Behavioral self-organization underlies the resilience of a coastal ecosystem.
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan
2017-07-25
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.
Behavioral self-organization underlies the resilience of a coastal ecosystem
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.
2017-01-01
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313
Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E
2015-02-06
Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.
Spatial pattern enhances ecosystem functioning in an African savanna.
Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M
2010-05-25
The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.
Fitness trade-offs of group formation and movement by Thomson's gazelles in the Serengeti ecosystem.
Fryxell, John M; Berdahl, Andrew M
2018-05-19
Collective behaviours contributing to patterns of group formation and coordinated movement are common across many ecosystems and taxa. Their ubiquity is presumably due to altering interactions between individuals and their predators, resources and physical environment in ways that enhance individual fitness. On the other hand, fitness costs are also often associated with group formation. Modifications to these interactions have the potential to dramatically impact population-level processes, such as trophic interactions or patterns of space use in relation to abiotic environmental variation. In a wide variety of empirical systems and models, collective behaviour has been shown to enhance access to ephemeral patches of resources, reduce the risk of predation and reduce vulnerability to environmental fluctuation. Evolution of collective behaviour should accordingly depend on the advantages of collective behaviour weighed against the costs experienced at the individual level. As an illustrative case study, we consider the potential trade-offs on Malthusian fitness associated with patterns of group formation and movement by migratory Thomson's gazelles in the Serengeti ecosystem.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Authors.
Sparkle L. Malone; Christina L. Staudhammer; Steven F. Oberbauer; Paulo Olivas; Michael G. Ryan; Jessica L. Schedlbauer; Henry W. Loescher; Gregory Starr
2014-01-01
This research examines the relationships between El Nino Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009â2013) from two freshwater marsh sites located in Everglades National Park that differ...
NASA Astrophysics Data System (ADS)
Nugraha, S. B.; Sidiq, W. A. B. N.; Setyowati, D. L.; Martuti, N. K. T.
2018-03-01
This study aims to determine changes in the extent and spatial patterns of mangrove ecosystems in Mangunharjo Sub-district from 2007, 2012 and 2017. The main data source of this research is Digital Globe Imagery of Mangunharjo Sub-district and surrounding area. The extent and spatial pattern of the mangrove ecosystem were obtained from visual interpretation result of the time series image and accuracy tested with field survey data, and then the analysis was conducted quantitatively and qualitatively. The result of time series data analysis shows that there is an enhancement of mangrove forest area in Mangunharjo Sub-district from 2007-2017. In the first five years (2007-2012), the area of mangrove ecosystem increased from 9.01 Ha to 19.78 Ha, and then in the next five years (2012-2017), it was increased significantly from 19.78 Ha to 68.47 Ha. If analyzed from the spatial pattern, in 2007-2012 the mangrove ecosystems were distributed extends along the river border ponds, while in 2012-2017 it already clustered to form a certain area located at the estuary. The increasing of mangrove area in Mangunharjo Sub-district is a result of hard work with various parties, from the government institution, individual and company which launched mangrove ecosystem recovery program especially in the coastal area of Semarang City. With the better mangrove ecosystem is expected to help restore and prevent the occurrence of environmental damage in the coastal area of Semarang City due to abrasion, seawater intrusion, and tidal flood.
NASA Astrophysics Data System (ADS)
Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.
2017-12-01
Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.
Ecosystem service bundles for analyzing tradeoffs in diverse landscapes
Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M.
2010-01-01
A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services. PMID:20194739
Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik
2010-01-01
Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...
Role of the noise on the transient dynamics of an ecosystem of interacting species
NASA Astrophysics Data System (ADS)
Spagnolo, B.; La Barbera, A.
2002-11-01
We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.
Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel
2017-01-01
Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999–2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems. PMID:28686667
Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel
2017-01-01
Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.
Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia
2014-04-01
Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts. © 2014 John Wiley & Sons Ltd/CNRS.
USDA-ARS?s Scientific Manuscript database
Prescribed fire is commonly applied world wide as tool for enhancing habitats and altering resource selection patterns of grazing animals. A scientific basic for this management practice has been established in some rangeland ecosystems (e.g montane grasslands, tall grass prairie, mixed prairie, ...
Huang, Lin; Cao, Wei; Xu, Xinliang; Fan, Jiangwen; Wang, Junbang
2018-09-15
The maintenance and improvement of ecosystem services on the Tibet Plateau are critical for national ecological security in China and are core objectives of ecological conservation in this region. In this paper, ecosystem service benefits of the Tibet Ecological Conservation Project were comprehensively assessed by estimating and mapping the spatiotemporal variation patterns of critical ecosystem services on the Tibet Plateau from 2000 to 2015. Furthermore, we linked the benefit assessment to the sustainable spatial planning of future ecological conservation strategies. Comparing the 8 years before and after the project, the water retention and carbon sink services of the forest, grassland and wetland ecosystems were slightly increased after the project, and the ecosystem sand fixation service has been steadily enhanced. The increasing forage supply service of grassland significantly reduced the grassland carrying pressure and eased the conflict between grassland and livestock. However, enhanced rainfall erosivity occurred due to increased rainfall, and root-layer soils could not recover in a short period of time, both factors have led to a decline in soil conservation service. The warm and humid climate is beneficial for the restoration of ecosystems on the Tibet Plateau, and the implementation of the Tibet Ecological Conservation Project has had a positive effect on the local improvement of ecosystem services. A new spatial planning strategy for ecological conservation was introduced and aims to establish a comprehensive, nationwide system to protect important natural ecosystems and wildlife, and to promote the sustainable use of natural resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory.
Porensky, Lauren M; Wittman, Sarah E; Riginos, Corinna; Young, Truman P
2013-10-01
The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.
Loss of functionally unique species may gradually undermine ecosystems
O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.
2011-01-01
Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593
NASA Astrophysics Data System (ADS)
Jiang, Chong; Zhang, Haiyan; Zhang, Zhidong
2018-02-01
Human demands for natural resources have significantly changed the natural landscape and induced ecological degradation and associated ecosystem services. An understanding of the patterns, interactions, and drivers of ecosystem services is essential for the ecosystem management and guiding targeted land use policy-making. The Losses Plateau (LP) provides ecosystem services including the carbon sequestration and soil retention, and exerts tremendous impacts on the midstream and downstream of the Yellow River. Three dominant ecosystem services between 2000 and 2012 within the LP were presented based on multiple source datasets and biophysical models. In addition, paired ecosystem services interactions were quantified using the correlation analysis and constraint line approach. The main conclusions are as follows. It was observed that the warming and wetting climate and ecological program jointly promoted the vegetation growth and carbon sequestration. The increasing precipitation throughout 2000-2012 was related to the soil retention and hydrological regulation fluctuations. The vegetation restoration played a positive role in the soil retention enhancement, thus substantially reduced water and sediment yields. The relationships between ecosystem services were not only correlations (tradeoffs or synergies), but rather constraint effects. The constraint effects between the three paired ecosystem services could be classified as the negative convex (carbon sequestration vs. hydrological regulation) and hump-shaped (soil retention vs. carbon sequestration and soil retention vs. hydrological regulation), and the coefficients of determination for the entire LP were 0.78, 0.84, and 0.65, respectively. In the LP, the rainfall (water availability) was the key constraint factor that affected the relationships between the paired ecosystem services. The spatially explicit mapping of ecosystem services and interaction analyses utilizing constraint line approach enriched the understanding of connections between ecosystem services and the potential drivers, which had important implications for the land use planning and landscapes services optimizing.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.
Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-19
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming
Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-01
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860
Characterising meso-marine ecosystems of the North Pacific
NASA Astrophysics Data System (ADS)
Batten, Sonia D.; David Hyrenbach, K.; Sydeman, William J.; Morgan, Ken H.; Henry, Michael F.; Yen, Peggy P. Y.; Welch, David W.
2006-02-01
To delineate mesoscale variability in marine ecosystems of the subarctic North Pacific and identify "hotspots" of biological activity, we conducted contemporaneous surveys of plankton and avifaunal communites in 2000-2003. Plankton samples were collected with a continuous plankton recorder (CPR) towed by a commercial vessel while a trained observer recorded marine bird distributions using strip-transect techniques. Near- and sub-surface physical oceanographic properties and productivity patterns were measured using a temperature data logger and satellite-derived chlorophyll a concentrations. We identified 10 distinct biological communities across the North Pacific, which we refer to as 'meso-marine ecosystems' (MME). We examined the characteristics of MME over multiple years to assess temporal persistence. MME were associated with different bathymetric domains and current systems. MME differed in the overall abundance and species composition of their fauna and, therefore, almost certainly in productivity. Regular monitoring of the spatial and temporal variability of MME will enhance our ability to detect and understand coupled climate-ecosystem responses, and, in turn, help guide ecosystem-based fisheries and wildlife management.
USDA-ARS?s Scientific Manuscript database
Global circulation models predict that precipitation patterns will become more extreme, i.e. seasonal rainfall events tend to be larger in size, but fewer in number. Studies in North American grasslands have shown that above-ground net primary productivity (ANPP) was enhanced by such repackaging of ...
John B. Bradford; Douglas N. Kastendick
2010-01-01
Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.
Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery.
Link, Jason S; Pranovi, Fabio; Libralato, Simone; Coll, Marta; Christensen, Villy; Solidoro, Cosimo; Fulton, Elizabeth A
2015-11-01
Whether there are common and emergent patterns from marine ecosystems remains an important question because marine ecosystems provide billions of dollars of ecosystem services to the global community, but face many perturbations with significant consequences. Here, we develop cumulative trophic patterns for marine ecosystems, featuring sigmoidal cumulative biomass (cumB)-trophic level (TL) and 'hockey-stick' production (cumP)-cumB curves. The patterns have a trophodynamic theoretical basis and capitalize on emergent, fundamental, and invariant features of marine ecosystems. These patterns have strong global support, being observed in over 120 marine ecosystems. Parameters from these curves elucidate the direction and magnitude of marine ecosystem perturbation or recovery; if biomass and productivity can be monitored effectively over time, such relations may prove to be broadly useful. Curve parameters are proposed as possible ecosystem thresholds, perhaps to better manage the marine ecosystems of the world. Published by Elsevier Ltd.
Latitudinal gradients in ecosystem engineering by oysters vary across habitats.
McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J
2016-04-01
Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.
NASA Astrophysics Data System (ADS)
Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.
2015-04-01
Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different environmental gradients prevailing in the study areas. Biological trait analysis, with the addition of newly introduced trait categories, and functional diversity outcomes provided greater explanatory power of ecosystem functioning than species richness and taxonomic diversity.
NASA Astrophysics Data System (ADS)
Sasai, Takahiro; Obikawa, Hiroki; Murakami, Kazutaka; Kato, Soushi; Matsunaga, Tsuneo; Nemani, Ramakrishna R.
2016-06-01
The terrestrial carbon cycle in Asia is highly uncertain, and it affects our understanding of global warming. One of the important issues is the need for an enhancement of spatial resolution, since local regions in Asia are heterogeneous with regard to meteorology, land form, and land cover type, which greatly impacts the detailed spatial patterns in its ecosystem. Thus, an important goal of this study is to reasonably reproduce the heterogeneous biogeochemical patterns in Asia by enhancing the spatial resolution of the ecosystem model biosphere model integrating eco-physiological and mechanistic approaches using satellite data (BEAMS). We estimated net ecosystem production (NEP) over eastern Asia and examined the spatial differences in the factors controlling NEP by using a 10 km grid-scale approach over two different decades (2001-2010 and 2091-2100). The present and future meteorological inputs were derived from satellite observations and the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) data set, respectively. The results showed that the present NEP in whole eastern Asia was carbon source (-214.9 TgC yr-1) and in future scenarios, the greatest positive (76.4 TgC yr-1) and least negative (-95.9 TgC yr-1) NEPs were estimated from the Representative Concentration Pathways (RCP) 6.0 and RCP8.5 scenarios, respectively. Calculated annual NEP in RCP8.5 was mostly positive in the southern part of East Asia and Southeast Asia and negative in northern and central parts of East Asia. Under the RCP scenario with higher greenhouse gases emission (RCP8.5), deciduous needleleaf and mixed forests distributed in the middle and high latitudes served as carbon source. In contrast, evergreen broadleaf forests distributed in low latitudes served as carbon sink. The sensitivity study demonstrated that the spatial tendency of NEP was largely influenced by atmospheric CO2 and temperature.
Eddie L. Shea; Lisa A. Schulte; Brian J. Palik
2017-01-01
Structural complexity is widely recognized as an inherent characteristic of unmanaged forests critical to their function and resilience, but often reduced in their managed counterparts. Variable retention harvesting (VRH) has been proposed as a way to restore or enhance structural complexity in managed forests, and thereby sustain attendant biodiversity and ecosystem...
Busch, G; Lammel, G; Beese, F O; Feichter, J; Dentener, F J; Roelofs, G J
2001-01-01
A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.
Controls on methane concentrations and fluxes in streams draining human-dominated landscapes
Crawford, John T.; Stanley, Emily H.
2016-01-01
Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.
NASA Astrophysics Data System (ADS)
Reed, P. M.; Fernandez, A. R.; Blumsack, S.
2011-12-01
Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.
NASA Astrophysics Data System (ADS)
Fernandez, A.; Blumsack, S.; Reed, P.
2012-04-01
Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea
2016-01-01
Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process.
2016-01-01
Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as “ecosystem engineers” are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a “space-for-time” substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process. PMID:27902757
Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.
Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li
2013-03-01
Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam
2015-08-01
While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.
Incorporating surrogate species and seascape connectivity to improve marine conservation outcomes.
Olds, Andrew D; Connolly, Rod M; Pitt, Kylie A; Maxwell, Paul S; Aswani, Shankar; Albert, Simon
2014-08-01
Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species-based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.
2017-12-01
Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.
Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere
Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin
2016-01-01
In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713
Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes.
Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C
2017-04-01
Subsurface groundwater-surface water mixing zones (hyporheic zones) have enhanced biogeochemical activity, but assembly processes governing subsurface microbiomes remain a critical uncertainty in understanding hyporheic biogeochemistry. To address this obstacle, we investigated (a) biogeographical patterns in attached and waterborne microbiomes across three hydrologically-connected, physicochemically-distinct zones (inland hyporheic, nearshore hyporheic and river); (b) assembly processes that generated these patterns; (c) groups of organisms that corresponded to deterministic changes in the environment; and (d) correlations between these groups and hyporheic metabolism. All microbiomes remained dissimilar through time, but consistent presence of similar taxa suggested dispersal and/or common selective pressures among zones. Further, we demonstrated a pronounced impact of deterministic assembly in all microbiomes as well as seasonal shifts from heterotrophic to autotrophic microorganisms associated with increases in groundwater discharge. The abundance of one statistical cluster of organisms increased with active biomass and respiration, revealing organisms that may strongly influence hyporheic biogeochemistry. Based on our results, we propose a conceptualization of hyporheic zone metabolism in which increased organic carbon concentrations during surface water intrusion support heterotrophy, which succumbs to autotrophy under groundwater discharge. These results provide new opportunities to enhance microbially-explicit ecosystem models describing hyporheic zone biogeochemistry and its influence over riverine ecosystem function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Dey, Samrat; Tribedi, Prosun
2018-03-01
Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both microbial functional diversity and PHB degradation suggesting a strong positive correlation ( r = 0.95) between microbial functional diversity and PHB degradation. Thus, the results demonstrate that microbial functional diversity plays an important role in PHB degradation in soil by exhibiting versatile microbial metabolic potentials that lead to the enhanced degradation of PHB.
Communicative interactions involving plants: information, evolution, and ecology.
Mescher, Mark C; Pearse, Ian S
2016-08-01
The role of information obtained via sensory cues and signals in mediating the interactions of organisms with their biotic and abiotic environments has been a major focus of work on sensory and behavioral ecology. Information-mediated interactions also have important implications for broader ecological patterns emerging at the community and ecosystem levels that are only now beginning to be explored. Given the extent to which plants dominate the sensory landscapes of terrestrial ecosystems, information-mediated interactions involving plants should be a major focus of efforts to elucidate these broader patterns. Here we explore how such efforts might be enhanced by a clear understanding of information itself-a central and potentially unifying concept in biology that has nevertheless been the subject of considerable confusion-and of its relationship to adaptive evolution and ecology. We suggest that information-mediated interactions should be a key focus of efforts to more fully integrate evolutionary biology and ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry
NASA Astrophysics Data System (ADS)
Roland, M.; Serrano-Ortiz, P.; Kowalski, A. S.; Goddéris, Y.; Sánchez-Cañete, E. P.; Ciais, P.; Domingo, F.; Cuezva, S.; Sanchez-Moral, S.; Longdoz, B.; Yakir, D.; Van Grieken, R.; Schott, J.; Cardell, C.; Janssens, I. A.
2013-07-01
CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.
Enhanced Seasonal Exchange of CO2 by Northern Ecosystems - Observations and Models
NASA Astrophysics Data System (ADS)
Graven, H. D.; Keeling, R. F.; Piper, S. C.; Patra, P. K.; Stephens, B. B.; Wofsy, S. C.; Welp, L. R.; Sweeney, C.; Tans, P. P.; Kelley, J. J.; Daube, B. C.; Kort, E. A.; Santoni, G.; Bent, J. D.; Thomas, R.; Prentice, I. C.
2014-12-01
Long-term measurements of atmospheric CO2 have revealed increasing amplitude in seasonal variations at Northern Hemisphere sites. In a recent paper1, we extended the analysis of seasonal CO2 amplitude using aircraft data from 1958-61 and 2009-11 and found large increases of 50% in the mid-troposphere north of 45°N. Changes in amplitude south of 45°N were less than 25%. The observations indicate that seasonal CO2 exchanges with northern terrestrial ecosystems must have increased by 30-60% over the past 50 years. The increased exchange is likely widespread over northern ecosystems but it must be focused in boreal forests to match the observed spatial pattern in the aircraft data. Small decreases in seasonal CO2 exchange of subtropical and tropical regions may also contribute to CO2 amplitude changes. The required increases in seasonal CO2 exchange in northern ecosystems are larger than simulated by terrestrial models, indicating the models do not capture substantial ecological changes occurring since 1960. This presentation will give an overview of the recent paper1, highlighting the atmospheric evidence for a dominant influence from boreal forests and from the main growing season months. It will also expand on the investigation of modeled changes in seasonal CO2 flux using CMIP5 and other model intercomparisons, including the modeled influences of carbon vs climate drivers. 1. Graven et al. 2013, Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960, Science, 341, 6150, 1085-1089. DOI: 10.1126/science.1239207
NASA Astrophysics Data System (ADS)
Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.
2013-12-01
Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.
Are the ghosts of nature's past haunting ecology today?
Silliman, Brian R; Hughes, Brent B; Gaskins, Lindsay C; He, Qiang; Tinker, M Tim; Read, Andrew; Nifong, James; Stepp, Rick
2018-05-07
Humans have decimated populations of large-bodied consumers and their functions in most of the world's ecosystems. It is less clear how human activities have affected the diversity of habitats these consumers occupy. Rebounding populations of some predators after conservation provides an opportunity to begin to investigate this question. Recent research shows that following long-term protection, sea otters along the northeast Pacific coast have expanded into estuarine marshes and seagrasses, and alligators on the southeast US coast have expanded into saltwater ecosystems, habitats presently thought beyond their niche space. There is also evidence that seals have expanded into subtropical climates, mountain lions into grasslands, orangutans into disturbed forests and wolves into coastal marine ecosystems. Historical records, surveys of protected areas and patterns of animals moving into habitats that were former hunting hotspots indicate that - rather than occupying them for the first time - many of these animals are in fact recolonizing ecosystems. Recognizing that many large consumers naturally live and thrive across a greater diversity of ecosystems has implications for setting historical baselines for predator diversity within specific habitats, enhancing the resilience of newly colonized ecosystems and for plans to recover endangered species, as a greater range of habitats is available for large consumers as refugia from climate-induced threats. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ecosystem Health Assessment of Mining Cities Based on Landscape Pattern
NASA Astrophysics Data System (ADS)
Yu, W.; Liu, Y.; Lin, M.; Fang, F.; Xiao, R.
2017-09-01
Ecosystem health assessment (EHA) is one of the most important aspects in ecosystem management. Nowadays, ecological environment of mining cities is facing various problems. In this study, through ecosystem health theory and remote sensing images in 2005, 2009 and 2013, landscape pattern analysis and Vigor-Organization-Resilience (VOR) model were applied to set up an evaluation index system of ecosystem health of mining city to assess the healthy level of ecosystem in Panji District Huainan city. Results showed a temporal stable but high spatial heterogeneity landscape pattern during 2005-2013. According to the regional ecosystem health index, it experienced a rapid decline after a slight increase, and finally it maintained at an ordinary level. Among these areas, a significant distinction was presented in different towns. It indicates that the ecosystem health of Tianjijiedao town, the regional administrative centre, descended rapidly during the study period, and turned into the worst level in the study area. While the Hetuan Town, located in the northwestern suburb area of Panji District, stayed on a relatively better level than other towns. The impacts of coal mining collapse area, land reclamation on the landscape pattern and ecosystem health status of mining cities were also discussed. As a result of underground coal mining, land subsidence has become an inevitable problem in the study area. In addition, the coal mining subsidence area has brought about the destruction of the farmland, construction land and water bodies, which causing the change of the regional landscape pattern and making the evaluation of ecosystem health in mining area more difficult. Therefore, this study provided an ecosystem health approach for relevant departments to make scientific decisions.
Net Primary Production of Terrestrial Ecosystems from 2000 to 2009
NASA Technical Reports Server (NTRS)
Potter, Christopher; Klooster, Steven; Genovese, Vanessa
2012-01-01
The CASA (Carnegie-Ames-Stanford) ecosystem model has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009, with global data inputs from NASA's Terra Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover mapping. Net primary production (NPP) flux for atmospheric carbon dioxide has varied slightly from year-to-year, but was predicted to have increased over short multi-year periods in the regions of the high-latitude Northern Hemisphere, South Asia, Central Africa, and the western Amazon since the year 2000. These CASA results for global NPP were found to be in contrast to other recently published modeling trends for terrestrial NPP with high sensitivity to regional drying patterns. Nonetheless, periodic declines in regional NPP were predicted by CASA for the southern and western Untied States, the southern Amazon, and southern and eastern Africa. NPP in tropical forest zones was examined in greater detail to discover lower annual production values than previously reported in many global models across the tropical rainforest zones, likely due to the enhanced detection of lower production ecosystems replacing primary rainforest.
Satellite observed global variations in ecosystem-scale plant water storage
NASA Astrophysics Data System (ADS)
Tian, F.; Wigneron, J. P.; Brandt, M.; Fensholt, R.
2017-12-01
Plant water storage is a key component in ecohydrological processes and tightly coupled with global carbon and energy budgets. Field measurements of individual trees have revealed diurnal and seasonal variations in plant water storage across different tree species and sizes. However, global estimation of plant water storage is challenged by up-scaling from individual trees to an ecosystem scale. The L-band passive microwaves are sensitive to water stored in the stems, branches and leaves, with dependence on the vegetation structure. Thus, the L-band vegetation optical depth (L-VOD) parameter retrieved from satellite passive microwave observations can be used as a proxy for ecosystem-scale plant water storage. Here, we employ the recently developed SMOS (Soil Moisture and Ocean Salinity) L-VOD dataset to investigate spatial patterns in global plant water storage and its diurnal and seasonal variations. In addition, we compare the spatiotemporal patterns between plant water storage and canopy greenness (i.e., enhanced vegetation indices, EVI) to gain ecohydrological insights among different territorial biomes, including boreal forest and tropical woodland. Generally, seasonal dynamics of plant water storage is much smaller than canopy greenness, yet the temporal coupling of these two traits is totally different between boreal and tropical regions, which could be related to their strategies in plant water regulation.
Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R
2018-01-01
Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.
Jiang, Chong; Zhang, Linbo
2016-06-01
The Three-Rivers Headwater Region (TRHR) is the headwater of the Yangtze River Basin (YARB), Yellow River Basin (YRB), and Lancang River Basin (LRB); it is known as China's 'Water Tower' owing to its important supply of freshwater. In order to assess ecosystem changes in the TRHR during 2000-2012, we systematically and comprehensively evaluated a combination of model simulation results and actual observational data. The results showed the following: (1) Ecosystem pattern was relatively stable during 2000-2010, with a slight decrease in farmland and desert areas, and a slight increase in grassland and wetland/water-body areas. (2) A warmer and wetter climate, and ecological engineering, caused the vegetation cover and productivity to significantly improve. (3) Precipitation was the main controlling factor for streamflow. A significant increase in precipitation during 2000-2012 resulted in an obvious increase in annual and seasonal streamflow. Glacier melting also contributed to the streamflow increase. (4) The total amount of soil conservation increased slightly from 2000 to 2012. The increase in precipitation caused rainfall erosivity to increase, which enhanced the intensity of soil erosion. The decrease in wind speed decreased wind erosion and the frequency of sandstorms. (5) The overall habitat quality in the TRHR was stable between 2000 and 2010, and the spatial pattern exhibited obvious heterogeneity. In some counties that included nature reserves, habitat quality was slightly higher in 2010 than in 2000, which reflected the effectiveness of the ecological restoration. Overall, the aforementioned ecosystem changes are the combined results of ecological restoration and climate change, and they are likely a local and temporary improvement, rather than a comprehensive and fundamental change. Therefore, more investments and efforts are needed to preserve natural ecosystems.
A morphometric analysis of vegetation patterns in dryland ecosystems
Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.
2017-01-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. PMID:28386414
A morphometric analysis of vegetation patterns in dryland ecosystems.
Mander, Luke; Dekker, Stefan C; Li, Mao; Mio, Washington; Punyasena, Surangi W; Lenton, Timothy M
2017-02-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
A morphometric analysis of vegetation patterns in dryland ecosystems
NASA Astrophysics Data System (ADS)
Mander, Luke; Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.
2017-02-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
Use of Multiple Isotopic Systems to Interpret Ecosystem Processes in Hawaii
NASA Astrophysics Data System (ADS)
Chadwick, O.; Derry, L.; Vitousek, P.
2007-12-01
The Hawaiian Islands are an excellent natural laboratory for studying the way in which ecosystems develop and function under varying climates. The mantle-derived basalt parent material provides a constant reaction matrix, the trade winds provide an asymmetric climate pattern that means that the same-age lava flows can be studied under different forcing factors, the relatively few plant species that made it to Hawaii provide a simplified biotic influence on substrate. In essence, we find that the geochemical evolution of basalt weathering provides shifting boundary conditions that constrain ecosystem potentialities, and allows us to apply a number of isotopic systems to enhance the specificity of our interpretation of ecosystem processes. We have applied the following isotopes to assist us in understanding the processes that impact ecosystems: O, C, Sr, Ca, N, Si and Be, and are presently exploring the use of S and Mg. We use these isotopic systems within a matrix of controls that allows us to focus on specific questions. The isotopic signatures from different isotopic systems can define climate- response patterns that are non-linear with each defining different threshold and plateau in rainfall space. Measurement of these isotopic systems allows us to evaluate multiple chemical behaviors at once and to evaluate expected responses to perturbations to any of these tracers in response to past or future changes in climate or other ecosystem drives such as land cover change. For instance, based on deep-soil samples, the plants that grew before humans reached Hawaii have C13 values that drop from -14 per mil to -26 per mil as rainfall increases from 200 mm to 3000 mm. Today the surface-soil values remain close to -14 per mil throughout the rainfall gradient due to the introduction of C4 grasses for pasture. Along the same rainfall gradient, Sr isotopes demonstrate that as C3 plants began to predominate there was a fundmental shift in nutrients supplied from rocks to those supplied by rainfall.
Global change impacts on mangrove ecosystems
McKee, Karen L.
2004-01-01
Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use efficiency, but the consequences of this growth enhancement for the ecosystem are unknown.
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Togtohyn, C.; Qi, J.; Galvin, K.
2011-12-01
Dramatic changes due to climate and land use dynamics in the Mongolian Plateau are affecting ecosystem services and agro-pastoral livelihoods in Mongolia and China. Recently, evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which then affect social-ecological systems. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces. The analysis incorporates information of the socio-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia and China to the fertile northeast China plain. Sustainability of agro-pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate landscape management provides a potential framework to link ecosystem services across space and time more effectively to meet the needs of agro-pastoral land use, herd quality, and herder's living standards. Under appropriate adaptation strategies agro-pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.
Xia, Jianyang; Wan, Shiqiang
2012-01-01
Background The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. Methodology/Principal Findings A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. Conclusions/Significance These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands. PMID:22359660
Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens
Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya
2006-01-01
Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...
Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy R.; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles; White, Robin P.
