Sample records for pattern experimental results

  1. A statistical nanomechanism of biomolecular patterning actuated by surface potential

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ting; Lin, Chih-Hao

    2011-02-01

    Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.

  2. Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.

    PubMed

    Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa

    2018-06-06

    Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.

  3. Experimental Influence Coefficients and Vibration Modes

    NASA Technical Reports Server (NTRS)

    Weidman, Deene J.; Kordes, Eldon E.

    1959-01-01

    Test results are presented for both symmetrical and antisymmetrical static loading of a wing model mounted on a three-point support system. The first six free-free vibration modes were determined experimentally. A comparison is made of the symmetrical nodal patterns and frequencies with the symmetrical nodal patterns and frequencies calculated from the experimental influence coefficients.

  4. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.

    PubMed

    Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko

    2018-02-27

    The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.

  5. Music in film and animation: experimental semiotics applied to visual, sound and musical structures

    NASA Astrophysics Data System (ADS)

    Kendall, Roger A.

    2010-02-01

    The relationship of music to film has only recently received the attention of experimental psychologists and quantificational musicologists. This paper outlines theory, semiotical analysis, and experimental results using relations among variables of temporally organized visuals and music. 1. A comparison and contrast is developed among the ideas in semiotics and experimental research, including historical and recent developments. 2. Musicological Exploration: The resulting multidimensional structures of associative meanings, iconic meanings, and embodied meanings are applied to the analysis and interpretation of a range of film with music. 3. Experimental Verification: A series of experiments testing the perceptual fit of musical and visual patterns layered together in animations determined goodness of fit between all pattern combinations, results of which confirmed aspects of the theory. However, exceptions were found when the complexity of the stratified stimuli resulted in cognitive overload.

  6. Hexagonal pattern instabilities in rotating Rayleigh-Bénard convection of a non-Boussinesq fluid: experimental results.

    PubMed

    Guarino, Alessio; Vidal, Valerie

    2004-06-01

    Motivated by the Küppers-Lortz instability of roll patterns in the presence of rotation, we have investigated the effects of rotation on a hexagonal pattern in Rayleigh-Bénard convection. While several theoretical models have been developed, experimental data cannot be found in the literature. In order to check the validity of the predictions and to study the effects of rotation on the behavior of the system, we present experimental results for a non-Boussinesq Rayleigh-Bénard convection with rotation about the vertical axis. Rotation introduces an additional control parameter, namely the dimensionless rotation rate Omega= 2 pi f d(2)/nu, where f is the rotation rate (in Hz), d is the thickness of the cell, and nu is the kinematic viscosity. We observe that the cell rotation induces a slow rotation of the pattern in the opposite direction (approximately Omega x 10(-4) ) in the rotating frame. Moreover, it tends to destroy the convective pattern. No oscillation of the hexagonal pattern over the range of its existence (Omega< or =6) has been observed.

  7. Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients.

    PubMed

    Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi

    2015-01-01

    [Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exercises were conducted for 30 minutes/day, 5 days/week for 6 weeks. Balance was measured with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Functional Reach Test (FRT), and One Leg Stand Test (OLST). Activities of daily living were measured with the Functional Independence Measure (FIM). A paired t-test was used to measure pre- and post-experiment differences, and an independent t-test was used to measure between-group differences. [Results] The experimental and control groups showed significant differences for all pre- and post-experiment variables. In the between-group comparison, the experimental group was significantly difference from the control group. [Conclusion] These results indicate that performing aquatic proprioceptive neuromuscular facilitation patterns in the lower extremity enhances balance and ADL in stroke patients.

  8. Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients

    PubMed Central

    Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi

    2015-01-01

    [Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exercises were conducted for 30 minutes/day, 5 days/week for 6 weeks. Balance was measured with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Functional Reach Test (FRT), and One Leg Stand Test (OLST). Activities of daily living were measured with the Functional Independence Measure (FIM). A paired t-test was used to measure pre- and post-experiment differences, and an independent t-test was used to measure between-group differences. [Results] The experimental and control groups showed significant differences for all pre- and post-experiment variables. In the between-group comparison, the experimental group was significantly difference from the control group. [Conclusion] These results indicate that performing aquatic proprioceptive neuromuscular facilitation patterns in the lower extremity enhances balance and ADL in stroke patients. PMID:25642076

  9. Effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy casting with abruptly varying cross-sections

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Shen, Jun; Li, Qiudong; Shang, Zhao

    2017-05-01

    The effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy sample with abruptly varying cross-sections were investigated experimentally and numerically. The experimental results demonstrate that freckles were only observed at the bottom of larger cross-section. Numerical results indicate that this phenomenon should be attributed to the different convection patterns at front of solidification interface. As the withdrawal rate increased, the primary dendrites spacing has an obvious influence on freckle formation. A more in-depth investigation of the convection patterns can provide a better understanding of freckle formation and perhaps offer methods to minimize freckles in turbine blades.

  10. Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Trivedi, R.; Tewari, S. N.; Kurtze, D.

    1999-01-01

    The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.

  11. Space Station UCS antenna pattern computation and measurement. [UHF Communication Subsystem

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Lu, Ba P.; Johnson, Larry A.; Fournet, Jon S.; Panneton, Robert J.; Ngo, John D.; Eggers, Donald S.; Arndt, G. D.

    1993-01-01

    The purpose of this paper is to analyze the interference to the Space Station Ultrahigh Frequency (UHF) Communication Subsystem (UCS) antenna radiation pattern due to its environment - Space Station. A hybrid Computational Electromagnetics (CEM) technique was applied in this study. The antenna was modeled using the Method of Moments (MOM) and the radiation patterns were computed using the Uniform Geometrical Theory of Diffraction (GTD) in which the effects of the reflected and diffracted fields from surfaces, edges, and vertices of the Space Station structures were included. In order to validate the CEM techniques, and to provide confidence in the computer-generated results, a comparison with experimental measurements was made for a 1/15 scale Space Station mockup. Based on the results accomplished, good agreement on experimental and computed results was obtained. The computed results using the CEM techniques for the Space Station UCS antenna pattern predictions have been validated.

  12. Why do lab-scale experiments ever resemble geological scale patterning?

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Behrooz; Jones, Brandon C.; Stein, Jeremy L.; Shinbrot, Troy

    2017-11-01

    The Earth and other planets are abundant with curious and poorly understood surface patterns. Examples include sand dunes, periodic and aperiodic ridges and valleys, and networks of river and submarine channels. We make the minimalist proposition that the dominant mechanism governing these varied patterns is mass conservation: notwithstanding detailed particulars, the universal rule is mass conservation and there are only a finite number of surface patterns that can result from this process. To test this minimalist proposition, we perform experiments in a vertically vibrated bed of fine grains, and we show that every one of a wide variety of patterns seen in the laboratory is also seen in recorded geomorphologies. We explore a range of experimental driving frequencies and amplitudes, and we complement these experimental results with a non-local cellular automata model that reproduces the surface patterns seen using a minimalist approach that allows a free surface to deform subject to mass conservation and simple known forces such as gravity. These results suggest a common cause for the effectiveness of lab-scale models for geological scale patterning that otherwise ought to have no reasonable correspondence.

  13. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Divya; P, Vibin Antony; Sajith, V.

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  14. The momentum transfer of incompressible turbulent separated flow due to cavities with steps

    NASA Technical Reports Server (NTRS)

    White, R. E.; Norton, D. J.

    1977-01-01

    An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.

  15. Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo

    2008-12-01

    In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.

  16. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  17. Observations of diffusion-limited aggregation-like patterns by atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Yang; Chu, Hong-Yu

    2017-11-01

    We report on the observations of diffusion-limited aggregation-like patterns during the thin film removal process by an atmospheric plasma jet. The fractal patterns are found to have various structures like dense branching and tree-like patterns. The determination of surface morphology reveals that the footprints of discharge bursts are not as random as expected. We propose a diffusion-limited aggregation model with a few extra requirements by analogy with the experimental results, and thereby present the beauty of nature. We show that the model simulates not only the shapes of the patterns similar to the experimental observations, but also the growing sequences of fluctuating, oscillatory, and zigzag traces.

  18. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  19. Experimental evaluation of sensorimotor patterning used with mentally retarded children.

    PubMed

    Neman, R; Roos, P; McCann, R M; Menolascino, F J; Heal, L W

    1975-01-01

    In the present study, a sensorimotor "patterning" program used with 66 institutionalized, mentally retarded children and adolescents was evaluated. The subjects were randomly assigned to one of three groups: (a) Experimental 1 group, which received a program of mobility exercises including patterning, creeping, and crawling; visual-motor training; and sensory stimulation exercises; (b) Experimental 2 group, which received a program of physical activity, personal attention, and the same sensory stimulation program given to the first group; or (c) Passive Control group, which provided baseline measures but which received no additional programming as part of the study. Experimental 1 group subjects improved more than subjects in the other groups in visual perception, program-related measures of mobility, and language ability. Intellectual functioning did not appear to be enhanced by the procedures, at least during the active phase of the project. The results were discussed with reference to other researchers who have failed to support the patterning approach, and some reasons were suggested for the differences between the present and past investigations.

  20. Formation of localized sand patterns downstream from a vertical cylinder under steady flows: Experimental and theoretical study.

    PubMed

    Auzerais, Anthony; Jarno, Armelle; Ezersky, Alexander; Marin, François

    2016-11-01

    The generation of localized, spatially periodic patterns on a sandy bottom is experimentally and theoretically studied. Tests are performed in a hydrodynamic flume where patterns are produced downstream from a vertical cylinder under a steady current. It is found that patterns appear as a result of a subcritical instability of the water-sand bottom interface. A dependence of the area shape occupied by the patterns on the flow velocity and the cylinder diameter is investigated. It is shown that the patterns' characteristics can be explained using the Swift-Hohenberg equation. Numerical simulations point out that for a correct description of the patterns, an additional term which takes into account the impact of vortices on the sandy bottom in the wake of a cylinder must be added in the Swift-Hohenberg equation.

  1. Uniform modeling of bacterial colony patterns with varying nutrient and substrate

    NASA Astrophysics Data System (ADS)

    Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil

    2016-04-01

    Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.

  2. Effect of coordination movement using the PNF pattern underwater on the balance and gait of stroke patients

    PubMed Central

    Kim, Kyoung; Lee, Dong-Kyu; Jung, Sang-In

    2015-01-01

    [Purpose] To investigate the effect of coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater on the balance and gait of stroke patients. [Subjects and Methods] Twenty stroke patients were randomly assigned to an experimental group that performed coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater and a control group (n =10 each). Both the groups underwent neurodevelopmental treatment, and the experimental group performed coordination movement using the Proprioceptive neuromuscular facilitation pattern underwater. Balance was measured using the Berg Balance Scale and Functional Reach Test, and gait was measured using the 10-Meter Walk Test and Timed Up and Go Test. To compare in-group data before and after the intervention, paired t-test was used. Independent t-test was used to compare differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the intervention between the groups. [Results] Comparison within the groups showed significant differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the experimental intervention. On comparison between the groups, there were greater improvements in the scores of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test in the experimental group. [Conclusion] The findings demonstrate that coordination movement using the Proprioceptive Neuromuscular Facilitation pattern under water has a significant effect on the balance and gait of stroke patients. PMID:26834335

  3. Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles

    NASA Astrophysics Data System (ADS)

    Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.

    2010-04-01

    The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, J.B.

    An experimental test model, which is dynamically similar to an actual UCC (Under ground Coal Conversion) system, has been used to determine fluid flow patterns and local heat transfer that occur in the UCC burn cavity. This study should provide insight into the little understood mechanisms (i.e., heat transfer and oxygen transport to the cavity walls) which control maximum cavity width, and therefore resource recovery during UCC. The experimental system is operational and producing physically realistic results. The qualitative results of this study have shown the dominant effect of free convection on the flow pattern of the system.

  5. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  6. FE-DEM Analysis of the Effect of Tread Pattern on the Tractive Performance of Tires Operating on Sand

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi; Takatsu, Yuzuru; Shinone, Hisanori; Matsukawa, Hisao; Kasetani, Takahiro

    Soil-tire system interaction is a fundamental and important research topic in terramechanics. We applied a 2D finite element, discrete element method (FE-DEM), using FEM for the tire and the bottom soil layer and DEM for the surface soil layer. Satisfactory performance analysis was achieved. In this study, to clarify the capabilities and limitations of the method for soil-tire interaction analysis, the tractive performance of real automobile tires with two different tread patterns—smooth and grooved—was analyzed by FE-DEM, and the numerical results compared with the experimental results obtained using an indoor traction measurement system. The analysis of tractive performance could be performed with sufficient accuracy by the proposed 2D dynamic FE-DEM. FE-DEM obtained larger drawbar pull for a tire with a grooved tread pattern, which was verified by the experimental results. Moreover, the result for the grooved tire showed almost the same gross tractive effort and similar running resistance as in experiments. However, for a tire with smooth tread pattern, the analyzed gross tractive effort and running resistance behaved differently than the experimental results, largely due to the difference in tire sinkage in FE-DEM.

  7. Collective motion patterns of swarms with delay coupling: Theory and experiment.

    PubMed

    Szwaykowska, Klementyna; Schwartz, Ira B; Mier-Y-Teran Romero, Luis; Heckman, Christoffer R; Mox, Dan; Hsieh, M Ani

    2016-03-01

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.

