-being. PMID:27114753

  12. Behavioral states may be associated with distinct spatial patterns in electrocorticogram.

    PubMed

    Panagiotides, Heracles; Freeman, Walter J; Holmes, Mark D; Pantazis, Dimitrios

    2011-03-01

    To determine if behavioral states are associated with unique spatial electrocorticographic (ECoG) patterns, we obtained recordings with a microgrid electrode array applied to the cortical surface of a human subject. The array was constructed with the intent of extracting maximal spatial information by optimizing interelectrode distances. A 34-year-old patient with intractable epilepsy underwent intracranial ECoG monitoring after standard methods failed to reveal localization of seizures. During the 8-day period of invasive recording, in addition to standard clinical electrodes a square 1 × 1 cm microgrid array with 64 electrodes (1.25 mm separation) was placed on the right inferior temporal gyrus. Careful review of video recordings identified four extended naturalistic behaviors: reading, conversing on the telephone, looking at photographs, and face-to-face interactions. ECoG activity recorded with the microgrid that corresponded to these behaviors was collected and ECoG spatial patterns were analyzed. During periods of ECoG selected for analysis, no electrographic seizures or epileptiform patterns were present. Moments of maximal spatial variance are shown to cluster by behavior. Comparisons between conditions using a permutation test reveal significantly different spatial patterns for each behavior. We conclude that ECoG recordings obtained on the cortical surface with optimal high spatial frequency resolution reveal distinct local spatial patterns that reflect different behavioral states, and we predict that similar patterns will be found in many if not most cortical areas on which a microgrid is placed.

  13. Is countershading camouflage robust to lighting change due to weather?

    PubMed

    Penacchio, Olivier; Lovell, P George; Harris, Julie M

    2018-02-01

    Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering 'optimal' camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a 'generic' predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target 'prey'. We set these items in two light environments: strongly directional 'sunny' and more diffuse 'cloudy'. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage.

  14. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  15. Virological patterns of HCV patients with failure to interferon-free regimens.

    PubMed

    Starace, Mario; Minichini, Carmine; De Pascalis, Stefania; Macera, Margherita; Occhiello, Laura; Messina, Vincenzo; Sangiovanni, Vincenzo; Adinolfi, Luigi E; Claar, Ernesto; Precone, Davide; Stornaiuolo, Gianfranca; Stanzione, Maria; Ascione, Tiziana; Caroprese, Mara; Zampino, Rosa; Parrilli, Gianpaolo; Gentile, Ivan; Brancaccio, Giuseppina; Iovinella, Vincenzo; Martini, Salvatore; Masarone, Mario; Fontanella, Luca; Masiello, Addolorata; Sagnelli, Evangelista; Punzi, Rodolfo; Salomone Megna, Angelo; Santoro, Renato; Gaeta, Giovanni B; Coppola, Nicola

    2018-05-01

    The study characterized the virological patterns and the resistance-associated substitutions (RASs) in patients with failure to IFN-free regimens enrolled in the real-life setting. All 87 consecutive HCV patients with failed IFN-free regimens, observed at the laboratory of the University of Campania, were enrolled. All patients had been treated with DAA regimens according to the HCV genotype, international guidelines, and local availability. Sanger sequencing of NS3, NS5A, and NS5B regions was performed at failure by home-made protocols. Of the 87 patients enrolled, 13 (14.9%) showed a misclassified HCV genotype, probably causing DAA failure, 16 had been treated with a sub-optimal DAA regimen, 19 with a simeprevir-based regimen and 39 with an optimal DAA regimen. A major RAS was identified more frequently in the simeprevir regimen group (68.4%) and in the optimal regimen group (74.4%) than in the sub-optimal regimen group (56.3%). The prevalence of RASs in NS3 was similar in the three groups (30.8-57.9%), that in NS5A higher in the optimal regimen group (71.8%) than in the sub-optimal regimen group (12.5%, P < 0.0001) and in the simeprevir regimen group (31.6%, P < 0.0005), and that in NS5B low in all groups (0-25%). RASs in two or more HCV regions were more frequently identified in the optimal regimen group (46.6%) than in the simeprevir-based regimen group (31.6%) and sub-optimal regimen group (18.7%). In our real-life population the prevalence of RASs was high, especially in NS3 and NS5A and in those treated with suitable DAA regimens. © 2018 Wiley Periodicals, Inc.