2012-01-01
Ecosystem science is critical to making informed decisions about natural resources that can sustain our Nation’s economic and environmental well-being. Resource managers and policy-makers are faced with countless decisions each year at local, state, tribal, territorial, and national levels on issues as diverse as renewable and non-renewable energy development, agriculture, forestry, water supply, and resource allocations at the urban-rural interface. The urgency for sound decision-making is increasing dramatically as the world is being transformed at an unprecedented pace and in uncertain directions. Environmental changes are associated with natural hazards, greenhouse gas emissions, and increasing demands for water, land, food, energy, mineral, and living resources. At risk is the Nation’s environmental capital, the goods and services provided by resilient ecosystems that are vital to the health and well-being of human societies. Ecosystem science—the study of systems of organisms interacting with their environment and the consequences of natural and human-induced change on these systems—is necessary to inform decision-makers as they develop policies to adapt to these changes.This Ecosystems Science Strategy is built on a framework that includes basic and applied science. It highlights the critical roles that USGS scientists and partners can play in building scientific understanding and providing timely information to decision-makers. The strategy underscores the connection between scientific discoveries and the application of new knowledge. The strategy integrates ecosystem science and decision-making, producing new scientific outcomes to assist resource managers and providing public benefits.The USGS is uniquely positioned to play an important role in ecosystem science. With its wide range of expertise, the agency can bring holistic, cross-scale, interdisciplinary capabilities to the design and conduct of monitoring, research, and modeling and to new technologies for data collection, management, and visualization. Collectively, these capabilities can be used to reveal ecological patterns and processes, explain how and why ecosystems change, and forecast change over different spatial and temporal scales. USGS science can provide managers with options and decision-support tools to use resources sustainably. The USGS has long-standing, collaborative relationships with the DOI and other partners in the natural sciences, in both conducting science and its application. The USGS engages these partners in cooperative investigations that otherwise would lack the necessary support or be too expensive for a single bureau to conduct.The heart of this strategy is a framework and vision for USGS ecosystems science that focuses on five long-term goals, which are seen as interconnected and reinforcing components:• Improve understanding of ecosystem structure, function, and processes. The focus for this goal is an understanding of how ecosystems work, including the dynamics of species, their populations, interactions, and genetics, and how they change across spatial and temporal scales. • Advance understanding of how drivers influence ecosystem change. The challenges here are explaining the drivers of ecosystem change, their spatio-temporal patterns, their uncertainties and interactions, and their influence on ecosystem processes and dynamics. • Improve understanding of the services that ecosystems provide to society. Here the emphasis is on the measurement of environmental capital and ecosystem services, and the identification of sources and patterns of change in space and time. • Develop tools, technologies, and capacities to inform decision-making about ecosystems. This includes developing new technologies and approaches for conducting applications-oriented ecosystem science. A principal challenge will be how to quantify uncertainty and incorporate it in decision analysis. • Apply science to enhance strategies for management, conservation, and restoration of ecosystems. These challenges include development of novel approaches to monitoring, assessment, and restoration of ecosystems; new methods to address species of concern and communities at risk; and innovations in decision analysis and support to address imminent ecosystem changes or those that are underway.Closely integrated with the five goals are four strategic approaches that provide the path forward for the USGS Ecosystems Mission Area. These approaches cross-cut all of the goals and are seen as essential to the implementation of this strategy:• Assess information needs for ecosystem science through enhanced partnerships. Work with the DOI and other agencies and institutions to identify, design, and implement priority decision-driven ecological research.• Promote the use of interdisciplinary ecosystem science. Design and conduct interdisciplinary process-oriented research in ecosystem science. • Enhance modeling and forecasting. Build models to forecast ecosystem change, assess future management scenarios, and reduce uncertainties through an adaptive learning process. • Support decision-making. Use quantitative approaches to assess the vulnerabilities of ecosystems, habitats, and species, and evaluate strategies for adaptation, restoration, and sustainable management.Following the strategic approaches are a set of proposed actions that represent a sampling of specific activities that align with this strategy and that address the Nation’s most pressing environmental needs.The strategy emphasizes coordination of activities across the USGS mission areas pursuant to these goals. Ecosystem science is inherently interdisciplinary and requires a broad perspective that incorporates the biological and physical sciences, climate science, information technology, and scientific capacity in mission areas across the Bureau. With its emphasis on coordination, this strategy can provide a critical underpinning for integrated science efforts with scientists from multiple mission areas of the USGS working together. Of course, the USGS will continue to conduct both discipline-specific and interdisciplinary investigations, and both will continue to be vital parts of the ecosystem science portfolio.Finally, the strategy stresses the importance of coordination with other Federal agencies and organizations in the natural resources community. The USGS collaborates with resource agencies in the DOI and other organizations throughout the world to meet societal needs for species and ecosystem management. Working with these agencies and organizations, the USGS will play a key role over the next decade in advancing the scientific foundation for sustaining the natural resources that diverse, productive, resilient ecosystems provide.
Stability in Real Food Webs: Weak Links in Long Loops
NASA Astrophysics Data System (ADS)
Neutel, Anje-Margriet; Heesterbeek, Johan A. P.; de Ruiter, Peter C.
2002-05-01
Increasing evidence that the strengths of interactions among populations in biological communities form patterns that are crucial for system stability requires clarification of the precise form of these patterns, how they come about, and why they influence stability. We show that in real food webs, interaction strengths are organized in trophic loops in such a way that long loops contain relatively many weak links. We show and explain mathematically that this patterning enhances stability, because it reduces maximum ``loop weight'' and thus reduces the amount of intraspecific interaction needed for matrix stability. The patterns are brought about by biomass pyramids, a feature common to most ecosystems. Incorporation of biomass pyramids in 104 food-web descriptions reveals that the low weight of the long loops stabilizes complex food webs. Loop-weight analysis could be a useful tool for exploring the structure and organization of complex communities.
Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.
Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng
2016-07-01
Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.
Villarreal, Miguel; Norman, Laura M.; Labiosa, William B.
2012-01-01
In this paper we describe an application of a GIS-based multi-criteria decision support web tool that models and evaluates relative changes in ecosystem services to policy and land management decisions. The Santa Cruz Watershed Ecosystem Portfolio (SCWEPM) was designed to provide credible forecasts of responses to ecosystem drivers and stressors and to illustrate the role of land use decisions on spatial and temporal distributions of ecosystem services within a binational (U.S. and Mexico) watershed. We present two SCWEPM sub-models that when analyzed together address bidirectional relationships between social and ecological vulnerability and ecosystem services. The first model employs the Modified Socio-Environmental Vulnerability Index (M-SEVI), which assesses community vulnerability using information from U.S. and Mexico censuses on education, access to resources, migratory status, housing situation, and number of dependents. The second, relating land cover change to biodiversity (provisioning services), models changes in the distribution of terrestrial vertebrate habitat based on multitemporal vegetation and land cover maps, wildlife habitat relationships, and changes in land use/land cover patterns. When assessed concurrently, the models exposed some unexpected relationships between vulnerable communities and ecosystem services provisioning. For instance, the most species-rich habitat type in the watershed, Desert Riparian Forest, increased over time in areas occupied by the most vulnerable populations and declined in areas with less vulnerable populations. This type of information can be used to identify ecological conservation and restoration targets that enhance the livelihoods of people in vulnerable communities and promote biodiversity and ecosystem health.
Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
Organic management systems to enhance ecosystem services
USDA-ARS?s Scientific Manuscript database
Organic grain cropping systems can enhance a number of ecosystem services compared to conventional tilled systems. Recent results from a limited number of long-term agricultural research (LTAR) studies suggest that organic grain cropping systems can also increase several ecosystem services relative...
Gong, Chunmei; Bai, Juan; Wang, Junhui; Zhou, Yulu; Kang, Tai; Wang, Jiajia; Hu, Congxia; Guo, Hongbo; Chen, Peilei; Xie, Pei; Li, Yuanfeng
2016-07-14
Precipitation patterns are influenced by climate change and profoundly alter the carbon sequestration potential of ecosystems. Carbon uptake by shrubbery alone accounts for approximately one-third of the total carbon sink; however, whether such uptake is altered by reduced precipitation is unclear. In this study, five experimental sites characterised by gradual reductions in precipitation from south to north across the Loess Plateau were used to evaluate the Caragana korshinskii's functional and physiological features, particularly its carbon fixation capacity, as well as the relationships among these features. We found the improved net CO2 assimilation rates and inhibited transpiration at the north leaf were caused by lower canopy stomatal conductance, which enhanced the instantaneous water use efficiency and promoted plant biomass as well as carbon accumulation. Regional-scale precipitation reductions over a certain range triggered a distinct increase in the shrub's organic carbon storage with an inevitable decrease in the soil's organic carbon storage. Our results confirm C. korshinskii is the optimal dominant species for the reconstruction of fragile dryland ecosystems. The patterns of organic carbon storage associated with this shrub occurred mostly in the soil at wetter sites, and in the branches and leaves at drier sites across the arid and semi-arid region.
Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management
Kalev Jogiste; Henn Korjus; John Stanturf; Lee E. Frelich; Endijs Baders; Janis Donis; Aris Jansons; Ahto Kangur; Kajar Koster; Diana Laarmann; Tiit Maaten; Vitas Marozas; Marek Metslaid; Kristi Nigul; Olga Polyachenko; Tiit Randveer; Floortje Vodde
2017-01-01
The condition of forest ecosystems depends on the temporal and spatial pattern of management interventions and natural disturbances. Remnants of previous conditions persisting after disturbances, or ecosystem legacies, collectively comprise ecosystem memory. Ecosystem memory in turn contributes to resilience and possibilities of ecosystem reorganization...
Walker D.A.; Romanovsky V.E.; Ping C.L.; Michaelson G.J.; Daanen R.P.; Shur Y.; Peterson R.A.; Krantz W.B.; Raynolds M.K.; William Gould; Grizelle Gonzalez; Nicolsky D.J.; Vonlanthen C.M.; Kade A.N.; Kuss P.; Kelley A.M.; Munger C.A.; Tarnocai C.T.; Matveyeva N.V.; Daniels F.J.A.
2008-01-01
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The âBiocomplexity of Patterned Ground Ecosystemsâ project examined patterned-ground features (PGFs) in all five Arctic bioclimate...
Research applications of ecosystem patterns
Robert G. Bailey
2009-01-01
This article discusses the origins of natural ecosystem patterns from global to local scales. It describes how understanding these patterns can help scientists and managers in two ways. First, the local systems are shown within the context of larger systems. This perspective can be applied in assessing the connections between action at one scale and effect at another,...
Elevated CO2: Impact on diurnal patterns of photosynthesis in natural microbial ecosystems
NASA Technical Reports Server (NTRS)
Rothschild, L. J.
1994-01-01
Algae, including blue-green algae (cyanobacteria), are the major source of fixed carbon in many aquatic ecosystems. Previous work has shown that photosynthetic carbon fixation is often enhanced in the presence of additional carbon dioxide (CO2). This study was undertaken to determine if this CO2 fertilization effect extended to microbial mats, and, if so, at what times during the day might the addition of CO2 affect carbon fixation. Four microbial mats from diverse environments were selected, including mats from a hypersaline pond (area 5, Exportadora de Sal, Mexico), the marine intertidal (Lyngbya, Laguna Ojo de Liebre, Mexico), an acidic hotspring (Cyanidium, Nymph Creek, Yellowstone National Park), and an acidic stream at ambient temperature (Zygogonium, Yellowstone National Park). Carbon fixation in the absence of additional CO2 essentially followed the rising and falling sunlight levels, except that during the middle of the day there was a short dip in carbon fixation rates. The addition of CO2 profoundly enhanced carbon fixation rates during the daylight hours, including during the midday dip. Therefore, it is unlikely that the midday dip was due to photoinhibition. Surprisingly, enhancement of carbon fixation was often greatest in the early morning or late afternoon, times when carbon fixation would be most likely to be light limited.
Using wind-deformed conifers to measure wind patterns in alpine transition at GLEES
Robert C. Musselman; Gene L. Wooldridge; Douglas G. Fox; Bernadette H. Connell
1990-01-01
The Glacier Lakes Ecosystem Experiments Site (GLEES) is a high-elevation ecosystem in the Snowy Range west of Laramie, WY, that is perceived to be highly sensitive to changes in chemical and physical climate. Deposition of atmospheric chemicals to this ecosystem is, in part, governed by the wind pattern. The GLEES has numerous wind-swept areas where the coniferous...
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing
2014-01-01
Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.
Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing
2014-01-01
Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628
NASA Astrophysics Data System (ADS)
Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.
2012-12-01
A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.
THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION
Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...
Implementing the optimal provision of ecosystem services
Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Nelson, Erik
2014-01-01
Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners’ costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information. PMID:24722635
Implementing the optimal provision of ecosystem services.
Polasky, Stephen; Lewis, David J; Plantinga, Andrew J; Nelson, Erik
2014-04-29
Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners' costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information.
Vegetation pattern formation in a fog-dependent ecosystem.
Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A
2010-07-07
Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moore, Caitlin E.; Brown, Tim; Keenan, Trevor F.; Duursma, Remko A.; van Dijk, Albert I. J. M.; Beringer, Jason; Culvenor, Darius; Evans, Bradley; Huete, Alfredo; Hutley, Lindsay B.; Maier, Stefan; Restrepo-Coupe, Natalia; Sonnentag, Oliver; Specht, Alison; Taylor, Jeffrey R.; van Gorsel, Eva; Liddell, Michael J.
2016-09-01
Phenology is the study of periodic biological occurrences and can provide important insights into the influence of climatic variability and change on ecosystems. Understanding Australia's vegetation phenology is a challenge due to its diverse range of ecosystems, from savannas and tropical rainforests to temperate eucalypt woodlands, semi-arid scrublands, and alpine grasslands. These ecosystems exhibit marked differences in seasonal patterns of canopy development and plant life-cycle events, much of which deviates from the predictable seasonal phenological pulse of temperate deciduous and boreal biomes. Many Australian ecosystems are subject to irregular events (i.e. drought, flooding, cyclones, and fire) that can alter ecosystem composition, structure, and functioning just as much as seasonal change. We show how satellite remote sensing and ground-based digital repeat photography (i.e. phenocams) can be used to improve understanding of phenology in Australian ecosystems. First, we examine temporal variation in phenology on the continental scale using the enhanced vegetation index (EVI), calculated from MODerate resolution Imaging Spectroradiometer (MODIS) data. Spatial gradients are revealed, ranging from regions with pronounced seasonality in canopy development (i.e. tropical savannas) to regions where seasonal variation is minimal (i.e. tropical rainforests) or high but irregular (i.e. arid ecosystems). Next, we use time series colour information extracted from phenocam imagery to illustrate a range of phenological signals in four contrasting Australian ecosystems. These include greening and senescing events in tropical savannas and temperate eucalypt understorey, as well as strong seasonal dynamics of individual trees in a seemingly static evergreen rainforest. We also demonstrate how phenology links with ecosystem gross primary productivity (from eddy covariance) and discuss why these processes are linked in some ecosystems but not others. We conclude that phenocams have the potential to greatly improve the current understanding of Australian ecosystems. To facilitate the sharing of this information, we have formed the Australian Phenocam Network (http://phenocam.org.au/).
Worldwide patterns of fish biodiversity in estuaries: Effect of global vs. local factors
NASA Astrophysics Data System (ADS)
Pasquaud, Stéphanie; Vasconcelos, Rita P.; França, Susana; Henriques, Sofia; Costa, Maria José; Cabral, Henrique
2015-03-01
The main ecological patterns and the functioning of estuarine ecosystems are difficult to evaluate due to natural and human induced complexity and variability. Broad geographical approaches appear particularly useful. This study tested, at a worldwide scale, the influence of global and local variables in fish species richness in estuaries, aiming to determine the latitudinal pattern of species richness, and patterns which could be driven by local features such as estuary area, estuary mouth width, river flow and intertidal area. Seventy one estuarine systems were considered with data obtained from the literature and geographical information system. Correlation tests and generalized linear models (GLM) were used in data analyses. Species richness varied from 23 to 153 fish species. GLM results showed that estuary area was the most important factor explaining species richness, followed by latitude and mouth width. Species richness increased towards the equator, and higher values were found in larger estuaries and with a wide mouth. All these trends showed a high variability. A larger estuary area probably reflects a higher diversity of habitats and/or productivity, which are key features for estuarine ecosystem functioning and biota. The mouth width effect is particularly notorious for marine and diadromous fish species, enhancing connectivity between marine and freshwater realms. The effects of river flow and intertidal area on the fish species richness appear to be less evident. These two factors may have a marked influence in the trophic structure of fish assemblages.
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
Cloern, J.E.
1999-01-01
Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production - the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.
Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis.
Rey Benayas, José M; Newton, Adrian C; Diaz, Anita; Bullock, James M
2009-08-28
Ecological restoration is widely used to reverse the environmental degradation caused by human activities. However, the effectiveness of restoration actions in increasing provision of both biodiversity and ecosystem services has not been evaluated systematically. A meta-analysis of 89 restoration assessments in a wide range of ecosystem types across the globe indicates that ecological restoration increased provision of biodiversity and ecosystem services by 44 and 25%, respectively. However, values of both remained lower in restored versus intact reference ecosystems. Increases in biodiversity and ecosystem service measures after restoration were positively correlated. Results indicate that restoration actions focused on enhancing biodiversity should support increased provision of ecosystem services, particularly in tropical terrestrial biomes.
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew
2011-01-01
Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-11-18
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-01-01
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198
Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales
NASA Astrophysics Data System (ADS)
Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew
2015-09-01
Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.
Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.
2012-01-01
1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling
NASA Astrophysics Data System (ADS)
Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.
NASA Astrophysics Data System (ADS)
Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.
2016-12-01
Biogeochemical cycling of water, carbon, and nitrogen in alpine tundra ecosystems are closely related to the water and nutrient supply and ecosystem function of watersheds. While studies on the response of alpine tundra to climate change have largely focused on ecosystem structure, research on response of ecosystem function and element cycling are less well established. Using downscaled future climate scenarios under Representative Concentration Pathways (RCP) and revised algorithm of the ecosystem model, PnET-BGC, we investigated water, carbon, and nitrogen cycling of an alpine tundra ecosystem under different projections of future climate change at Saddle site of Niwot Ridge, Colorado. Simulations from this study suggest that future water supply from the alpine tundra was well predicted by the Budyko curve, which contrasts with findings from several previous studies. Although foliar display is projected to decrease due to summer water stress, an extend growing season and increasing atmospheric CO2 concentrations reverse its effects on carbon fixation by allowing longer period of photosynthesis and greater photosynthetic rate per leaf area. As a result of the increasing carbon sequestration, large increases in carbon storage are projected in living and dead biomass. Decomposition of soil organic carbon and mineralization of soil organic nitrogen increase with temperature and soil moisture, but also related to the period of snow cover which likely enhances microbial activity and associated soil decomposition and N immobilization. Future increase in winter precipitation leads to increasing snow water content which increases spring soil moisture and decomposition. Shorter future snow cover period and decreased summer soil moisture caused lower decomposition in both seasons, therefore negligible long-term pattern is projected. Future net N mineralization generally followed the pattern of organic carbon decomposition, but slightly increased because of decreasing winter immobilization due to projected shorter snow cover period. Nitrogen uptake is projected to be higher under radiative forcing scenarios of higher primary production and greater net N mineralization.
Plant species richness enhances nitrogen retention in green roof plots.
Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi
2016-10-01
Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters downstream of green roofs. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin
2016-04-01
Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.
Matyssek, R; Kozovits, A R; Wieser, G; King, J; Rennenberg, H
2017-06-01
Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC-AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC-AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forests more than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC-AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree-soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC-AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both bottom-up (e.g., mechanistic) and top-down (systems-level) understanding. This global, synthetic approach is needed because high biological plasticity and physiographic variation across individual ecosystems currently limit development of predictive models of forest responses to CC-AP. Integrated research on C and nutrient cycling, O3-vegetation interactions and water relations must target mechanisms' ecosystem responsiveness. Worldwide case studies must be subject to biostatistical exploration to elucidate overarching response patterns and synthesize the resulting empirical data through advanced modelling, in order to provide regionally coherent, yet globally integrated information in support of internationally coordinated decision-making and policy development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.
Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan
2016-12-01
Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Convergence of soil nitrogen isotopes across global climate gradients
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd
2015-01-01
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Convergence of soil nitrogen isotopes across global climate gradients.
Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd
2015-02-06
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
NASA Astrophysics Data System (ADS)
Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.
2016-02-01
Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy probably gave them access to zones of enhanced resources in early spring such as polynyas, the Antarctic Slope Front, or the Antarctic shelf while avoiding the constraint of sea ice. Over years, males foraging activity were not affected by anomalies of sea ice advance, however negative SIC anomalies were profitable allowing them to use remote areas within sea ice.
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.
2002-05-01
Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can largely be attributed to enhanced growth of the forest. The uncertainties are large because the record is short relative to boreal carbon residence time. There is also a possibility of long-term changes in the mixed layer dynamics which affect the diurnal variation pattern at the measurement height.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Oechel, W. C.; Hastings, S. J.; Bryant, P. J.; Qian, Y.
2003-12-01
This research took two different approaches to measuring carbon and water vapor fluxes at the plot level (2 x 2 meter and 1 x 1 meter plots) to help understand and predict ecosystem responses to elevated CO2 concentrations and concomitant environmental changes. The first measurement approach utilized a CO2-controlled, ambient lit, temperature controlled (CO2LT) null-balance chamber system run in a chaparral ecosystem in southern California, with six different CO2 concentrations ranging from 250 to 750 ppm CO2 concentrations with 100 ppm difference between treatments. The second measurement approach used a free air CO2 enrichment (FACE) system operated at 550 ppm CO2 concentration. These manipulations allowed the study of responses of naturally-growing chaparral to varying levels of CO2, under both chamber and open air conditions. There was a statistically significant CO2 effect on annual NEE (net ecosystem exchange) during the period of this study, 1997 to 2000. The effects of elevated CO2 on CO2 and water vapor flux showed strong seasonal patterns. Elevated CO2 delayed the development of water stress, enhanced leaf-level photosynthesis, and decreased transpiration and conductance rates. These effects were observed regardless of water availability. Ecosystem CO2 sink strength and plant water status were significantly enhanced by elevated CO2 when water availability was restricted. Comparing the FACE treatment and the FACE control, the ecosystem was either a stronger sink or a weaker source to the atmosphere throughout the dry seasons, but there was no statistically significant difference during the wet seasons. Annual average leaf transpiration decreased with the increasing of the atmospheric CO2 concentration. Although leaf level water-use efficiency (WUE) increased with the growth CO2 concentration increase, annual evapotranspiration (ET) during these four years also increased with the increase of the atmospheric CO2 concentrations. These results indicate that chaparral or other similar ecosystems, under future elevated CO2 concentrations, might be even more water stressed than they are under current conditions.
NASA Technical Reports Server (NTRS)
Potter, Christopher S.; Klooster, Steven A.; Brooks, Vanessa; Gore, Warren J. (Technical Monitor)
1998-01-01
There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20-30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60 degrees N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (10 (exp 15) g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983-1984, coinciding with an El Nino event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Avg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in magnitude with the estimated exchange of CO2 by the terrestrial biosphere with the atmosphere, as determined by previous isotopic (delta (sup 13 C) convolution analysis. Ecosystem simulation results can help further target locations where net carbon sink fluxes have occurred in the past or may be verified in subsequent field studies.
Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier
2017-04-01
Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.
Elmqvist, T; Colding, J; Barthel, S; Borgstrom, S; Duit, A; Lundberg, J; Andersson, E; Ahrné, K; Ernstson, H; Folke, C; Bengtsson, J
2004-06-01
This study addresses social-ecological dynamics in the greater metropolitan area of Stockholm County, Sweden, with special focus on the National Urban Park (NUP). It is part of the Millennium Ecosystem Assessment (MA) and has the following specific objectives: (1) to provide scientific information on biodiversity patterns, ecosystem dynamics, and ecosystem services generated; (2) to map interplay between actors and institutions involved in management of ecosystem services; and (3) to identify strategies for strengthening social-ecological resilience. The green areas in Stockholm County deliver numerous ecosystem services, for example, air filtration, regulation of microclimate, noise reduction, surface water drainage, recreational and cultural values, nutrient retention, and pollination and seed dispersal. Recreation is among the most important services and NUP, for example, has more than 15 million visitors per year. More than 65 organizations representing 175,000 members are involved in management of ecosystem services. However, because of population increase and urban growth during the last three decades, the region displays a quite dramatic loss of green areas and biodiversity. An important future focus is how management may reduce increasing isolation of urban green areas and enhance connectivity. Comanagement should be considered where locally managed green space may function as buffer zones and for management of weak links that connect larger green areas; for example, there are three such areas around NUP identified. Preliminary results indicate that areas of informal management represent centers on which to base adaptive comanagement, with the potential to strengthen biodiversity management and resilience in the landscape.
Nonlocal grazing in patterned ecosystems.
Siero, E
2018-01-07
Many ecosystems exhibit gapped, labyrinthine, striped or spotted patterns. Important examples are vegetation patterns in drylands: these patterns are viewed as precursors of a catastrophic transition to a degraded state. A possible source of degradation is overgrazing, but many current spatially extended models include grazing in a local linear way. In this article nonlocal grazing responses are derived, taking into account (1) how many consumers there are (demographic response) (2) where they are (aggregative response) and (3) how much they forage (functional response). Different assumptions lead to different grazing responses, the type of grazing has a large influence on how ecosystems adapt to changing environmental conditions. In dryland simulations the different types of grazing are shown to alter the desertification process driven by decreasing rainfall. A sufficiently strong aggregative response leads to the suppression of vegetation patterns, nuancing their role as generic early warning signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Knapp, Alan K.; Avolio, Meghan L.; Beier, Claus; Carroll, Charles J.W.; Collins, Scott L.; Dukes, Jeffrey S.; Fraser, Lauchlan H.; Griffin-Nolan, Robert J.; Hoover, David L.; Jentsch, Anke; Loik, Michael E.; Phillips, Richard P.; Post, Alison K.; Sala, Osvaldo E.; Slette, Ingrid J.; Yahdjian, Laura; Smith, Melinda D.
2017-01-01
Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of ‘Drought-Net’, a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites – a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes.
Knapp, Alan K; Avolio, Meghan L; Beier, Claus; Carroll, Charles J W; Collins, Scott L; Dukes, Jeffrey S; Fraser, Lauchlan H; Griffin-Nolan, Robert J; Hoover, David L; Jentsch, Anke; Loik, Michael E; Phillips, Richard P; Post, Alison K; Sala, Osvaldo E; Slette, Ingrid J; Yahdjian, Laura; Smith, Melinda D
2017-05-01
Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of 'Drought-Net', a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites - a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Galvin, K.; Togtohyn, C.
2012-12-01
Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.
Anderson, Christopher B; Rosemond, Amy D
2007-11-01
Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of macroinvertebrate biomass (positive) were inversely related. Thus, while a generally positive relationship between diversity and ecosystem function has been found in a variety of systems, this work shows how they can be decoupled by responding to alterative mechanisms.
Diversity in Riparian Landscapes
Thomas R. Crow; Matthew E. Baker; Burton V. Barnes
2000-01-01
Therefore, in this chapter we focus on ecosystem diversity, defined as the number, kind, and pattern of landscape and waterscape ecosystems in a specified area and the ecological processes that are associated with these patterns (Lapin and Barnes 1995). One can then characterize eeosysterns as to their composition, structure, and function -- the attributes Of...
Supplementing forest ecosystem health projects on the ground
Cathy Barbouletos; Lynette Z. Morelan
1995-01-01
Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...
Ecological and resource economics as ecosystem management tools
Stephen Farber; Dennis Bradley
1999-01-01
Economic pressures on ecosystems will only intensify in the future. Increased population levels, settlement patterns, and increased incomes will raise the demands for ecosystem resources and their services. The pressure to transform ecosystem natural assets into marketable commodities, whether by harvesting and mining resources or altering landscapes through...
Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai
2017-01-01
Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.
Langenheder, Silke; Bulling, Mark T; Prosser, James I; Solan, Martin
2012-07-30
Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.
Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.
2011-01-01
Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems. PMID:21347254
Global patterns of phytoplankton dynamics in coastal ecosystems
Paerl, H.; Yin, Kedong; Cloern, J.
2011-01-01
Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
Defining, valuing and providing ecosystem goods and services
Thomas C. Brown; John C. Bergstrom; John B. Loomis
2007-01-01
Ecosystem services are the specific results of ecosystem processes that either directly sustain or enhance human life (as does natural protection from the sun's harmful ultraviolet rays) or maintain the qualify of ecosystem goods (as water purification maintains the quality of streamflow). "Ecosystem service" has come to represent several related topics...
Resilience: Concepts and Measures. Chapter 2
NASA Technical Reports Server (NTRS)
Westman, Walter E.
1986-01-01
Inertia, the resistance of an ecosystem property to change under stress, is distinguished from resilience, which refers to the degree, manner. and pace of change or recovery in ecosystem properties following disturbance. In turn, these two terms are differentiated from 'stability'. which is used here to refer to the pattern of natural fluctuation in ecosystem properties in the absence of major exogenous disturbance. Four component attributes of resilience are reviewed in the context of Mediterranean-climate examples. The elasticity component concerns the rate of recovery of an ecosystem property following disturbance; amplitude, the threshold of stress beyond which recovery to the initial state does not occur; hysteresis, the degree to which the pattern of recovery after stress differs from that of deterioration under chronic stress, and malleability the ease with which the ecosystem can become permanently altered. Each ecosystem property will typically reveal a different level of resilience to a given stress and stressor. The degree of recovery should not be expected to be complete in any event, due to sample variability and stochastic events. In cyclicallystable ecosystems, the pattern of recovery should be measured in light of this periodicity, and short-term (within-cycle) recovery distinguished from long-term (between-cycle) recovery. The prediction of resilience properties of ecosystems can be approached through a knowledge of the modular structure of foodwebs, through knowledge of the autecological adaptations of key species to the stressor, or through cumulative experience of the response to disturbance at the community level. At present there is much room for investigation of each of these approaches in Mediterranean-climate ecosystems.
NASA Astrophysics Data System (ADS)
Li, B.; Huang, F.; Chang, S.; Qi, H.; Zhai, H.