  8. Collective motion patterns of swarms with delay coupling: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Szwaykowska, Klementyna; Schwartz, Ira B.; Mier-y-Teran Romero, Luis; Heckman, Christoffer R.; Mox, Dan; Hsieh, M. Ani

    2016-03-01

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.

  9. Effects of developmental variability on the dynamics and self-organization of cell populations

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard

    2017-11-01

    We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.

  10. Identifying the perceptive users for online social systems

    PubMed Central

    Liu, Xiao-Lu; Guo, Qiang; Han, Jing-Ti

    2017-01-01

    In this paper, the perceptive user, who could identify the high-quality objects in their initial lifespan, is presented. By tracking the ratings given to the rewarded objects, we present a method to identify the user perceptibility, which is defined as the capability that a user can identify these objects at their early lifespan. Moreover, we investigate the behavior patterns of the perceptive users from three dimensions: User activity, correlation characteristics of user rating series and user reputation. The experimental results for the empirical networks indicate that high perceptibility users show significantly different behavior patterns with the others: Having larger degree, stronger correlation of rating series and higher reputation. Furthermore, in view of the hysteresis in finding the rewarded objects, we present a general framework for identifying the high perceptibility users based on user behavior patterns. The experimental results show that this work is helpful for deeply understanding the collective behavior patterns for online users. PMID:28704382

  11. Identifying the perceptive users for online social systems.

    PubMed

    Liu, Jian-Guo; Liu, Xiao-Lu; Guo, Qiang; Han, Jing-Ti

    2017-01-01

    In this paper, the perceptive user, who could identify the high-quality objects in their initial lifespan, is presented. By tracking the ratings given to the rewarded objects, we present a method to identify the user perceptibility, which is defined as the capability that a user can identify these objects at their early lifespan. Moreover, we investigate the behavior patterns of the perceptive users from three dimensions: User activity, correlation characteristics of user rating series and user reputation. The experimental results for the empirical networks indicate that high perceptibility users show significantly different behavior patterns with the others: Having larger degree, stronger correlation of rating series and higher reputation. Furthermore, in view of the hysteresis in finding the rewarded objects, we present a general framework for identifying the high perceptibility users based on user behavior patterns. The experimental results show that this work is helpful for deeply understanding the collective behavior patterns for online users.

  12. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  14. Pattern uniformity control in integrated structures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shinji; Okada, Soichiro; Shimura, Satoru; Nafus, Kathleen; Fonseca, Carlos; Biesemans, Serge; Enomoto, Masashi

    2017-03-01

    In our previous paper dealing with multi-patterning, we proposed a new indicator to quantify the quality of final wafer pattern transfer, called interactive pattern fidelity error (IPFE). It detects patterning failures resulting from any source of variation in creating integrated patterns. IPFE is a function of overlay and edge placement error (EPE) of all layers comprising the final pattern (i.e. lower and upper layers). In this paper, we extend the use cases with Via in additional to the bridge case (Block on Spacer). We propose an IPFE budget and CD budget using simple geometric and statistical models with analysis of a variance (ANOVA). In addition, we validate the model with experimental data. From the experimental results, improvements in overlay, local-CDU (LCDU) of contact hole (CH) or pillar patterns (especially, stochastic pattern noise (SPN)) and pitch walking are all critical to meet budget requirements. We also provide a special note about the importance of the line length used in analyzing LWR. We find that IPFE and CD budget requirements are consistent to the table of the ITRS's technical requirement. Therefore the IPFE concept can be adopted for a variety of integrated structures comprising digital logic circuits. Finally, we suggest how to use IPFE for yield management and optimization requirements for each process.

  15. The flow patterning capability of localized natural convection.

    PubMed

    Huang, Ling-Ting; Chao, Ling

    2016-09-14

    Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.

  16. An experimental study of non-isothermal miscible displacements in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatsu, Yuichiro; Fujita, Norihito; Kato, Yoshihito

    Non-isothermal miscible displacements in a radial Hele-Shaw cell were experimentally investigated using a scheme in which room temperature liquids of relatively high viscosity were displaced by high-temperature (80 C), less-viscous liquids. Fundamental characteristics have been presented regarding how the effect of a non-isothermal field on miscible displacement patterns varies in terms of factors such as the viscosity ratio of the more- and less-viscous liquids at 20 C, M{sub 20}, the rate of an increase in the pattern's area, R, and the gap width of the cell, b. The concept of area density was used to quantitatively evaluate the effect ofmore » the non-isothermal fields on the patterns. We have found that the effect of the non-isothermal field on the patterns does not monotonically vary with M{sub 20} and b. In contrast, it increases with R in the present experimental condition. The experimental results can be explained by introducing an assumption in which heat is transferred mainly to the plates of the cell, in other words, the temperature of the more-viscous liquid remains constant, whereas that of the less-viscous liquid spatiotemporally decreases and the viscosity of it increases along with the temperature decrease. Visualization of non-isothermal field in the cell has been done by means of a thermo sheet and the results support the assumption mentioned above. (author)« less

  17. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    PubMed Central

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed. PMID:23301174

  18. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    PubMed Central

    2011-01-01

    Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses. PMID:21672238

  19. [Effects of gout web based self-management program on knowledge related to disease, medication adherence, and self-management].

    PubMed

    Oh, Hyun Soo; Park, Won; Kwon, Seong Ryul; Lim, Mie Jin; Suh, Yeon Ok; Seo, Wha Sook; Park, Jong Suk

    2013-08-01

    This study was conducted to examine the changing patterns of knowledge related to disease, medication adherence, and self-management and to determine if outcomes were more favorable in the experimental group than in the comparison group through 6 months after providing a web-based self-management intervention. A non-equivalent control group quasi-experimental design was used and 65 patients with gout, 34 in experimental group and 31 in comparison group, were selected from the rheumatic clinics of two university hospitals. Data were collected four times, at baseline, at 1 month, 3 months, and 6 months after the intervention. According to the study results, the changing patterns of knowledge and self-management were more positive in the experimental group than in the control group, whereas difference in the changing pattern of medication adherence between two groups was not significant. The results indicate that the web-based self-management program has significant effect on improving knowledge and self-management for middle aged male patients with gout. However, in order to enhance medication adherence, the web-based intervention might not be sufficient and other strategies need to be added.

  20. Mechanochemical Symmetry Breaking in Hydra Aggregates

    PubMed Central

    Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna

    2015-01-01

    Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896

  1. Application of an Unstructured Grid Navier-Stokes Solver to a Generic Helicopter Boby: Comparison of Unstructured Grid Results with Structured Grid Results and Experimental Results

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1999-01-01

    An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.

  2. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    PubMed

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  3. Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Smith, Derek A.

    Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.

  4. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  5. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  6. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  7. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    PubMed

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  8. Two-dimensional patterning of colloidal crystals by means of lateral autocloning in edge-patterned cells

    NASA Astrophysics Data System (ADS)

    Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2009-06-01

    We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.

  9. A novel method for repeatedly generating speckle patterns used in digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Sweedy, Ahmed; Gitzhofer, François; Baroud, Gamal

    2018-01-01

    Speckle patterns play a key role in Digital Image Correlation (DIC) measurement, and generating an optimal speckle pattern has been the goal for decades now. The usual method of generating a speckle pattern is by manually spraying the paint on the specimen. However, this makes it difficult to reproduce the optimal pattern for maintaining identical testing conditions and achieving consistent DIC results. This study proposed and evaluated a novel method using an atomization system to repeatedly generate speckle patterns. To verify the repeatability of the speckle patterns generated by this system, simulation and experimental studies were systematically performed. The results from both studies showed that the speckle patterns and, accordingly, the DIC measurements become highly accurate and repeatable using the proposed atomization system.

  10. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  11. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  12. [Effect of Music Intervention on Maternal Anxiety and Fetal Heart Rate Pattern During Non-Stress Test].

    PubMed

    Oh, Myung Ok; Kim, Young Jeoum; Baek, Cho Hee; Kim, Ju Hee; Park, No Mi; Yu, Mi Jeong; Song, Han Sol

    2016-06-01

    The purpose of this cross-over experimental study was to examine effects of music intervention on maternal anxiety, fetal heart rate pattern and testing time during non-stress tests (NST) for antenatal fetal assessment. Sixty pregnant women within 28 to 40 gestational weeks were randomly assigned to either the experimental group (n=30) or control group (n=30). Music intervention was provided to pregnant women in the experimental group during NST. Degree of maternal anxiety and fetal heart rate pattern were our primary outcomes. State-trait anxiety inventory, blood pressure, pulse rate, and changes in peripheral skin temperature were assessed to determine the degree of maternal anxiety. Baseline fetal heart rate, frequency of acceleration in fetal heart rate, fetal movement test and testing time for reactive NST were assessed to measure the fetal heart rate pattern. The experimental group showed significantly lower scores in state anxiety than the control group. There were no significant differences in systolic blood pressure and pulse rate between the two groups. Baseline fetal heart rate was significantly lower in the experimental group than in the control group. Frequency of acceleration in fetal heart rate was significantly increased in the experimental group compared to the control group. There were no significant differences in fetal movement and testing time for reactive NST between the two groups. Present results suggest that music intervention could be an effective nursing intervention for alel viating anxiety during non-stress test.

  13. Automatic ground control point recognition with parallel associative memory

    NASA Technical Reports Server (NTRS)

    Al-Tahir, Raid; Toth, Charles K.; Schenck, Anton F.

    1990-01-01

    The basic principle of the associative memory is to match the unknown input pattern against a stored training set, and responding with the 'closest match' and the corresponding label. Generally, an associative memory system requires two preparatory steps: selecting attributes of the pattern class, and training the system by associating patterns with labels. Experimental results gained from using Parallel Associative Memory are presented. The primary concern is an automatic search for ground control points in aerial photographs. Synthetic patterns are tested followed by real data. The results are encouraging as a relatively high level of correct matches is reached.

  14. Masonry Vaults Subjected To Horizontal Loads: Experimental and Numerical Investigations to Evaluate the Effectiveness of A GFRM Reinforcement

    NASA Astrophysics Data System (ADS)

    Gattesco, Natalino; Boem, Ingrid

    2017-10-01

    The paper investigates the effectiveness of a modern reinforcement technique based on a Glass Fiber-Reinforced Mortar (GFRM) for the enhancement of the performances of existing masonry vaults subjected to horizontal seismic actions. In fact, the authors recently evidenced, through numerical simulations, that the typical simplified loading patterns generally adopted in the literature for the experimental tests, based on concentrated vertical loads at 1/4 of the span, are not reliable for such a purpose, due to an unrealistic stress distribution. Thus, experimental quasi-static cyclic tests on full-scale masonry vaults based on a specific setup, designed to apply a horizontal load pattern proportional to the mass, were performed. Three samples were tested: an unreinforced vault, a vault reinforced at the extrados and a vault reinforced at the intrados. The experimental results demonstrated the technique effectiveness in both strength and ductility. Moreover, numerical simulations were performed by adopting a simplified FE, smear-crack model, evidencing the good reliability of the prediction by comparison with the experimental results.

  15. Bioconvection in spatially extended domains

    NASA Astrophysics Data System (ADS)

    Karimi, A.; Paul, M. R.

    2013-05-01

    We numerically explore gyrotactic bioconvection in large spatially extended domains of finite depth using parameter values from available experiments with the unicellular alga Chlamydomonas nivalis. We numerically integrate the three-dimensional, time-dependent continuum model of Pedley [J. Fluid Mech.10.1017/S0022112088002393 195, 223 (1988)] using a high-order, parallel, spectral-element approach. We explore the long-time nonlinear patterns and dynamics found for layers with an aspect ratio of 10 over a range of Rayleigh numbers. Our results yield the pattern wavelength and pattern dynamics which we compare with available theory and experimental measurement. There is good agreement for the pattern wavelength at short times between numerics, experiment, and a linear stability analysis. At long times we find that the general sequence of patterns given by the nonlinear evolution of the governing equations correspond qualitatively to what has been described experimentally. However, at long times the patterns in numerics grow to larger wavelengths, in contrast to what is observed in experiment where the wavelength is found to decrease with time.

  16. Testability of evolutionary game dynamics based on experimental economics data

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Chen, Xiaojie; Wang, Zhijian

    In order to better understand the dynamic processes of a real game system, we need an appropriate dynamics model, so to evaluate the validity of a model is not a trivial task. Here, we demonstrate an approach, considering the dynamical macroscope patterns of angular momentum and speed as the measurement variables, to evaluate the validity of various dynamics models. Using the data in real time Rock-Paper-Scissors (RPS) games experiments, we obtain the experimental dynamic patterns, and then derive the related theoretical dynamic patterns from a series of typical dynamics models respectively. By testing the goodness-of-fit between the experimental and theoretical patterns, the validity of the models can be evaluated. One of the results in our study case is that, among all the nonparametric models tested, the best-known Replicator dynamics model performs almost worst, while the Projection dynamics model performs best. Besides providing new empirical macroscope patterns of social dynamics, we demonstrate that the approach can be an effective and rigorous tool to test game dynamics models. Fundamental Research Funds for the Central Universities (SSEYI2014Z) and the National Natural Science Foundation of China (Grants No. 61503062).