  16. Fast three-dimensional inner volume excitations using parallel transmission and optimized k-space trajectories.

    PubMed

    Davids, Mathias; Schad, Lothar R; Wald, Lawrence L; Guérin, Bastien

    2016-10-01

    To design short parallel transmission (pTx) pulses for excitation of arbitrary three-dimensional (3D) magnetization patterns. We propose a joint optimization of the pTx radiofrequency (RF) and gradient waveforms for excitation of arbitrary 3D magnetization patterns. Our optimization of the gradient waveforms is based on the parameterization of k-space trajectories (3D shells, stack-of-spirals, and cross) using a small number of shape parameters that are well-suited for optimization. The resulting trajectories are smooth and sample k-space efficiently with few turns while using the gradient system at maximum performance. Within each iteration of the k-space trajectory optimization, we solve a small tip angle least-squares RF pulse design problem. Our RF pulse optimization framework was evaluated both in Bloch simulations and experiments on a 7T scanner with eight transmit channels. Using an optimized 3D cross (shells) trajectory, we were able to excite a cube shape (brain shape) with 3.4% (6.2%) normalized root-mean-square error in less than 5 ms using eight pTx channels and a clinical gradient system (Gmax  = 40 mT/m, Smax  = 150 T/m/s). This compared with 4.7% (41.2%) error for the unoptimized 3D cross (shells) trajectory. Incorporation of B0 robustness in the pulse design significantly altered the k-space trajectory solutions. Our joint gradient and RF optimization approach yields excellent excitation of 3D cube and brain shapes in less than 5 ms, which can be used for reduced field of view imaging and fat suppression in spectroscopy by excitation of the brain only. Magn Reson Med 76:1170-1182, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. A local segmentation parameter optimization approach for mapping heterogeneous urban environments using VHR imagery

    NASA Astrophysics Data System (ADS)

    Grippa, Tais; Georganos, Stefanos; Lennert, Moritz; Vanhuysse, Sabine; Wolff, Eléonore

    2017-10-01

    Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be impossible. Nonetheless, it is possible to subdivide the whole city into smaller local zones, rather homogeneous according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan Africa, is used as case studies. First, the whole scene is segmented using a single globally optimized segmentation parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building density. Each local zone is then segmented using a locally optimized segmentation parameter. Unsupervised segmentation parameter optimization (USPO), relying on an optimization function which tends to maximize both intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings and their bare-soil neighbors.

  18. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    PubMed

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Methodological aspects of an adaptive multidirectional pattern search to optimize speech perception using three hearing-aid algorithms

    NASA Astrophysics Data System (ADS)

    Franck, Bas A. M.; Dreschler, Wouter A.; Lyzenga, Johannes

    2004-12-01

    In this study we investigated the reliability and convergence characteristics of an adaptive multidirectional pattern search procedure, relative to a nonadaptive multidirectional pattern search procedure. The procedure was designed to optimize three speech-processing strategies. These comprise noise reduction, spectral enhancement, and spectral lift. The search is based on a paired-comparison paradigm, in which subjects evaluated the listening comfort of speech-in-noise fragments. The procedural and nonprocedural factors that influence the reliability and convergence of the procedure are studied using various test conditions. The test conditions combine different tests, initial settings, background noise types, and step size configurations. Seven normal hearing subjects participated in this study. The results indicate that the reliability of the optimization strategy may benefit from the use of an adaptive step size. Decreasing the step size increases accuracy, while increasing the step size can be beneficial to create clear perceptual differences in the comparisons. The reliability also depends on starting point, stop criterion, step size constraints, background noise, algorithms used, as well as the presence of drifting cues and suboptimal settings. There appears to be a trade-off between reliability and convergence, i.e., when the step size is enlarged the reliability improves, but the convergence deteriorates. .

  20. Adaptive self-organization of Bali's ancient rice terraces.

    PubMed

    Lansing, J Stephen; Thurner, Stefan; Chung, Ning Ning; Coudurier-Curveur, Aurélie; Karakaş, Çağil; Fesenmyer, Kurt A; Chew, Lock Yue

    2017-06-20

    Spatial patterning often occurs in ecosystems as a result of a self-organizing process caused by feedback between organisms and the physical environment. Here, we show that the spatial patterns observable in centuries-old Balinese rice terraces are also created by feedback between farmers' decisions and the ecology of the paddies, which triggers a transition from local to global-scale control of water shortages and rice pests. We propose an evolutionary game, based on local farmers' decisions that predicts specific power laws in spatial patterning that are also seen in a multispectral image analysis of Balinese rice terraces. The model shows how feedbacks between human decisions and ecosystem processes can evolve toward an optimal state in which total harvests are maximized and the system approaches Pareto optimality. It helps explain how multiscale cooperation from the community to the watershed scale could persist for centuries, and why the disruption of this self-organizing system by the Green Revolution caused chaos in irrigation and devastating losses from pests. The model shows that adaptation in a coupled human-natural system can trigger self-organized criticality (SOC). In previous exogenously driven SOC models, adaptation plays no role, and no optimization occurs. In contrast, adaptive SOC is a self-organizing process where local adaptations drive the system toward local and global optima.

Top