2018-04-01
Indentifying the spatio-temporal patterns of ecosystem services supply and demand and the driving forces is of great significance to the regional ecological security and sustainable socio-economic development. Due to long term and high-intensity development, the ecological environment in central and southern Liaoning urban agglomerations has been greatly destroyed thereafter has restricted sustainable development in this region. Based on Landsat ETM and OLI images, land use of this urban agglomeration in 2005, 2010 and 2015 was extracted. The integrative index of multiple-ecosystem services (IMES) was used to quantify the supply (IMESs), demand (IMESd) and balance (IMESb) of multiple-ecosystem services, The spatial patterns of ecosystem services and its dynamics for the period of 2005-2015 were revealed. The multiple regression and stepwise regression analysis were used to explore relationships between ecosystem services and socioeconomic factors. The results showed that the IMESs of the region increased by 2.93 %, whereas IMESd dropped 38 %. The undersupplied area was reduced to 2. The IMESs and IMESb were mainly negatively correlated with gross domestic product (GDP), population density, foreign investment and industrial output, while GDP per capita and the number of teachers had significant positive impacts on ecosystem services supply. The positive correlation between IMESd and GDP, population density and foreign investment were found. The ecosystem services models were established. Supply and balance of multiple-ecosystem services were positively correlated with population density, but the demand was the opposite. The results can provide some reference value for the coordinately economic and ecological development in the study area.
Linking degradation status with ecosystem vulnerability to environmental change
Angeler, David G.; Baho, Didier L.; Allen, Craig R.; Johnson, Richard K.
2015-01-01
Environmental change can cause regime shifts in ecosystems, potentially threatening ecosystem services. It is unclear if the degradation status of ecosystems correlates with their vulnerability to environmental change, and thus the risk of future regime shifts. We assessed resilience in acidified (degraded) and circumneutral (undegraded) lakes with long-term data (1988–2012), using time series modeling. We identified temporal frequencies in invertebrate assemblages, which identifies groups of species whose population dynamics vary at particular temporal scales. We also assessed species with stochastic dynamics, those whose population dynamics vary irregularly and unpredictably over time. We determined the distribution of functional feeding groups of invertebrates within and across the temporal scales identified, and in those species with stochastic dynamics, and assessed attributes hypothesized to contribute to resilience. Three patterns of temporal dynamics, consistent across study lakes, were identified in the invertebrates. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second and third patterns appeared unrelated to the environmental changes we monitored. Acidified and the circumneutral lakes shared similar levels and patterns of functional richness, evenness, diversity, and redundancy for species within and across the observed temporal scales and for stochastic species groups. These similar resilience characteristics suggest that both lake types did not differ in vulnerability to the environmental changes observed here. Although both lake types appeared equally vulnerable in this study, our approach demonstrates how assessing systemic vulnerability by quantifying ecological resilience can help address uncertainty in predicting ecosystem responses to environmental change across ecosystems.
Effective Best Management Practices for Nitrogen Removal in Aquatic Ecosystems
Elevated nitrate levels in streams and groundwater are detrimental to human and ecosystem health. The Ground Water and Ecosystems Restoration Division (GWERD) of the USEPA investigates best management practices (BMP’s) that enhance nitrogen removal in aquatic ecosystems througho...
Effects of prescribed fire on wildlife and wildlife habitat in selected ecosystems of North America
William M. Block; L. Mike Conner; Paul A. Brewer; Paulette Ford; Jonathan Haufler; Andrea Litt; Ronald E. Masters; Laura R. Mitchell; Jane Park
2016-01-01
Prescribed fire is applied widely as a management tool in North America to meet various objectives such as reducing fuel loads and fuel continuity, returning fire to an ecosystem, enhancing wildlife habitats, improving forage, preparing seedbeds, improving watershed conditions, enhancing nutrient cycling, controlling exotic weeds, and enhancing resilience from...
Divergent phenological response to hydroclimate variability in forested mountain watersheds.
Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P
2014-08-01
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. © 2014 John Wiley & Sons Ltd.
Linking ecosystem services and human-values theory.
Hicks, Christina C; Cinner, Joshua E; Stoeckl, Natalie; McClanahan, Tim R
2015-10-01
Understanding why people make the decisions they do remains a fundamental challenge facing conservation science. Ecosystem service (ES) (a benefit people derive from an ecosystem) approaches to conservation reflect efforts to anticipate people's preferences and influence their environmental behavior. Yet, the design of ES approaches seldom includes psychological theories of human behavior. We sought to alleviate this omission by applying a psychological theory of human values to a cross-cultural ES assessment. We used interviews and focus groups with fish workers from 28 coral reef fishing communities in 4 countries to qualitatively identify the motivations (i.e., human values) underlying preferences for ES; quantitatively evaluate resource user ES priorities; and identify common patterns among ES motivations and ES priorities (i.e., trade-offs and synergies). Three key findings are evident that align with human values theory. First, motivations underlying preferences for individual ESs reflected multiple human values within the same value domain (e.g., self-enhancement). Second, when averaged at community or country scales, the order of ES priorities was consistent. However, the order belied significant variation that existed among individuals. Third, in line with human values theory, ESs related to one another in a consistent pattern; certain service pairs reflected trade-off relationships (e.g., supporting and provisioning), whereas other service pairs reflected synergistic relationships (e.g., supporting and regulating). Together, these findings help improve understanding of when and why convergence and trade-offs in people's preferences for ESs occur, and this knowledge can inform the development of suitable conservation actions. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of the Society for Conservation Biology.
Demonstrating microbial co-occurrence pattern analyses within and between ecosystems
Williams, Ryan J.; Howe, Adina; Hofmockel, Kirsten S.
2014-01-01
Co-occurrence patterns are used in ecology to explore interactions between organisms and environmental effects on coexistence within biological communities. Analysis of co-occurrence patterns among microbial communities has ranged from simple pairwise comparisons between all community members to direct hypothesis testing between focal species. However, co-occurrence patterns are rarely studied across multiple ecosystems or multiple scales of biological organization within the same study. Here we outline an approach to produce co-occurrence analyses that are focused at three different scales: co-occurrence patterns between ecosystems at the community scale, modules of co-occurring microorganisms within communities, and co-occurring pairs within modules that are nested within microbial communities. To demonstrate our co-occurrence analysis approach, we gathered publicly available 16S rRNA amplicon datasets to compare and contrast microbial co-occurrence at different taxonomic levels across different ecosystems. We found differences in community composition and co-occurrence that reflect environmental filtering at the community scale and consistent pairwise occurrences that may be used to infer ecological traits about poorly understood microbial taxa. However, we also found that conclusions derived from applying network statistics to microbial relationships can vary depending on the taxonomic level chosen and criteria used to build co-occurrence networks. We present our statistical analysis and code for public use in analysis of co-occurrence patterns across microbial communities. PMID:25101065
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-01-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832
NASA Astrophysics Data System (ADS)
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-12-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.
Schittko, Conrad; Hawa, Mahmoud; Wurst, Susanne
2014-01-01
A frequent pattern emerging from biodiversity-ecosystem function studies is that functional group richness enhances ecosystem functions such as primary productivity. However, the manipulation of functional group richness goes along with major disadvantages like the transformation of functional trait data into categories or the exclusion of functional differences between organisms in the same group. In a mesocosm study we manipulated plant functional diversity based on the multi-trait Functional Diversity (FD)-approach of Petchey and Gaston by using database data of seven functional traits and information on the origin of the species in terms of being native or exotic. Along a gradient ranging from low to high FD we planted 40 randomly selected eight-species mixtures under controlled conditions. We found a significant positive linear correlation of FD with aboveground productivity and a negative correlation with invasibility of the plant communities. Based on community-weighted mean calculations for each functional trait, we figured out that the traits N-fixation and species origin, i.e. being native or exotic, played the most important role for community productivity. Our results suggest that the identification of the impact of functional trait diversity and the relative contributions of relevant traits is essential for a mechanistic understanding of the role of biodiversity for ecosystem functions such as aboveground biomass production and resistance against invasion. PMID:24897501
Erica A. H. Smithwick; Daniel M. Kashian; Michael G. Ryan; Monica G. Turner
2009-01-01
Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N...
Lewandowska, Aleksandra M; Biermann, Antje; Borer, Elizabeth T; Cebrián-Piqueras, Miguel A; Declerck, Steven A J; De Meester, Luc; Van Donk, Ellen; Gamfeldt, Lars; Gruner, Daniel S; Hagenah, Nicole; Harpole, W Stanley; Kirkman, Kevin P; Klausmeier, Christopher A; Kleyer, Michael; Knops, Johannes M H; Lemmens, Pieter; Lind, Eric M; Litchman, Elena; Mantilla-Contreras, Jasmin; Martens, Koen; Meier, Sandra; Minden, Vanessa; Moore, Joslin L; Venterink, Harry Olde; Seabloom, Eric W; Sommer, Ulrich; Striebel, Maren; Trenkamp, Anastasia; Trinogga, Juliane; Urabe, Jotaro; Vyverman, Wim; Van de Waal, Dedmer B; Widdicombe, Claire E; Hillebrand, Helmut
2016-05-19
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity. © 2016 The Author(s).
Patterns of Genetic Variation in Woody Plant Species in the Missouri Ozark Forest Ecosystem Project
Victoria L. Sork; Anthony Koop; Marie Ann de la Fuente; Paul Foster; Jay Raveill
1997-01-01
We quantified current patterns of genetic variation of three woody plant speciesâCarya tomentosa (Juglandaceae), Quercus alba (Fagaceae), and Sassafras albidum (Lauraceae)âdistributed throughout the nine Missouri Ozark Forest Ecosystem Project (MOFEP) study sites and evaluated the data in light of the MOFEP...
Perception of scale in forest management planning: Challenges and implications
Swee May Tang; Eric J. Gustafson
1997-01-01
Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...
Longitudinal patterns of metabolism in a southern Appalachian river
M. E. McTammany; J. R. Webster; E. F. Benfield; M. A. Neatrour
2003-01-01
We investigated longitudinal patterns of ecosystem metabolism (primary production and respiration) at 4 sites along a 37-km segment of the Little tennessee River (LTR), North Carolina. These sites corresponded to 4th- to 6th- order reaches in the LTR in an attempt to identify thr transition from heterotrophic to autotrophic conditions in this river ecosystem. In...
Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff
2008-01-01
Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...
Vogelmann, James E.; Xian, George; Homer, Collin G.; Tolk, Brian
2012-01-01
The focus of the study was to assess gradual changes occurring throughout a range of natural ecosystems using decadal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM +) time series data. Time series data stacks were generated for four study areas: (1) a four scene area dominated by forest and rangeland ecosystems in the southwestern United States, (2) a sagebrush-dominated rangeland in Wyoming, (3) woodland adjacent to prairie in northwestern Nebraska, and (4) a forested area in the White Mountains of New Hampshire. Through analyses of time series data, we found evidence of gradual systematic change in many of the natural vegetation communities in all four areas. Many of the conifer forests in the southwestern US are showing declines related to insects and drought, but very few are showing evidence of improving conditions or increased greenness. Sagebrush communities are showing decreases in greenness related to fire, mining, and probably drought, but very few of these communities are showing evidence of increased greenness or improving conditions. In Nebraska, forest communities are showing local expansion and increased canopy densification in the prairie–woodland interface, and in the White Mountains high elevation understory conifers are showing range increases towards lower elevations. The trends detected are not obvious through casual inspection of the Landsat images. Analyses of time series data using many scenes and covering multiple years are required in order to develop better impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach described in this paper demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. Local knowledge and available ancillary data are required in order to fully understand the nature of these trends.
Fasching, Christina; Ulseth, Amber J; Schelker, Jakob; Steniczka, Gertraud; Battin, Tom J
2016-03-01
Streams and rivers transport dissolved organic matter (DOM) from the terrestrial environment to downstream ecosystems. In light of climate and global change it is crucial to understand the temporal dynamics of DOM concentration and composition, and its export fluxes from headwaters to larger downstream ecosystems. We monitored DOM concentration and composition based on a diurnal sampling design for 3 years in an Alpine headwater stream. We found hydrologic variability to control DOM composition and the coupling of DOM dynamics in the streamwater and the hyporheic zone. High-flow events increased DOM inputs from terrestrial sources (as indicated by the contributions of humic- and fulvic-like fluorescence), while summer baseflow enhanced the autochthonous imprint of DOM. Diurnal and seasonal patterns of DOM composition were likely induced by biological processes linked to temperature and photosynthetic active radiation (PAR). Floods frequently interrupted diurnal and seasonal patterns of DOM, which led to a decoupling of streamwater and hyporheic water DOM composition and delivery of aromatic and humic-like DOM to the streamwater. Accordingly, DOM export fluxes were largely of terrigenous origin as indicated by optical properties. Our study highlights the relevance of hydrologic and seasonal dynamics for the origin, composition and fluxes of DOM in an Alpine headwater stream.
Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems
USDA-ARS?s Scientific Manuscript database
Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...
Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream.
Ecosystem metabolism is an important mechanism for nutrient retention in streams, yet few high studies have investigated temporal patterns in gross primary production (GPP) and ecosystem respiration (ER) using high frequency measurements. This is a potentially important oversig...
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Goulden, M.
2014-12-01
Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved prediction of terrestrial carbon balance. We will also present results of ongoing work to quantify fast and slow contributions to the relationship between evapotranspiration and precipitation across a precipitation gradient.
NASA Astrophysics Data System (ADS)
Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; Horie, Takeshi; Saito, Kazuki; Dounagsavanh, Linkham
2010-08-01
In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1-5 years, whereas 10% for 6-10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha -1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990-2004 periods was estimated to be 42 MgC ha -1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through changing land-use and ecosystem management scenarios. These quantitative estimates would be useful to better understand and manage the land-use and ecosystem carbon stock towards higher sustainability and food security in similar ecosystems.
Combined effects of agrochemicals and ecosystem services on crop yield across Europe.
Gagic, Vesna; Kleijn, David; Báldi, András; Boros, Gergely; Jørgensen, Helene Bracht; Elek, Zoltán; Garratt, Michael P D; de Groot, G Arjen; Hedlund, Katarina; Kovács-Hostyánszki, Anikó; Marini, Lorenzo; Martin, Emily; Pevere, Ines; Potts, Simon G; Redlich, Sarah; Senapathi, Deepa; Steffan-Dewenter, Ingolf; Świtek, Stanislaw; Smith, Henrik G; Takács, Viktória; Tryjanowski, Piotr; van der Putten, Wim H; van Gils, Stijn; Bommarco, Riccardo
2017-11-01
Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced. © 2017 John Wiley & Sons Ltd/CNRS.
Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems
Zinger, Lucie; Amaral-Zettler, Linda A.; Fuhrman, Jed A.; Horner-Devine, M. Claire; Huse, Susan M.; Welch, David B. Mark; Martiny, Jennifer B. H.; Sogin, Mitchell; Boetius, Antje; Ramette, Alban
2011-01-01
Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed. PMID:21931760
McKenna, J.E.
2003-01-01
The biosphere is filled with complex living patterns and important questions about biodiversity and community and ecosystem ecology are concerned with structure and function of multispecies systems that are responsible for those patterns. Cluster analysis identifies discrete groups within multivariate data and is an effective method of coping with these complexities, but often suffers from subjective identification of groups. The bootstrap testing method greatly improves objective significance determination for cluster analysis. The BOOTCLUS program makes cluster analysis that reliably identifies real patterns within a data set more accessible and easier to use than previously available programs. A variety of analysis options and rapid re-analysis provide a means to quickly evaluate several aspects of a data set. Interpretation is influenced by sampling design and a priori designation of samples into replicate groups, and ultimately relies on the researcher's knowledge of the organisms and their environment. However, the BOOTCLUS program provides reliable, objectively determined groupings of multivariate data.
Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M
2015-01-01
In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Sanaga, S.; Rodda, S. R.
2017-12-01
Exchange of carbon and water fluxes between vegetation and atmosphere play a crucial role in the metabolism of terrestrial ecosystems. These exchanges are coupled through a key ecosystem characteristic called water use efficiency (WUE): the ratio between carbon assimilation (proxy to photosynthesis) to water loss (proxy to consumptive use). Globally, India ranks fourth in mandarin orange (Citrus reticulata) production, but ranks 64th in orange crop yield. The dichotomy between crop production and yield can be attributed to erratic rainfall and improper management practices. This research aims at analysing the diurnal and seasonal dynamics of WUE, and their dominant controls for the citrus orchards of central India. Eddy covariance (EC) technique was used to estimate evapotranspiration (ET) and gross primary product (GPP) fluxes in a flood irrigated, matured, healthy citrus orchard for one crop cycle. Seasonal variations in ET and GPP were observed to be strongly influenced by leaf phonological parameters and less by climate variables. Landsat-8 images were used to extrapolate and scale-up the in situ fluxes to characterize the ecosystem WUE. Overall, Landsat-8 has reasonably captured ET, GPP, and WUE dynamics at the flux tower location (R2 ≥0.86). Spatiotemporal patterns of ET, GPP, and WUE fluxes reveals that the heterogeneity is gradually increasing from flowering to development stage. A number of vegetation, soil, and biophysical indices derived from Landsat-8 were then correlated with WUE estimates, to see if these indices either in solitary or in combination can explain WUE dynamics of citrus orchards. Results conclude that, spatial patterns in WUE are strongly correlated with enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and soil adjusted vegetation index (SAVI). Spectral indices derived WUE estimates were further used to develop sustainable agricultural management practices applicable to the region.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2009-08-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) carbon dioxide (CO2). During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ±standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ±standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2 s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2 s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2010-01-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor
2016-04-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, S.
2015-12-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
[Impacts of cross-habitat resource subsidies on ecosystems: A review.
Zhang, Yi Xin; Xiang, Hong Yong
2017-02-01
The flux of matter, energy and nutrients across ecosystems, i.e., resource subsidy, is a fundamental attribute of ecosystems, as well as one of basic research questions in ecology. Common subsidies include leaf litter and terrestrial insects that fall into waters, the adults of aquatic insects, spawning salmon. The allocthonous input of resource subsidy can influence individual organisms, populations, communities, biodiversity and ecosystem functioning, such as enhancing individual growth, increasing species abundance and diversity, affecting community structure, enhancing secondary productivity, influencing food-chain length and food web. Due to increased human impacts on environments, especially at aspects of land use, climate change and invasive species, the influence of anthropogenic disturbance on cross-ecosystem resource subsidies will be intensified at both spacial and temporary scales, so that ecosystems will face severer threats. Accordingly, future ecological researches in this field should emphasize the following aspects: impacts of single and multiple stressors on subsidies and ecosystems, implementation of dynamic resource subsidies on ecosystem restoration and management, the dark sides of subsidy relating with pollutants, and basic ecological research on cross-ecosystem resource subsidy in tropics and sub-tropics, as well in China.
Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning.
Bragina, Anastasia; Berg, Christian; Müller, Henry; Moser, Daniel; Berg, Gabriele
2013-01-01
Plant-associated bacteria are important for the growth and health of their host, but little is known about its functional diversity and impact on ecosystem functioning. We studied bacterial nitrogen fixation and methane oxidation from indicator Sphagnum mosses in Alpine bogs to test a hypothesis that the plant microbiome contained different functional patterns depending on their functions within the ecosystem. A high abundance and diversity of nitrogenase genes were detected, mostly specific for each Sphagnum. In contrast, methanotrophs formed highly similar patterns despite a high abundance and diversity of methane monooxygenase genes. Our hypothesis was supported by these contrasting functional patterns together with the result that the Sphagnum sporophyte contained a high proportion of specific diazotrophs (45.5%) but no potential methanotrophs. While essential for plant growth under nutrient-limited conditions, nitrogen-fixing bacteria were highly specific and transferred with the sporophyte unlike the ubiquitous methanotrophs which are important for the climate-relevant ecosystem itself.
Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara
2011-01-01
Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Friedl, Mark A.; Schaaf, Crystal B.
2006-12-01
In the last two decades the availability of global remote sensing data sets has provided a new means of studying global patterns and dynamics in vegetation. The vast majority of previous work in this domain has used data from the Advanced Very High Resolution Radiometer, which until recently was the primary source of global land remote sensing data. In recent years, however, a number of new remote sensing data sources have become available that have significantly improved the capability of remote sensing to monitor global ecosystem dynamics. In this paper, we describe recent results using data from NASA's Moderate Resolution Imaging Spectroradiometer to study global vegetation phenology. Using a novel new method based on fitting piecewise logistic models to time series data from MODIS, key transition dates in the annual cycle(s) of vegetation growth can be estimated in an ecologically realistic fashion. Using this method we have produced global maps of seven phenological metrics at 1-km spatial resolution for all ecosystems exhibiting identifiable annual phenologies. These metrics include the date of year for (1) the onset of greenness increase (greenup), (2) the onset of greenness maximum (maturity), (3) the onset of greenness decrease (senescence), and (4) the onset of greenness minimum (dormancy). The three remaining metrics are the growing season minimum, maximum, and summation of the enhanced vegetation index derived from MODIS. Comparison of vegetation phenology retrieved from MODIS with in situ measurements shows that these metrics provide realistic estimates of the four transition dates identified above. More generally, the spatial distribution of phenological metrics estimated from MODIS data is qualitatively realistic, and exhibits strong correspondence with temperature patterns in mid- and high-latitude climates, with rainfall seasonality in seasonally dry climates, and with cropping patterns in agricultural areas.
Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.
2015-01-01
The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.
Climate change effects on above- and below-ground interactions in a dryland ecosystem.
González-Megías, Adela; Menéndez, Rosa
2012-11-19
Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.
Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili
2014-01-01
Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629
Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili
2014-01-01
Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24 ≤ R(2) ≤ 0.85), especially at the Changbaishan temperate forest ecosystem (R(2) = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction.
NASA Astrophysics Data System (ADS)
Philippart, Catharina J. M.; Amaral, Ana; Asmus, Ragnhild; van Bleijswijk, Judith; Bremner, Julie; Buchholz, Fred; Cabanellas-Reboredo, Miguel; Catarino, Diana; Cattrijsse, André; Charles, François; Comtet, Thierry; Cunha, Alexandra; Deudero, Salud; Duchêne, Jean-Claude; Fraschetti, Simonetta; Gentil, Franck; Gittenberger, Arjan; Guizien, Katell; Gonçalves, João M.; Guarnieri, Giuseppe; Hendriks, Iris; Hussel, Birgit; Vieira, Raquel Pinheiro; Reijnen, Bastian T.; Sampaio, Iris; Serrao, Ester; Pinto, Isabel Sousa; Thiebaut, Eric; Viard, Frédérique; Zuur, Alain F.
2012-08-01
Reproductive cycles of marine invertebrates with complex life histories are considered to be synchronized by water temperature and feeding conditions, which vary with season and latitude. This study analyses seasonal variation in the occurrence of oyster (Crassostrea gigas) and mussel (Mytilus edulis/galloprovincialis) larvae across European coastal waters at a synoptic scale (1000s of km) using standardised methods for sampling and molecular analyses. We tested a series of hypotheses to explain the observed seasonal patterns of occurrence of bivalve larvae at 12 European stations (located between 37°N and 60°N and 27°W and 18°E). These hypotheses included a model that stated that there was no synchronisation in seasonality of larval presence at all between the locations (null hypothesis), a model that assumed that there was one common seasonality pattern for all stations within Europe, and various models that supposed that the variation in seasonality could be grouped according to specific spatial scales (i.e., latitude, large marine ecosystems and ecoregions), taxonomic groups, or several combinations of these factors. For oysters, the best models explaining the presence/absence of larvae in European coastal waters were (1) the model that assumed one common seasonal pattern, and (2) the one that, in addition to this common pattern, assumed an enhanced probability of occurrence from south to north. The third best model for oysters, with less empirical support than the first two, stated that oysters reproduced later in the south than in the north. For mussels, the best models explaining the seasonality in occurrence of larvae were (1) the model that assumed four underlying trends related to large marine ecosystems, and (2) the one that assumed one common seasonal pattern for larvae occurrence throughout Europe. Such synchronies in larval occurrences suggest that environmental conditions relevant to bivalve larval survival are more or less similar at large spatial scales from 100s to 1000s of km. To unravel the underlying mechanisms for this synchronisation is of particular interest in the light of changing environmental conditions as the result of global climate change and the possible consequences for marine food webs and ecosystem services.
Impacts of changes in climate and landscape pattern on ecosystem services.
Hao, Ruifang; Yu, Deyong; Liu, Yupeng; Liu, Yang; Qiao, Jianmin; Wang, Xue; Du, Jinshen
2017-02-01
The restoration of degraded vegetation can effectively improve ecosystem services, increase human well-being, and promote regional sustainable development. Understanding the changing trends in ecosystem services and their drivers is an important step in informing decision makers for the development of reasonable landscape management measures. From 2001 to 2014, we analyzed the changing trends in five critical ecosystem services in the Xilingol Grassland, which is typical of grasslands in North China, including net primary productivity (NPP), soil conservation (SC), soil loss due to wind (SL), water yield (WY) and water retention (WR). Additionally, we quantified how climatic factors and landscape patterns affect the five ecosystem services on both annual and seasonal time scales. Overall, the results indicated that vegetation restoration can effectively improve the five grassland ecosystem services, and precipitation (PPT) is the most critical climatic factor. The impact of changes in the normalized difference vegetation index (NDVI) was most readily detectable on the annual time scale, whereas the impact of changes in landscape pattern was most readily detectable on the seasonal time scale. A win-win situation in terms of grassland ecosystem services (e.g., vegetation productivity, SC, WR and reduced SL) can be achieved by increasing grassland aggregation, partitioning the largest grasslands, dividing larger areas of farmland into smaller patches, and increasing the area of appropriate forest stands. Our work may aid policymakers in developing regional landscape management schemes. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.; ...
2014-10-13
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
NASA Astrophysics Data System (ADS)
Heimann, M.; Prentice, I. C.; Foley, J.; Hickler, T.; Kicklighter, D. W.; McGuire, A. D.; Melillo, J. M.; Ramankutty, N.; Sitch, S.
2001-12-01
Models of biophysical and biogeochemical proceses are being used -either offline or in coupled climate-carbon cycle (C4) models-to assess climate- and CO2-induced feedbacks on atmospheric CO2. Observations of atmospheric CO2 concentration, and supplementary tracers including O2 concentrations and isotopes, offer unique opportunities to evaluate the large-scale behaviour of models. Global patterns, temporal trends, and interannual variability of the atmospheric CO2 concentration and its seasonal cycle provide crucial benchmarks for simulations of regionally-integrated net ecosystem exchange; flux measurements by eddy correlation allow a far more demanding model test at the ecosystem scale than conventional indicators, such as measurements of annual net primary production; and large-scale manipulations, such as the Duke Forest Free Air Carbon Enrichment (FACE) experiment, give a standard to evaluate modelled phenomena such as ecosystem-level CO2 fertilization. Model runs including historical changes of CO2, climate and land use allow comparison with regional-scale monthly CO2 balances as inferred from atmospheric measurements. Such comparisons are providing grounds for some confidence in current models, while pointing to processes that may still be inadequately treated. Current plans focus on (1) continued benchmarking of land process models against flux measurements across ecosystems and experimental findings on the ecosystem-level effects of enhanced CO2, reactive N inputs and temperature; (2) improved representation of land use, forest management and crop metabolism in models; and (3) a strategy for the evaluation of C4 models in a historical observational context.
Regional scale patterns of fine root lifespan and turnover under current and future climate
M. Luke McCormack; David M. Eissenstat; Anantha M. Prasad; Erica A. Smithwick
2013-01-01
Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics...
Nutrient vectors and riparian nutrient processing in African semiarid savanna ecosystems
Jacobs, Shayne M.; Bechtold, J.S.; Biggs, Harry C.; Grimm, N. B.; McClain, M.E.; Naiman, R.J.; Perakis, Steven S.; Pinay, G.; Scholes, M.C.
2007-01-01
This review article describes vectors for nitrogen and phosphorus delivery to riparian zones in semiarid African savannas, the processing of nutrients in the riparian zone and the effect of disturbance on these processes. Semiarid savannas exhibit sharp seasonality, complex hillslope hydrology and high spatial heterogeneity, all of which ultimately impact nutrient fluxes between riparian, upland and aquatic environments. Our review shows that strong environmental drivers such as fire and herbivory enhance nitrogen, phosphorus and sediment transport to lower slope positions by shaping vegetative patterns. These vectors differ significantly from other arid and semiarid ecosystems, and from mesic ecosystems where the impact of fire and herbivory are less pronounced and less predictable. Also unique is the presence of sodic soils in certain hillslopes, which substantially alters hydrological flowpaths and may act as a trap where nitrogen is immobilized while sediment and phosphorus transport is enhanced. Nutrients and sediments are also deposited in the riparian zone during seasonal, intermittent floods while, during the dry season, subsurface movement of water from the stream into riparian soils and vegetation further enrich riparian zones with nutrients. As is found in mesic ecosystems, nutrients are immobilized in semiarid riparian corridors through microbial and plant uptake, whereas dissimilatory processes such as denitrification may be important where labile nitrogen and carbon are in adequate supply and physical conditions are suitablea??such as in seeps, wallows created by animals, ephemeral wetlands and stream edges. Interaction between temporal hydrologic connectivity and spatial heterogeneity are disrupted by disturbances such as large floods and extended droughts, which may convert certain riparian patches from sinks to sources for nitrogen and phosphorus. In the face of increasing anthropogenic pressure, the scientific challenges are to provide a basic understanding of riparian biogeochemistry in semiarid African savannas to adequately address the temporal and spatial impact of disturbances, and to apply this knowledge to better regional land and water management. An integrated, multidisciplinary approach applied in protected as well as human-disturbed ecosystems in southern Africa is essential for underpinning a strong environmental basis for sustainable human-related expansion.