  17. Effects of Different Cutting Patterns and Experimental Conditions on the Performance of a Conical Drag Tool

    NASA Astrophysics Data System (ADS)

    Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre

    2017-06-01

    This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.

  18. Neighborhood binary speckle pattern for deformation measurements insensitive to local illumination variation by digital image correlation.

    PubMed

    Zhao, Jian; Yang, Ping; Zhao, Yue

    2017-06-01

    Speckle pattern-based characteristics of digital image correlation (DIC) restrict its application in engineering fields and nonlaboratory environments, since serious decorrelation effect occurs due to localized sudden illumination variation. A simple and efficient speckle pattern adjusting and optimizing approach presented in this paper is aimed at providing a novel speckle pattern robust enough to resist local illumination variation. The new speckle pattern, called neighborhood binary speckle pattern, derived from original speckle pattern, is obtained by means of thresholding the pixels of a neighborhood at its central pixel value and considering the result as a binary number. The efficiency of the proposed speckle pattern is evaluated in six experimental scenarios. Experiment results indicate that the DIC measurements based on neighborhood binary speckle pattern are able to provide reliable and accurate results, even though local brightness and contrast of the deformed images have been seriously changed. It is expected that the new speckle pattern will have more potential value in engineering applications.

  19. Fibrous dosage forms by wet 3D-micro-patterning: process design, manufacture, and drug release rate.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2018-06-19

    Recently, we have introduced fibrous dosage forms prepared by 3D-micro-patterning of drug-laden viscous melts. Such dosage forms enable predictable microstructures and increased drug release rates, and they can be manufactured continuously. However, melt processing is not applicable if the melting temperature of the formulation is greater than the degradation temperature of the drug or of the excipient. In this work, therefore, a continuous wet micro-patterning process that operates at ambient temperature is presented. The excipient is plasticized by a solvent and the patterned dosage form is solidified by air drying. Process models show that the micro-patterning time is the ratio of the fiber length in the dosage form and the velocity of the fiber stream. It was 1.3 minutes in the experiments, but can be reduced further. The drying time is limited by the diffusive flux of solvent through the fibers: it was about 3 minutes for the experimental conditions. Furthermore, models are developed to illustrate the effects of fiber radius, inter-fiber spacing, viscosity of the drug-excipient-solvent mixture, and drying conditions on the microstructure of the dosage form. Models and experimental results show that for a viscosity of the wet fibers of the order 10 3 Pa·s, both the patterned microstructure is well preserved and the crossed fibers are well bonded. Finally, the drug release rate by the dosage forms is experimentally determined and theoretically modeled. The results of the experiments validate the models fairly. Copyright © 2018. Published by Elsevier B.V.

  20. Energy harvesting from torsions of patterned piezoelectrics

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this paper, we investigate the feasibility of energy harvesting from the torsions using a piezoelectric beam. The piezoelectric beam is partially patterned and is tested in an experimental setup to force pure torsional deformation. In particular, the beam consists of two identical piezoelectric parts attached on one side of a supporting substrate. We propose a model for the energy harvesting system through the equations for a slender composite beam with the physical properties and the electromechanical coupling equations of the piezoelectric material. The theoretical predictions are validated by the comparison with the experimental results.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  2. Microwave permeability of stripe patterned FeCoN thin film

    NASA Astrophysics Data System (ADS)

    Wu, Yuping; Yang, Yong; Ma, Fusheng; Zong, Baoyu; Yang, Zhihong; Ding, Jun

    2017-03-01

    Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 μm the initial permeability shows a continuous growth from about 8-322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 μm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications.

  3. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  4. Air motions inside dome room of Big Telescope Alt-azimuth at Special Astrophysical Observatory RAS. Numerical solutions of Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Nosov, V. V.; Lukin, V. P.; Nosov, E. V.; Torgaev, A. V.

    2017-11-01

    The structure of air turbulent motion inside the closed dome room of Big Telescope Alt-azimuth at Special Astrophysical Observatory of the Russian Academy of Sciences (RAS) has been experimentally and theoretically studied. Theoretical results have been reached by numerical solving of boundary value problem for Navier-Stokes equations. Solitary large vortices (coherent structures, topological solitons) are observed indoors. Coherent breakdown of these vortices leads to the coherent turbulence. In the case of identical boundary conditions the pattern of air motions as a result of the simulation and the pattern, registered experimentally using the compact portable ultrasonic weather station, are practically the same.

  5. Propriomuscular coding of kinaesthetic sensation. Experimental approach and mathematical modelling.

    PubMed

    Gilhodes, J C; Coiton, Y; Roll, J P; Ans, B

    1993-01-01

    The role of propriomuscular information in kinaesthetic sensation was studied. Experiments were carried out on human subjects in whom kinaesthetic illusions were induced by applying tendon vibration with a variable frequency. Six patterns of frequency modulation were used, four of which had an arbitrary form and the other two mimicked natural Ia discharges. The results show that the shape of the illusory movements recorded depended on the type of vibratory pattern used. A mathematical model for the propriomuscular information decoding process is proposed. It takes into account both the agonist and antagonist muscle spindle populations as sources of kinaesthetic information and is based on the assumption that position and velocity information are additively combined. The experimental data show a good fit with the theoretical data obtained by means of model simulation, thus validating our initial hypothesis. Various aspects of the experimental results and the hypotheses involved in the model are discussed.

  6. FAST TRACK COMMUNICATION: Effects of Penning ionization on the discharge patterns of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhu, Wen-Chao; Zhu, Xi-Ming; Pu, Yi-Kang

    2010-09-01

    Atmospheric pressure plasma jets, generated in a coaxial dielectric barrier discharge configuration, have been investigated with different flowing gases. Discharge patterns in different tube regions were compared in the flowing gases of helium, neon and krypton. To explain the difference of these discharge patterns, a theoretical analysis is presented to reveal the possible basic processes. A comparison of experimental and theoretical results identifies that Penning ionization is mainly responsible for the discharge patterns of helium and neon plasma jets.

  7. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  8. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  9. Assessing postural stability via the correlation patterns of vertical ground reaction force components.

    PubMed

    Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen

    2016-08-02

    Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18-24 and 65-73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.

  10. A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds

    NASA Astrophysics Data System (ADS)

    Tero, A.; Kobayashi, R.; Nakagaki, T.

    2005-06-01

    Experiments on the fusion and partial separation of plasmodia of the true slime mold Physarum polycephalum are described, concentrating on the spatio-temporal phase patterns of rhythmic amoeboid movement. On the basis of these experimental results we introduce a new model of coupled oscillators with one conserved quantity. Simulations using the model equations reproduce the experimental results well.

  11. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patterns.

    PubMed

    Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia

    2017-04-01

    It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.

  12. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models.

    PubMed

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R

    2017-01-01

    Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.

  13. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  14. OLED emission zone measurement with high accuracy

    NASA Astrophysics Data System (ADS)

    Danz, N.; MacCiarnain, R.; Michaelis, D.; Wehlus, T.; Rausch, A. F.; Wächter, C. A.; Reusch, T. C. G.

    2013-09-01

    Highly efficient state of the art organic light-emitting diodes (OLED) comprise thin emitting layers with thicknesses in the order of 10 nm. The spatial distribution of the photon generation rate, i.e. the profile of the emission zone, inside these layers is of interest for both device efficiency analysis and characterization of charge recombination processes. It can be accessed experimentally by reverse simulation of far-field emission pattern measurements. Such a far-field pattern is the sum of individual emission patterns associated with the corresponding positions inside the active layer. Based on rigorous electromagnetic theory the relation between far-field pattern and emission zone is modeled as a linear problem. This enables a mathematical analysis to be applied to the cases of single and double emitting layers in the OLED stack as well as to pattern measurements in air or inside the substrate. From the results, guidelines for optimum emitter - cathode separation and for selecting the best experimental approach are obtained. Limits for the maximum spatial resolution can be derived.

  15. Pattern production through a chiral chasing mechanism

    NASA Astrophysics Data System (ADS)

    Woolley, Thomas E.

    2017-09-01

    Recent experiments on zebrafish pigmentation suggests that their typical black and white striped skin pattern is made up of a number of interacting chromatophore families. Specifically, two of these cell families have been shown to interact through a nonlocal chasing mechanism, which has previously been modeled using integro-differential equations. We extend this framework to include the experimentally observed fact that the cells often exhibit chiral movement, in that the cells chase, and run away, at angles different to the line connecting their centers. This framework is simplified through the use of multiple small limits leading to a coupled set of partial differential equations which are amenable to Fourier analysis. This analysis results in the production of dispersion relations and necessary conditions for a patterning instability to occur. Beyond the theoretical development and the production of new pattern planiforms we are able to corroborate the experimental hypothesis that the global pigmentation patterns can be dependent on the chirality of the chromatophores.

  16. Torsion sensing based on patterned piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  17. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  18. Generation of Adaptive Gait Patterns for Quadruped Robot with CPG Network including Motor Dynamic Model

    NASA Astrophysics Data System (ADS)

    Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu

    This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.

  19. Pattern formation and self-organization in plasmas interacting with surfaces

    NASA Astrophysics Data System (ADS)

    Trelles, Juan Pablo

    2016-10-01

    Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse emerging applications ranging from nanomaterial synthesis to medicine, show marked sensitivity to pattern formation and a broadened range of controlling parameters. The results related to the characteristics of the patterns, such as their geometric configuration and static or dynamic nature; as well as their controlling factors, including gas composition, driving voltage and current, electrode cooling, and imposed gas flow, are summarized and discussed. The article finalizes with an outlook of the research area, including theoretical, computational, and experimental needs to advance the field.

  20. Ex vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Karam, L. Z.; Pegorini, V.; Pitta, C. S. R.; Assmann, T. S.; Cardoso, R.; Kalinowski, H. J.; Silva, J. C. C.

    2014-05-01

    This paper reports the experimental procedures performed in a bovine head for the determination of chewing patterns during the mastication process. Mandible movements during the chewing have been simulated either by using two plasticine materials with different textures or without material. Fibre Bragg grating sensors were fixed in the jaw to monitor the biomechanical forces involved in the chewing process. The acquired signals from the sensors fed the input of an artificial neural network aiming at the classification of the measured chewing patterns for each material used in the experiment. The results obtained from the simulation of the chewing process presented different patterns for the different textures of plasticine, resulting on the determination of three chewing patterns with a classification error of 5%.

  1. Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.

    2012-06-01

    We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.

  2. Increasing the space-time product of super-resolution structured illumination microscopy by means of two-pattern illumination

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.

    2017-06-01

    Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.

  3. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  4. Skeletal pattern in subjects with temporomandibular joint disorders

    PubMed Central

    Almăşan, Oana Cristina; Almăşan, Horea Artimoniu; Bran, Simion; Lascu, Liana; Iancu, Mihaela; Băciuţ, Grigore

    2013-01-01

    Introduction To establish the skeletal pattern in subjects with malocclusions and temporomandibular disorders (TMD); to assess the relationship between craniofacial skeletal structures and TMD in subjects with malocclusions. Material and methods Sixty-four subjects with malocclusions, over 18 years of age, were included in the study. Temporomandibular disorders were clinically assessed according to the Helkimo Anamnestic Index. Subjects underwent a lateral cephalogram. Subjects were grouped according to the sagittal skeletal pattern (ANB angle) into class I, II and III. Parametric Student tests with equal or unequal variations were used (variations were previously tested with Levene test). Results Twenty-four patients with TMD (experimental sample); 40 patients without TMD (control group); interincisal angle was higher in class I and II (p < 0.05) experimental subjects; overjet was larger in experimental subjects; midline shift and Wits appraisal were broader in the experimental group in all three classes. In class III subjects, the SNB angle was higher in the experimental group (p = 0.01). Joint noises followed by reduced mandible mobility, muscular pain and temporomandibular joint (TMJ) pain were the most frequent symptoms in subjects with TMD and malocclusions. Conclusions Temporomandibular joint status is an important factor to consider when planning orthodontic treatment in patients with severe malocclusions; midline shift, large overjet and deep overbite have been associated with signs and symptoms of TMD. PMID:23515361

  5. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease.

    PubMed

    Singh, Jyotsna; Singh, Phool; Malik, Vikas

    2017-01-01

    Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.

  6. Experimental Analysis of Steady-State Maneuvering Effects on Transmission Vibration Patterns Recorded in an AH-1 Cobra Helicopter

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)

    2000-01-01

    Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.

  7. Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Bamberger; L.M. Liljegren; P.S. Lowery

    This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobina, C.B.; Silva, E.R.C. da; Lima, A.M.N.

    This paper investigates the PWM operation of a four switch three phase inverter (FSTPI), in the case of digital implementation. Different switching sequence strategies for vector control are described and a digital scalar method is also presented. The influence of different switching patterns on the output voltage symmetry, current waveform and switching frequency are examined. The results obtained by employing the vector and scalar strategies are compared and a relationship between them is established. This comparison is based on analytical study and is corroborated either by the computer simulations and by the experimental results. The vector approach makes ease themore » understanding and analysis of the FSTPI, as well the choice of a PWM pattern. However, similar results may be obtained through the scalar approach, which has a simpler implementation. The experimental results of the use of the FSTPI and digital PWM to control an induction motor are presented.« less

  9. The Effects of Selective Attention on the Decoding Skills of Children with Learning Disabilities.

    ERIC Educational Resources Information Center

    Schworm, Ronald W.