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.
2014-12-01
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.
Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.
2016-01-01
The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.
Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk
2014-11-12
The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.
Canopy and physiological controls of GPP during drought and heat wave
NASA Astrophysics Data System (ADS)
Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi
2016-04-01
Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.
[Land use and land cover charnge (LUCC) and landscape service: Evaluation, mapping and modeling].
Song, Zhang-jian; Cao, Yu; Tan, Yong-zhong; Chen, Xiao-dong; Chen, Xian-peng
2015-05-01
Studies on ecosystem service from landscape scale aspect have received increasing attention from researchers all over the world. Compared with ecosystem scale, it should be more suitable to explore the influence of human activities on land use and land cover change (LUCC), and to interpret the mechanisms and processes of sustainable landscape dynamics on landscape scale. Based on comprehensive and systematic analysis of researches on landscape service, this paper firstly discussed basic concepts and classification of landscape service. Then, methods of evaluation, mapping and modeling of landscape service were analyzed and concluded. Finally, future trends for the research on landscape service were proposed. It was put forward that, exploring further connotation and classification system of landscape service, improving methods and quantitative indicators for evaluation, mapping and modelling of landscape service, carrying out long-term integrated researches on landscape pattern-process-service-scale relationships and enhancing the applications of theories and methods on landscape economics and landscape ecology are very important fields of the research on landscape service in future.
Macroecology of unicellular organisms - patterns and processes.
Soininen, Janne
2012-02-01
Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Overcoming etch challenges related to EUV based patterning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter
2017-04-01
Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.
Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J.; Scharlemann, Jörn P. W.; Purves, Drew W.
2014-01-01
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures. PMID:24756001
Harfoot, Michael B J; Newbold, Tim; Tittensor, Derek P; Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J; Scharlemann, Jörn P W; Purves, Drew W
2014-04-01
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.
The carbon isotopic composition of ecosystem breath
NASA Astrophysics Data System (ADS)
Ehleringer, J.
2008-05-01
At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.
Developing a Dataset to Assess Ecosystem Services in the Midwest, United States
There is an urgent need in the science community to enhance our understanding of the services provided by the ecosystems of the Midwestern United States. The following paper describes a method for creating an enhanced spatially explicit land cover for the Midwest. We constructed...
K.L. Larson; K.C. Nelson; S.R. Samples; S.J. Hall; N. Bettez; J. Cavender-Bares; P.M. Groffman; M. Grove; J.B. Heffernan; S.E. Hobbie; J. Learned; J.L. Morse; C. Neill; L.A. Ogden; Jarlath O' Neil-Dunne; D.E. Pataki; C. Polsky; R. Roy Chowdhury; M. Steele; T.L.E. Trammell
2016-01-01
Although ecosystem services have been intensively examined in certain domains (e.g., forests and wetlands), little research has assessed ecosystem services for the most dominant landscape type in urban ecosystemsânamely, residential yards. In this paper, we report findings of a cross-site survey of homeowners in six U.S. cities to 1) examine how residents subjectively...
NASA Astrophysics Data System (ADS)
Zhen, L.; Ochirbat, B.; Lv, Y.; Wei, Y. J.; Liu, X. L.; Chen, J. Q.; Yao, Z. J.; Li, F.
2010-01-01
Ecosystems in the Central Asian Plateau, which includes the Mongolian Plateau, are becoming increasingly sensitive to human interventions, leading to deterioration of already fragile ecosystems. The goal of this paper is to illustrate human dependence on an ecosystem by identifying patterns of resource consumption in this region and investigating the knowledge and perceptions of herders living in these ecosystems. Data on consumption in the two regions were collected using structured questionnaires delivered to a total of 252 herders from Mongolia and China's Inner Mongolia. Meat and other animal products remain the dominant food items for most households, accompanied by various vegetables and cereals. This unbalanced diet leads to excessive consumption of protein and fat from animal sources. The major energy sources used by herders are fuelwood, animal dung, crop residues, and dry grass, but consumption patterns differed between the two areas. Mongolian herders rely more heavily on livestock for meeting their consumption needs than herders in Inner Mongolia. Herder knowledge and perceptions of ecosystem conditions and consumption of resources differed between Mongolia and Inner Mongolia, reflecting the influence of different state policies. The data reported and the conclusions drawn are relevant for developing resource management policies for the Mongolian Plateau, but also provide useful insights for any region where livestock production dominates the use of rangeland resources.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...
Exotic plants as ecosystem dominants
Julie S. Denslow; R. Flint Hughes
2004-01-01
Dominant species have long been appreciated for their role in determining ecosystem attributes such as vegetation structure, successional patterns, soil characteristics, hydrology, and productivity. Exotic species may reach such high densities that they become community dominants, and it is in this role that exotics pose the greatest threat to native ecosystems. Four...
Comparative water use of native and invasive plants at multiple scales: a global meta-analysis.
Cavaleri, Molly A; Sack, Lawren
2010-09-01
Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.
Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E
2016-05-19
The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).
Taehee Hwang; James M. Vose; Christina Tague
2012-01-01
Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...
Jeanne C. Chambers; Bethany A. Bradley; Cynthia S. Brown; Carla D' Antonio; Matthew J. Germino; James B. Grace; Stuart P. Hardegree; Richard F. Miller; David A. Pyke
2014-01-01
Alien grass invasions in arid and semi-arid ecosystems are resulting in grass-fire cycles and ecosystem-level transformations that severely diminish ecosystem services. Our capacity to address the rapid and complex changes occurring in these ecosystems can be enhanced by developing an understanding of the environmental factors and ecosystem attributes that determine...
NASA Astrophysics Data System (ADS)
Stief, P.
2013-12-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-07-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
The Vegetation Nitrogen Content and its Latitudinal Patterns in China
NASA Astrophysics Data System (ADS)
Zhao, Hang; He, Nianpeng; Yu, Guirui; Wang, Qiufeng
2017-04-01
Nitrogen is an essential nutrient element in biological life activities, and plays an important role in plant production and growth. Vegetation nitrogen content can be used as an important component in estimating ecosystem nitrogen storage. In the present study, we used a large amount of data from the database of north-south transects of eastern China and published literatures. We explored the nitrogen content of different components of China terrestrial ecosystems and its latitude pattern at the scales of the plots and of 8 eco-regions. The average nitrogen content of the forest ecosystem was 1.797% in the tree leaves, 0.663% in the tree branch, 0.586% in the tree stem, 0.755% in the tree root. In the shrub layer, the average leaf nitrogen content is 1.845%, the average branch content is 0.968% and the average root nitrogen content is 0.995%. In the herb layer, the average nitrogen content of aboveground is 2.463% and 1.279% for underground. The average nitrogen content of aboveground in grassland ecosystem is 2.006% and 0.994% for underground. The average aboveground nitrogen content in desert ecosystem is 1.911%. The average nitrogen contents of the leaves, stems and roots in wetland ecosystem were 1.669%, 0.741% and 0.659%. There were significant differences in nitrogen content among different organs, and it showed that the nitrogen content of leaves > roots > branches > trunks and aboveground component > underground component. The nitrogen content of different components in China terrestrial ecosystems increased with increasing latitude, especially in leaf. These results demonstrated latitudinal patterns of nitrogen content in Chinese terrestrial ecosystems, based on field-measured data, and provided a reference or standard for regional vegetation nitrogen allocation and storage estimations.
Diversity and distribution of Archaea in global estuarine ecosystems.
Liu, Xiaobo; Pan, Jie; Liu, Yang; Li, Meng; Gu, Ji-Dong
2018-05-09
Estuarine ecosystem is a unique geographical transitional zone between freshwater and seawater, harboring a wide range of microbial communities including Archaea. Although a large number of Archaea have been detected in such ecosystem, the global patterns in archaeal diversity and distribution are extremely scarce. To bridge this gap, we carried out a comprehensive survey of archaeal communities using ca. 4000 publicly available archaeal 16S rRNA gene sequences (>300 bp) collected from 24 estuaries in different latitude regions. These sequences were divided into 1450 operational taxonomic units (OTUs) at 97% identity, suggesting a high biodiversity that increased gradually from the high- to low-latitude estuaries. Phylogenetic analysis showed that estuarine ecosystem was a large biodiversity pool of Archaea that was mainly composed of 12 phyla. Among them, the predominant groups were Bathyarchaeota, Euryarchaeota and Thaumarchaeota. Interestingly, archaeal distribution demonstrated a geographical differentiation in that Thaumarchaeota was dominated in the low-latitude estuaries, Bathyarchaeota in the mid-latitude estuaries, and Euryarchaeota in the high-latitude estuaries, respectively. Furthermore, the majority of the most abundant 20 OTUs demonstrated an overrepresented or underrepresented distribution pattern in some specific estuaries or latitude regions while a few were evenly distributed throughout the estuaries. This pattern indicates a potential selectivity of geographical distribution. In addition, the analysis of environmental parameters suggested that latitude would be one of the major factors driving the distribution of archaeal communities in estuarine ecosystem. This study profiles a clear framework on the diversity and distribution of Archaea in the global estuarine ecosystem and explores the general environmental factors that influence these patterns. Our findings constitute an important part of the exploration of the global ecology of Archaea. Copyright © 2018 Elsevier B.V. All rights reserved.
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Understanding relationships among ecosystem services across spatial scales and over time
NASA Astrophysics Data System (ADS)
Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.
2018-05-01
Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S
2017-01-01
Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation.
Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.
2017-01-01
Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation. PMID:28481897
Peng, Haijun; Hong, Bing; Hong, Yetang; Zhu, Yongxuan; Cai, Chen; Yuan, Lingui; Wang, Yu
2015-09-01
Peatlands are widely developed in the eastern Qinghai-Tibet Plateau, but little is known about carbon budgets for these alpine peatland ecosystems. In this study, we used an automatic chamber system to measure ecosystem respiration in the Hongyuan peatland, which is located in the eastern Qinghai-Tibet Plateau. Annual ecosystem respiration measurements showed a typical seasonal pattern, with the peak appearing in June. The highest respiration was 10.43 μmol CO2/m(2)/s, and the lowest was 0.20 μmol CO2/m(2)/s. The annual average ecosystem respiration was 2.06 μmol CO2/m(2)/s. The total annual respiration was 599.98 g C/m(2), and respiration during the growing season (from May to September) accounted for 78 % of the annual sum. Nonlinear regression revealed that ecosystem respiration has a significant exponential correlation with soil temperature at 10-cm depth (R (2) = 0.98). The Q 10 value was 3.90, which is far higher than the average Q 10 value of terrestrial ecosystems. Ecosystem respiration had an apparent diurnal variation pattern in growing season, with peaks and valleys appearing at approximately 14:00 and 10:00, respectively, which could be explained by soil temperature and soil water content variation at 10-cm depth.
Bargagli, R
2016-11-01
Mercury in the Antarctic troposphere has a distinct chemistry and challenging long-term measurements are needed for a better understanding of the atmospheric Hg reactions with oxidants and the exchanges of the various mercury forms among air-snow-sea and biota. Antarctic mosses and lichens are reliable biomonitors of airborne metals and in short time they can give useful information about Hg deposition patterns. Data summarized in this review show that although atmospheric Hg concentrations in the Southern Hemisphere are lower than those in the Northern Hemisphere, Antarctic cryptogams accumulate Hg at levels in the same range or higher than those observed for related cryptogam species in the Arctic, suggesting an enhanced deposition of bioavailable Hg in Antarctic coastal ice-free areas. In agreement with the newest findings in the literature, the Hg bioaccumulation in mosses and lichens from a nunatak particularly exposed to strong katabatic winds can be taken as evidence for a Hg contribution to coastal ecosystems by air masses from the Antarctic plateau. Human activities on the continent are mostly concentrated in coastal ice-free areas, and the deposition in these areas of Hg from the marine environment, the plateau and anthropogenic sources raises concern. The use of Antarctic cryptogams as biomonitors will be very useful to map Hg deposition patterns in costal ice-free areas and will contribute to a better understanding of Hg cycling in Antarctica and its environmental fate in terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancing ecosystem services: Designing for multifunctionality
Mike Dosskey; Gary Wells; Gary Bentrup; Doug Wallace
2012-01-01
It is increasingly recognized that ecosystem services provide a foundation for the well-being of individuals and society (MEA 2005). Land managers typically strive to enhance particularly desirable services. For example, farmers plant crops and manage the soil and hydrologic conditions to favor crop production. In agricultural regions such as the US Corn Belt,...
This 2-page factsheet describes an enhanced version (2.0) of the VELMA eco-hydrological model. VELMA – Visualizing Ecosystem Land Management Assessments – has been redesigned to assist communities, land managers, policy makers and other decision makers in evaluataing the effecti...
Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance.
Hughes, A Randall; Stachowicz, John J
2004-06-15
Motivated by recent global reductions in biodiversity, empirical and theoretical research suggests that more species-rich systems exhibit enhanced productivity, nutrient cycling, or resistance to disturbance or invasion relative to systems with fewer species. In contrast, few data are available to assess the potential ecosystem-level importance of genetic diversity within species known to play a major functional role. Using a manipulative field experiment, we show that increasing genotypic diversity in a habitat-forming species (the seagrass Zostera marina) enhances community resistance to disturbance by grazing geese. The time required for recovery to near predisturbance densities also decreases with increasing eelgrass genotypic diversity. However, there is no effect of diversity on resilience, measured as the rate of shoot recovery after the disturbance, suggesting that more rapid recovery in diverse plots is due solely to differences in disturbance resistance. Genotypic diversity did not affect ecosystem processes in the absence of disturbance. Thus, our results suggest that genetic diversity, like species diversity, may be most important for enhancing the consistency and reliability of ecosystems by providing biological insurance against environmental change.
Nutrient resorption and patterns of litter production and decomposition in a Neotropical savanna.
A.R. Kozovits; M.M.C. Bustamante; C.R. Garofalo; S. Bucci; A.C. Franco; G. Goldstein; F. Meinzer
2007-01-01
1. Deposition of nutrients owing to anthropogenic activities has the potential to change nutrient availability in nutrient-limited ecosystems with consequences for plant and ecosystem processes. 2. Species-specific and ecosystem responses to the addition of nutrients were studied in a field experiment conducted in a Savanna (Cerrado sensu stricto)...
Climate and atmospheric deposition patterns and trends
Warren E. Heilman; John Hom; Brian E. Potter
2000-01-01
One of the most important factors impacting terrestrial and aquatic ecosystems is the atmospheric environment. Climatic and weather events play a significant role in governing the natural processes that occur in these ecosystems. The current characteristics of the vast number of ecosystems that cover the northeast and north central United States are, in part, the...
Carbon allocation in forest ecosystems
Creighton M. Litton; James W. Raich; Michael G. Ryan
2007-01-01
Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...
Nawrot, Rafał; Albano, Paolo G; Chattopadhyay, Devapriya; Zuschin, Martin
2017-08-16
Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems. © 2017 The Author(s).
Han, Ze; Song, Wei; Deng, Xiangzheng; Xu, Xinliang
2018-06-13
The Three-River Headwaters region (TRHR) of China is an important part of the Qinghai-Tibetan Plateau. Although the TRHR is rich in grassland resources, the ecosystem of this area is extremely fragile. Natural and artificial interference have been key to the development of grassland ecosystem spatiotemporal heterogeneity, although the intensity and mode of their influence on ecological processes varies depending on scale; analyses in this area are therefore also scale-dependent. We use multi-scale nested data to analyze the mechanisms underlying the influence of climate change and human activities on grassland net primary productivity (NPP) by applying a multi-level modeling approach. The results of this study show that: (1) The annual grassland NPP of the TRHR has risen in a wavelike pattern over time, increasing by 39.88% overall; (2) Differences of 54.9% and 41.1% in temporal grassland NPP can be attributed to variations between these watersheds as well as county characteristics, and; (3) Although the 'warm and moist' climate trend seen over the course of this study has proved beneficial in enhancing grassland NPP, the rate of increase has tended to be faster in relatively dry and warm regions. Economic development and population growth have both exerted negative impacts on grassland NPP.
Yanqiong Ye; Jia' en Zhang; Lili Chen; Ying Ouyang; Prem Parajuli
2015-01-01
This study analyzed the landscape pattern changes, the dynamics of the ecosystem service values (ESVs) and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the capital of Guangdong Province and a regional central city in South China. Remote sensing data and geographic information system techniques, in conjunction with spatial metrics, were used...
Implications of tristability in pattern-forming ecosystems
NASA Astrophysics Data System (ADS)
Zelnik, Yuval R.; Gandhi, Punit; Knobloch, Edgar; Meron, Ehud
2018-03-01
Many ecosystems show both self-organized spatial patterns and multistability of possible states. The combination of these two phenomena in different forms has a significant impact on the behavior of ecosystems in changing environments. One notable case is connected to tristability of two distinct uniform states together with patterned states, which has recently been found in model studies of dryland ecosystems. Using a simple model, we determine the extent of tristability in parameter space, explore its effects on the system dynamics, and consider its implications for state transitions or regime shifts. We analyze the bifurcation structure of model solutions that describe uniform states, periodic patterns, and hybrid states between the former two. We map out the parameter space where these states exist, and note how the different states interact with each other. We further focus on two special implications with ecological significance, breakdown of the snaking range and complex fronts. We find that the organization of the hybrid states within a homoclinic snaking structure breaks down as it meets a Maxwell point where simple fronts are stationary. We also discover a new series of complex fronts between the uniform states, each with its own velocity. We conclude with a brief discussion of the significance of these findings for the dynamics of regime shifts and their potential control.
Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.
Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J
2016-09-01
Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
Zhuang, Q.; McGuire, A.D.; Melillo, J.M.; Clein, Joy S.; Dargaville, R.J.; Kicklighter, D.W.; Myneni, Ranga B.; Dong, J.; Romanovsky, V.E.; Harden, J.; Hobbie, J.E.
2003-01-01
There is substantial evidence that soil thermal dynamics are changing in terrestrial ecosystems of the Northern Hemisphere and that these dynamics have implications for the exchange of carbon between terrestrial ecosystems and the atmosphere. To date, large-scale biogeochemical models have been slow to incorporate the effects of soil thermal dynamics on processes that affect carbon exchange with the atmosphere. In this study we incorporated a soil thermal module (STM), appropriate to both permafrost and non-permafrost soils, into a large-scale ecosystem model, version 5.0 of the Terrestrial Ecosystem Model (TEM). We then compared observed regional and seasonal patterns of atmospheric CO2 to simulations of carbon dynamics for terrestrial ecosystems north of 30°N between TEM 5.0 and an earlier version of TEM (version 4.2) that lacked a STM. The timing of the draw-down of atmospheric CO2 at the start of the growing season and the degree of draw-down during the growing season were substantially improved by the consideration of soil thermal dynamics. Both versions of TEM indicate that climate variability and change promoted the loss of carbon from temperate ecosystems during the first half of the 20th century, and promoted carbon storage during the second half of the century. The results of the simulations by TEM suggest that land-use change in temperate latitudes (30–60°N) plays a stronger role than climate change in driving trends for increased uptake of carbon in extratropical terrestrial ecosystems (30–90°N) during recent decades. In the 1980s the TEM 5.0 simulation estimated that extratropical terrestrial ecosystems stored 0.55 Pg C yr−1, with 0.24 Pg C yr−1 in North America and 0.31 Pg C yr−1 in northern Eurasia. From 1990 through 1995 the model simulated that these ecosystems stored 0.90 Pg C yr−1, with 0.27 Pg C yr−1 stored in North America and 0.63 Pg C yr−1 stored in northern Eurasia. Thus, in comparison to the 1980s, simulated net carbon storage in the 1990s was enhanced by an additional 0.35 Pg C yr−1 in extratropical terrestrial ecosystems, with most of the additional storage in northern Eurasia. The carbon storage simulated by TEM 5.0 in the 1980s and 1990s was lower than estimates based on other methodologies, including estimates by atmospheric inversion models and remote sensing and inventory analyses. This suggests that other issues besides the role of soil thermal dynamics may be responsible, in part, for the temporal and spatial dynamics of carbon storage of extratropical terrestrial ecosystems. In conclusion, the consideration of soil thermal dynamics and terrestrial cryospheric processes in modeling the global carbon cycle has helped to reduce biases in the simulation of the seasonality of carbon dynamics of extratropical terrestrial ecosystems. This progress should lead to an enhanced ability to clarify the role of other issues that influence carbon dynamics in terrestrial regions that experience seasonal freezing and thawing of soil.
The objective of the Office of Research and Development (ORD) ecosystem restoration research strategy is to evaluate the effectiveness of restoration and management practices for achieving desired environmental conditions that protect and enhance ecosystem services for society. T...
Lu, Yonglong; Yuan, Jingjing; Lu, Xiaotian; Su, Chao; Zhang, Yueqing; Wang, Chenchen; Cao, Xianghui; Li, Qifeng; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, Simon; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville
2018-08-01
Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Soil microbial community successional patterns during forest ecosystem restoration.
Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V
2011-09-01
Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.
Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†
Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.
2011-01-01
Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890
Effect of antecedent terrestrial land-use on C and N cycling in created wetlands
NASA Astrophysics Data System (ADS)
McCalley, C. K.; Al Graiti, T.; Williams, T.; Huang, S.; McGowan, M. B.; Eddingsaas, N. C.; Tyler, A. C.
2017-12-01
Land-use legacies and their interaction with both management actions and climate variability has a poorly characterized impact on the development of ecosystem functions and the trajectory of climate-carbon feedbacks. The complex structure-function relationships in wetlands foster delivery of valuable, climate sensitive, ecosystem services (carbon sequestration, nutrient removal, flood control, etc.) but also make them susceptible to colonization by invasive plants and lead to emission of key greenhouse gases. This project uses created wetland ecosystems as a model to understand how heterogeneity in antecedent conditions interacts with management options to create unique structure-function scenarios and a range of climate feedback outcomes. We utilized ongoing experiments in created wetlands that differ in antecedent conditions (crop agriculture, livestock grazing) and investigated how management options (invasive species removal, organic matter addition) interact with legacy impacts to promote key ecosystem functions, including greenhouse gas emissions, carbon sequestration, denitrification and plant biodiversity. The effects of antecedent land-use on soil chemistry, coupled with hydrologic patterns resulted in wetlands with divergent C and N dynamics despite their similar creation history. Additionally, the occurrence of extreme weather events (drought and excessive flooding) during the study period highlighted the overarching role that increased climate variability will play in determining key ecosystem processes in wetlands. Responses to management were linked to hydro-period: while organic matter addition successfully increased soil organic matter to more closely replicate natural systems at all sites, it had the largest impact on C and N cycling when soils were saturated. Overall, environmental conditions that promoted saturated soils, both those shaped by human activities or climate extremes, enhanced primary productivity, nutrient removal and greenhouse gas production as well as decreased soil respiration.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Ren, Wei
2017-09-01
Central Asia covers a large land area of 5 × 106 km2 and has unique temperate dryland ecosystems, with over 80% of the world's temperate deserts, which has been experiencing dramatic warming and drought in the recent decades. How the temperate dryland responds to complex climate change, however, is still far from clear. This study quantitatively investigates terrestrial net primary productivity (NPP) in responses to temperature, precipitation, and atmospheric CO2 during 1980-2014, by using the Arid Ecosystem Model, which can realistically predict ecosystems' responses to changes in climate and atmospheric CO2 according to model evaluation against 28 field experiments/observations. The simulation results show that unlike other middle-/high-latitude regions, NPP in central Asia declined by 10% (0.12 × 1015 g C) since the 1980s in response to a warmer and drier climate. The dryland's response to warming was weak, while its cropland was sensitive to the CO2 fertilization effect (CFE). However, the CFE was inhibited by the long-term drought from 1998 to 2008 and the positive effect of warming on photosynthesis was largely offset by the enhanced water deficit. The complex interactive effects among climate drivers, unique responses from diverse ecosystem types, and intensive and heterogeneous climatic changes led to highly complex NPP changing patterns in central Asia, of which 69% was dominated by precipitation variation and 20% and 9% was dominated by CO2 and temperature, respectively. The Turgay Plateau in northern Kazakhstan and southern Xinjiang in China are hot spots of NPP degradation in response to climate change during the past three decades and in the future.
ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems
NASA Astrophysics Data System (ADS)
de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.
2001-12-01
"Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions in the seagrass meadows.
ECOSYSTEM SERVICES AS A NEW STRATEGIC FOCUS FOR USEPA'S ECOLOGICAL RESEARCH PROGRAM
The USEPA's Office of Research and Development has made ecosystem services the new strategic focus for its ecological research program (ERP). Recognizing that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vitality and ov...
Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change
Patrick Gonzalez; Ronald P. Neilson; James M. Lenihan; Raymond J. Drapek
2010-01-01
Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We...
E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger
2006-01-01
Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...
Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China
Jingfeng Xiao; Ge Sun; Jiquan Chen; Hui Chen; Shiping Chen; Gang Dong
2013-01-01
The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China,and examined the carbon fluxes, evapotranspiration (ET), and...
Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger
2002-01-01
Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical ârulesâ for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
Dunford, Robert W; Smith, Alison C; Harrison, Paula A; Hanganu, Diana
Future patterns of European ecosystem services provision are likely to vary significantly as a result of climatic and socio-economic change and the implementation of adaptation strategies. However, there is little research in mapping future ecosystem services and no integrated assessment approach to map the combined impacts of these drivers. Map changing patterns in ecosystem services for different European futures and (a) identify the role of driving forces; (b) explore the potential influence of different adaptation options. The CLIMSAVE integrated assessment platform is used to map spatial patterns in services (food, water and timber provision, atmospheric regulation, biodiversity existence/bequest, landscape experience and land use diversity) for a number of combined climatic and socio-economic scenarios. Eight adaptation strategies are explored within each scenario. Future service provision (particularly water provision) will be significantly impacted by climate change. Socio-economic changes shift patterns of service provision: more dystopian societies focus on food provision at the expense of other services. Adaptation options offer significant opportunities, but may necessitate trade-offs between services, particularly between agriculture- and forestry-related services. Unavoidable trade-offs between regions (particularly South-North) are also identified in some scenarios. Coordinating adaptation across regions and sectors will be essential to ensure that all needs are met: a factor that will become increasingly pressing under dystopian futures where inter-regional cooperation breaks down. Integrated assessment enables exploration of interactions and trade-offs between ecosystem services, highlighting the importance of taking account of complex cross-sectoral interactions under different future scenarios of planning adaptation responses.
Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C
2017-10-01
Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Quantifying effects of biodiversity on ecosystem functioning across times and places†
Isbell, Forest; Cowles, Jane; Dee, Laura E.; Loreau, Michel; Reich, Peter B.; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard
2018-01-01
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. PMID:29493062
Quantifying effects of biodiversity on ecosystem functioning across times and places.
Isbell, Forest; Cowles, Jane; Dee, Laura E; Loreau, Michel; Reich, Peter B; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard
2018-06-01
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. © 2018 John Wiley & Sons Ltd/CNRS.
Ecoregions are geographical areas within which the biotic and abiotic components of terrestrial and aquatic ecosystems exhibit different but relatively homogeneous patterns in comparison to that of other areas. As such these regions serve as a framework for ecosystem management ...
Global patterns of groundwater table depth.
Fan, Y; Li, H; Miguez-Macho, G
2013-02-22
Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.
Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A
2016-06-01
Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nelson, Erik; Sander, Heather; Hawthorne, Peter; Conte, Marc; Ennaanay, Driss; Wolny, Stacie; Manson, Steven; Polasky, Stephen
2010-12-15
As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures.
The Fate and Impact of Internal Waves in Nearshore Ecosystems
NASA Astrophysics Data System (ADS)
Woodson, C. B.
2018-01-01
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
The Fate and Impact of Internal Waves in Nearshore Ecosystems.
Woodson, C B
2018-01-03
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
Ecosystem Services: Developing strategic focus for U.S. EPA’s Ecological Research Program
U.S. EPA’s Office of Research and Development has made ecosystem services the new strategic focus for its Ecological Services Research Program (ESRP). Understanding that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vit...
Ecosystem Services: New strategic focus for US EPA’s Ecological Research Program
U.S. EPA’s Office of Research and Development has made ecosystem services the new strategic focus for its Ecological Research Program (ERP). Understanding that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vitality, and...
Ecosystem Services: Priority strategic focus for U.S. EPA’s Ecological Research Program
U.S. EPA’s Office of Research and Development has made ecosystem services the new strategic focus for its Ecological Research Program (ERP). Understanding that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vitality, and...
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Ursino, Nadia
2016-04-01
Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.
NASA Astrophysics Data System (ADS)
Goswami, S.; Gamon, J. A.; Tweedie, C. E.
2012-12-01
Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of landsurface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite, suggesting that published findings showing a 'greening of the Arctic' may be related to a 'drying of the Arctic' in landscapes dominated by vegetated landscapes where WTD is close to ground level.
Distinct temperature sensitivity among taiga and tundra shrubs in Alaska
NASA Astrophysics Data System (ADS)
Andreu-Hayles, L.; Anchukaitis, K. J.; D'Arrigo, R.