    1979-01-01

    To test the effects of selective attention on decoding skills, 23 children (grades 2 through 6) with learning disabilities were studied. Results showed that treatment directly improved the ability of the experimental groups to transfer spelling patterns learned in isolation to unknown words containing those patterns and improved the ability of Ss…

  10. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    NASA Astrophysics Data System (ADS)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  11. Geographic profiling applied to testing models of bumble-bee foraging.

    PubMed

    Raine, Nigel E; Rossmo, D Kim; Le Comber, Steven C

    2009-03-06

    Geographic profiling (GP) was originally developed as a statistical tool to help police forces prioritize lists of suspects in investigations of serial crimes. GP uses the location of related crime sites to make inferences about where the offender is most likely to live, and has been extremely successful in criminology. Here, we show how GP is applicable to experimental studies of animal foraging, using the bumble-bee Bombus terrestris. GP techniques enable us to simplify complex patterns of spatial data down to a small number of parameters (2-3) for rigorous hypothesis testing. Combining computer model simulations and experimental observation of foraging bumble-bees, we demonstrate that GP can be used to discriminate between foraging patterns resulting from (i) different hypothetical foraging algorithms and (ii) different food item (flower) densities. We also demonstrate that combining experimental and simulated data can be used to elucidate animal foraging strategies: specifically that the foraging patterns of real bumble-bees can be reliably discriminated from three out of nine hypothetical foraging algorithms. We suggest that experimental systems, like foraging bees, could be used to test and refine GP model predictions, and that GP offers a useful technique to analyse spatial animal behaviour data in both the laboratory and field.

  12. The importance of a normal breathing pattern for an effective abdominal-hollowing maneuver in healthy people: an experimental study.

    PubMed

    Ha, Sung-min; Kwon, Oh-yun; Kim, Su-jung; Choung, Sung-dae

    2014-02-01

    A normal breathing pattern while performing the abdominal-hollowing (AH) maneuver or spinal-stabilization exercise is essential for the success of rehabilitation programs and exercises. In previous studies, subjects were given standardized instructions to control the influence of respiration during the AH maneuver. However, the effect of breathing pattern on abdominal-muscle thickness during the AH maneuver has not been investigated. To compare abdominal-muscle thickness in subjects performing the AH maneuver under normal and abnormal breathing-pattern conditions and to investigate the effect of breathing pattern on the preferential contraction ratio (PCR) of the transverse abdominis. Comparative, repeated-measures experimental study. University research laboratory. 16 healthy subjects (8 male, 8 female) from a university population. A real-time ultrasound scanner was used to measure abdominal-muscle thickness during normal and abnormal breathing patterns. A paired t test was used to assess the effect of breathing pattern on abdominal-muscle thickness and PCR. Muscle thickness in the transverse abdominis and internal oblique muscles was significantly greater under the normal breathing pattern than under the abnormal pattern (P < .05). The PCR of the transverse abdominis was significantly higher under the normal breathing pattern compared with the abnormal pattern (P < .05). The results indicate that a normal breathing pattern is essential for performance of an effective AH maneuver. Thus, clinicians should ensure that patients adopt a normal breathing pattern before performing the AH maneuver and monitor transverse abdominis activation during the maneuver.

  13. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    PubMed

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  14. Experimental and numerical studies of natural convection in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viney, C.E.; Hickox, C.E.; Montoya, P.C.

    1982-12-01

    The results of an experimental study are reported in which a Hele-Shaw cell was used to simulate natural convection flow in a homogeneous porous region subjected to a horizonal temperature gradient. Measured velocities and photographs of streamline patterns are compared with numerical predictions produced with the finite element computer program, MARIAH. Results of numerical simulations are also reported for Rayleigh-Benard convection in a bottom-heated, horizontal, prous layer. The numerical results are compared with the experimental Hele-Shaw cell results of Hartline and Lister. The comparison between these experimental and numerical studies provides some support for the qualification of MARIAH as amore » general purpose code for the description of natural convection in porous media at low Rayleigh numbers.« less

  15. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models

    PubMed Central

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R.

    2017-01-01

    Abstract. Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)–based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed. PMID:28180134

  16. Mixed reality framework for collective motion patterns of swarms with delay coupling

    NASA Astrophysics Data System (ADS)

    Szwaykowska, Klementyna; Schwartz, Ira

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is an important subject for many applications within the field of distributed robotic systems. However, there are significant logistical challenges associated with testing fully distributed systems in real-world settings. In this paper, we provide a rigorous theoretical justification for the use of mixed-reality experiments as a stepping stone to fully physical testing of distributed robotic systems. We also model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. Our analyses, assuming agents communicating over an Erdos-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm. K. S. was a National Research Council postdoctoral fellow. I.B.S was supported by the U.S. Naval Research Laboratory funding (N0001414WX00023) and office of Naval Research (N0001414WX20610).

  17. Advanced electric propulsion research, 1991

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeffery M.

    1992-01-01

    A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.

  18. Computer-based visual communication in aphasia.

    PubMed

    Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S

    1989-01-01

    The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.

  19. Kinetic Monte Carlo simulation of self-organized pattern formation induced by ion beam sputtering using crater functions

    NASA Astrophysics Data System (ADS)

    Yang, Zhangcan; Lively, Michael A.; Allain, Jean Paul

    2015-02-01

    The production of self-organized nanostructures by ion beam sputtering has been of keen interest to researchers for many decades. Despite numerous experimental and theoretical efforts to understand ion-induced nanostructures, there are still many basic questions open to discussion, such as the role of erosion or curvature-dependent sputtering. In this work, a hybrid MD/kMC (molecular dynamics/kinetic Monte Carlo) multiscale atomistic model is developed to investigate these knowledge gaps, and its predictive ability is validated across the experimental parameter space. This model uses crater functions, which were obtained from MD simulations, to model the prompt mass redistribution due to single-ion impacts. Defect migration, which is missing from previous models that use crater functions, is treated by a kMC Arrhenius method. Using this model, a systematic study was performed for silicon bombarded by Ar+ ions of various energies (100 eV, 250 eV, 500 eV, 700 eV, and 1000 eV) at incidence angles of 0∘ to 80∘. The simulation results were compared with experimental findings, showing good agreement in many aspects of surface evolution, such as the phase diagram. The underestimation of the ripple wavelength by the simulations suggests that surface diffusion is not the main smoothening mechanism for ion-induced pattern formation. Furthermore, the simulated results were compared with moment-description continuum theory and found to give better results, as the simulation did not suffer from the same mathematical inconsistencies as the continuum model. The key finding was that redistributive effects are dominant in the formation of flat surfaces and parallel-mode ripples, but erosive effects are dominant at high angles when perpendicular-mode ripples are formed. Ion irradiation with simultaneous sample rotation was also simulated, resulting in arrays of square-ordered dots. The patterns obtained from sample rotation were strongly correlated to the rotation speed and to the pattern types formed without sample rotation, and a critical value of about 5 rpm was found between disordered ripples and square-ordered dots. Finally, simulations of dual-beam sputtering were performed, with the resulting patterns determined by the flux ratio of the two beams and the pattern types resulting from single-beam sputtering under the same conditions.

  20. Shared community patterns following experimental fire in a semiarid grassland

    Treesearch

    Paulette L. Ford

    2007-01-01

    This paper presents a synthesis of experimental research testing effects of seasonal fire on community structure of plants, arthropods, and small mammals in shortgrass steppe. These groups of plants and animals share the same environment, and therefore, the species in the groups were predicted to respond in a similar way to changes in their environment resulting from...

  1. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  2. A shape-preserving oriented partial differential equation based on a new fidelity term for electronic speckle pattern interferometry fringe patterns denoising

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun; Tang, Chen; Zheng, Tingyue; Qiu, Yue

    2018-07-01

    Oriented partial differential equations (OPDEs) have been demonstrated to be a powerful tool for preserving the integrity of fringes while filtering electronic speckle pattern interferometry (ESPI) fringe patterns. However, the main drawback of OPDEs-based methods is that many iterations are often needed, which causes the change in the shape of fringes. Change in the shape of fringes will affect the accuracy of subsequent fringe analysis. In this paper, we focus on preserving the shape of fringes while filtering, suggested here for the first time. We propose a shape-preserving OPDE for ESPI fringe patterns denoising by introducing a new fidelity term to the previous second-order single oriented PDE (SOOPDE). In our proposed fidelity term, the evolution image is subtracted from the shrinkage result of original noisy image by shearlet transform. Our proposed shape-preserving OPDE is capable of eliminating noise effectively, keeping the integrity of fringes, and more importantly, preserving the shape of fringes. We test the proposed shape-preserving OPDE on three computer-simulated and three experimentally obtained ESPI fringe patterns with poor quality. Furthermore, we compare our model with three representative filtering methods, including the widely used SOOPDE, shearlet transform and coherence-enhancing diffusion (CED). We also compare our proposed fidelity term with the traditional fidelity term. Experimental results show that the proposed shape-preserving OPDE not only yields filtered images with visual quality on par with those by CED which is the state-of-the-art method for ESPI fringe patterns denoising, but also keeps the shape of ESPI fringe patterns.

  3. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    PubMed Central

    Bennett, James E. M.; Bair, Wyeth

    2015-01-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  4. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity.

    PubMed

    Bennett, James E M; Bair, Wyeth

    2015-08-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli.

  5. Characteristics of the GPR field pattern antennas

    NASA Astrophysics Data System (ADS)

    Pérez-Gracia, V.; González-Drigo, R.; Di Capua, D.; Pujades, L. G.

    2007-10-01

    Ground-Penetrating Radar has become a popular non-destructive and non-invasive tool in different kind of applications: civil engineering, archaeology, concrete and masonry analysis, etc. The selection of the antenna frequencies depends on the application, but each antenna has a radiation pattern and some characteristics that have influence in the final interpretation and in the model obtained for the studied medium. The knowledge of these features and its coupling effects with the medium could improve the results of the GPR prospecting studies. In this work, some experimental procedures were carried out in order to obtain the 1.6 GHz centre frequency antenna characteristics in the air and in one material medium and to compare them. First, the study of the attenuation due to geometrical spreading was performed. This result was compared with the amplitude attenuation in a material medium, deduced from the GPR experimental data. Second, the shape of the radiation pattern was estimated in laboratory for different distances between the target and the antenna. Near field and far field were considered during the experimental data acquisition. Third, the relative amplitude of the reflected wave (in dB) was obtained depending on the relative position of the antenna over the target. The shape of the radiation pattern and the relative amplitudes obtained in the air were compared with those obtained in a slow medium (water). This slow medium was characterized with the wave velocity and the attenuation factor of the GPR signal.

  6. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

    PubMed Central

    Othmer, Hans G.; Painter, Kevin; Umulis, David; Xue, Chuan

    2009-01-01

    We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago ‘We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.’ PMID:19844610

  7. Efficient Mining of Interesting Patterns in Large Biological Sequences

    PubMed Central

    Rashid, Md. Mamunur; Karim, Md. Rezaul; Jeong, Byeong-Soo

    2012-01-01

    Pattern discovery in biological sequences (e.g., DNA sequences) is one of the most challenging tasks in computational biology and bioinformatics. So far, in most approaches, the number of occurrences is a major measure of determining whether a pattern is interesting or not. In computational biology, however, a pattern that is not frequent may still be considered very informative if its actual support frequency exceeds the prior expectation by a large margin. In this paper, we propose a new interesting measure that can provide meaningful biological information. We also propose an efficient index-based method for mining such interesting patterns. Experimental results show that our approach can find interesting patterns within an acceptable computation time. PMID:23105928

  8. Efficient mining of interesting patterns in large biological sequences.

    PubMed

    Rashid, Md Mamunur; Karim, Md Rezaul; Jeong, Byeong-Soo; Choi, Ho-Jin

    2012-03-01

    Pattern discovery in biological sequences (e.g., DNA sequences) is one of the most challenging tasks in computational biology and bioinformatics. So far, in most approaches, the number of occurrences is a major measure of determining whether a pattern is interesting or not. In computational biology, however, a pattern that is not frequent may still be considered very informative if its actual support frequency exceeds the prior expectation by a large margin. In this paper, we propose a new interesting measure that can provide meaningful biological information. We also propose an efficient index-based method for mining such interesting patterns. Experimental results show that our approach can find interesting patterns within an acceptable computation time.

  9. Patterns of shading tolerance determined from experimental light reduction studies of seagrasses

    EPA Science Inventory

    An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly signif...

  10. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  11. Multi-Level Sequential Pattern Mining Based on Prime Encoding

    NASA Astrophysics Data System (ADS)

    Lianglei, Sun; Yun, Li; Jiang, Yin

    Encoding is not only to express the hierarchical relationship, but also to facilitate the identification of the relationship between different levels, which will directly affect the efficiency of the algorithm in the area of mining the multi-level sequential pattern. In this paper, we prove that one step of division operation can decide the parent-child relationship between different levels by using prime encoding and present PMSM algorithm and CROSS-PMSM algorithm which are based on prime encoding for mining multi-level sequential pattern and cross-level sequential pattern respectively. Experimental results show that the algorithm can effectively extract multi-level and cross-level sequential pattern from the sequence database.