2014-12-01
Shrub expansion into Arctic and alpine tundra ecosystems is well documented, mostly over the last 50 years, based on remote sensing data, aerial photography, and in-situ observations. Warming temperatures are considered the main driver of the observed change in shrub vegetation patterns. Here, we assess the relationship between temperatures and shrub growth from five populations of Salix spp. (willow) and Alnus spp. (alder) in Alaska growing within the tundra and the boreal forest (~taiga) using dendrochronological techniques. The three tundra shrub sites are located on the Dalton Highway north from Toolik Lake (~69ºN 148ºW), whereas the two taiga shrub sites are located closer to Fairbanks at the Twelve Mile Summit site (~65ºN 146ºW). Because shrub ages vary among the studied populations lead to different time spans for the ring-width chronologies generated, a common period with available satellite data spanning from 1982 to 2010 was selected for this study. All tundra shrub chronologies shared a strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In contrast, in the taiga, summer temperatures enhance willow growth, whereas alder growth appears almost insensitive to temperature over the interval studied. Extending the analyses back in time, a very strong positive relationship was found between alder ring-width and June temperatures prior to 1970. This phenomenon, a weakening of the previously existing relationship between growth and temperatures, was also detected in white spruce (Picea glauca) growing at the same site, and it is known in the literature as the 'divergence problem'. Thus, at this taiga location, alder shrubs and trees seem to have similar growth patterns. Summer temperatures no longer seem to enhance taiga alder growth. Shrubs of different species exposed to the same climatic conditions can exhibit varied growth responses. The distinct temperature sensitivities among the tundra and taiga shrubs highlight the complexity of shrub dynamics, and the fact that warming may not uniformly enhance shrub growth in Arctic and sub-Arctic ecosystems.
Frank S. Gilliam; David A. Dick; Michelle L. Kerr; Mary Beth Adams
2004-01-01
Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can...
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.
2009-12-01
Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.
Ecosystem Science: measuring, mapping and predicting the production of nature’s goods and services
Our existence, let alone our well-being, depends on “goods and services” produced by ecosystems (food, purification of water and air, outdoor recreation, etc.). Humans have the power to enhance, protect, or degrade nature’s capacity to provide these ecosystem s...
Uchida, Kei; Koyanagi, Tomoyo F; Matsumura, Toshikazu; Koyama, Asuka
2018-07-15
Land-use changes cause biodiversity loss in semi-natural ecosystems worldwide. Biotic homogenization has led to biodiversity loss, mainly through declines in species composition turnover. Elucidating patterns of turnover in species composition could enhance our understanding of how anthropogenic activities affect community assembly. Here, we focused on whether the decreasing patterns in plant diversity and turnover of species composition resulting from land-use change vary in two regions. We estimated the species diversity and composition of semi-natural grasslands surrounding paddy fields in satoyama landscapes. We examined the differences in species diversity and composition across three land-use types (abandoned, traditional, and intensified) in two regions (Hyogo and Niigata Prefectures, Japan), which were characterized by different climatic conditions. We then assessed alpha-, beta-, and gamma-diversity to compare the patterns of diversity losses in the two regions as a result of land-use changes. In each region, gamma-diversity was consistently higher in the traditional sites compared to abandoned or intensified sites. The analyses revealed that most of the beta-diversity in traditional sites differed significantly from those of abandoned and intensified sites in both regions. However, the beta-diversity of total and perennial species did not differ between traditional and abandoned sites in the Hyogo region. We noted that the beta-diversity of total and perennial species in intensified sites was much lower than that in the traditional sites of the Niigata region. Overall, the patterns of alpha- and gamma-diversity loss were similar in both study regions. Although the biotic homogenization was caused by intensified land-use in the Niigata region, this hypothesis did not completely explain the loss of biodiversity in the abandoned sites in the Hyogo region. The present study contributes to the growing body of work investigating changes in biodiversity as a result of both biotic homogenization and differentiation in semi-natural ecosystems. Conservationists and policy makers should focus on patterns of species composition responded to land-use changes that continue to increase worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.
Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary
2011-01-01
The Rodeo-Chediski Wildfire burned nearly 462,600 acres in north-central Arizona in the summer of 2002. The wildfire damaged or destroyed ecosystem resources and disrupted the hydrologic functioning within the impacted ponderosa pine (Pinus ponderosa) forests in a largely mosaic pattern. Impacts of the wildfire on ecosystem resources, factors important to hydrologic...
Sparkle L. Malone; Jordan Barr; Jose D. Fuentes; Steven F. Oberbauer; Christina L. Staudhammer; Evelyn E. Gaiser; Gregory Starr
2016-01-01
We analyzed the ecosystem effects of low-temperature events (<5 °C) over 4 years (2009-2012) in subtropical short and long hydroperiod freshwater marsh and mangrove forests within Everglades National Park. To evaluate changes in ecosystem productivity, we measured temporal patterns of CO2 and the normalized difference vegetation index over the study period. Both...
Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina
Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal
2016-01-01
Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...
Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland
2011-01-01
The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...
Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo; Yin, Runsheng
2009-01-01
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon storage and loss. Here we use the General Ensemble Biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China's upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sinks/source pattern showed a high degree of spatial heterogeneity, Carbon sinks were associated with forest areas without disturbances, whereas carbon Sources were primarily caused by stand-replacing disturbances. This highlights the importance of land-use history in determining the regional carbon sinks/source pattern.
From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study
NASA Astrophysics Data System (ADS)
Meron, Ehud
2018-03-01
Spatial patterns are ubiquitous in animate matter. Besides their intricate structure and beauty they generally play functional roles. The capacity of living systems to remain functional in changing environments is a question of utmost importance, but its intimate relationship to pattern formation is largely unexplored. Here, we address this relationship using dryland vegetation as a case study. Following a brief introduction to pattern-formation theory, we describe a mathematical model that captures several mechanisms of vegetation pattern formation and discuss ecological contexts that showcase different mechanisms. Using this model, we unravel the different vegetation patterns that keep dryland ecosystems viable along the rainfall gradient, identify multistability ranges where fronts separating domains of alternative stable states exist, and highlight the roles of front dynamics in mitigating or reversing desertification. The utility of satellite images in testing model predictions is discussed. An outlook on outstanding open problems concludes this paper.
Rogora, M; Frate, L; Carranza, M L; Freppaz, M; Stanisci, A; Bertani, I; Bottarin, R; Brambilla, A; Canullo, R; Carbognani, M; Cerrato, C; Chelli, S; Cremonese, E; Cutini, M; Di Musciano, M; Erschbamer, B; Godone, D; Iocchi, M; Isabellon, M; Magnani, A; Mazzola, L; Morra di Cella, U; Pauli, H; Petey, M; Petriccione, B; Porro, F; Psenner, R; Rossetti, G; Scotti, A; Sommaruga, R; Tappeiner, U; Theurillat, J-P; Tomaselli, M; Viglietti, D; Viterbi, R; Vittoz, P; Winkler, M; Matteucci, G
2018-05-15
Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.
Tedersoo, Leho; Bahram, Mohammad; Toots, Märt; Diédhiou, Abdala G; Henkel, Terry W; Kjøller, Rasmus; Morris, Melissa H; Nara, Kazuhide; Nouhra, Eduardo; Peay, Kabir G; Põlme, Sergei; Ryberg, Martin; Smith, Matthew E; Kõljalg, Urmas
2012-09-01
Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata. © 2012 Blackwell Publishing Ltd.
Perturbations to trophic interactions and the stability of complex food webs
O'Gorman, Eoin J.; Emmerson, Mark C.
2009-01-01
The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606
Noise in ecosystems: a short review.
Spagnolo, B; Valenti, D; Fiasconaro, A
2004-06-01
Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the i(th) population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.
NASA Astrophysics Data System (ADS)
Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.
2012-10-01
Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruits, the limited root-apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.
NASA Astrophysics Data System (ADS)
Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Migliavacca, M.; Thurner, M.; Beer, C.; Jung, M.; Mu, M.; Randerson, J. T.; Saatchi, S. S.; Santoro, M.; Reichstein, M.
2012-12-01
The turnover rates of carbon in terrestrial ecosystems and their sensitivity to climate are instrumental properties for diagnosing the interannual variability and forecasting trends of biogeochemical processes and carbon-cycle-climate feedbacks. We propose to globally look at the spatial distribution of turnover rates of carbon to explore the association between bioclimatic regimes and the rates at which carbon cycles in terrestrial ecosystems. Based on data-driven approaches of ecosystem carbon fluxes and data-based estimates of ecosystem carbon stocks it is possible to build fully observationally supported diagnostics. These data driven diagnostics support the benchmarking of CMIP5 model outputs (Coupled Model Intercomparison Project Phase 5) with observationally based estimates. The models' performance is addressed by confronting spatial patterns of carbon fluxes and stocks with data, as well as the global and regional sensitivities of turnover rates to climate. Our results show strong latitudinal gradients globally, mostly controlled by temperature, which are not always paralleled by CMIP5 simulations. In northern colder regions is also where the largest difference in temperature sensitivity between models and data occurs. Interestingly, there seem to be two different statistical populations in the data (some with high, others with low apparent temperature sensitivity of carbon turnover rates), where the different models only seem to describe either one or the other population. Additionally, the comparisons within bioclimatic classes can even show opposite patterns between turnover rates and temperature in water limited regions. Overall, our analysis emphasizes the role of finding patterns and intrinsic properties instead of plain magnitudes of fluxes for diagnosing the sensitivities of terrestrial biogeochemical cycles to climate. Further, our regional analysis suggests a significant gap in addressing the partial influence of water in the ecosystem carbon turnover rates especially in very cold or water limited regions.
THE MAXIMIUM POWER PRINCIPLE: AN EMPIRICAL INVESTIGATION
The maximum power principle is a potential guide to understanding the patterns and processes of ecosystem development and sustainability. The principle predicts the selective persistence of ecosystem designs that capture a previously untapped energy source. This hypothesis was in...
INTEGRATED ASSESSMENTS OF ANTHROPOGENIC AND NATURAL CHANGES IN CHESAPEAKE BAY WATERSHEDS
Both natural and anthropogenic factors affect spatial and temporal patterns in ecosystem conditions. To manage environmental change and risks, distinguishing between natural variations in ecosystem conditions and anthropogenic changes becomes important. This concept is illustrate...
APPLYING SATELLITE IMAGERY TO TRIAGE ASSESSMENT OF ECOSYSTEM HEALTH
Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR)imagery to develop calibration patterns of change in the Normalized Difference Vegetation Ind...
Ecosystem classifications based on summer and winter conditions.
Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q
2013-04-01
Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.
Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.
2002-01-01
Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).
USGS River Ecosystem Modeling: Where Are We, How Did We Get Here, and Where Are We Going?
Hanson, Leanne; Schrock, Robin; Waddle, Terry; Duda, Jeffrey J.; Lellis, Bill
2009-01-01
This report developed as an outcome of the USGS River Ecosystem Modeling Work Group, convened on February 11, 2008 as a preconference session to the second USGS Modeling Conference in Orange Beach, Ala. Work Group participants gained an understanding of the types of models currently being applied to river ecosystem studies within the USGS, learned how model outputs are being used by a Federal land management agency, and developed recommendations for advancing the state of the art in river ecosystem modeling within the USGS. During a break-out session, participants restated many of the recommendations developed at the first USGS Modeling Conference in 2006 and in previous USGS needs assessments. All Work Group recommendations require organization and coordination across USGS disciplines and regions, and include (1) enhancing communications, (2) increasing efficiency through better use of current human and technologic resources, and (3) providing a national infrastructure for river ecosystem modeling resources, making it easier to integrate modeling efforts. By implementing these recommendations, the USGS will benefit from enhanced multi-disciplinary, integrated models for river ecosystems that provide valuable risk assessment and decision support tools for adaptive management of natural and managed riverine ecosystems. These tools generate key information that resource managers need and can use in making decisions about river ecosystem resources.
Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience
NASA Astrophysics Data System (ADS)
Moore, S. E.
2014-12-01
Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.
NASA Astrophysics Data System (ADS)
Liu, Yaqun; Song, Wei; Mu, Fengyun
2017-12-01
The cropland ecosystem provides essential direct and indirect products and services to mankind such as food, fiber, biodiversity and soil conservation. A change of crop planting structure can change the ecosystem services of cropland by affecting land use type. In recent years, under the influence of regional comparative advantage and consumer demand changes, the crop planting structure in China has changed rapidly. However, there is still a lack of deep understanding on the effect of such a change in planting structure on the ecosystem services of cropland. Therefore, this research selected Minle County in the Heihe River Basin, which has small scattered croplands and a complex planting structure, as a study area. Based on the key time phase and optimal threshold of the normalized difference vegetation index (NDVI) data of the Thematic Mapper and Enhanced Thematic Mapper Plus (TM/ETM+) images, this study used the decision tree algorithm to classify and extract the crop planting structure in Minle County in 2007 and 2012 and to analyze the changes in its temporal and spatial patterns. Then, the market value method was adopted to estimate the effect of the change in crop planting structure on the ecosystem services of the cropland. From 2007 to 2012, the planting area of corn and rapeseed in Minle County increased by 5.86 × 103 ha and 5.10 × 103 ha, respectively. Conversely, the planting area of wheat and barley was reduced by 3.26 × 103 ha and 6.34 × 103 ha, respectively. These changes directly caused the increase of the ecosystem services value of corn and rapeseed by 1062.82 × 104 USD and 842.54 × 104 USD, respectively. The resulting reduction in the ecosystem services value of wheat and barley was 488.24 × 104 USD and 828.29 × 104 USD, respectively. Besides, the total ecosystem services value of cropland increased by 1564.98 × 104 USD. Further analysis found that the change in the crop planting structure caused an increase in the ecosystem services value of cropland of 359.44 × 104 USD, with a contribution rate of 22.97% to the total increase. The expansion of corn caused the increase of the ecosystem services value of cropland by 151.65 × 104 USD, with a contribution rate of 9.69% to the total increase. The change in crop planting structure in Minle County increased not only the economic benefits of crop planting, but also the ecosystem services of cropland.
Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei
2015-02-01
Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kriiska, Kaie; Uri, Veiko; Frey, Jane; Napa, Ülle; Kabral, Naima; Soosaar, Kaido; Rannik, Kaire; Ostonen, Ivika
2017-04-01
Carbon (C) allocation plays a critical role in forest ecosystem carbon cycling. Changes in C allocation alter ecosystems carbon sequestration and plant-soil-atmosphere gas exchange, hence having an impact on the climate. Currently, there is lack of reliable indicators that show the direction of C accumulation patterns in forest ecosystems on regional scale. The first objective of our study was to determine the variability of carbon allocation in hemiboreal coniferous forests along the gradient of soil fertility in Estonia. We measured C stocks and fluxes, such as litter, fine root biomass and production, soil respiration etc. in 8 stands of different site types - Scots pine (Cladonia, Vaccinium, Myrtillus, Fragaria) and Norway spruce (Polytrichum, Myrtillus, Oxalis, Calamagrostis alvar). The suitability of above- and belowground litter production (AG/BG) ratio was analysed as a carbon allocation indicator. The second aim of the study was to analyse forest C allocation patterns along the north-south gradient from northern boreal Finland to hemiboreal Estonia. Finally, C sequestration in silver birch and grey alder stands were compared with coniferous stands in order to determine the impact of tree species on carbon allocation. Preliminary results indicate that estimated AG/BG ratio (0.5 ... 3.0) tends to decrease with increasing soil organic horizon C/N ratio, indicating that in less fertile sites more carbon is allocated into belowground through fine root growth and in consequence the soil organic carbon stock increases. Similar trends were found on the north-south forest gradient. However, there was a significant difference between coniferous and broadleaf stands in C allocation patterns. Net ecosystem exchange in Estonian coniferous stands varied from -1.64 ... 3.95 t C ha-1 yr-1, whereas older stands tended to be net carbon sources.
The Potential Role of Tree Diversity in Reducing Shallow Landslide Risk.
Kobayashi, Yuta; Mori, Akira S
2017-05-01
Recently, interest in utilizing ecosystems for disaster risk reduction has increased, even though there remains considerable uncertainty regarding the role of ecosystems in buffering against natural hazards. This ecosystem role can be considered an ecosystem service. Although a strong body of evidence shows that biodiversity enhances ecosystem services, there are only a few studies of the relationship between biodiversity and the role of the ecosystem in reducing the risk of natural disasters. To explore the desired state of an ecosystem for disaster risk reduction we applied the finding that biodiversity enhances ecosystem services to evaluate the role of woody vegetation in reducing the frequency and severity of shallow landslides. Using information related to shallow landslides and woody vegetation in Japan as a case study, we compared the severity of shallow landslides (i.e., landslide volume) with tree species richness. Although we provide no direct evidence that tree species richness reduces shallow landslide volume, we found that the predictability of the model, which evaluated relationships between landslide volume and environmental variables in watersheds throughout the Japanese Archipelago, increased with tree species richness. This finding suggests that biodiversity is likely associated with shallow landslide risk reduction, emphasizing a possible reduction of spatial and temporal uncertainty in the roles of woody vegetation. Our study identifies a need for socioecological systems to build new approaches found on the functionality of such ecosystems.
Managing bay and estuarine ecosystems for multiple services
Needles, Lisa A.; Lester, Sarah E.; Ambrose, Richard; Andren, Anders; Beyeler, Marc; Connor, Michael S.; Eckman, James E.; Costa-Pierce, Barry A.; Gaines, Steven D.; Lafferty, Kevin D.; Lenihan, Junter S.; Parrish, Julia; Peterson, Mark S.; Scaroni, Amy E.; Weis, Judith S.; Wendt, Dean E.
2013-01-01
Managers are moving from a model of managing individual sectors, human activities, or ecosystem services to an ecosystem-based management (EBM) approach which attempts to balance the range of services provided by ecosystems. Applying EBM is often difficult due to inherent tradeoffs in managing for different services. This challenge particularly holds for estuarine systems, which have been heavily altered in most regions and are often subject to intense management interventions. Estuarine managers can often choose among a range of management tactics to enhance a particular service; although some management actions will result in strong tradeoffs, others may enhance multiple services simultaneously. Management of estuarine ecosystems could be improved by distinguishing between optimal management actions for enhancing multiple services and those that have severe tradeoffs. This requires a framework that evaluates tradeoff scenarios and identifies management actions likely to benefit multiple services. We created a management action-services matrix as a first step towards assessing tradeoffs and providing managers with a decision support tool. We found that management actions that restored or enhanced natural vegetation (e.g., salt marsh and mangroves) and some shellfish (particularly oysters and oyster reef habitat) benefited multiple services. In contrast, management actions such as desalination, salt pond creation, sand mining, and large container shipping had large net negative effects on several of the other services considered in the matrix. Our framework provides resource managers a simple way to inform EBM decisions and can also be used as a first step in more sophisticated approaches that model service delivery.
An invasive foundation species enhances multifunctionality in a coastal ecosystem.
Ramus, Aaron P; Silliman, Brian R; Thomsen, Mads S; Long, Zachary T
2017-08-08
While invasive species often threaten biodiversity and human well-being, their potential to enhance functioning by offsetting the loss of native habitat has rarely been considered. We manipulated the abundance of the nonnative, habitat-forming seaweed Gracilaria vermiculophylla in large plots (25 m 2 ) on southeastern US intertidal landscapes to assess impacts on multiple ecosystem functions underlying coastal ecosystem services. We document that in the absence of native habitat formers, this invasion has an overall positive, density-dependent impact across a diverse set of ecosystem processes (e.g., abundance and richness of nursery taxa, flow attenuation). Manipulation of invader abundance revealed both thresholds and saturations in the provisioning of ecosystem functions. Taken together, these findings call into question the focus of traditional invasion research and management that assumes negative effects of nonnatives, and emphasize the need to consider context-dependence and integrative measurements when assessing the impact of an invader, including density dependence, multifunctionality, and the status of native habitat formers. This work supports discussion of the idea that where native foundation species have been lost, invasive habitat formers may be considered as sources of valuable ecosystem functions.
NASA Astrophysics Data System (ADS)
Shoshany, Maxim
2017-04-01
Shrublands cover a total of 12.7 million km2 , a considerable part of them along semi-arid to arid transition zones. Varying patterns of shrubs, grasses and barren land along such climatic gradients express the spatial dimension of climate change and human disturbance which attracted limited attention in the eco-geomorphic literature. Questions concerning relationships between rainfall, shrublands biomass and their patterns are fundamental for the understanding of these ecosystems response to the expected changes in water availability due to global warming and the increase in human disturbance to natural ecosystems following World population growth. While processes leading to the formation of patterns had attracted considerable attention, the spatial dimension of Water Use Efficiency (WUE) which is a parameter measuring ecosystems productivity in relation to water availability is severely missing. Relative shrub cover is a primary estimator of the fraction of water utilized for shrubs growth. Edge effects must be considered as well in fragmented ecosystems in general and in hot regions in particular since soil temperature in hot regions which frequently exceed 50oC during summer months decreases photosynthesis and productivity in plants bordering bare soil. This edge effect is decreasing with the increase in shrubs' height. Pattern Water Use Efficiency describes the combined effect of shrub cover, shrub height and shrub patches edge zone proportion on water use efficiency. In my presentation I will first present mapping od PWUEs across Mediterranean to arid transition zones in the Eastern Mediterranean. Then I will present several mathematical models describing PWUE for simulated patterns, searching for the spatial parameterization providing the highest sensitivity to patterns responses to changes in habitat conditions. Such simulations would allow us to discuss several PWUE strategies for shrublands recovery under the current scenarios of climate change and human driven degradation.
Range and variation in landscape patch dynamics: Implications for ecosystem management
Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg
2001-01-01
Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...
ASSESSING ARID RIPARIAN LANDSCAPES USING REMOTE SENSING: THE FIRST STEP
Riparian ecosystems are of great value in the Southwest yet they are also extremely fragile and susceptible to natural and anthropogenic disturbances. Riparian ecosystems establish in patterns per the hydrologic and geomorphologic processes that dictate terrestrial plant success...
NASA Astrophysics Data System (ADS)
Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.
2016-12-01
Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.
NASA Astrophysics Data System (ADS)
Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.
2017-12-01
Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.
NASA Astrophysics Data System (ADS)
Ai, Junyong; Sun, Xiang; Feng, Lan; Li, Yangfan; Zhu, Xiaodong
2015-09-01
Quantifying and mapping the distribution patterns of ecosystem services can help to ascertain which services should be protected and where investments should be directed to improve synergies and reduce tradeoffs. Moreover, the indicators of urbanization that affect the provision of ecosystem services must be identified to determine which approach to adopt in formulating policies related to these services. This paper presents a case study that maps the distribution of multiple ecosystem services and analyzes the ways in which they interact. The relationship between the supply of ecosystem services and the socio-economic development in the Taihu Lake Basin of eastern China is also revealed. Results show a significant negative relationship between crop production and tourism income ( p<0.005) and a positive relationship between crop production, nutrient retention, and carbon sequestration ( p<0.005). The negative effects of the urbanization process on providing and regulating services are also identified through a comparison of the ecosystem services in large and small cities. Regression analysis was used to compare and elucidate the relative significance of the selected urbanization factors to ecosystem services. The results indicate that urbanization level is the most substantial factor inversely correlated with crop production ( R 2 = 0.414) and nutrient retention services ( R 2 = 0.572). Population density is the most important factor that negatively affects carbon sequestration ( R 2 = 0.447). The findings of this study suggest the potential relevance of ecosystem service dynamics to urbanization management and decision making.
Grimm, N. B.; Chacon, A.; Dahm, Clifford N.; Hostetler, S.W.; Lind, O.T.; Starkweather, P.L.; Wurtsbaugh, W.W.
1997-01-01
Variability and unpredictability are characteristics of the aquatic ecosystems, hydrological patterns and climate of the largely dryland region that encompasses the Basin and Range, American Southwest and western Mexico. Neither hydrological nor climatological models for the region are sufficiently developed to describe the magnitude or direction of change in response to increased carbon dioxide; thus, an attempt to predict specific responses of aquatic ecosystems is premature. Instead, we focus on the sensitivity of rivers, streams, springs, wetlands, reservoirs, and lakes of the region to potential changes in climate, especially those inducing a change in hydrological patterns such as amount, timing and predictability of stream flow. The major sensitivities of aquatic ecosystems are their permanence and even existence in the face of potential reduced net basin supply of water, stability of geomorphological structure and riparian ecotones with alterations in disturbance regimes, and water quality changes resulting from a modified water balance. In all of these respects, aquatic ecosystems of the region are also sensitive to the extensive modifications imposed by human use of water resources, which underscores the difficulty of separating this type of anthropogenic change from climate change. We advocate a focus in future research on reconstruction and analysis of past climates and associated ecosystem characteristics, long-term studies to discriminate directional change vs. year to year variability (including evidence of aquatic ecosystem responses or sensitivity to extremes), and studies of ecosystems affected by human activity. ?? 1997 by John Wiley & Sons, Ltd.
Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.
Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia
2015-08-01
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián
2015-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, 2) increase BSC cover in areas under strong erosion risk, to avoid soil loss, and 3) enhance soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. PMID:22073661
Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.
2011-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. ?? 2011 by the Ecological Society of America.
Alternative mechanisms alter the emergent properties of self-organization in mussel beds
Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan
2012-01-01
Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256
NASA Astrophysics Data System (ADS)
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Kirschner, A K T; Eiler, A; Zechmeister, T C; Velimirov, B; Herzig, A; Mach, R; Farnleitner, A H
2002-09-01
Diel changes in bacterial and cyanobacterial numbers, as well as heterotrophic bacterial production, were examined in two shallow alkaline pools, harbouring dense populations of cyanobacteria (up to 1100 x 109 cells l-1) and bacteria (up to 500 x 109 cells l-1). Together with the recorded bacterial production rates (925 micro gC l-1x h-1), these values are the highest reported for natural aquatic ecosystems. The investigations were performed during a fair-weather situation, and during a rapid change after a long-term fair-weather situation to thunderstorms and heavy rainfall. During fair weather, bacterial growth was significantly correlated to the diurnal light and temperature cycle. Prokaryotic abundances were fairly constant, and loss by grazing and viral lysis must have been of significant importance. During the invasion of rainy weather, the prokaryotic community showed a strong and immediate response. A significant enhancement of bacterial growth followed after rainfall, suggesting that the high salt concentrations had inhibited bacterial activity. Changes in bacterial and cyanobacterial numbers were consistent with this pattern. From comparison with the available literature, we conclude that diel changes of bacterioplankton are regulated by a complex combination of environmental factors specific for each investigated ecosystem. In the soda pools investigated, external abiotic factors were dominant on a diel scale. In larger ecosystems, such factors are much more buffered and internal biotic interactions may prevail.
NASA Astrophysics Data System (ADS)
Band, Larry
2010-05-01
Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang; Hinz, Christoph; Gerwin, Werner; Zaplata, Markus; Hüttl, Reinhard F.
2015-04-01
Over a period of ten years, we investigated the initial development of the constructed catchment 'Chicken Creek', south of Cottbus, Germany (Gerwin et al., 2009). Since the boundary conditions and inner structures of the hillslope are well known and documented (Gerwin et al., 2011), the site offers unique possibilities to study the relevant processes of ecosystem development interacting with various structures and patterns. We observed considerable changes within the catchment (Elmer et al., 2013). Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate (Schaaf et al., 2013). With time, secondary structures and patterns evolved and became more and more important. Invading biota and vegetation succession initialized abiotic/biotic feedback mechanisms resulting in pattern and habitat formation, and generally in increased differentiation, heterogeneity and complexity that are typical characteristics of ecosystems (Schaaf et al., 2011). The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Elmer M, Gerwin W, Schaaf W, Zaplata MK, Hohberg K, Nenov R, Bens O, Hüttl RF (2013): Dynamics of initial ecosystem development at the artificial catchment Chicken Creek, Lusatia, Germany. Environ Earth Sci 69, 491-505. Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009): The artificial catchment "Chicken Creek" (Lusatia, Germany) - A landscape laboratory for interdisciplinary studies of initial ecosystem development, Ecol Eng 35, 1786-1796. Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2011): Overview and first results of ecological monitoring at the artificial watershed Chicken Creek (Germany). Phys Chem Earth 36, 61-73. Schaaf W, Bens O, Fischer A, Gerke HH, Gerwin W, Grünewald U, Holländer HM, Kögel-Knabner I, Mutz M, Schloter M, Schulin R, Veste M, Winter S, Hüttl, RF (2011): Patterns and processes of initial terrestrial ecosystem development. J Plant Nutr Soil Sci 174, 229-239. Schaaf W, Elmer M, Fischer A, Gerwin W, Nenov R, Pretsch H, Seifert S, Winter S, Zaplata MK (2013): Monitoring the formation of structures and patterns during initial development of an artificial catchment. Environ Monit Assess 185, 5965-5986.
Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D
2014-10-01
Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry. © 2014 John Wiley & Sons Ltd.
Science from genes to landscapes
,
2015-08-26
The quality of life and economic strength in America hinges on healthy ecosystems that support living things and natural processes. Ecosystem science better enables society to understand how and why ecosystems change, to predict and forecast future changes, and to guide actions that can prevent damage to, and restore and sustain ecosystems. It is through this knowledge that informed decisions are made about natural resources that can enhance our Nation's economic and environmental well-being.
Indirect effects of species interactions on habitat provisioning.
Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2011-07-01
Species that shelter in a biogenic habitat can influence their refugia and, in turn, play an essential role in shaping local patterns of biodiversity. Here we explore a positive feedback loop between the provisioning rate of habitat-forming branching corals and their associated fishes and show how interactions between two groups of fish--the planktivorous damselfish and predatory hawkfish--altered the feedback. A field experiment confirmed that skeletal growth of branching coral (genus Pocillopora) increased substantially with increasing numbers (biomass) of resident fishes, likely because they greatly increased the interstitial concentrations of nutrients. Because there is a positive relationship between colony size and number (biomass) of associated fishes (primarily damselfishes in the Family Pomacentridae), a structure-function feedback loop exists in which increasing numbers of damselfish enhance coral growth and larger corals host greater abundances (and species richness) of fish. However, interactions between damselfishes and arc-eye hawkfish, Paracirrhites arcatus, a largely solitary resident, can disrupt this positive feedback loop. Field surveys revealed a marked pattern of fish occupancy related to coral size: Pocillopora colonies of sufficient size to host fish (>40 cm circumference) had either groups of damselfish or an arc-eye hawkfish; only larger colonies (>75 cm) were occupied by both the damselfish and hawkfish. Subsequent short- and long-term experiments revealed that on intermediate-sized Pocillopora colonies, arc-eye hawkfish prevented the establishment of damselfish by suppressing their recruitment. The demographic consequences to the host coral were substantial; in a 1-year-long experiment, intermediate-size Pocillopora occupied by hawkfish grew at half the rate of corals that hosted groups of damselfish. These findings indicate that: (1) species which occupy a biogenic habitat can enhance the provisioning rate of their habitat; (2) such positive feedbacks between community structure and ecosystem function can be disrupted by a strong interactor; (3) even substantial consequences on ecosystem processes that arise can be difficult to discern.
Ecosystem extent and fragmentation
Sayre, Roger; Hansen, Matt
2017-01-01
One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.
Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems
Danovaro, Roberto; Molari, Massimiliano; Corinaldesi, Cinzia; Dell’Anno, Antonio
2016-01-01
Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes. PMID:27386507
Can greening of aquaculture sequester blue carbon?
Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S
2017-05-01
Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.
Translational Research 2.0: a framework for accelerating collaborative discovery.
Asakiewicz, Chris
2014-05-01
The world wide web has revolutionized the conduct of global, cross-disciplinary research. In the life sciences, interdisciplinary approaches to problem solving and collaboration are becoming increasingly important in facilitating knowledge discovery and integration. Web 2.0 technologies promise to have a profound impact - enabling reproducibility, aiding in discovery, and accelerating and transforming medical and healthcare research across the healthcare ecosystem. However, knowledge integration and discovery require a consistent foundation upon which to operate. A foundation should be capable of addressing some of the critical issues associated with how research is conducted within the ecosystem today and how it should be conducted for the future. This article will discuss a framework for enhancing collaborative knowledge discovery across the medical and healthcare research ecosystem. A framework that could serve as a foundation upon which ecosystem stakeholders can enhance the way data, information and knowledge is created, shared and used to accelerate the translation of knowledge from one area of the ecosystem to another.
O'Sullivan, Odhran S; Holt, Alison R; Warren, Philip H; Evans, Karl L
2017-04-15
Urban road verges can contain significant biodiversity, contribute to structural connectivity between other urban greenspaces, and due to their proximity to road traffic are well placed to provide ecosystem services. Using the UK as a case study we review and critically evaluate a broad range of evidence to assess how this considerable potential can be enhanced despite financial, contractual and public opinion constraints. Reduced mowing frequency and other alterations would enhance biodiversity, aesthetics and pollination services, whilst delivering costs savings and potentially being publically acceptable. Retaining mature trees and planting additional ones is favourable to residents and would enhance biodiversity, pollution and climate regulation, carbon storage, and stormwater management. Optimising these services requires improved selection of tree species, and creating a more diverse tree stock. Due to establishment costs additional tree planting and maintenance could benefit from payment for ecosystem service schemes. Verges could also provide areas for cultivation of biofuels and possibly food production. Maximising the contribution of verges to urban biodiversity and ecosystem services is economical and becoming an increasingly urgent priority as the road network expands and other urban greenspace is lost, requiring enhancement of existing greenspace to facilitate sustainable urban development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Riparian spiders as sentinels of PCB contamination across heterogeneous aquatic ecosystems
Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the ...
Delineating resource sheds in aquatic ecosystems (presentation)
Analysis of spatially-explicit ecological phenomena in aquatic ecosystems is impeded by a lack of knowledge of, and tools to delimit, spatial patterns of material supply to point locations. Here we apply the concept of "resource sheds" to coasts and watersheds. Resource sheds ar...
Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis
NASA Astrophysics Data System (ADS)
Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon
2017-02-01
The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.
Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis
Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon
2017-01-01
The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake. PMID:28230202
NASA Astrophysics Data System (ADS)
Lercari, D.; Defeo, O.
1999-10-01
Sandy beaches are ecosystems which are heavily affected by human activities. An example of this is freshwater discharges, which are known to change salinity, temperature and nutrient regimes and degrade nearshore environments. However, the effects of this kind of disturbance on sandy beach fauna have been little studied. This paper reports the spatial effects of a man-made freshwater canal discharge on the population structure, abundance and reproductive characteristics of the sandy beach mole crab Emerita brasiliensis. Along the 22 km of sandy beach sampled, the mole crab showed a marked longshore variability in population structure and abundance. Abundance of different population components (juveniles, males, females and ovigerous females) significantly decreased towards the canal. Population structure by sex and size, individual weight, fecundity and female maturity patterns at size also displayed a non-linear response to the distance from the freshwater discharge. Only the size structure of males did not follow this pattern. For males, spatial heterogeneity enhanced the detection of density-dependence at less disturbed sites. The authors conclude that artificial freshwater discharges could significantly influence the distribution, abundance and life-history traits of the biota of sandy beaches, and that further study of these ecosystems should include human activities as important factors affecting spatial and temporal trends. The need to consider different spatial and temporal scales in order to detect the effect of anthropogenically-driven impacts in sandy beach populations is stressed.
Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo
2010-01-01
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.
John M. Frank; William J. Massman; Brent E. Ewers; Laurie S. Huckaby; Jose F. Negron
2014-01-01
Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of...
Jeanne C. Chambers; Richard F. Miller; David I. Board; David A. Pyke; Bruce A. Roundy; James B. Grace; Eugene W. Schupp; Robin J. Tausch
2014-01-01
In sagebrush ecosystems invasion of annual exotics and expansion of pinon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species...
Wang, Ziyan; Qiu, Quanyi; Wu, Tong; Shao, Guofan
2018-01-01
Intensifying urbanization and rapid population growth in Fujian Province, China, has caused pollution of air and water resources; this has adversely impacted ecosystems and human health. China has recently begun pursuing a massive infrastructure and economic development strategy called the Belt and Road Initiative, which could potentially cause further environmental damage. Evaluations of ecosystem health are therefore a first step towards identifying the potential impacts from the development and planning sustainable development strategies in the Golden Triangle of Southern Fujian. To this end, our study analyzed landscape patterns and evaluated ecosystem health in this region. We used an index system method to develop a pressure–state–response (PSR) model for assessing the region’s ecosystem health. We found that: (1) the landscape type with the greatest area in the study region is cultivated land and there were no areas that were undisturbed by human activity; (2) the overall ecological health of the region is good, but there is distinct variation across the region. This study incorporates the landscape pattern into an evaluation of ecosystem health. Using counties as evaluation units, we provide a general evaluation index for this scale. The methods reported here can be used in complex ecological environments to inform sustainable management decisions. PMID:29671817
Process-Driven Ecological Modeling for Landscape Change Analysis
NASA Astrophysics Data System (ADS)
Altman, S.; Reif, M. K.; Swannack, T. M.
2013-12-01
Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.
Snow depth manipulation experiments in a dry and a moist tundra
NASA Astrophysics Data System (ADS)
Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.
2017-12-01
As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.
Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China
Cui, Gaoyang; Chen, Yunming; Cao, Yang
2015-01-01
The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011
Marine biological diversity: Some important issues, opportunities and critical research needs
NASA Astrophysics Data System (ADS)
Butman, Cheryl Ann; Carlton, James T.
1995-07-01
Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].
Catchment hydrological responses to forest harvest amount and spatial pattern - 2011
We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...
THE EFFECT OF FRESHWATER INFLOW ON NET ECOSYSTEM METABOLISM IN LAVACA BAY, TEXAS
Estuaries and other coastal ecosystems depend on freshwater inflow to maintain the gradients in environmental characteristics that define these transitional water bodies. Freshwater inflow (FWI) rates in many estuaries are changing due to changing land use patterns, water divers...
Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin
2018-06-04
Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Global patterns of drought recovery
Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; ...
2017-08-09
Drought has major impacts on natural and human systems, and is especially important for land carbon sink variability due to its influence on terrestrial biosphere climate regulation. While 20th Century trends in drought regimes have been varied, “more extreme extremes”, including more frequent and severe droughts, are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns are largely unknown. Here we use three independent global data products of gross primary productivitymore » to show that, across diverse terrestrial ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: (1) Across the globe, recovery is longest in the tropics and high northern latitudes—critical tipping elements in Earth’s climate system. (2) Drought impacts, the area of ecosystems under active recovery and recovery times, have increased over the 20th century. If future droughts become more frequent, time between droughts may become shorter than drought recovery time, leading to chronically impacted ecosystems.« less
Global patterns of drought recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.
Drought has major impacts on natural and human systems, and is especially important for land carbon sink variability due to its influence on terrestrial biosphere climate regulation. While 20th Century trends in drought regimes have been varied, “more extreme extremes”, including more frequent and severe droughts, are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns are largely unknown. Here we use three independent global data products of gross primary productivitymore » to show that, across diverse terrestrial ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: (1) Across the globe, recovery is longest in the tropics and high northern latitudes—critical tipping elements in Earth’s climate system. (2) Drought impacts, the area of ecosystems under active recovery and recovery times, have increased over the 20th century. If future droughts become more frequent, time between droughts may become shorter than drought recovery time, leading to chronically impacted ecosystems.« less
Global patterns of drought recovery.
Schwalm, Christopher R; Anderegg, William R L; Michalak, Anna M; Fisher, Joshua B; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D; Wolf, Adam; Huntzinger, Deborah N; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin
2017-08-09
Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time-how long an ecosystem requires to revert to its pre-drought functional state-is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth's climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.
Global patterns of drought recovery
NASA Astrophysics Data System (ADS)
Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; Fisher, Joshua B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah N.; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin
2017-08-01
Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time—how long an ecosystem requires to revert to its pre-drought functional state—is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth’s climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.
[Advances in plant ecophysiological studies on re-vegetation of degraded ecosystem].
Zhao, Ping
2003-11-01
Natural force and human intervention lead to many local, regional, and sometimes global changes in plant community patterns. Regardless of the cause and intensity of these changes, ecosystem can recover most of their attributes through natural succession, or can be repaired by human assistance. The essentiality of restoration of degraded ecosystem is community succession, a process during which an ecosystem evolves from primary stage to advanced stage, and its structure and function change from simple to complex plant. Ecophysiological study could explain some macroscopical phenomena of the ecology of re-vegetation of degraded ecosystem, and provide a scientific base for assembling pioneering plant community. The advances in plant ecophysiological study on re-vegetation of degraded ecosystems were reviewed in this paper.
NASA Astrophysics Data System (ADS)
Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.
2016-12-01
Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.
Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong
2016-01-01
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140
Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong
2016-01-01
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.
Optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-03-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
Thompson, Grant L.; Kao-Kniffin, Jenny
2016-01-01
Urban grasslands, landscapes dominated by turfgrasses for aesthetic or recreational groundcovers, are rapidly expanding in the United States and globally. These managed ecosystems are often less diverse than the natural or agricultural lands they replace, leading to potential losses in ecosystem functioning. Research in non-urban systems has provided evidence for increases in multiple ecosystem functions associated with greater plant diversity. To test if biodiversity-ecosystem function findings are applicable to urban grasslands, we examined the effect of plant species and genotypic diversity on three ecosystem functions, using grassland assemblages of increasing diversity that were grown within a controlled environment facility. We found positive effects of plant diversity on reduced nitrate leaching and plant productivity. Soil microbial diversity (Mean Shannon Diversity, H’) of bacteria and fungi were also enhanced in multi-species plantings, suggesting that moderate increments in plant diversity influence the composition of soil biota. The results from this study indicate that plant diversity impacts multiple functions that are important in urban ecosystems; therefore, further tests of urban grassland biodiversity should be examined in situ to determine the feasibility of manipulating plant diversity as an explicit landscape design and function trait. PMID:27243768
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-01-01
Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410
Soil Carbon Recovery of Degraded Steppe Ecosystems of the Mongolian Plateau
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Togtohyn, C.; Qi, J.
2013-12-01
Mongolian steppe grassland systems are critical source of ecosystem services to societal groups in temperate East Asia. These systems are characterized by their arid and semiarid environments where rainfall tends to be too variable or evaporative losses reduce water availability to reliably support cropping systems or substantial forest cover. These steppe ecosystems have supported land use practices to accommodate the variable rainfall patterns, and seasonal and spatial patterns of forage production displayed by the nomadic pastoral systems practiced across Asia. These pastoral systems are dependent on grassland ecosystem services, including forage production, wool, skins, meat and dairy products, and in many systems provide critical biodiversity and land and water protection services which serve to maintain pastoral livelihoods. Precipitation variability and associated drought conditions experienced frequently in these grassland systems are key drivers of these systems. However, during the past several decades climate change and grazing and land use conversion have resulted in degradation of ecosystem services and loss of soil organic matter. Recent efforts in China and Mongolia are investigating different grazing management practices to restore soil organic matter in these degraded systems. Simulation modeling is being applied to evaluate the long-term benefits of different grazing management regimes under various climate scenarios.
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-08-01
Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.
USDA-ARS?s Scientific Manuscript database
Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...
USDA-ARS?s Scientific Manuscript database
Quantification of rates and patterns of community dynamics is central for understanding the organization and function of ecosystems. These insights may support a greater empirical understanding of ecological resilience, and the application of resilience concepts toward ecosystem management. Distinct...
USDA-ARS?s Scientific Manuscript database
Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...
NASA Astrophysics Data System (ADS)
Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.
2013-05-01
Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruit, the limited root apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.
Hindered bacterial mobility in porous media flow enhances dispersion
NASA Astrophysics Data System (ADS)
Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey
2017-11-01
Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.
Putting humans in ecology: consistency in science and management.
Hobbs, Larry; Fowler, Charles W
2008-03-01
Normal and abnormal levels of human participation in ecosystems can be revealed through the use of macro-ecological patterns. Such patterns also provide consistent and objective guidance that will lead to achieving and maintaining ecosystem health and sustainability. This paper focuses on the consistency of this type of guidance and management. Such management, in sharp contrast to current management practices, ensures that our actions as individuals, institutions, political groups, societies, and as a species are applied consistently across all temporal, spatial, and organizational scales. This approach supplants management of today, where inconsistency results from debate, politics, and legal and religious polarity. Consistency is achieved when human endeavors are guided by natural patterns. Pattern-based management meets long-standing demands for enlightened management that requires humans to participate in complex systems in consistent and sustainable ways.
Integrated Assessment of Ecosystem Effects of Atmospheric Deposition
Ecosystems obtain a portion of their nutrients from the atmosphere. Following the Industrial Revolution, however, human activities have accelerated biogeochemical cycles, greatly enhancing the transport of substances among the atmosphere, water, soil, and living things. The atmos...
Upper York Creek Dam Removal, Fish Passage, and Ecosystem Restoration
Information about the Upper York Creek Dam Removal, Fish Passage, and Ecosystem Restoration part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Seasonal Patterns of Mixed Species Groups in Large East African Mammals
Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan
2014-01-01
Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups. PMID:25470495
Seasonal patterns of mixed species groups in large East African mammals.
Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan
2014-01-01
Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.
2007-12-01
In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.
NASA Astrophysics Data System (ADS)
Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.
2017-12-01
Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.
NASA Astrophysics Data System (ADS)
McKnight, D. M.; Lyons, W. B.; Fountain, A. G.; Gooseff, M. N.; Doran, P. T.; Wall, D. H.; Virginia, R. A.; Priscu, J. C.; Adams, B.; Vesbach-Takacs, C.; Barrett, J. E.; Howkins, A.
2014-12-01
The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and permanently ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. These valleys were first explored by Robert Scott and his party in 1903. In 1968 the New Zealand Antarctic Program began a gauging network on the Onyx River, a 32 km river in Wright Valley which is the longest river in Antarctica. As part of the McMurdo Dry Valleys Long-Term Ecological research project our research group has monitored meteorological conditions, glacial mass balance, lake level and streamflow in the adjacent Taylor Valley. The extent of liquid water throughout the landscape is strongly controlled by summer climate, and the availability of liquid water in turn is a limitation to the microscopic life that is present in the diverse habitats in the valleys. We have studied the responses of soil, lake, stream and cryoconite ecosystems through a sustained cooling period that has been driven by atmospheric changes associated with the ozone hole. In the past decade, this cooling period appears to have ceased and summer conditions have become more variable. Three warm sunny summers have occurred since 2001/02. These conditions have created weeks long "flood events" in the valleys, causing wet areas to emerge in the soils, thermokarsting in some stream channels and increases in lake level. These flood events can be considered as pulse events that drive an increase in ecosystem connectivity, changing rates of biogeochemical processes and the distribution of biota. Collectively the ecosystems of the McMurdo Dry Valleys are highly responsive to dynamic climatic influences associated with the ozone hole and global warming.
The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages
NASA Astrophysics Data System (ADS)
Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.
2016-12-01
Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty of identifying the drivers of state changes in the arctic.
Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes
NASA Astrophysics Data System (ADS)
Pietsch, Stephan
2017-04-01
DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.
Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes.
NASA Astrophysics Data System (ADS)
Pietsch, S.
2016-12-01
DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong. Any given ecosystem never is at steady state! Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.
The evolution of ecosystem ascendency in a complex systems based model.
Brinck, Katharina; Jensen, Henrik Jeldtoft
2017-09-07
General patterns in ecosystem development can shed light on driving forces behind ecosystem formation and recovery and have been of long interest. In recent years, the need for integrative and process oriented approaches to capture ecosystem growth, development and organisation, as well as the scope of information theory as a descriptive tool has been addressed from various sides. However data collection of ecological network flows is difficult and tedious and comprehensive models are lacking. We use a hierarchical version of the Tangled Nature Model of evolutionary ecology to study the relationship between structure, flow and organisation in model ecosystems, their development over evolutionary time scales and their relation to ecosystem stability. Our findings support the validity of ecosystem ascendency as a meaningful measure of ecosystem organisation, which increases over evolutionary time scales and significantly drops during periods of disturbance. The results suggest a general trend towards both higher integrity and increased stability driven by functional and structural ecosystem coadaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
2017-11-01
Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
State of the Carbon Cycle - Consequences of Rising Atmospheric CO2
NASA Astrophysics Data System (ADS)
Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.
2016-12-01
The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO2 on carbon storage.
Cutting, Kyle A.; Anderson, Michelle L.; Beever, Erik; Schroff, Sean; Korb, Nathan; Klaphake, Eric; McWilliams, Scott R.
2016-01-01
Seasonal fluctuations in food availability can affect diets of consumers, which in turn may influence the physiological state of individuals and shape intra- and inter-specific patterns of resource use. High-elevation ecosystems often exhibit a pronounced seasonal “pulse” in productivity, although few studies document how resource use and energetic condition by avian consumers change in relation to food-resource availability in these ecosystems. We tested the hypothesis that seasonal increases (pulses) in food resources in high-elevation sagebrush ecosystems result in 2 changes after the pulse, relative to the before-pulse period: (1) reduced diet breadth of, and overlap between, 2 sympatric sparrow species; and (2) enhanced energetic condition in both species. We tracked breeding-season diets using stable isotopes and energetic condition using plasma metabolites of Brewer's Sparrows (Spizella breweri), Vesper Sparrows (Pooecetes gramineus), and their food resources during 2011, and of only Brewer's Sparrows and their food resources during 2013. We quantify diet breadth and overlap between both species, along with coincident physiological consequences of temporal changes in resource use. After invertebrate biomass increased following periods of rainfall in 2011, dietary breadth decreased by 35% in Brewer's Sparrows and by 48% in Vesper Sparrows, while dietary overlap decreased by 88%. Energetic condition of both species increased when dietary overlap was lower and diet breadth decreased, after the rapid rise of food-resource availability. However, energetic condition of Brewer's Sparrows remained constant in 2013, a year with low precipitation and lack of a strong pulse in food resources, even though the species' dietary breadth again decreased that year. Our results indicate that diet breadth and overlap in these sparrow species inhabiting sagebrush ecosystems generally varied as predicted in relation to intra- and interannual changes in food resources, and this difference in diet was associated with improved energetic condition of sparrows at least in one year.
State of the Carbon Cycle - Consequences of Rising Atmospheric CO2
NASA Technical Reports Server (NTRS)
Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa;
2016-01-01
The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO2 on carbon storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min; Zhuang, Qianlai; Cook, D.
2011-08-31
Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenologymore » and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.« less
NASA Astrophysics Data System (ADS)
Smith, S. L.; Chen, B.; Vallina, S. M.
2017-12-01
Biodiversity-Ecosystem Function (BEF) relationships, which are most commonly quantified in terms of productivity or total biomass yield, are known to depend on the timescale of the experiment or field study, both for terrestrial plants and phytoplankton, which have each been widely studied as model ecosystems. Although many BEF relationships are positive (i.e., increasing biodiversity enhances function), in some cases there is an optimal intermediate diversity level (i.e., a uni-modal relationship), and in other cases productivity decreases with certain measures of biodiversity. These differences in BEF relationships cannot be reconciled merely by differences in the timescale of experiments. We will present results from simulation experiments applying recently developed trait-based models of phytoplankton communities and ecosystems, using the `adaptive dynamics' framework to represent continuous distributions of size and other key functional traits. Controlled simulation experiments were conducted with different levels of phytoplankton size-diversity, which through trait-size correlations implicitly represents functional-diversity. One recent study applied a theoretical box model for idealized simulations at different frequencies of disturbance. This revealed how the shapes of BEF relationships depend systematically on the frequency of disturbance and associated nutrient supply. We will also present more recent results obtained using a trait-based plankton ecosystem model embedded in a three-dimensional ocean model applied to the North Pacific. This reveals essentially the same pattern in a spatially explicit model with more realistic environmental forcing. In the relatively more variable subarctic, productivity tends to increase with the size (and hence functional) diversity of phytoplankton, whereas productivity tends to decrease slightly with increasing size-diversity in the relatively calm subtropics. Continuous trait-based models can capture essential features of BEF relationships, while requiring far fewer calculations compared to typical plankton diversity models that explicitly simulate a great many idealized species.
Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.
2017-01-01
ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. PMID:28476769
Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D
2017-07-15
Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. Copyright © 2017 American Society for Microbiology.
USDA-ARS?s Scientific Manuscript database
Leafing out phenology affects a wide variety of ecosystem processes and ecological interactions, and it affects how natural and artificial ecosystems respond to different weather conditions in the spring. There is, however, relatively little information available on the factors affecting species dif...
Southern Nevada ecosystem stressors [Chapter 2
Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja
2013-01-01
Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...
Ecological Factors in Migration in Nonmetropolitan Counties, 1950-1970.
ERIC Educational Resources Information Center
Murdock, Steve H.
To determine the dominant ecosystem types in nonmetropolitan counties and the role of ecological factors in determination of levels of total and age-specific migration patterns within nonmetropolitan areas and ecosystem types for 1950-60 and 1960-70, 30 ecological variables representing POET concepts of population, organization, environment, and…
DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM
The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...
We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...
Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems
Victor Resco de Dios; Michael L. Goulden; Kiona Ogle; Andrew D. Richardson; David Y. Hollinger; Eric A. Davidson; Josu G. Alday; Greg A. Barron-Gafford; Arnaud Carrara; Andrew S. Kowalski; Walt C. Oechel; Borja R. Reverter; Russell L. Scott; Ruth K. Varner; Ruben Diaz-Sierra; Jose M. Moreno
2012-01-01
It is often assumed that daytime patterns of ecosystem carbon assimilation are mostly driven by direct physiological responses to exogenous environmental cues. Under limited environmental variability, little variation in carbon assimilation should thus be expected unless endogenous plant controls on carbon assimilation, which regulate photosynthesis in time, are active...
Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...
USDA-ARS?s Scientific Manuscript database
We compiled six long-term datasets from western North America to test for ecosystem-dependent demographic responses for forbs and grasses. Based on these data, we characterized 123 survivorship curves for 109 species. Three demographic parameters were extracted from these survivorship curves: surviv...
Spatial perspectives in state-and-transition models: A missing link to land management?
USDA-ARS?s Scientific Manuscript database
Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...
NASA Astrophysics Data System (ADS)
Pricope, Narcisa Gabriela
This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a series of strong impacts on other components of fire regimes in semi-arid ecosystems that will, in turn, affect their ecology, structure, and function. This dissertation contributes to the field of land use and land change science by proposing a novel spatial coincidence analysis framework for analyzing how the interand intra-annual extents of inundation and fire are correlated with both annual patterns of vegetation productivity and multi-date changes in vegetation productivity. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
RESTORED STREAMS ENHANCE ABILITY TO REMOVE EXCESS NITROGEN
Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten human and aquatic ecosystem health. Furthermore, degraded ecosystems like those impacted by urbanization have reduced ability to process and remove excess nitrogen from t...
Enhancing VELMA's Watershed Delineation and Performance with Ancillary Stream Data
VELMA (Visualizing Ecosystems for Land Management Assessment) is a hydro-ecological landscape disturbance model developed to predict the effectiveness of alternative green infrastructure scenarios for protecting water quality, and also to estimate potential ecosystem service co-b...
Cai, Yuan-Bin; Zhang, Hao; Pan, Wen-Bin; Chen, Yan-Hong; Wang, Xiang-Rong
2013-06-01
This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16 × 10(6) RMB Yuan in 1989 to 3,697.42 × 10(6) RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.
Carbon storage in China's terrestrial ecosystems: A synthesis.
Xu, Li; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Gao, Yang; Wen, Ding; Li, Shenggong; Niu, Shuli; Ge, Jianping
2018-02-12
It is important to accurately estimate terrestrial ecosystem carbon (C) storage. However, the spatial patterns of C storage and the driving factors remain unclear, owing to lack of data. Here, we collected data from literature published between 2004 and 2014 on C storage in China's terrestrial ecosystems, to explore variation in C storage across different ecosystems and evaluate factors that influence them. We estimated that total C storage was 99.15 ± 8.71 PgC, with 14.60 ± 3.24 PgC in vegetation C (Veg-C) and 84.55 ± 8.09 PgC in soil organic C (SOC) storage. Furthermore, C storage in forest, grassland, wetland, shrub, and cropland ecosystems (excluding vegetation) was 34.08 ± 5.43, 25.69 ± 4.71, 3.62 ± 0.80, 7.42 ± 1.92, and 15.17 ± 2.20 PgC, respectively. In addition to soil nutrients and texture, climate was the main factor regulating the spatial patterns of C storage. Climate influenced the spatial patterns of Veg-C and SOC density via different approaches, Veg-C was mainly positively influenced by mean annual precipitation (MAP), whereas SOC was negatively dependent on mean annual temperature (MAT). This systematic estimate of C storage in China provides new insights about how climate constrains C sequestration, demonstrating the contrasting effects of MAP and MAT on Veg-C and SOC; thus, these parameters should be incorporated into future land management and C sequestration strategies.
NASA Astrophysics Data System (ADS)
Sickman, J. O.; Sadro, S.; Lucero, D. M.
2016-12-01
Montane aquatic ecosystems integrate conditions within their catchments and act as sentinels for environmental change. Variations in elevation, atmospheric deposition, and bedrock chemistry produce complex environmental gradients that influence the flow of materials and energy between lakes and their watersheds. We investigated the landscape-level variations in stable isotopes (Isoscapes) of C, N and H in foodwebs of 12 Sierra Nevada lakes and watersheds spanning an elevation range of 1500 to 3500 m a.s.l. Collections included terrestrial plants, soils and insects and the entire aquatic food chain from dissolved organic matter (DOM) through plankton, benthic invertebrates and fish. Our major objective was to understand how environmental gradients such as temperature and precipitation (distance-for-time proxies for climate change) effect foodweb structure and reciprocal subsidies of C and energy between lakes and their watersheds. Possibly related to its role as a limiting nutrient for aquatic and terrestrial ecosystems, we observed no consistent pattern for δ15N across any environmental gradient. In contrast, there was a strong pattern of enrichment in 13C with increasing elevation (slope = +3.4 permil per km). Similarly, δ2H of snowfall and foodweb components showed a depletion of 2H with elevation (slope = -17 permil per km for foodwebs and -20 permil per km for water) suggesting strong influence of snowmelt on aquatic ecosystem function. We will further explore these isotope patterns and draw inferences on how changes in montane climate, including trends toward earlier snowmelt and lower snowfall, will impact aquatic ecosystems of the Sierra Nevada.
Diverse Responses of Belowground Internal Nitrogen Cycling to Increasing Aridity
NASA Astrophysics Data System (ADS)
Kou, D.; Peng, Y.; Wang, G.; Ding, J.; Chen, Y.; Yang, G.; Fang, K.; Liu, L.; Zhang, B.; Müller, C.; Zhang, J.; Yang, Y.