  12. Lepton mixing patterns from the group Σ (36 ×3 ) with a generalized C P transformation

    NASA Astrophysics Data System (ADS)

    Rong, Shu-jun

    2017-04-01

    The group Σ (36 ×3 ) with the generalized C P transformation is introduced to predict the mixing pattern of leptons. Various combinations of Abelian residual flavor symmetries with C P transformations are surveyed. Six mixing patterns could accommodate the fit data of neutrinos oscillation at the 3 σ level. Among them, two patterns predict the nontrivial Dirac C P phase, around ±5 7 ° or ±12 3 ° , which is in accordance with the result of the literature and the recent fit data. Furthermore, one pattern could satisfy the experimental constraints at the 1 σ level.

  13. Scene Context Dependency of Pattern Constancy of Time Series Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2008-01-01

    A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.

  14. An experimental description of the flow in a centrifugal compressor from alternate stall to surge

    NASA Astrophysics Data System (ADS)

    Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.

    2017-08-01

    The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.

  15. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  16. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  17. Genesis of Bénard-Marangoni Patterns in Thin Liquid Films Drying into Air

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Chauvet, F.; Dehaeck, S.

    Inspired by many years of motivating collaboration between the first author and Prof. Manuel G. Velarde, in the field of surface-tension-driven instabilities, pattern formation, and transition to turbulence, this paper presents recent experimental results obtained in collaboration with the second and third authors at the TIPs laboratory in Brussels. Namely, the evolution of Bénard-like patterns is explored for pure liquid layers evaporating into air, from chaotic regimes down to more stable structures with predominant hexagonal symmetry. Drying liquid layers indeed appear as a particularly simple example of system where, due to the decreasing liquid depth, the preferred wavelength of the pattern is continuously decreased in time, hence requiring perpetual creation of new convective cells. Such pattern "genesis" appears to lead to disordered structures with interesting characteristics, whose preliminary experimental investigation is carried out here. This paper is dedicated to Prof. Manuel G. Velarde, at the occasion of his 70th birthday, as a mark of deep gratitude for all positive scientific and cultural influences he had and he still has on many young scientists.

  18. Inferring Regulatory Networks from Experimental Morphological Phenotypes: A Computational Method Reverse-Engineers Planarian Regeneration

    PubMed Central

    Lobo, Daniel; Levin, Michael

    2015-01-01

    Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method provides an automated, highly generalizable framework for identifying the underlying control mechanisms responsible for the dynamic regulation of growth and form. PMID:26042810

  19. Flow patterns and transition characteristics for steam condensation in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Hao, Tingting

    2011-07-01

    This study investigated the two-phase flow patterns and transition characteristics for steam condensation in silicon microchannels with different cross-sectional geometries. Novel experimental techniques were developed to determine the local heat transfer rate and steam quality by testing the temperature profile of a copper cooler. Flow regime maps for different microchannels during condensation were established in terms of steam mass flux and steam quality. Meanwhile, the correlation for the flow pattern transition was obtained using different geometrical and dimensionless parameters for steam condensation in microchannels. To better understand the flow mechanisms in microchannels, the condensation flow patterns, such as annular flow, droplet flow, injection flow and intermittent flow, were captured and analyzed. The local heat transfer rate showed the nonlinear variations along the axial direction during condensation. The experimental results indicate that the flow patterns and transition characteristics strongly depend on the geometries of microchannels. With the increasing steam mass flux and steam quality, the annular/droplet flow expands and spans over a larger region in the microchannels; otherwise the intermittent flow occupies the microchannels. The dimensionless fitting data also reveal that the effect of surface tension and vapor inertia dominates gravity and viscous force at the specified flow pattern transitional position.

  20. Neon ion beam induced pattern formation on amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Hofsäss, Hans; Zhang, Kun

    2018-02-01

    We investigate the ripple pattern formation on amorphous carbon surfaces at room temperature during low energy Ne ion irradiation as a function of the ion incidence angle. Monte Carlo simulations of the curvature coefficients applied to the Bradley-Harper and Cater-Vishnyakov models, including the recent extensions by Harrison-Bradley and Hofsäss predict that pattern formation on amorphous carbon thin films should be possible for low energy Ne ions from 250 eV up to 1500 eV. Moreover, simulations are able to explain the absence of pattern formation in certain cases. Our experimental results are compared with prediction using current linear theoretical models and applying the crater function formalism, as well as Monte Carlo simulations to calculate curvature coefficients using the SDTrimSP program. Calculations indicate that no patterns should be generated up to 45° incidence angle if the dynamic behavior of the thickness of the ion irradiated layer introduced by Hofsäss is taken into account, while pattern formation most pronounced from 50° for ion energy between 250 eV and 1500 eV, which are in good agreement with our experimental data.

  1. A Neuro-Musculo-Skeletal Model for Insects With Data-driven Optimization.

    PubMed

    Guo, Shihui; Lin, Juncong; Wöhrl, Toni; Liao, Minghong

    2018-02-01

    Simulating the locomotion of insects is beneficial to many areas such as experimental biology, computer animation and robotics. This work proposes a neuro-musculo-skeletal model, which integrates the biological inspirations from real insects and reproduces the gait pattern on virtual insects. The neural system is a network of spiking neurons, whose spiking patterns are controlled by the input currents. The spiking pattern provides a uniform representation of sensory information, high-level commands and control strategy. The muscle models are designed following the characteristic Hill-type muscle with customized force-length and force-velocity relationships. The model parameters, including both the neural and muscular components, are optimized via an approach of evolutionary optimization, with the data captured from real insects. The results show that the simulated gait pattern, including joint trajectories, matches the experimental data collected from real ants walking in the free mode. The simulated character is capable of moving at different directions and traversing uneven terrains.

  2. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  3. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  4. SU-E-I-77: X-Ray Coherent Scatter Diffraction Pattern Modeling in GEANT4.

    PubMed

    Kapadia, A; Samei, E; Harrawood, B; Sahbaee, P; Chawla, A; Tan, Z; Brady, D

    2012-06-01

    To model X-ray coherent scatter diffraction patterns in GEANT4 for simulating experiments involving material detection through diffraction pattern measurement. Although coherent scatter cross-sections are modeled accurately in GEANT4, diffraction patterns for crystalline materials are not yet included. Here we describe our modeling of crystalline diffraction patterns in GEANT4 for specific materials and the validation of the results against experimentally measured data. Coherent scatter in GEANT4 is currently based on Hubbell's non-relativistic form factor tabulations from EPDL97. We modified the form-factors by introducing an interference function that accounts for the angular dependence between the Rayleigh-scattered photons and the photon wavelength. The modified form factors were used to replace the inherent form-factors in GEANT4. The simulation was tested using monochromatic and polychromatic x-ray beams (separately) incident on objects containing one or more elements with modified form-factors. The simulation results were compared against the experimentally measured diffraction images of corresponding objects using an in-house x-ray diffraction imager for validation. The comparison was made using the following metrics: number of diffraction rings, radial distance, absolute intensity, and relative intensity. Sharp diffraction pattern rings were observed in the monochromatic simulations at locations consistent with the angular dependence of the photon wavelength. In the polychromatic simulations, the diffraction patterns exhibited a radial blur consistent with the energy spread of the polychromatic spectrum. The simulated and experimentally measured patterns showed identical numbers of rings with close agreement in radial distance, absolute and relative intensities (barring statistical fluctuations). No significant change was observed in the execution time of the simulations. This work demonstrates the ability to model coherent scatter diffraction in GEANT4 in an accurate and efficient manner without compromising the accuracy or runtime of the simulation. This work was supported by the Department of Homeland Security under grant DHS (BAA 10-01 F075), and by the Department of Defense under award W81XWH-09-1-0066. © 2012 American Association of Physicists in Medicine.

  5. Finger vein recognition using local line binary pattern.

    PubMed

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).

  6. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  7. Structural and electron diffraction scaling of twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Kuan; Tadmor, Ellad B.

    2018-03-01

    Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.

  8. Suppression of pattern dependence in 10 Gbps upstream transmission of WDM-PON with RSOA-based ONUs

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wang, Danshi; Cao, Zhihui; Chen, Xue; Huang, Shanguo

    2013-11-01

    The finite gain recovery time of the reflective semiconductor optical amplifier (RSOA) causes distortion and pattern dependence at high bit rates in colorless optical network units (ONUs) of WDM passive optical network (WDN-PON). We propose and demonstrate a scheme of upstream transmission of 10 Gbps NRZ signals directly modulated via a RSOA in a 25 km single fiber, where we use a fiber Bragg grating (FBG) as an offset filter to suppress the pattern dependence and improve the RSOA modulation bandwidth. Both experimental and simulation results are provided, which are useful results for designing cost-effective colorless transceivers.

  9. Circadian Clock Gene Expression in the Coral Favia fragum over Diel and Lunar Reproductive Cycles

    PubMed Central

    Hoadley, Kenneth D.; Szmant, Alina M.; Pyott, Sonja J.

    2011-01-01

    Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum. PMID:21573070

  10. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within experimental error with all data, except with the most recent value of C, which lies 10% lower.

  11. Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis

    NASA Astrophysics Data System (ADS)

    Comiskey, P. M.; Yarin, A. L.; Attinger, D.

    2017-07-01

    A theoretical model describing the blood spatter pattern resulting from a blunt bullet gunshot is proposed. The predictions are compared to experimental data acquired in the present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the pressure impulse generating the blood flow. At the free surface, the latter is directed outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the flow of blood occurs, which is responsible for the formation of blood drops of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood drops can be determined. Then, the equations of motion are solved, describing drop trajectories in air accounting for gravity, and air drag. Also considered are the drop-drop interactions through air, which diminish air drag on the subsequent drops. Accordingly, deposition of two-phase (blood-drop and air) jets on a vertical cardstock sheet located between the shooter and the target (and perforated by the bullet) is predicted and compared with experimental data. The experimental data were acquired with a porous polyurethane foam sheet target impregnated with swine blood, and the blood drops were collected on a vertical cardstock sheet which was perforated by the blunt bullet. The highly porous target possesses a low hydraulic resistance and therefore resembles a pool of blood shot by a blunt bullet normally to its free surface. The back spatter pattern was predicted numerically and compared to the experimental data for the number of drops, their area, the total stain area, and the final impact angle as functions of radial location from the bullet hole in the cardstock sheet (the collection screen). Comparisons of the predicted results with the experimental data revealed satisfactory agreement. The predictions also allow one to find the impact Weber number on the collection screen, which is necessary to predict stain shapes and sizes.

  12. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  13. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  14. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  15. Visual Pattern Analysis in Histopathology Images Using Bag of Features

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.

    This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.

  16. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  17. Controlled porous pattern of anodic aluminum oxide by foils laminate approach.

    PubMed

    Wang, Gou-Jen; Peng, Chi-Sheng

    2006-04-01

    A novel, much simpler, and low-cost method to fabricate the porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach was carried out. During our experiments, it was found that the pores of the AAO on the upper foil grew bi-directionally from both the top and the bottom surfaces. Experimental results further indicate that the upward porous pattern of the upper foil is determined by the surface structure of the bottom surface of the upper foil. The porous pattern of AAO can be controlled by a pre-made pattern on the bottom surface. Furthermore, no Aluminum (Al) layer removing process is required in this novel laminate method.

  18. In-vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  19. Experimental methodology of contact edge roughness on sub-100-nm pattern

    NASA Astrophysics Data System (ADS)

    Lee, Tae Yong; Ihm, Dongchul; Kang, Hyo Chun; Lee, Jun Bum; Lee, Byoung-Ho; Chin, Soo-Bok; Cho, Do-Hyun; Kim, Yang Hyong; Yang, Ho Dong; Yang, Kyoung Mo

    2004-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. However, most of the features are limited by the applicable pattern types. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. The edge roughness is more critical in contact process. However the measurement of contact edge roughness (CER) or contact space roughness (CSR) is more complicated than that of LER or LWR. So far, no formal standard measurement algorithm or definition of contact roughness measurement exists. In this article, currently available features are investigated to assess their representability for CER or CSR. Some new ideas to quantify CER and CSR were also suggested with preliminary experimental results.

  20. Essential features of residual stress determination in thin-walled plane structures in a base of whole field interferometric measurements

    NASA Astrophysics Data System (ADS)

    Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.

    2003-05-01

    Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.

  1. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Hippensteele, Steven A.

    1991-01-01

    Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.

  2. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong

    2011-08-01

    We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  3. High speed stereovision setup for position and motion estimation of fertilizer particles leaving a centrifugal spreader.

    PubMed

    Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G

    2014-11-13

    A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.

  4. The development of methods for predicting and measuring distribution patterns of aerial sprays. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1981-01-01

    A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  5. Dynamic optimization of walker-assisted FES-activated paraplegic walking: simulation and experimental studies.

    PubMed

    Nekoukar, Vahab; Erfanian, Abbas

    2013-11-01

    In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Spatially Localized Chemical Patterns around an A + B → Oscillator Front.

    PubMed

    Budroni, M A; Lemaigre, L; Escala, D M; Muñuzuri, A P; De Wit, A

    2016-02-18

    When two gels, each loaded with a different set of reactants A and B of an oscillatory reaction, are brought into contact, reaction-diffusion patterns such as waves or Turing patterns can develop in the reactive contact zone. The initial condition which separates the reactants at the beginning leads to a localization in space of the different dynamical regimes accessible to the chemical oscillator. We study here both numerically and experimentally the composite traveling structures resulting from the interaction between chemical fronts and localized waves in the case in which the reactants of such an A + B → oscillator system are those of the canonical Belousov-Zhabotinsky (BZ) oscillating reaction. A transition between different dynamics is obtained by varying the initial concentration of the organic substrate of the BZ reactants, which is one of the parameters controlling the local excitability. We show that the dynamical regime (excitable or oscillatory) characterizing the BZ oscillator in the initial contact area is the key feature which determines the spatiotemporal evolution of the system. The experimental results are in qualitative agreement with the theoretical predictions.

  7. Direct laser interference patterning of transparent and colored polymer substrates: ablation, swelling, and the development of a simulation model

    NASA Astrophysics Data System (ADS)

    Alamri, Sabri; Lasagni, Andrés. F.

    2017-02-01

    It is well known that micro and sub-micrometer periodical structures play a significant role on the properties of a surface. Ranging from friction reduction to the bacterial adhesion control, the modification of the material surface is the key for improving the performance of a device or even creating a completely new function. Among different laser processing techniques, Direct Laser Interference Patterning (DLIP) relies on the local surface modification process induced when two or more beams interfere and produce periodic surface structures. Although the produced features have controllable pitch and geometry, identical experimental conditions applied to different polymers can result on totally different topologies. In this frame, observations from pigmented and transparent polycarbonate treated with ultraviolet (263 nm) and infrared (1053 nm) laser radiation permitted to identify different phenomena related with the optical and chemical properties of the polymers. As a result from the experimental data analysis, a set of material-dependent constants can be obtained and both profile and surface simulations can be retrieved, reproducing the material surface topography after the surface patterning process.

  8. X-ray backscatter radiography with lower open fraction coded masks

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Single sided radiographic imaging would find great utility for medical, aerospace and security applications. While coded apertures can be used to form such an image from backscattered X-rays they suffer from near field limitations that introduce noise. Several theoretical studies have indicated that for an extended source the images signal to noise ratio may be optimised by using a low open fraction (<0.5) mask. However, few experimental results have been published for such low open fraction patterns and details of their formulation are often unavailable or are ambiguous. In this paper we address this process for two types of low open fraction mask, the dilute URA and the Singer set array. For the dilute URA the procedure for producing multiple 2D array patterns from given 1D binary sequences (Barker codes) is explained. Their point spread functions are calculated and their imaging properties are critically reviewed. These results are then compared to those from the Singer set and experimental exposures are presented for both type of pattern; their prospects for near field imaging are discussed.

  9. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns.

    PubMed

    Noguchi, Rei; Kubota, Hiroyuki; Yugi, Katsuyuki; Toyoshima, Yu; Komori, Yasunori; Soga, Tomoyoshi; Kuroda, Shinya

    2013-05-14

    Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin-signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLC(ex)). Based on the experimental results, we constructed a simple computational model that characterises response of insulin-signalling-dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLC(ex) was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin.

  10. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns

    PubMed Central

    Noguchi, Rei; Kubota, Hiroyuki; Yugi, Katsuyuki; Toyoshima, Yu; Komori, Yasunori; Soga, Tomoyoshi; Kuroda, Shinya

    2013-01-01

    Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin-signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLCex). Based on the experimental results, we constructed a simple computational model that characterises response of insulin-signalling-dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLCex was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin. PMID:23670537

  11. Experimental investigation on the fracture behaviour of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, C. H.; Hu, Y. Z.

    2018-04-01

    Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviours of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U'-shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2-D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.

  12. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  13. Using data tagging to improve the performance of Kanerva's sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The standard formulation of Kanerva's sparse distributed memory (SDM) involves the selection of a large number of data storage locations, followed by averaging the data contained in those locations to reconstruct the stored data. A variant of this model is discussed, in which the predominant pattern is the focus of reconstruction. First, one architecture is proposed which returns the predominant pattern rather than the average pattern. However, this model will require too much storage for most uses. Next, a hybrid model is proposed, called tagged SDM, which approximates the results of the predominant pattern machine, but is nearly as efficient as Kanerva's original formulation. Finally, some experimental results are shown which confirm that significant improvements in the recall capability of SDM can be achieved using the tagged architecture.

  14. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

  15. Turning the Tide: Estuaries Shaped by Channel-Shoal Interactions, Eco-engineers and Inherited Landscapes

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; Braat, L.; Leuven, J.; Baar, A. W.; van der Vegt, M.; Van Maarseveen, M. C. G.; Markies, H.; Roosendaal, C.; van Eijk, A.

    2015-12-01

    Estuaries exhibit correlations between inlet dimensions, tidal prism and intertidal area, but to what extent estuary planform shape and shoal patterns resulted from biomorphological processes or from inherited conditions such as coastal plain and drowned valley dimensions remains unclear. We explore the hypothesis that mud flats and vegetation as a self-formed lateral confinement have effects analogous to that of river floodplain on braided versus meandering river patterns. Here we use the Delft3D numerical model and a novel tidal flume setup, the Metronome, to create estuaries from idealized initial conditions, with and without mud supply at the fluvial boundary. Experimental mud was simulated by crushed nutshell. Both the numerical and experimental estuaries were narrower with increasing mud, and had a lower degree of channel braiding. The experimental estuaries developed meanders at the river boundary with floodplain developing on the pointbar whereas cohesionless cases were more dynamic.

  16. Spatial Control of Photoacid Diffusion in Chemically Amplified Resist (CAR) via External Electric Field.

    PubMed

    Kim, Jinok; Yoo, Gwangwe; Park, Jin; Park, Jin-Hong

    2018-09-01

    We investigated the effect of an electric field-based post exposure bake (EF-PEB) process on photoacid diffusion and pattern formation. To investigate the control of photoacid diffusion experimentally, the EF-PEB processes was performed at various temperatures. Cross sectional images of various EF-PEB processed samples were obtained by scanning electron microscopy (SEM) after ion beam milling. In addition, we conducted a numerical analysis of photoacid distribution and diffusion with following Fick's second law and compared the experimental results with our theoretical model. The drift distance was theoretically predicted by multiplying drift velocity and EF-PEB time, and the experimental values were obtained by finding the difference in pattern depths of PEB/EFPEB samples. Finally, an EF-PEB temperature of 85 °C was confirmed as the optimum condition to maximize photoacid drift distance using the electric field.

  17. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    NASA Astrophysics Data System (ADS)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  18. Application research of CO2 laser cutting natural stone plates

    NASA Astrophysics Data System (ADS)

    Ma, Lixiu; Song, Jijiang

    2009-08-01

    Now, the processing of natural stone plates is the high performance sawing machine primarily,many researchers deeply studied the processing characters in the sawing process and the strength characters during the processing. In order to realize the profiled-processing and pattern- carving of the natural stone, It lays a solid foundation for the laser cutting and the pattern-carving technology of natural stone plate. The working principle, type and characteristics of laser cutting are briefly described. The paper selects 6 kinds stone plates of natural taken as experimental sample,the experimental sample was China Shanxi Black, Old Spain Golden Yellow, New Spain Golden Yellow, Jazz White, Maple Leaf Red, Cream White respectively. Use high power CO2 laser cutting system,the stone plates cutting experiment of 6 kinds different hardness, the best working speed are obtained,The experimental results indicate that: The laser cutting speed has no correlation with the ingredient content of stone plate.

  19. Social Value Induction and Cooperation in the Centipede Game

    PubMed Central

    2016-01-01

    The Centipede game provides a dynamic model of cooperation and competition in repeated dyadic interactions. Two experiments investigated psychological factors driving cooperation in 20 rounds of a Centipede game with significant monetary incentives and anonymous and random re-pairing of players after every round. The main purpose of the research was to determine whether the pattern of strategic choices observed when no specific social value orientation is experimentally induced—the standard condition in all previous investigations of behavior in the Centipede and most other experimental games—is essentially individualistic, the orthodox game-theoretic assumption being that players are individualistically motivated in the absence of any specific motivational induction. Participants in whom no specific state social value orientation was induced exhibited moderately non-cooperative play that differed significantly from the pattern found when an individualistic orientation was induced. In both experiments, the neutral treatment condition, in which no orientation was induced, elicited competitive behavior resembling behavior in the condition in which a competitive orientation was explicitly induced. Trait social value orientation, measured with a questionnaire, influenced cooperation differently depending on the experimentally induced state social value orientation. Cooperative trait social value orientation was a significant predictor of cooperation and, to a lesser degree, experimentally induced competitive orientation was a significant predictor of non-cooperation. The experimental results imply that the standard assumption of individualistic motivation in experimental games may not be valid, and that the results of such investigations need to take into account the possibility that players are competitively motivated. PMID:27010385

  20. Invasive mucinous adenocarcinoma with lepidic-predominant pattern coexisted with tuberculosis: a case report.

    PubMed

    Xu, Xinxin; Guo, Yinshi; Li, Qiuying; Yang, Ling; Kang, Jianqiang

    2018-06-01

    We observed a rare case of invasive mucinous adenocarcinoma (IMA) with a lepidic-predominant pattern accompanied by pulmonary tuberculosis. An 85-year-old man with repeated cough and sputum was admitted to Xinhua Hospital. T-SPOT test result was 212 pg/ml (reference value of negative is < 14 pg/ml), Mycobacterium tuberculosis culture was positive, and tuberculin skin test (PPD) was negative (skin induration < 5 mm). The patient was treated with several courses of antibiotics and anti-tuberculosis treatments. Repeated chest CT scans showed disease progression. Bronchoscopy yielded negative results. PET-CT scans showed negative results. A percutaneous lung biopsy revealed mucin-secreting cells lining the alveolar walls. IMA with a lepidic-predominant pattern was diagnosed after invasiveness was found after experimental treatments. Simultaneous occurrence of pulmonary tuberculosis and lung cancer are common; however, the present case of IMA having a lepidic-predominant pattern and coexisting with active tuberculosis has not been reported yet.

  1. Finger Vein Recognition Using Local Line Binary Pattern

    PubMed Central

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670

  2. Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2015-11-01

    Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.

  3. An experimental study of miscible viscous fingering of annular ring

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Othman, Hamirul Bin; Mishra, Manoranjan

    2017-11-01

    Understanding the viscous fingering (VF) dynamics of finite width sample is important in the fields especially such as liquid chromatography and groundwater contamination and mixing in microfluidics. In this paper, we experimentally investigate such hydrodynamical morphology of VF using a Hele-Shaw flow system in which a miscible annular ring of fluid is displaced radially. Experiments are performed to investigate the effects of the sample volume, the effects of dispersion and log mobility ratio R on the dynamics of VF pattern and onset of such instability. Depending whether the finite width ring is more or less viscous than the carrier fluid, the log mobility ratio R becomes positive or negative respectively. The experiments are successfully conducted to obtain the VF patterns for R>0 and R<0, of the finite annular ring at the inner and outer radial interfaces, respectively. It is found that in the radial displacement, the inward finger moves slower than the outward finger. The experimental results are found to be qualitatively in good agreement with the corresponding linear stability analysis and non-linear simulations results available in the literature.

  4. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  5. Assessment of the line transect method: an examination of the spatial patterns of down and standing dead wood

    Treesearch

    Duncan C. Lutes

    2002-01-01

    The line transect method, its underlying assumptions, and the spatial patterning of down and standing pieces of dead wood were examined at the Tenderfoot Creek Experimental Forest in central Montana. The accuracy of the line transect method was not determined due to conflicting results of t-tests and ordinary least squares regression. In most instances down pieces were...

  6. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  7. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  8. Novel wearable-type biometric devices based on skin tissue optics with multispectral LED-photodiode matrix

    NASA Astrophysics Data System (ADS)

    Jo, Young Chang; Kim, Hae Na; Kang, Jae Hwan; Hong, Hyuck Ki; Choi, Yeon Shik; Jung, Suk Won; Kim, Sung Phil

    2017-04-01

    In this study, we examined the possibility of using a multispectral skin photomatrix (MSP) module as a novel biometric device. The MSP device measures optical patterns of the wrist skin tissue. Optical patterns consist of 2 × 8 photocurrent intensities of photodiode arrays, which are generated by optical transmission and diffuse reflection of photons from LED light sources with variable wavelengths into the wrist skin tissue. Optical patterns detected by the MSP device provide information on both the surface and subsurface characteristics of the human skin tissue. We found that in the 21 subjects we studied, they showed their unique characteristics, as determined using several wavelengths of light. The experimental results show that the best personal identification accuracy can be acquired using a combination of infrared light and yellow light. This novel biometric device, the MSP module, exhibited an excellent false acceptance rate (FAR) of 0.3% and a false rejection rate (FRR) of 0.0%, which are better than those of commercialized biometric devices such as a fingerprint biometric system. From these experimental results, we found that people exhibit unique optical patterns of their inner-wrist skin tissue and this uniqueness could be used for developing novel high-accuracy personal identification devices.

  9. An electrical resistivity-based method for investigation of subsurface structure

    NASA Astrophysics Data System (ADS)

    Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.

    2017-12-01

    Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.