2017-12-01
Belowground microbial nitrogen (N) dynamics play key roles in regulating structure and function of terrestrial ecosystems, however, our understanding on their responses to global change remains limited. This gap is particularly true for drylands, which constitute the largest biome in terrestrial ecosystems and are sensitive to predicted increase in aridity. Here, responding patterns and controls of six gross N transformation rates were explored along an aridity gradient in Tibetan drylands. Our results showed that gross N rates responded diversely to the changing aridity. Both mineralization (MN) and ammonium immobilization (INH4) declined as aridity increased. Aridity affected MN through its association with plant cover, clay content, soil organic matter (SOM), dissolved organic nitrogen (DON) and total microbial biomass, while regulated INH4 mainly through its effects on SOM and NH4+. Autotrophic nitrification (ONH4) exhibited a bell-shaped pattern along the gradient with a tipping point at aridity index = 0.47. Such a pattern was induced by aridity effects on the abundance of ammonia oxidizing archaea (AOA) and ammonia supplying capacity. Different from above N transformations, rates of nitrate immobilization (INO3) and dissimilatory nitrate reduction to ammonium (DNRA) had no responses to changing aridity, largely regulated by soil DON availability and clay content, respectively. Overall, these results suggest that predicted increase in aridity will exert different effects on various soil internal N cycling processes. The diverse patterns point to different responses of ecosystem N cycle with respect to aridity, and thus potentially have profound impact on structure and function of dryland ecosystems.
ERIC Educational Resources Information Center
Ongare, David; Macharia, Ayub; Mwakaje, Agnes; Muchane, Muchai; Warui, Charles; Mugoya, Charles; Masiga, Clet; Nikundiwe, Alfeyo; Muiti, Anastacia; Wakibara, James
2013-01-01
The Mara-Serengeti is an ecosystem of immense importance to both Kenya and Tanzania, contributing significantly to the economies of both countries and forming a rich biodiversity reservoir. This ecosystem is among the most threatened ecosystems on the African continent. Increasing human population density and changing lifestyles have escalated…
Adaptive management of large aquatic ecosystem recovery programs in the United States.
Thom, Ronald; St Clair, Tom; Burns, Rebecca; Anderson, Michael
2016-12-01
Adaptive management (AM) is being employed in a number of programs in the United States to guide actions to restore aquatic ecosystems because these programs are both expensive and are faced with significant uncertainties. Many of these uncertainties are associated with prioritizing when, where, and what kind of actions are needed to meet the objectives of enhancing ecosystem services and recovering threatened and endangered species. We interviewed nine large-scale aquatic ecosystem restoration programs across the United States to document the lessons learned from implementing AM. In addition, we recorded information on ecological drivers (e.g., endangered fish species) for the program, and inferred how these drivers reflected more generic ecosystem services. Ecosystem services (e.g., genetic diversity, cultural heritage), albeit not explicit drivers, were either important to the recovery or enhancement of the drivers, or were additional benefits associated with actions to recover or enhance the program drivers. Implementing programs using AM lessons learned has apparently helped achieve better results regarding enhancing ecosystem services and restoring target species populations. The interviews yielded several recommendations. The science and AM program must be integrated into how the overall restoration program operates in order to gain understanding and support, and effectively inform management decision-making. Governance and decision-making varied based on its particular circumstances. Open communication within and among agency and stakeholder groups and extensive vetting lead up to decisions. It was important to have an internal agency staff member to implement the AM plan, and a clear designation of roles and responsibilities, and long-term commitment of other involved parties. The most important management questions and information needs must be identified up front. It was imperative to clearly identify, link and continually reinforce the essential components of an AM plan, including objectives, constraints, uncertainties, hypotheses, management actions, decision criteria and triggers, monitoring, and research. Some employed predictive models and the results of research on uncertainties to vet options for actions. Many relied on best available science and professional judgment to decide if adjustments to actions were needed. All programs emphasized the need to be nimble enough to be responsive to new information and make necessary adjustments to management action implementation. We recommend that ecosystem services be explicit drivers of restoration programs to facilitate needed funding and communicate to the general public and with the global efforts on restoring and conserving ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hupp, C. R.; Rinaldi, M.
2010-12-01
Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery of floodplains by affecting sedimentation dynamics. Identification and understanding of critical fluvial parameters related to floodplain connectivity (e.g. stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services.
Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.
2010-01-01
Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems. PMID:20865128
Complex seasonal patterns of primary producers at the land-sea interface
Cloern, J.E.; Jassby, A.D.
2008-01-01
Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO 2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local-scale processes can mask responses to changing climate? ?? 2008 Blackwell Publishing Ltd/CNRS.
Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Ursino, Nadia
2016-04-01
Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?
McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K
2013-01-01
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.
Mora, Camilo; Danovaro, Roberto; Loreau, Michel
2014-06-25
Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments.
Mora, Camilo; Danovaro, Roberto; Loreau, Michel
2014-01-01
Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments. PMID:24962477
Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
Li, Fang; Zhao, Wenzhi; Liu, Hu
2015-03-01
The influences of previous-year precipitation and episodic rainfall events on dryland plants and communities are poorly quantified in the temperate desert region of Northwest China. To evaluate the thresholds and lags in the response of aboveground net primary productivity (ANPP) to variability in rainfall pulses and seasonal precipitation along the precipitation-productivity gradient in three desert ecosystems with different precipitation regimes, we collected precipitation data from 2000 to 2012 in Shandan (SD), Linze (LZ) and Jiuquan (JQ) in northwestern China. Further, we extracted the corresponding MODIS Normalized Difference Vegetation Index (NDVI, a proxy for ANPP) datasets at 250 m spatial resolution. We then evaluated different desert ecosystems responses using statistical analysis, and a threshold-delay model (TDM). TDM is an integrative framework for analysis of plant growth, precipitation thresholds, and plant functional type strategies that capture the nonlinear nature of plant responses to rainfall pulses. Our results showed that: (1) the growing season NDVIINT (INT stands for time-integrated) was largely correlated with the warm season (spring/summer) at our mildly-arid desert ecosystem (SD). The arid ecosystem (LZ) exhibited a different response, and the growing season NDVIINT depended highly on the previous year's fall/winter precipitation and ANPP. At the extremely arid site (JQ), the variability of growing season NDVIINT was equally correlated with the cool- and warm-season precipitation; (2) some parameters of threshold-delay differed among the three sites: while the response of NDVI to rainfall pulses began at about 5 mm for all the sites, the maximum thresholds in SD, LZ, and JQ were about 55, 35 and 30 mm respectively, increasing with an increase in mean annual precipitation. By and large, more previous year's fall/winter precipitation, and large rainfall events, significantly enhanced the growth of desert vegetation, and desert ecosystems should be much more adaptive under likely future scenarios of increasing fall/winter precipitation and large rainfall events. These results highlight the inherent complexity in predicting how desert ecosystems will respond to future fluctuations in precipitation.
Roitberg, Elena; Shoshany, Maxim
2017-01-01
Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.
RESTORATION EFFECTS ON N CYCLING POOLS AND PROCESSES
Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that...
EnviroAtlas Connects Urban Ecosystem Services and Human Well-Being
Ecosystem services in urban areas can improve public health and well-being by mitigating natural and anthropogenic pollution, and by promoting healthy lifestyles that include engagement with nature and enhanced opportunities for physical activity and social interaction. EPA&rsqu...
Assessing the drivers shaping global patterns of urban vegetation landscape structure.
Dobbs, C; Nitschke, C; Kendal, D
2017-08-15
Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Huawu; Li, Xiao-Yan; Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong
2016-01-15
Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai-Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0-30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant-soil-water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. Copyright © 2015 Elsevier B.V. All rights reserved.
The role of recurrent disturbances for ecosystem multifunctionality.
Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf
2013-10-01
Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.
Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem
Chizinski, C.J.; Higgins, C.L.; Shavlik, C.E.; Pope, K.L.
2006-01-01
Ecological and evolutionary theories have focused traditionally on natural processes with little attempt to incorporate anthropogenic influences despite the fact that humans are such an integral part of virtually all ecosystems. A series of alternate models that incorporated anthropogenic factors and traditional ecological mechanisms of invasion to account for fish incidence patterns in urban lakes was tested. The models were based on fish biology, human intervention, and habitat characteristics. However, the only models to account for empirical patterns were those that included fish invasiveness, which incorporated species-specific information about overall tolerance and fecundity. This suggests that species-specific characteristics are more important in general distributional patterns than human-mediated dispersal. Better information of illegal stocking activities is needed to improve human-mediated models, and more insight into basic life history of ubiquitous species is needed to truly understand underlying mechanisms of biotic homogenization. ?? Springer 2005.
Ramirez, Kelly S.; Leff, Jonathan W.; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W.; Kelly, Eugene F.; Oldfield, Emily E.; Shaw, E. Ashley; Steenbock, Christopher; Bradford, Mark A.; Wall, Diana H.; Fierer, Noah
2014-01-01
Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. PMID:25274366
Xu, Guangjian; Yang, Eun Jin; Xu, Henglong
2017-08-15
Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.
Global economic trade-offs between wild nature and tropical agriculture.
Carrasco, Luis R; Webb, Edward L; Symes, William S; Koh, Lian P; Sodhi, Navjot S
2017-07-01
Global demands for agricultural and forestry products provide economic incentives for deforestation across the tropics. Much of this deforestation occurs with a lack of information on the spatial distribution of benefits and costs of deforestation. To inform global sustainable land-use policies, we combine geographic information systems (GIS) with a meta-analysis of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs between agricultural benefits, carbon emissions, and losses of multiple ecosystem services because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem services presents large inherent uncertainties, we find a pattern supporting the argument that the externalities of destroying tropical forests are greater than the current direct economic benefits derived from agriculture in all cases bar one: when yield and rent potentials of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest, areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion appears economically efficient, indicating a major impediment to the long-term financial sustainability of Reducing Emissions from Deforestation and forest Degradation (REDD+) schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Madagascar present areas with low agricultural rents (ARs) and high values in carbon stocks and ES, suggesting that they are economically viable conservation targets. Our study helps identify optimal areas for conservation and agriculture together with their associated uncertainties, which could enhance the efficiency and sustainability of pantropical land-use policies and help direct future research efforts.
Shearwater Foraging in the Southern Ocean: The Roles of Prey Availability and Winds
Raymond, Ben; Shaffer, Scott A.; Sokolov, Serguei; Woehler, Eric J.; Costa, Daniel P.; Einoder, Luke; Hindell, Mark; Hosie, Graham; Pinkerton, Matt; Sagar, Paul M.; Scott, Darren; Smith, Adam; Thompson, David R.; Vertigan, Caitlin; Weimerskirch, Henri
2010-01-01
Background Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. Methodology/Principal Findings Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. Conclusions/Significance The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem. PMID:20532034
Enhanced precipitation variability decreases grass- and increases shrub-productivity
Gherardi, Laureano A.; Sala, Osvaldo E.
2015-01-01
Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095
Modelling terrestrial nitrous oxide emissions and implications for climate feedback.
Xu-Ri; Prentice, I Colin; Spahni, Renato; Niu, Hai Shan
2012-10-01
Ecosystem nitrous oxide (N2O) emissions respond to changes in climate and CO2 concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N2O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N2O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N2O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N2O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2-9.5 Tg N yr(-1) (or 8.3-10.3 Tg N yr(-1) with N deposition). Warming and N deposition contributed 0.85±0.41 and 0.80±0.14 Tg N yr(-1), respectively, to an overall upward trend. Rising CO2 also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N2O emission (c. 1 Tg N yr(-1) K(-1)) implies a positive climate feedback which, over the lifetime of N2O (114 yr), could become as important as the climate-carbon cycle feedback caused by soil CO2 release. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.
2017-11-01
Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.
NASA Astrophysics Data System (ADS)
Schmalz, Britta; Kiesel, Jens; Kruse, Marion; Pfannerstill, Matthias; Sheludkov, Artyom; Khoroshavin, Vitaliy; Veshkurseva, Tatyana; Müller, Felix; Fohrer, Nicola
2015-04-01
For discussing and planning sustainable land management of river basins, stakeholders need suitable information on spatio-temporal patterns of hydrological components and ecosystem services. The ecosystem services concept, i.e., services provided by ecosystems that contribute to human welfare benefits, contributes comprehensive information for sustainable river management. This study shows an approach to use ecohydrological modelling results for quantifying and assessing water-related ecosystem services in three lowland river basins in Western Siberia, a region which is of global significance in terms of carbon sequestration, agricultural production and biodiversity preservation. Using the ecohydrological model SWAT, the three basins Pyschma (16762 km²), Vagai (3348 km²) and Loktinka (373 km²) were modelled following a gradient from the landscape units taiga, pre-taiga to forest steppe. For a correct representation of the Siberian lowland hydrology, the consideration of snow melt and retention of surface runoff as well as the implementation of a second groundwater aquifer was of great importance. Good to satisfying model performances were obtained for the extreme hydrological conditions. The simulated SWAT output variables of different hydrological processes were used as indicators for the two regulating services water flow and erosion regulation. The model results were translated into a relative ecosystem service valuation scale. The resulting ecosystem service maps show different spatial and seasonal patterns. Although the high resolution modelling results are averaged out within the aggregated relative valuation scale, seasonal differences can be depicted: during snowmelt, low relevant regulation can be determined, especially for water flow regulation, but a very high relevant regulation was calculated for the vegetation period during summer and for the winter period. The SWAT model serves as a suitable quantification method for the assessment of water-related ecosystem services on different spatial scales and ecoregions of the Western Siberian lowlands.
Bacterial taxa–area and distance–decay relationships in marine environments
Zinger, L; Boetius, A; Ramette, A
2014-01-01
The taxa–area relationship (TAR) and the distance–decay relationship (DDR) both describe spatial turnover of taxa and are central patterns of biodiversity. Here, we compared TAR and DDR of bacterial communities across different marine realms and ecosystems at the global scale. To obtain reliable global estimates for both relationships, we quantified the poorly assessed effects of sequencing depth, rare taxa removal and number of sampling sites. Slope coefficients of bacterial TARs were within the range of those of plants and animals, whereas slope coefficients of bacterial DDR were much lower. Slope coefficients were mostly affected by removing rare taxa and by the number of sampling sites considered in the calculations. TAR and DDR slope coefficients were overestimated at sequencing depth <4000 sequences per sample. Noticeably, bacterial TAR and DDR patterns did not correlate with each other both within and across ecosystem types, suggesting that (i) TAR cannot be directly derived from DDR and (ii) TAR and DDR may be influenced by different ecological factors. Nevertheless, we found marine bacterial TAR and DDR to be steeper in ecosystems associated with high environmental heterogeneity or spatial isolation, namely marine sediments and coastal environments compared with pelagic ecosystems. Hence, our study provides information on macroecological patterns of marine bacteria, as well as methodological and conceptual insights, at a time when biodiversity surveys increasingly make use of high-throughput sequencing technologies. PMID:24460915
Monitoring of initial patterns and structures in an artificial catchment
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang; Gerwin, Werner; Biemelt, Detlef; Fischer, Anton
2010-05-01
To combine process-oriented research on initial development of ecosystems with interactions and co-development of spatial patterns and structures the Transregional Collaborative Research Centre (SFB/TRR) 38 (www.tu-cottbus.de/sfb_trr) was established as an initiative of three universities (BTU Cottbus, TU Munich and ETH Zurich). The objective of the SFB/TRR 38 is to enhance our understanding of structure genesis in ecosystems and of process dynamics as well as their interactions during the initial development phase. The aim is to integrate these feedback mechanisms in the analysis of water and element budgets at the catchment scale and to implement them into models. To allow the clear definition of starting conditions at ´point zeró and to be able to integrate spatially distributed processes and patterns to larger units, an artificial catchment was constructed in the mining area of Lusatia/Germany as the main research site (Gerwin et al. 2009a). With an area of about 6 ha, this catchment ´Chicken Creeḱ is to our knowledge the largest artificial catchment worldwide. It was constructed as a 2-4 m layer of post-glacial sandy to loamy sediments overlying a 1-2 m layer of Tertiary clay that forms a shallow pan and seals the whole catchment at the base. No further measures of restoration like planting, amelioration or fertilization were carried out to allow natural succession and undisturbed development. Due to the artificial construction, boundary conditions of this site are clearly defined including well documented inner structures as compared to natural catchments. It is assumed that the interaction of patterns and processes during initial development will proceed from simpler to more complex states of the systems and that different stages along this phase can be identified at the catchment level. Changes within the catchment are intensively monitored since 2005, when construction finished (Gerwin et al. 2009b), including intensive on-site measurements and micro-drone based aerial images. Starting from relatively homogenous site conditions the catchment rapidly developed new structures and patterns due to soil erosion, sediment transport, stream formation, vegetation cover and succession, groundwater table rise and surface crust formation resulting in an increasing differentiation of subareas and site characteristics. Some of these structures and patterns formed as a result of the interaction of abiotic and biotic processes during initial development, some were influenced by structures caused by the construction process itself, and others were affected by single accidental events, e.g. the occurrence of high intensity thunderstorms. References Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009a) The artificial catchment "Chicken Creek" (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796. Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2009b) Ecological monitoring at the artificial watershed Chicken Creek (Germany). Physics and chemistry of the earth (in review).
USDA-ARS?s Scientific Manuscript database
This publication is an introduction to wetland ecosystems in California, their geographic distribution, and historical ecology. Hydroclimatology and hydrology are explained as key drivers and patterns of variability in wetland habitats and biological communities. Primary wetland types are describe...
Southwestern Avian Community Organization in Exotic Tamarix: Current Patterns and Future Needs
H. A. Walker
2006-01-01
Tamarisk (saltcedar: Tamarix), an invasive exotic tree native to the Eastern Hemisphere, is currently the dominant plant species in most southwestern riparian ecosystems at elevations below 1500 m. Tamarisk alters abiotic conditions and the floral composition of native southwestern riparian ecosystems and, in turn, affects native southwestern animal communities....
Assessment of national biomass in complex forests and technical capacity scenarios
Matieu Henry; Javier G. P. Gamarra; Gael Sola; Luca Birigazzi; Emily Donegan; Julian Murillo; Tommaso Chiti; Nicolas Picard; Miguel Cifuentes-Jara; S Sandeep; Laurent Saint-André
2015-01-01
Understanding forest ecosystems is paramount for their sustainable management and for the livelihoods and ecosystem services which depend on them. However, the complexity and diversity of these systems poses a challenge to interpreting data patterns. The availability and accessibility of data and tools often determine the method selected for forest assessment. Capacity...
Classifying and comparing spatial models of fire dynamics
Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan
2007-01-01
Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...
Predicting plant species diversity in a longleaf pine landscape
L. Katherine Kirkman; P. Charles Goebel; Brian J. Palik; Larry T. West
2004-01-01
In this study, we used a hierarchical, multifactor ecological classification system to examine how spatial patterns of biodiversity develop in one of the most species-rich ecosystems in North America, the fire-maintained longleaf pine-wiregrass ecosystem and associated depressional wetlands and riparian forests. Our goal was to determine which landscape features are...
Sulfur pollution: an environmental study of Welland, Ontario
Michael R. Moss
1977-01-01
The distribution of sulfur as an environmental pollutant is analysed in the vicinity of Welland, Ontario. A biogeochemical-cycle approach enables areas of excess accumulation to be compared among all linked ecosystem components. Although the patterns of distribution are similar, the amounts of sulfur accumulated in different ecosystems, grassland and woodland, show...
Keith Reynolds; Paul Hessburg; Joan O’Callaghan
2014-01-01
Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...
Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles
Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat
2015-01-01
Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...
On species persistence-time distributions.
Suweis, S; Bertuzzo, E; Mari, L; Rodriguez-Iturbe, I; Maritan, A; Rinaldo, A
2012-06-21
We present new theoretical and empirical results on the probability distributions of species persistence times in natural ecosystems. Persistence times, defined as the timespans occurring between species' colonization and local extinction in a given geographic region, are empirically estimated from local observations of species' presence/absence. A connected sampling problem is presented, generalized and solved analytically. Species persistence is shown to provide a direct connection with key spatial macroecological patterns like species-area and endemics-area relationships. Our empirical analysis pertains to two different ecosystems and taxa: a herbaceous plant community and a estuarine fish database. Despite the substantial differences in ecological interactions and spatial scales, we confirm earlier evidence on the general properties of the scaling of persistence times, including the predicted effects of the structure of the spatial interaction network. The framework tested here allows to investigate directly nature and extent of spatial effects in the context of ecosystem dynamics. The notable coherence between spatial and temporal macroecological patterns, theoretically derived and empirically verified, is suggested to underlie general features of the dynamic evolution of ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.
An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot
NASA Astrophysics Data System (ADS)
Wernberg, Thomas; Smale, Dan A.; Tuya, Fernando; Thomsen, Mads S.; Langlois, Timothy J.; de Bettignies, Thibaut; Bennett, Scott; Rousseaux, Cecile S.
2013-01-01
Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems. In early 2011, the marine ecosystems along the west coast of Australia--a global hotspot of biodiversity and endemism--experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2-4°C persisted for more than ten weeks along >2,000km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.
Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity
NASA Technical Reports Server (NTRS)
Cook, Bruce D.; Asner, Gregory P.
2010-01-01
This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.
Robert L. Deal; Nikola Smith; Joe Gates
2017-01-01
Ecosystem services are increasingly recognized as a way of framing and describing the broad suite of benefits that people receive from forests. The USDA Forest Service has been exploring use of an ecosystem services framework to describe forest values provided by federal lands and to attract and build partnerships with stakeholders to implement projects. Recently, the...
Fishing for ecosystem services.
Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C
2016-12-01
Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.
Fishing for ecosystem services
Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.
2016-01-01
Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.
NASA Astrophysics Data System (ADS)
Zhou, Tao; Luo, Yiqi
2008-09-01
Ecosystem carbon (C) uptake is determined largely by C residence times and increases in net primary production (NPP). Therefore, evaluation of C uptake at a regional scale requires knowledge on spatial patterns of both residence times and NPP increases. In this study, we first applied an inverse modeling method to estimate spatial patterns of C residence times in the conterminous United States. Then we combined the spatial patterns of estimated residence times with a NPP change trend to assess the spatial patterns of regional C uptake in the United States. The inverse analysis was done by using the genetic algorithm and was based on 12 observed data sets of C pools and fluxes. Residence times were estimated by minimizing the total deviation between modeled and observed values. Our results showed that the estimated C residence times were highly heterogeneous over the conterminous United States, with most of the regions having values between 15 and 65 years; and the averaged C residence time was 46 years. The estimated C uptake for the whole conterminous United States was 0.15 P g C a-1. Large portions of the taken C were stored in soil for grassland and cropland (47-70%) but in plant pools for forests and woodlands (73-82%). The proportion of C uptake in soil was found to be determined primarily by C residence times and be independent of the magnitude of NPP increase. Therefore, accurate estimation of spatial patterns of C residence times is crucial for the evaluation of terrestrial ecosystem C uptake.
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...
Rivers and streams in the media: a content analysis of ecosystem services
While ecosystem services research has become common, few efforts are directed toward in-depth understanding of the specific ecological quantities people value. Environmental communications as well as ecological monitoring and analysis efforts could be enhanced by such information...
ECOSYSTEM RESTORATION: MANAGEMENT PRACTICES FOR PROTECTING AND ENHANCING AQUATIC RESOURCES
This poster describes research that addresses the question: Which management practices are most successful for protection and restoration of ecological resources? The Ecosystem Restoration Research Program of EPA/ORD is designed to conduct basic and applied field research to eva...
Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands
Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.
2016-01-01
Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that Rangifer population persistence on islands is facilitated by successful exploitation of graminoid biomass as winter forage after palatable lichens are decimated. However, the shift from shrubs to graminoids was expected to enhance rates of nitrogen cycling, yet rates of net N-mineralization, NH4+ pools, and soil δ15N declined markedly along the chronosequence and were weakly associated with spatial use within islands. Overall plant and soil patterns were disrupted but responded differently to intermediate (50 yr) and long-term (100 yr) herbivory, and were correlated with distinct stages of irruptive population dynamics.
Yin, Y.; Wu, Y.; Bartell, S.M.; Cosgriff, R.
2009-01-01
The widespread loss of oak-hickory forests and the impacts of flood have been major issues of ecological interest concerning forest succession in the Upper Mississippi River (UMR) floodplain. The data analysis from two comprehensive field surveys indicated that Quercus was one of the dominant genera in the UMR floodplain ecosystem prior to the 1993 flood and constituted 14% of the total number of trees and 28% of the total basal area. During the post-flood recovery period through 2006, Quercus demonstrated slower recovery rates in both the number of trees (4%) and basal area (17%). In the same period, Carya recovered greatly from the 1993 flood in terms of the number of trees (11%) and basal area (2%), compared to its minor status before the flood. Further analyses suggested that different species responded to the 1993 flood with varying tolerance and different succession strategies. In this study, the relation of flood-caused mortality rates and DBH, fm(d), can be expressed in negative exponential functions for each species. The results of this research also indicate that the growth functions are different for each species and might also be different between pre- and post-flood time periods. These functions indicate different survival strategies and emergent properties in responding to flood impacts. This research enhances our understanding of forest succession patterns in space and time in the UPR floodplain. And such understanding might be used to predict long-term impacts of floods on UMR floodplain forest dynamics in support of management and restoration. ?? 2009 Elsevier B.V.
Diversity of terrestrial avifauna in response to distance from the shoreline of the Salton Sea
Mendelsohn, M.B.; Boarman, W.I.; Fisher, R.N.; Hathaway, S.A.
2007-01-01
Large aquatic bodies influence surrounding terrestrial ecosystems by providing water and nutrients. In arid landscapes, the increased primary productivity that results may greatly enhance vertebrate biodiversity. The Salton Sea, a large saline lake in the Colorado Desert of southern California, provides nutrients in the form of hundreds of thousands of dead fish carcasses, brine flies, and chemical compounds through windborne salt sea spray. We performed point counts for landbirds and shorebirds monthly or every other month between March 2001 and February 2002 across a sampling grid of 35 points along the west edge of Salton Sea. We found that avian diversity (numbers of species and numbers per species) was dependent on proximity to the Sea. Diversity was at a maximum nearest the shore, and was significantly lower away from the Sea's edge, at all surveyed distances up to 1 km from the shore. Cover by the dominant shrubs on the study site also corresponded to proximity to the water's edge. Whereas one may hypothesize that the avian diversity patterns are caused by these differences in vegetation structure, our data did not support this. Future studies should further investigate this potential correlation between vegetation and bird patterns. Until more is understood about the relationship between elevated avian diversity and the physical environment of the land-shore interface, our results suggest that the Sea's surface be stabilized near its present level. Future management schemes at the Salton Sea that include reductions of water sources should be carefully analyzed, so as to not jeopardize the terrestrial avifauna at this unique ecosystem. ?? 2006 Elsevier Ltd. All rights reserved.
Impact of Flood Spates on Denitrifying Bacteria in Low Order Streams
NASA Astrophysics Data System (ADS)
Herrman, K.; Stokdyk, J.
2011-12-01
The impact of flood events on channel design, macroinvertebrates, and periphyton in stream ecosystems has been well studied. Little is known, however, about how flood spates affect microorganisms found in stream sediments. Denitrifying bacteria are beneficial organisms because they convert nitrates to nitrogen gas. Providing data that describes the impact of flood events on denitrifiers and the time required after the disturbance for the bacteria to recover are crucial in understanding nitrogen dynamics in stream ecosystems. Three low order streams in central Wisconsin, USA are being monitored during several flood spates during July and August of 2011. Discharge is being continuously monitored in all three streams and sediments are being collected before and after several flood events for laboratory assays. Specifically, sediments are being processed for denitrification rates using the acetylene inhibition technique, microbial biomass carbon using chloroform fumigation, and the quantification of denitrifying bacteria (i.e., nirS, nirK, and nosZ genes) using real-time quantitative PCR. Preliminary data show that within 36 hours after a 90 mm rain event, microbial biomass carbon in all three streams (580 μg C g sediment-1) significantly increased (F1,23 = 650 ± 140; p < 0.001) compared to microbial biomass during baseflow (200 ± 27 μg C g sediment-1). These initial results suggest that contrary to our expectations flood events enhance bacteria in stream sediments. Denitrification rates and quantification of denitrifying bacteria still need to be analyzed to determine if these specific bacteria follow a similar pattern or if the bacterial recolonization of stream sediments follows a unique pattern.
A framework for the resilience of seagrass ecosystems.
Unsworth, Richard K F; Collier, Catherine J; Waycott, Michelle; Mckenzie, Len J; Cullen-Unsworth, Leanne C
2015-11-15
Seagrass ecosystems represent a global marine resource that is declining across its range. To halt degradation and promote recovery over large scales, management requires a radical change in emphasis and application that seeks to enhance seagrass ecosystem resilience. In this review we examine how the resilience of seagrass ecosystems is becoming compromised by a range of local to global stressors, resulting in ecological regime shifts that undermine the long-term viability of these productive ecosystems. To examine regime shifts and the management actions that can influence this phenomenon we present a conceptual model of resilience in seagrass ecosystems. The model is founded on a series of features and modifiers that act as interacting influences upon seagrass ecosystem resilience. Improved understanding and appreciation of the factors and modifiers that govern resilience in seagrass ecosystems can be utilised to support much needed evidence based management of a vital natural resource. Copyright © 2015 Elsevier Ltd. All rights reserved.
2011-01-01
Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Conclusions Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape. PMID:21835025
Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa
2011-08-11
A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape.
NASA Astrophysics Data System (ADS)
De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela
2016-05-01
Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54 % of the whole Regional Park's flora; alien species amount to 12 %; taxa of conservation concern are 6 %. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.
De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela
2016-05-01
Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54% of the whole Regional Park's flora; alien species amount to 12%; taxa of conservation concern are 6%. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.
NASA Astrophysics Data System (ADS)
Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.
2013-12-01
Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the most sensitive to toxic air contaminants in the Sierra Nevada-Southern Cascades region.
The 1990 forest ecosystem dynamics multisensor aircraft campaign
NASA Technical Reports Server (NTRS)
Williams, Darrel L.; Ranson, K. Jon
1991-01-01
The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.