  10. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  11. Evolution of antero‐posterior patterning of the limb: Insights from the chick

    PubMed Central

    2017-01-01

    Summary The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero‐posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero‐posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero‐posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero‐posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods. PMID:28734068

  12. Shrinkage Prediction for the Investment Casting of Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  13. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side

    NASA Astrophysics Data System (ADS)

    Huang, Lihao; Li, Gang; Tao, Leren

    2016-07-01

    Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.

  14. Bone microstructure and developmental plasticity in birds and other dinosaurs.

    PubMed

    Starck, J Matthias; Chinsamy, Anusuya

    2002-12-01

    Patterns of bone microstructure have frequently been used to deduce dynamics and processes of growth in extant and fossil tetrapods. Often, the various types of primary bone tissue have been associated with different bone deposition rates and more recently such deductions have extended to patterns observed in dinosaur bone microstructure. These previous studies are challenged by the findings of the current research, which integrates an experimental neontological approach and a paleontological comparison. We use tetracycline labeling and morphometry to study the variability of bone deposition rates in Japanese quail (Coturnix japonica) growing under different experimental conditions. We compare resulting patterns in bone microstructure with those found in fossil birds and other dinosaurs. We found that a single type of primary bone varies significantly in rates of growth in response to environmental conditions. Ranging between 10-50 microm per day, rates of growth overlap with the full range of bone deposition rates that were previously associated with different patterns of bone histology. Bone formation rate was significantly affected by environmental/experimental conditions, skeletal element, and age. In the quail, the experimental conditions did not result in formation of lines of arrested growth (LAGs). Because of the observed variation of bone deposition rates in response to variation in environmental conditions, we conclude that bone deposition rates measured in extant birds cannot simply be extrapolated to their fossil relatives. Additionally, we observe the variable incidence of LAGs and annuli among several dinosaur species, including fossil birds, extant sauropsids, as well as nonmammalian synapsids, and some extant mammals. This suggests that the ancestral condition of the response of bone to environmental conditions was variable. We propose that such developmental plasticity in modern birds may be reduced in association with the shortened developmental time during the later evolution of the ornithurine birds. Copyright 2002 Wiley-Liss, Inc.

  15. Proposal on Calculation of Ventilation Threshold Using Non-contact Respiration Measurement with Pattern Light Projection

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Ichimura, Shiro; Fujiwara, Toyoki; Kiyooka, Satoru; Koshiji, Kohji; Tsuzuki, Keishi; Nakamura, Hidetoshi; Fujimoto, Hideo

    We proposed a calculation method of the ventilation threshold using the non-contact respiration measurement with dot-matrix pattern light projection under pedaling exercise. The validity and effectiveness of our proposed method is examined by simultaneous measurement with the expiration gas analyzer. The experimental result showed that the correlation existed between the quasi ventilation thresholds calculated by our proposed method and the ventilation thresholds calculated by the expiration gas analyzer. This result indicates the possibility of the non-contact measurement of the ventilation threshold by the proposed method.

  16. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle

    NASA Astrophysics Data System (ADS)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo

    2015-12-01

    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  17. Parallel transmission RF pulse design for eddy current correction at ultra high field.

    PubMed

    Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando

    2012-08-01

    Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.

  18. Proactive transfer of learning depends on the evolution of prior learned task in memory.

    PubMed

    Tallet, Jessica; Kostrubiec, Viviane; Zanone, Pier-Giorgio

    2010-06-01

    The aim of the present study was to investigate the processes underlying the proactive interference effect using bimanual coordination. Our rationale was that interference would only occur when the prior learned A coordination pattern enters in competition with the required subsequent B pattern. We hypothesized that competition would arise only if the A pattern persists in memory before introducing the B pattern. In the experimental group, both A and B patterns were practiced and recalled, whereas in the control group only the B pattern was practiced and recalled. In Experiment 1, which involved initially bistable participants, the persistence of the A pattern led to interference, while, surprisingly, the A pattern forgetting entailed facilitation. In Experiment 2, which involved initially tristable participants, no such transfer effect was found. The apparently contradictory results can be interpreted coherently in the light of dynamical principles of learning. (c) 2010 Elsevier B.V. All rights reserved.

  19. Low gravity transfer line chilldown

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, Masahiro

    1992-01-01

    The progress to date is presented in providing predictive capabilities for the transfer line chilldown problem in low gravity environment. A low gravity experimental set up was designed and flown onboard the NASA/KC-135 airplane. Some results of this experimental effort are presented. The cooling liquid for these experiments was liquid nitrogen. The boiling phenomenon was investigated in this case using flow visualization techniques as well as recording wall temperatures. The flow field was established by injecting cold liquid in a heated tube whose temperature was set above saturation values. The tubes were vertically supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  20. Study of a vibrating plate: comparison between experimental (ESPI) and analytical results

    NASA Astrophysics Data System (ADS)

    Romero, G.; Alvarez, L.; Alanís, E.; Nallim, L.; Grossi, R.

    2003-07-01

    Real-time electronic speckle pattern interferometry (ESPI) was used for tuning and visualization of natural frequencies of a trapezoidal plate. The plate was excited to resonant vibration by a sinusoidal acoustical source, which provided a continuous range of audio frequencies. Fringe patterns produced during the time-average recording of the vibrating plate—corresponding to several resonant frequencies—were registered. From these interferograms, calculations of vibrational amplitudes by means of zero-order Bessel functions were performed in some particular cases. The system was also studied analytically. The analytical approach developed is based on the Rayleigh-Ritz method and on the use of non-orthogonal right triangular co-ordinates. The deflection of the plate is approximated by a set of beam characteristic orthogonal polynomials generated by using the Gram-Schmidt procedure. A high degree of correlation between computational analysis and experimental results was observed.

  1. Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns.

    PubMed

    Kelasidi, Eleni; Liljebäck, Pål; Pettersen, Kristin Y; Gravdahl, Jan T

    2015-01-01

    Underwater snake robots offer many interesting capabilities for underwater operations. The long and slender structure of such robots provide superior capabilities for access through narrow openings and within confined areas. This is interesting for inspection and monitoring operations, for instance within the subsea oil and gas industry and within marine archeology. In addition, underwater snake robots can provide both inspection and intervention capabilities and are thus interesting candidates for the next generation inspection and intervention AUVs. Furthermore, bioinspired locomotion through oscillatory gaits, like lateral undulation and eel-like motion, is interesting from an energy efficiency point of view. Increasing the motion efficiency in terms of the achieved forward speed by improving the method of propulsion is a key issue for underwater robots. Moreover, energy efficiency is one of the main challenges for long-term autonomy of these systems. In this study, we will consider both these two aspects of efficiency. This paper considers the energy efficiency of swimming snake robots by presenting and experimentally investigating fundamental properties of the velocity and the power consumption of an underwater snake robot for both lateral undulation and eel-like motion patterns. In particular, we investigate the relationship between the parameters of the gait patterns, the forward velocity and the energy consumption for different motion patterns. The simulation and experimental results are seen to support the theoretical findings.

  2. Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite

    NASA Astrophysics Data System (ADS)

    Arnaboldi, S.; Bassani, P.; Biffi, C. A.; Tuissi, A.; Carnevale, M.; Lecis, N.; Loconte, A.; Previtali, B.

    2011-07-01

    In this article, an advanced laminated composite is developed, combining the high damping properties of shape memory alloy (SMA) with mechanical properties and light weight of a glass-fiber reinforced polymer. The composite is formed by stacking a glass-fiber reinforced epoxy core between two thin patterned strips of SMA alloy, and two further layers of fiber-glass reinforced epoxy. The bars of the laminated composite were assembled and cured in autoclave. The patterning was designed to enhance the interface adhesion between matrix and SMA inserts and optimally exploit the damping capacity of the SMA thin ribbons. The patterned ribbons of the SMA alloy were cut by means of a pulsed fiber laser source. Damping properties at different amplitudes on full scale samples were investigated at room temperature with a universal testing machine through dynamic tension tests, while temperature dependence was investigated by dynamic mechanical analyses (DMA) on smaller samples. Experimental results were used in conjunction with FEM analysis to optimize the geometry of the inserts. Experimental decay tests on the laminated composite have been carried out to identify the adimensional damping value related to their first flexural mode.

  3. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  4. Experimental Verification of Modeled Thermal Distribution Produced by a Piston Source in Physiotherapy Ultrasound

    PubMed Central

    Lopez-Haro, S. A.; Leija, L.

    2016-01-01

    Objectives. To present a quantitative comparison of thermal patterns produced by the piston-in-a-baffle approach with those generated by a physiotherapy ultrasonic device and to show the dependency among thermal patterns and acoustic intensity distributions. Methods. The finite element (FE) method was used to model an ideal acoustic field and the produced thermal pattern to be compared with the experimental acoustic and temperature distributions produced by a real ultrasonic applicator. A thermal model using the measured acoustic profile as input is also presented for comparison. Temperature measurements were carried out with thermocouples inserted in muscle phantom. The insertion place of thermocouples was monitored with ultrasound imaging. Results. Modeled and measured thermal profiles were compared within the first 10 cm of depth. The ideal acoustic field did not adequately represent the measured field having different temperature profiles (errors 10% to 20%). Experimental field was concentrated near the transducer producing a region with higher temperatures, while the modeled ideal temperature was linearly distributed along the depth. The error was reduced to 7% when introducing the measured acoustic field as the input variable in the FE temperature modeling. Conclusions. Temperature distributions are strongly related to the acoustic field distributions. PMID:27999801

  5. Evidence of different underlying processes in pattern recall and decision-making.

    PubMed

    Gorman, Adam D; Abernethy, Bruce; Farrow, Damian

    2015-01-01

    The visual search characteristics of expert and novice basketball players were recorded during pattern recall and decision-making tasks to determine whether the two tasks shared common visual-perceptual processing strategies. The order in which participants entered the pattern elements in the recall task was also analysed to further examine the nature of the visual-perceptual strategies and the relative emphasis placed upon particular pattern features. The experts demonstrated superior performance across the recall and decision-making tasks [see also Gorman, A. D., Abernethy, B., & Farrow, D. (2012). Classical pattern recall tests and the prospective nature of expert performance. The Quarterly Journal of Experimental Psychology, 65, 1151-1160; Gorman, A. D., Abernethy, B., & Farrow, D. (2013a). Is the relationship between pattern recall and decision-making influenced by anticipatory recall? The Quarterly Journal of Experimental Psychology, 66, 2219-2236)] but a number of significant differences in the visual search data highlighted disparities in the processing strategies, suggesting that recall skill may utilize different underlying visual-perceptual processes than those required for accurate decision-making performance in the natural setting. Performance on the recall task was characterized by a proximal-to-distal order of entry of the pattern elements with participants tending to enter the players located closest to the ball carrier earlier than those located more distal to the ball carrier. The results provide further evidence of the underlying perceptual processes employed by experts when extracting visual information from complex and dynamic patterns.

  6. Progressing from Light Experimentation to Heavy Episodic Drinking in Early and Middle Adolescence

    PubMed Central

    Guilamo-Ramos, Vincent; Turrisi, Rob; Jaccard, James; Wood, Elizabeth; Gonzalez, Bernardo

    2010-01-01

    Objective Few studies have examined psychological variables related to changes in drinking patterns from light experimentation with alcohol to heavy episodic drinking in early and middle adolescence. The present study examined parental and peer influences, gender and grade level as predictors of such changes in adolescent alcohol consumption. Method Approximately 1,420 light drinkers were analyzed from Wave 1 of the National Longitudinal Study of Adolescent Health (Add Health). Heavy episodic drinking activity was assessed 1 year later. Results Gender differences in transitions to heavy episodic drinking were observed, with males being more likely than females to make a transition. Parent parameter setting and communication variables, as well as peer variables at different grade levels, buffered these gender differences. Conclusions Adolescents who are light experimenters represent a high-risk group as a consequence of their initial consumption tendencies. Some of these adolescents graduated beyond simple experimentation and moved into patterns of consumption that could be considered dangerous. Our analyses implicated an array of parental-based buffers: parent involvement in the adolescent’s life, development of good communication patterns and expressions of warmth and affection. Minimizing associations with peers who consume alcohol may also have a buffering effect. There was evidence that these buffers may dampen gender differences not so much by affecting female drinking tendencies as by keeping males at reduced levels of alcohol consumption comparable to those of females. PMID:15376824

  7. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  9. Resin Flow Behavior Simulation of Grooved Foam Sandwich Composites with the Vacuum Assisted Resin Infusion (VARI) Molding Process

    PubMed Central

    Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo

    2012-01-01

    The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.

  10. Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons.

    PubMed

    Vishnevsky, D V; Flayac, H; Nalitov, A V; Solnyshkov, D D; Gippius, N A; Malpuech, G

    2013-06-14

    We provide a theoretical description of the polarization pattern and phase singularities experimentally evidenced recently in a condensate of indirect excitons [H. High et al., Nature 483, 584 (2012)]. We show that the averaging of the electron and hole orbital motion leads to a comparable spin-orbit interaction for both types of carriers. We demonstrate that the interplay between a radial coherent flux of bright indirect excitons and the Dresselhaus spin-orbit interaction results in the formation of spin domains and of topological defects similar to Skyrmions. We reproduce qualitatively all the features of the experimental data and obtain a polarization pattern as in the optical spin-Hall effect despite the different symmetry of the spin-orbit interactions.