Hydrologic dynamics and ecosystem structure.
Rodríguez-Iturbe, I
2003-01-01
Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.
Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.
2012-01-01
This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.
D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C
2016-09-01
The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg
2016-01-01
Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.
Discontinuities, cross-scale patterns, and the organization of ecosystems
Nash, Kirsty L.; Allen, Craig R.; Angeler, David G.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Knutson, Melinda; Nelson, R. John; Nystrom, Magnus; Stow, Craig A.; Sandstrom, Shana M.
2014-01-01
Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual, community, local, or regional) responses to disturbance. Despite the importance of scale, explicitly incorporating a multi-scale perspective into research and management actions remains a challenge. The discontinuity hypothesis provides a fertile avenue for addressing this problem by linking measureable proxies to inherent scales of structure within ecosystems. Here we outline the conceptual framework underlying discontinuities and review the evidence supporting the discontinuity hypothesis in ecological systems. Next we explore the utility of this approach for understanding cross-scale patterns and the organization of ecosystems by describing recent advances for examining nonlinear responses to disturbance and phenomena such as extinctions, invasions, and resilience. To stimulate new research, we present methods for performing discontinuity analysis, detail outstanding knowledge gaps, and discuss potential approaches for addressing these gaps.
Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems
NASA Astrophysics Data System (ADS)
Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex
2010-02-01
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.
Gender-specific responses to climate variability in a semi-arid ecosystem in northern Benin.
Dah-Gbeto, Afiavi P; Villamor, Grace B
2016-12-01
Highly erratic rainfall patterns in northern Benin complicate the ability of rural farmers to engage in subsistence agriculture. This research explores gender-specific responses to climate variability in the context of agrarian Benin through a household survey (n = 260) and an experimental gaming exercise among a subset of the survey respondents. Although men and women from the sample population are equally aware of climate variability and share similar coping strategies, their specific land-use strategies, preferences, and motivations are distinct. Over the long term, these differences would likely lead to dissimilar coping strategies and vulnerability to the effects of climate change. Examination of gender-specific land-use responses to climate change and anticipatory learning can enhance efforts to improve adaptability and resilience among rural subsistence farmers.
The superior effect of nature based solutions in land management for enhancing ecosystem services.
Keesstra, Saskia; Nunes, Joao; Novara, Agata; Finger, David; Avelar, David; Kalantari, Zahra; Cerdà, Artemi
2018-01-01
The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local eco-system services will be maintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soil moisture and reducing droughts and soil erosion we can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations. Copyright © 2017 Elsevier B.V. All rights reserved.
Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.
2017-01-01
Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Seasonality of semi-arid and savanna-type ecosystems in an Earth system model
NASA Astrophysics Data System (ADS)
Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.
2016-12-01
Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.
NASA Astrophysics Data System (ADS)
Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.
2013-12-01
Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
NASA Astrophysics Data System (ADS)
Morissette, Lyne; Pedersen, Torstein; Nilsen, Marianne
2009-04-01
The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach ( Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. Cod was the keystone species in both ecosystems, and forage fish were also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to its equilibrium.
Ecosystem services of wetlands are relevant when considering management decisions and assessing restoration success. However, many services (e.g., biochemistry, wildlife habitat) are difficult to quantify and value (e.g., monetize), requiring non-use valuations (e.g., indicators)...
Understanding the hydrological characteristics of coastal wetlands across land use gradients ranging from natural to urban to agricultural is important for significantly enhancing our ability to utilize environmental data in interpreting ecosystem condition and processes. Here we...
ECOEPIDEMIOLOGY: A MEANS TO SAFEGUARD ECOSYSTEM SERVICES THAT SUSTAIN HUMAN WELFARE
Ecosystem services are required to sustain human life and enhance its quality. Hence, environmental security must come from protecting and managing those services. Ecological risk assessment can predict and estimate effects of proposed actions, but it is insufficient alone for tw...
Management of Indigenous Plant-Microbe Symbioses Aids Restoration of Desertified Ecosystems
Requena, Natalia; Perez-Solis, Estefania; Azcón-Aguilar, Concepción; Jeffries, Peter; Barea, José-Miguel
2001-01-01
Disturbance of natural plant communities is the first visible indication of a desertification process, but damage to physical, chemical, and biological soil properties is known to occur simultaneously. Such soil degradation limits reestablishment of the natural plant cover. In particular, desertification causes disturbance of plant-microbe symbioses which are a critical ecological factor in helping further plant growth in degraded ecosystems. Here we demonstrate, in two long-term experiments in a desertified Mediterranean ecosystem, that inoculation with indigenous arbuscular mycorrhizal fungi and with rhizobial nitrogen-fixing bacteria not only enhanced the establishment of key plant species but also increased soil fertility and quality. The dual symbiosis increased the soil nitrogen (N) content, organic matter, and hydrostable soil aggregates and enhanced N transfer from N-fixing to nonfixing species associated within the natural succession. We conclude that the introduction of target indigenous species of plants associated with a managed community of microbial symbionts is a successful biotechnological tool to aid the recovery of desertified ecosystems. PMID:11157208
NASA Astrophysics Data System (ADS)
Pavlick, R.; Schimel, D.
2014-12-01
Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. First, we compare simulated present-day geographical patterns of functional traits with empirical trait observations (in-situ and from airborne imaging spectroscopy). The observed trait patterns are then used to improve the tradeoff parameterizations of JeDi-DGVM. Finally, focusing primarily on the simulated leaf traits, we run the model with various amounts of trait diversity. We quantify the effects of these modeled biodiversity manipulations on simulated ecosystem fluxes and stocks for both present-day conditions and transient climate change scenarios. The simulation results reveal that the coarse treatment of plant functional traits by current PFT-based vegetation models may contribute substantial uncertainty regarding carbon-climate feedbacks. Further development of trait-based models and further investment in global in-situ and spectroscopic plant trait observations are needed.
Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A
2015-08-01
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Eagles-Smith, C.; Ackerman, J.; Herring, G.; Willacker, J.; Flanagan, C.
2014-12-01
Mercury (Hg) is a globally distributed contaminant that threatens ecosystem health across aquatic environments. The complexity of the Hg cycle and its primary drivers, coupled with dynamic food web processes that govern biomagnification, result in marked spatial variability in Hg bioaccumulation across aquatic ecosystems. However, it is unclear if patterns of bioaccumulation are consistent in magnitude and direction across ecosystem types. We synthesized data from several studies spanning more than 200 individual sites, comprising four distinct ecosystem classifications (estuaries, sub-alpine lakes, rivers, and managed wetlands). Within each ecosystem, we compared fish Hg concentrations among replicated sub-habitats and also evaluated the influence of land use, landscape composition, and biogeochemical drivers on fish Hg concentrations. We found substantial variability in fish Hg concentrations among adjacent sub-habitats within ecosystems. In estuarine environments, fish Hg concentrations were 7.4x higher in seasonal-saline wetlands than adjacent tidal wetland habitats. In riverine alcoves, preliminary data suggest that fish Hg concentrations were 1.5x higher than in fishes from paired mainstem river habitat. Among managed wetland habitats, fish Hg concentrations in rice fields were 2x higher than those in managed seasonal wetlands that were subjected to identical wetting and drying patterns. Across ecosystems, dissolved organic carbon (DOC) concentrations in surface waters were consistently correlated with fish Hg concentrations, highlighting its importance in Hg methylation and transport processes. Yet, the strength and direction of the relationships varied among habitat types. For example, fish Hg concentrations were positively correlated with DOC concentrations in riverine environments, whereas we found a negative correlation in alpine lakes. Instead, the most important determinant of fish Hg concentrations in alpine lakes was conifer tree density within a lake's catchment, resulting in a 4x increase in fish Hg concentration in lakes with the lowest to the highest catchment conifer tree density. Together, this integrated ecosystem analysis highlights the importance of understanding small-scale variation in bioaccumulation processes in order to better predict Hg risk.
NASA Astrophysics Data System (ADS)
Ruehr, N. K.; Law, B. E.; Quandt, D.; Williams, M.
2014-01-01
Increasing summer temperatures and a reduction in precipitation will enhance drought stress in Mediterranean and semi-arid ecosystems. Predicting the net effects on forests' carbon and water balance will depend on our ability to disentangle the sensitivity of component fluxes responding to increasing soil and atmospheric drought. Here we studied carbon and water dynamics in a semi-arid regenerating ponderosa pine forest using field observations and process based modeling. Field observations of two summer dry seasons were used to calibrate a soil-plant-atmosphere (SPA) model. In addition, the ecosystem's response to reduced soil drought was quantified based on a field watering experiment and evaluated with the model. Further, the SPA model was used to estimate the relative effects of increasing soil and atmospheric drought over time, by simulating temperature and precipitation scenarios for 2040 and 2080. The seasonality and drought response of ecosystem fluxes was well captured by the calibrated SPA model. Dramatic increases in summer water availability during seasonal drought had a small effect on pine physiology in both the watering experiment and the model. This clearly demonstrates that atmospheric drought induced a strong limitation on carbon uptake in young ponderosa pine due to tight regulation of stomatal conductance. Moreover, simulations showed that net ecosystem exchange (NEE) and gross primary productivity (GPP) were about three times more affected by summer heat and increased evaporative demand than by reductions in summer precipitation. Annual NEE decreased by 38% in response to extreme summer conditions as predicted to occur in 2080 (June-August: +4.5 °C), because of a strong decline in GPP (-17%) while heterotrophic respiration was relatively unaffected (-1%). Considering warming trends across all seasons (September-May: +3 °C and June-August: +4.5 °C), the negative drought effects were largely compensated by an earlier initiation of favorable growing conditions and bud break, enhancing early season GPP and needle biomass. An adverse effect, triggered by changes in early season allocation patterns, was the decline of wood and root biomass. This imbalance may increase water stress over the long-term to a threshold at which ponderosa pine may not survive, and highlights the need for an integrated process understanding of the combined effects of trends and extremes.
NASA Astrophysics Data System (ADS)
Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.
2016-04-01
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.
Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H
2016-04-05
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.
Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.
2016-01-01
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973
Campos, Xochi; Germino, Matthew; de Graaff, Marie-Anne
2017-01-01
AimsChanging precipitation regimes in semiarid ecosystems will affect the balance of soil carbon (C) input and release, but the net effect on soil C storage is unclear. We asked how changes in the amount and timing of precipitation affect litter decomposition, and soil C stabilization in semiarid ecosystems.MethodsThe study took place at a long-term (18 years) ecohydrology experiment located in Idaho. Precipitation treatments consisted of a doubling of annual precipitation (+200 mm) added either in the cold-dormant season or in the growing season. Experimental plots were planted with big sagebrush (Artemisia tridentata), or with crested wheatgrass (Agropyron cristatum). We quantified decomposition of sagebrush leaf litter, and we assessed organic soil C (SOC) in aggregates, and silt and clay fractions.ResultsWe found that: (1) increased precipitation applied in the growing season consistently enhanced decomposition rates relative to the ambient treatment, and (2) precipitation applied in the dormant season enhanced soil C stabilization.ConclusionsThese data indicate that prolonged increases in precipitation can promote soil C storage in semiarid ecosystems, but only if these increases happen at times of the year when conditions allow for precipitation to promote plant C inputs rates to soil.
Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia Butler
2012-01-01
Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...
Xu, Wei
2014-01-01
This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.
Downed Wood in micronesian mangrove Forests
James A. Allen; Katherine C. Ewel; Bobby D. Keeland; Tara Tara; Thomas J. Smith
2000-01-01
Dead, downed wood is an important component of upland forest and aquatic ecosystems, but its role in wetland ecosystems, including mangroves, is poorly understood. We measured downed wood in ten sites on the western Pacific islands of Kosrae, Pohnpei, and Yap, all located within the Federated States of Micronesia. Our goals were to examine patterns of variability in...
Historical wildfire impacts on ponderosa pine tree overstories: An Arizona case study
Peter F. Ffolliott; Cody L. Stropki; Daniel G. Neary
2008-01-01
The Rodeo-Chediski Wildfire--the largest in Arizona's history--damaged or destroyed ecosystem resources and disrupted ecosystem functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of this wildfire on tree overstories were studied for 5 years (2002 to 2007) on two watersheds...
North American forest disturbance mapped from a decadal Landsat record
Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson
2008-01-01
Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...
Impact of soil moisture deficit on ecosystem function across the United States
Susan Moran; Morgan Ross; Mallory Burns
2016-01-01
The cumulative effect of recent prolonged warm drought on regional ecosystem function is still uncertain. Large regions of the United States are experiencing new hydroclimatic conditions with extreme variability in climate drivers such as total precipitation, precipitation patterns (e.g., storm size, intensity and frequency), and seasonal temperatures.
Lynx conservation in an ecosystem management context [Chapter 15
Kevin S. McKelvey; Keith B. Aubry; James K. Agee; Steven W. Buskirk; Leonard F. Ruggiero; Gary M. Koehler
2000-01-01
In an ecosystem management context, management for lynx must occur in the context of the needs of other species, watershed health, and a variety of products, outputs, and uses. This chapter presents a management model based on the restoration of historical patterns and processes. We argue that this model is sustainable in a formal sense, practical, and likely...
Initial responses of forest understories to varying levels and patterns of green-tree retention.
Charles B. Halpern; Donald McKenzie; Shelley A. Evans; Douglas A. Maguire
2005-01-01
Timber harvest with "green-tree" retention has been adopted in many temperate and boreal forest ecosystems, reflecting growing appreciation for the ecological values of managed forests. On federal forest lands in the Pacific Northwest, standards and guidelines for green-tree retention have been adopted, but systematic assessments of ecosystem response have...
Ecosystem soils influence the cycling of nutrients, movement and storage of water, and serve as an important global reservoir of carbon (C). The accumulation and storage of C in soils is a major factor in the global C cycle and is crucial for sustaining ecosystem health and func...
Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests
Daniel Liptzin; Whendee L. Silver; Matteo Detto
2011-01-01
Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely...
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...
Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary
2009-01-01
The Rodeo-Chediski Wildfire, the largest in Arizona's history, damaged or destroyed ecosystem resources or disrupted ecosystem functioning in a mostly mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of the wildfire on the occurrence of birds and their diversities were studied on...
Regional patterns of major nonnative invasive plants and associated factors in upper Midwest forests
Zhaofei Fan; W. Keith Moser; Mark H. Hansen; Mark D. Nelson
2013-01-01
Nonnative invasive plants (IPs) are rapidly spreading into natural ecosystems (e.g., forests and grasslands). Potential threats of IP invasion into natural ecosystems include biodiversity loss, structural and environmental change, habitat degradation, and economic losses. The Upper Midwest of the United States encompasses the states of Illinois, Indiana, Iowa, Michigan...
Donald A. Falk
2013-01-01
Contemporary climate change is driving transitions in many Madrean ecosystems, but the time scale of these changes is accelerated greatly by severe landscape disturbances such as wildfires and insect outbreaks. Landscape-scale disturbance events such as wildfires interact with prior disturbance patterns and landscape structure to catalyze abrupt transitions to novel...
USDA-ARS?s Scientific Manuscript database
Spatial patterns of ecosystem productivity arise from the terrain-modulated wetting and drying of the landscape. Using a daily relative greenness (rG) index we explore the relations between spatial variability of plant productivity and landscape morphology, and how these relations change over time...
Legacies of Lead in Charm City's Soil: Lessons from the Baltimore Ecosystem Study
Kirsten Schwarz; Richard Pouyat; Ian Yesilonis
2016-01-01
Understanding the spatial distribution of soil lead has been a focus of the Baltimore Ecosystem Study since its inception in 1997. Through multiple research projects that span spatial scales and use different methodologies, three overarching patterns have been identified: (1) soil lead concentrations often exceed state and federal regulatory limits; (2) the variability...
Parasitism and the Biodiversity-Functioning Relationship.
Frainer, André; McKie, Brendan G; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D
2018-04-01
Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions - parasitism - has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite-host interactions should be incorporated into the BD-EF framework. Copyright © 2018 Elsevier Ltd. All rights reserved.
How to Make Our Models More Physically-based
NASA Astrophysics Data System (ADS)
Savenije, H. H. G.
2016-12-01
Models that are generally called "physically-based" unfortunately only have a partial view of the physical processes at play in hydrology. Although the coupled partial differential equations in these models reflect the water balance equations and the flow descriptors at laboratory scale, they miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem (and sometimes people). What these agents do is manipulate the substrate in a way that it supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, in agreement with the landscape, and in response to climatic drivers. In brief, our hydrological system is alive and has a strong capacity to adjust to prevailing and changing circumstances. Although most physically based models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian thinking on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. If this active agent is not reflected in our models, then they miss essential physics. Through a Darwinian approach, we can determine the root zone storage capacity of ecosystems, as a crucial component of hydrological models, determining the partitioning of fluxes and the conservation of moisture to bridge periods of drought. Another crucial element of physical systems is the evolution of drainage patterns, both on and below the surface. On the surface, such patterns facilitate infiltration or surface drainage with minimal erosion; in the unsaturated zone, patterns facilitate efficient replenishment of moisture deficits and preferential drainage when there is excess moisture; in the groundwater, patterns facilitate the efficient and gradual drainage of groundwater, resulting in linear reservoir recession. Models that do not incorporate these patterns are not physical. The parameters in the equations may be adjusted to compensate for the lake of patterns, but this involves scale-dependent calibration. In contrast to what is widely believed, relatively simple conceptual models can accommodate these physical processes accurately and very efficiently.
The Web-Driven Learning Ecosystem: Its Structure and Benefits
ERIC Educational Resources Information Center
Raska, David; Shaw, Doris; Keller, Eileen Weisenbach
2012-01-01
We have devised a Web-based learning ecosystem (LECOS) that aligns marketing curriculum, course design, technology, instructors, students, as well as external stakeholders--a system that integrates traditional teaching methods with technological advancements in an attempt to enhance marketing students' motivation, engagement, and performance. A…
Fire as an ecosystem process: Chapter 3
Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.
2016-01-01
This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.
The metabolic regimes of flowing waters
Bernhardt, Emily S.; Heffernan, Jim B.; Grimm, Nancy B.; Stanley, Emily H.; Harvey, Judson; Arroita, M.; Appling, Alison; Cohen, M.J.; McDowell, William H.; Hall, R.O.; Read, Jordan S.; Roberts, B.J.; Stets, Edward; Yackulic, Charles B.
2018-01-01
The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classifying and modeling the current and future metabolic regimes of flowing waters.
A review of research on ecosystem of arid area using RS-GIS in China
NASA Astrophysics Data System (ADS)
Han, Hongling
2007-06-01
Arid area is classical mountain-oasis-desert ecosystem in North-west China. As the ecosystem has its nature geography character obviously, it has superior to research with remote-sensing and geography information system. The study on arid ecosystem in RS-GIS' way is focused on that the landscape spatial pattern of complex MODS ecosystem, the dynamic development of Land use/land cover, the security of ecological environment of eco-tone and so on. At the same time, the research on the single system is more and more, which has provided more ways and deeper fields of arid area using RS-GIS. Through the use of RS-GIS, desertification, oasis' development, urbanization etc. can be known, which would provide precaution for human-being and suitable ways to adjust the problems.
Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.
Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph
2017-06-01
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P
2008-09-01
Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling.
Takemoto, Kazuhiro; Kajihara, Kosuke
2016-01-01
Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.
NASA Astrophysics Data System (ADS)
Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth
2017-04-01
The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian
2015-12-01
The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores.
Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian
2015-01-01
The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores. PMID:26620189
[Research progress in water use efficiency of plants under global climate change].
Wang, Qing-wei; Yu, Da-pao; Dai, Li-min; Zhou, Li; Zhou, Wang-ming; Qi, Guang; Qi, Lin; Ye, Yu-jing
2010-12-01
Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.
NASA Astrophysics Data System (ADS)
Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian
2015-12-01
The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores.
Space Biology: Patterns of Life
ERIC Educational Resources Information Center
Salisbury, Frank B.
1971-01-01
Present knowledge about Mars is compared with past beliefs about the planet. Biological experiments that indicate life may exist on Mars are interpreted. Life patterns or biological features that might be postulated for extraterrestrial life are presented at the molecular, cellular, organism, and ecosystem levels. (DS)
Extreme precipitation patterns reduced terrestrial ecosystem production across biomass
USDA-ARS?s Scientific Manuscript database
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated ...
Intertidal habitat utilization patterns of birds in a Northeast Pacific estuary
A habitat-based framework is a practical method for developing models (or, ecological production functions, EPFs) to describe the spatial distribution of ecosystem services. To generate EPFs for Yaquina estuary, Oregon, USA, we compared bird use patterns among intertidal habitats...
Soil respiration patterns and controls in limestone cedar glades
Cartwright, Jennifer M.; Hui, Dafeng
2015-01-01
Soil depth, SOM, and vegetation cover were important drivers of Rs in limestone cedar glades. Seasonal Rs patterns reflected those for mesic temperate grasslands more than for semi-arid ecosystems, in that Rs primarily tracked temperature for most of the year.
Effects of multiple interacting disturbances and salvage logging on forest carbon stocks
Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.
2012-01-01
Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.
Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia
NASA Astrophysics Data System (ADS)
Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry
2017-04-01
Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.
Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.
Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S
2015-01-01
While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.
Cardinale, Bradley J; Gross, Kevin; Fritschie, Keith; Flombaum, Pedro; Fox, Jeremy W; Rixen, Christian; van Ruijven, Jasper; Reich, Peter B; Scherer-Lorenzen, Michael; Wilsey, Brian J
2013-08-01
To predict the ecological consequences of biodiversity loss, researchers have spent much time and effort quantifying how biological variation affects the magnitude and stability of ecological processes that underlie the functioning of ecosystems. Here we add to this work by looking at how biodiversity jointly impacts two aspects of ecosystem functioning at once: (1) the production of biomass at any single point in time (biomass/area or biomass/ volume), and (2) the stability of biomass production through time (the CV of changes in total community biomass through time). While it is often assumed that biodiversity simultaneously enhances both of these aspects of ecosystem functioning, the joint distribution of data describing how species richness regulates productivity and stability has yet to be quantified. Furthermore, analyses have yet to examine how diversity effects on production covary with diversity effects on stability. To overcome these two gaps, we reanalyzed the data from 34 experiments that have manipulated the richness of terrestrial plants or aquatic algae and measured how this aspect of biodiversity affects community biomass at multiple time points. Our reanalysis confirms that biodiversity does indeed simultaneously enhance both the production and stability of biomass in experimental systems, and this is broadly true for terrestrial and aquatic primary producers. However, the strength of diversity effects on biomass production is independent of diversity effects on temporal stability. The independence of effect sizes leads to two important conclusions. First, while it may be generally true that biodiversity enhances both productivity and stability, it is also true that the highest levels of productivity in a diverse community are not associated with the highest levels of stability. Thus, on average, diversity does not maximize the various aspects of ecosystem functioning we might wish to achieve in conservation and management. Second, knowing how biodiversity affects productivity gives no information about how diversity affects stability (or vice versa). Therefore, to predict the ecological changes that occur in ecosystems after extinction, we will need to develop separate mechanistic models for each independent aspect of ecosystem functioning.
Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu
2015-01-01
To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.
Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu
2015-01-01
To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223
Wu, Junxi; Zhao, Yan; Yu, Chengqun; Luo, Liming; Pan, Ying
2017-05-15
Developing sustainable use patterns for alpine grassland in Tibet is the primary challenge related to conserving these vulnerable ecosystems of the 'world's third pole' and guaranteeing the well-being of local inhabitants. This challenge requires researchers to think beyond the methods of most current studies that are limited to a single aspect of conservation or productivity, and focus on balancing various needs. An analysis of trade-offs involving ecosystem services provides a framework that can be used to quantify the type of balancing needed. In this study, we measured variations in four types of ecosystem services under five types of grassland management including grazing exclusion, sowing, combined plowing and grazing exclusion, combined plowing and sowing, and natural grassland, from 2013 to 2015. In addition, we accessed the existence and changing patterns of ecosystem service trade-offs using Spearman coefficients and a trade-off index. The results revealed the existence of trade-offs among provisioning and regulating services. Plowing and sowing could convert the trade-off relationships into synergies immediately. Grazing exclusion reduced the level of trade-offs gradually over time. Thus, the combined plowing and sowing treatment promoted the total supply of multiple ecosystem services when compared with natural grassland. We argue that the variations in dry matter allocation to above- and belowground serve as one cause of the variation in trade-off relationships. Another cause for variation in trade-offs is the varied species competition between selection effects and niche complementarity. Our study provides empirical evidence that the effects of trade-offs among ecosystem services could be reduced and even converted into synergies by optimizing management techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning
Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.
2012-01-01
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440
Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oechel, W.C.; Grulke, N.E.
1988-12-31
Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{submore » 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.« less
Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J
2014-01-01
Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.
Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.
2014-01-01
Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services. PMID:25250775
Vasseur, Liette; Horning, Darwin; Thornbush, Mary; Cohen-Shacham, Emmanuelle; Andrade, Angela; Barrow, Ed; Edwards, Steve R; Wit, Piet; Jones, Mike
2017-11-01
Sustainable development aims at addressing economic, social, and environmental concerns, but the current lack of responsive environmental governance hinders progress. Short-term economic development has led to limited actions, unsustainable resource management, and degraded ecosystems. The UN Sustainable Development Goals (SDGs) may continue to fall short of achieving significant progress without a better understanding of how ecosystems contribute to achieving sustainability for all people. Ecosystem governance is an approach that integrates the social and ecological components for improved sustainability and includes principles such as adaptive ecosystem co-management, subsidiarity, and telecoupling framework, as well as principles of democracy and accountability. We explain the importance of ecosystem governance in achieving the SDGs, and suggest some ways to ensure that ecosystem services are meaningfully considered. This paper reflects on how integration of these approaches into policies can enhance the current agenda of sustainability.
Peng, Jian; Guo, Xiao Nan; Hu, Yi Na; Liu, Yan Xu
2017-02-01
As one of the key topics in the research of landscape ecology, regional ecological security patterns can effectively promote regional sustainable development and terrestrial ecological barriers construction. It is extremely important for middle Yunnan, with frequent disasters and fragile ecolo-gical environment, to construct ecological security patterns so as to effectively avoid the geological disasters, maintain ecosystem health, and promote the coordinated development of regional ecological system and social economic system. Taking Yuxi City as a case study area, this study firstly estimated the ecosystem services importance of water conservation, carbon fixation and oxygen release, soil conservation, and biodiversity according to the basal characteristics of regional ecological environment, and then identified ecological sources in consideration of the quality of integrated ecosystem services and single types. Secondly, the resistance surface based on land use types was modified by the sensitivity of regional geological disasters. Lastly, the ecological corridors were identified using minimum cumulative resistance model, and as a result, the ecological security pattern of Yuxi City was constructed. The results showed that there were 81 patches for ecological sources in Yuxi City, accounting for 38.4% of the total area, and overlaying 75.2% of nature protection areas. The ecological sources were mainly distributed in the western mountainous areas as well as eastern water areas of the city. The length of ecological corridors was 1642.04 km, presenting a spatial pattern of one vertical and three horizontals, and extending along river valleys and fault basins with high vegetation coverage. This paper constructed ecological security patterns in mountainous areas aiming at the characteristics of geological disasters, providing spatial guidance for development and conservation decision-making in mountain areas.
Restoration effects on N cycling pools and processes
James M. Vose; Chris Geron; John Walker; Karsten Raulund-Rasmussen
2005-01-01
Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that regulate biogeochemical cycling and associated aquatic components. Biogeochemical...
A Vision of Success: How Nutrient Management Will Enhance and Sustain Ecosystem Services
Clean air and water, ample food, renewable fuels, productive fisheries, diverse ecosystems, resilient coasts and watersheds: these are some of the benefits that depend on sustainable nitrogen use and management. Thus, in our vision of the future, uses of reactive nitrogen are suf...
Resource integration and shared outcomes at the watershed scale
Eleanor S. Towns
2000-01-01
Shared resources are universal resources that are vital for sustaining communities, enhancing our quality of life and preserving ecosystem health. We have a shared responsibility to conserve shared resources and preserve their integrity for future generations. Resource integration is accomplished through ecosystem management, often at a watershed scale. The shared...
Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River Basin lowlands
NASA Astrophysics Data System (ADS)
Vargas, Leonardo; Hein, Lars; Remme, Roy P.
2017-04-01
Worldwide, ecosystem change compromises the supply of ecosystem services (ES). Better managing ecosystems requires detailed information on these changes and their implications for ES supply. Ecosystem accounting has been developed as an environmental-economic accounting system using concepts aligned with the System of National Accounts. Ecosystem accounting requires spatial information from a local to national scale. The objective of this paper is to explore how remote sensing can be used to analyze ecosystems using an accounting approach in the Orinoco River Basin. We assessed ecosystem assets in terms of extent, condition, and capacity to supply ES. We focus on four specific ES: grasslands grazed by cattle, timber harvesting, oil palm fresh fruit bunches harvesting, and carbon sequestration. We link ES with six ecosystem assets: savannahs, woody grasslands, mixed agroecosystems, very dense forests, dense forest, and oil palm plantations. We used remote sensing vegetation and productivity indexes to measure ecosystem assets. We found that remote sensing is a powerful tool to estimate ecosystem extent. The enhanced vegetation index can be used to assess ecosystems condition, and net primary productivity can be used for the assessment of ecosystem assets capacity to supply ES. Integrating remote sensing and ecological information facilitates efficient monitoring of ecosystem assets.