  11. Synchronization of hyperexcitable systems with phase-repulsive coupling

    NASA Astrophysics Data System (ADS)

    Balázsi, Gábor; Cornell-Bell, Ann; Neiman, Alexander B.; Moss, Frank

    2001-10-01

    We study two-dimensional arrays of FitzHugh-Nagumo elements with nearest-neighbor coupling from the viewpoint of synchronization. The elements are diffusively coupled. By varying the diffusion coefficient from positive to negative values, interesting synchronization patterns are observed. The results of the simulations resemble the intracellular oscillation patterns observed in cultured human epileptic astrocytes. Three measures are proposed to determine the degree of synchronization (or coupling) in both the simulated and the experimental system.

  12. 15O(alpha,gamma)19Ne breakout reaction and impact on X-ray bursts.

    PubMed

    Tan, W P; Fisker, J L; Görres, J; Couder, M; Wiescher, M

    2007-06-15

    The breakout reaction 15O(alpha,gamma)19Ne, which regulates the flow between the hot CNO cycle and the rp process, is critical for the explanation of the burst amplitude and periodicity of x-ray bursters. We report on the first successful measurement of the critical alpha-decay branching ratios of relevant states in 19Ne populated via 19F(3He,t)19Ne. Based on the experimental results and our previous lifetime measurements of these states, we derive the first experimental rate of 15O(alpha,gamma)19Ne. The impact of our experimental results on the burst pattern and periodicity for a range of accretion rates is analyzed.

  13. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    PubMed

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  14. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saeed; Vahdatazad, Nader; Liaghat, Gholamhossein

    2018-03-01

    This paper deals with the energy absorption characterization of functionally graded foam (FGF) filled tubes under axial crushing loads by experimental method. The FGF tubes are filled axially by gradient layers of polyurethane foams with different densities. The mechanical properties of the polyurethane foams are firstly obtained from axial compressive tests. Then, the quasi-static compressive tests are carried out for empty tubes, uniform foam filled tubes and FGF filled tubes. Before to present the experimental test results, a nonlinear FEM simulation of the FGF filled tube is carried out in ABAQUS software to gain more insight into the crush deformation patterns, as well as the energy absorption capability of the FGF filled tube. A good agreement between the experimental and simulation results is observed. Finally, the results of experimental test show that an FGF filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled tube with the same weight.

  15. Successional colonization of temporary streams: An experimental approach using aquatic insects

    NASA Astrophysics Data System (ADS)

    Godoy, Bruno Spacek; Queiroz, Luciano Lopes; Lodi, Sara; Nascimento de Jesus, Jhonathan Diego; Oliveira, Leandro Gonçalves

    2016-11-01

    The metacommunity concept studies the processes that structure communities on local and regional scales. This concept is useful to assess spatial variability. However, temporal patterns (e.g., ecological succession and colonization) are neglected in metacommunity studies, since such patterns require temporally extensive, and hard to execute studies. We used experimental habitats in temporary streams located within the Brazilian Cerrado to evaluate the importance of succession for the aquatic insect metacommunity. Five artificial habitats consisting of wrapped crushed rock were set transversally to the water flow in five streams. The habitats were sampled weekly to assess community composition, and replaced after sampling to identify new potential colonizers. We analyzed the accumulation of new colonizers after each week using a logistic model. We selected pairs of experimental habitats and estimated the Bray-Curtis dissimilarity index to assess the community composition trajectory during the experiment. We used the dissimilarity values in ANOVA tests, identifying the importance of time and space for the community. The number of new taxa stabilized in the third week, and we estimated a weekly increase of 1.61 new taxa in the community after stabilization. The overall pattern was a small change on community composition, but one stream had a higher weekly turnover. Our results showed a relevant influence of time in the initial communities of aquatic insects of temporary streams. However, we must observe the temporal pattern in a spatial context, once different streams have different successional history regarding number of taxa and community turnover. We highlight the importance of aerial dispersal and movement to seek oviposition sites as an important factor in determining colonization patterns.

  16. Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies.

    PubMed

    Luján, Emmanuel; Soto, Daniela; Rosito, María S; Soba, Alejandro; Guerra, Liliana N; Calvo, Juan C; Marshall, Guillermo; Suárez, Cecilia

    2018-05-09

    Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.

  17. Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements

    PubMed Central

    Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf

    2012-01-01

    Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370

  18. On the orientation of stripes in fish skin patterning.

    PubMed

    Míguez, David G; Muñuzuri, Alberto P

    2006-11-20

    This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.

  19. The second-order interference of two independent single-mode He-Ne lasers

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  20. Soft tissue modelling with conical springs.

    PubMed

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  1. Generation of multifocal irradiance patterns by using complex Fresnel holograms.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús

    2018-03-01

    We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

  2. Blood Back Spatter Caused by a Blunt Bullet Gunshot: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Comiskey, Patrick; Yarin, Alexander; Kim, Sungu; Attinger, Daniel

    A theoretical model describing the blood back spatter pattern resulting from a blunt bullet gunshot is proposed and compared to experimental data. It is shown that the blunt bullet impact results in blood accelerating towards air opposite of the bullet motion creating a situation for the Rayleigh-Taylor instability which determines droplet sizes and initial velocities. Then, drop trajectories can be predicted accounting for all forces involved: air drag and gravity forces, as well as for the collective effect of drop-drop interaction through air which diminishes the drag force on drops moving in the wake of the others. Experimental data was acquired by shooting a blunt bullet into a porous substrate impregnated with swine blood and the spatter pattern was collected on a vertical surface located between the target and the shooter. The spatter pattern was analyzed for the number of droplets, the area of blood stains, total stain area, and location. Comparisons with the theoretical results reveal satisfactory agreement. The theory also predicts the impact angle at the collection surface, the Weber number corresponding to the drop impact onto the collection surface, and the stain ellipticity. Support of this work by the US National Institute of Justice (award NIJ 2014-DN-BX-K036) is greatly appreciated.

  3. Unifying cost and information in information-theoretic competitive learning.

    PubMed

    Kamimura, Ryotaro

    2005-01-01

    In this paper, we introduce costs into the framework of information maximization and try to maximize the ratio of information to its associated cost. We have shown that competitive learning is realized by maximizing mutual information between input patterns and competitive units. One shortcoming of the method is that maximizing information does not necessarily produce representations faithful to input patterns. Information maximizing primarily focuses on some parts of input patterns that are used to distinguish between patterns. Therefore, we introduce the cost, which represents average distance between input patterns and connection weights. By minimizing the cost, final connection weights reflect input patterns well. We applied the method to a political data analysis, a voting attitude problem and a Wisconsin cancer problem. Experimental results confirmed that, when the cost was introduced, representations faithful to input patterns were obtained. In addition, improved generalization performance was obtained within a relatively short learning time.

  4. Pseudo-polar drive patterns for brain electrical impedance tomography.

    PubMed

    Shi, Xuetao; Dong, Xiuzhen; Shuai, Wanjun; You, Fusheng; Fu, Feng; Liu, Ruigang

    2006-11-01

    Brain electrical impedance tomography (EIT) is a difficult task as brain tissues are enclosed by the skull of high resistance and cerebrospinal fluid (CSF) of low resistance, which makes internal resistivity information more difficult to extract. In order to seek a single source drive pattern that is more suitable for brain EIT, we built a more realistic experimental setting that simulates a head with the resistivity of the scalp, skull, CSF and brain, and compared the performance of adjacent, cross, polar and pseudo-polar drive patterns in terms of the boundary voltage dynamic range, independent measurement number, total boundary voltage changes and anti-noise performance based on it. The results demonstrate that the pseudo-polar drive pattern is optimal in all the aspects except for the dynamic range. The polar and cross drive patterns come next, and the adjacent drive pattern is the worst. Therefore, the pseudo-polar drive pattern should be chosen for brain EIT.

  5. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  6. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning.

    PubMed

    Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni

    2015-11-11

    Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%.

  7. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning

    PubMed Central

    Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni

    2015-01-01

    Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%. PMID:26569250

  8. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  9. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  10. Self-interferometric technique for visualization of phase patterns encoded onto a liquid-crystal display

    NASA Astrophysics Data System (ADS)

    Bentley, Joel B.; Davis, Jeffrey A.; Albero, Jorge; Moreno, Ignacio

    2006-10-01

    We report a new self-interferometric technique for visualizing phase patterns that are encoded onto a phase-only liquid-crystal display (LCD). In our approach, the LCD generates both the desired object beam as well as the reference beam. Normally the phase patterns are encoded with a phase depth of 2π radians, and all of the incident energy is diffracted into the first-order beam. However, by reducing this phase depth, we can generate an additional zero-order diffracted beam, which acts as the reference beam. We work at distances such that these two patterns spatially interfere, producing an interference pattern that displays the encoded phase pattern. This approach was used recently to display the phase vortices of helical Ince-Gaussian beams. Here we show additional experimental results and analyze the process.

  11. An Experimental Investigation of Intermittent Flow and Strain Burst Scaling Behavior in LiF Crystals During Microcompression Testing (Preprint)

    DTIC Science & Technology

    2010-01-01

    or in more general terms, as a result of dislocation nucleation, motion, multiplication, and interaction). Nonetheless, state-of-the-art simulation ...computational power, together with under-developed physics within the simulation codes (i.e. cross-slip, climb, crystal rotations and patterning to...name a few), prevent realistic dislocation simulations over temporal and spatial domains that are readily accessible by experimental methods [9, 10

  12. Comparing performances of logistic regression and neural networks for predicting melatonin excretion patterns in the rat exposed to ELF magnetic fields.

    PubMed

    Jahandideh, Samad; Abdolmaleki, Parviz; Movahedi, Mohammad Mehdi

    2010-02-01

    Various studies have been reported on the bioeffects of magnetic field exposure; however, no consensus or guideline is available for experimental designs relating to exposure conditions as yet. In this study, logistic regression (LR) and artificial neural networks (ANNs) were used in order to analyze and predict the melatonin excretion patterns in the rat exposed to extremely low frequency magnetic fields (ELF-MF). Subsequently, on a database containing 33 experiments, performances of LR and ANNs were compared through resubstitution and jackknife tests. Predictor variables were more effective parameters and included frequency, polarization, exposure duration, and strength of magnetic fields. Also, five performance measures including accuracy, sensitivity, specificity, Matthew's Correlation Coefficient (MCC) and normalized percentage, better than random (S) were used to evaluate the performance of models. The LR as a conventional model obtained poor prediction performance. Nonetheless, LR distinguished the duration of magnetic fields as a statistically significant parameter. Also, horizontal polarization of magnetic fields with the highest logit coefficient (or parameter estimate) with negative sign was found to be the strongest indicator for experimental designs relating to exposure conditions. This means that each experiment with horizontal polarization of magnetic fields has a higher probability to result in "not changed melatonin level" pattern. On the other hand, ANNs, a more powerful model which has not been introduced in predicting melatonin excretion patterns in the rat exposed to ELF-MF, showed high performance measure values and higher reliability, especially obtaining 0.55 value of MCC through jackknife tests. Obtained results showed that such predictor models are promising and may play a useful role in defining guidelines for experimental designs relating to exposure conditions. In conclusion, analysis of the bioelectromagnetic data could result in finding a relationship between electromagnetic fields and different biological processes. (c) 2009 Wiley-Liss, Inc.

  13. Design, Baseline Results of Irbid Longitudinal, School-Based Smoking Study

    ERIC Educational Resources Information Center

    Mzayek, Fawaz; Khader, Yousef; Eissenberg, Thomas; Ward, Kenneth D.; Maziak, Wasim

    2011-01-01

    Objective: To compare patterns of water pipe and cigarette smoking in an eastern Mediterranean country. Methods: In 2008, 1781 out of 1877 seventh graders enrolled in 19 randomly selected schools in Irbid, Jordan, were surveyed. Results: Experimentation with and current water pipe smoking were more prevalent than cigarette smoking (boys: 38.7% vs…

  14. A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves

    PubMed Central

    Digiuni, Simona; Schellmann, Swen; Geier, Florian; Greese, Bettina; Pesch, Martina; Wester, Katja; Dartan, Burcu; Mach, Valerie; Srinivas, Bhylahalli Purushottam; Timmer, Jens; Fleck, Christian; Hulskamp, Martin

    2008-01-01

    Trichome patterning in Arabidopsis serves as a model system for de novo pattern formation in plants. It is thought to typify the theoretical activator–inhibitor mechanism, although this hypothesis has never been challenged by a combined experimental and theoretical approach. By integrating the key genetic and molecular data of the trichome patterning system, we developed a new theoretical model that allows the direct testing of the effect of experimental interventions and in the prediction of patterning phenotypes. We show experimentally that the trichome inhibitor TRIPTYCHON is transcriptionally activated by the known positive regulators GLABRA1 and GLABRA3. Further, we demonstrate by particle bombardment of protein fusions with GFP that TRIPTYCHON and CAPRICE but not GLABRA1 and GLABRA3 can move between cells. Finally, theoretical considerations suggest promoter swapping and basal overexpression experiments by means of which we are able to discriminate three biologically meaningful variants of the trichome patterning model. Our study demonstrates that the mutual interplay between theory and experiment can reveal a new level of understanding of how biochemical mechanisms can drive biological patterning processes. PMID:18766177

  15. Compositional symbol grounding for motor patterns.

    PubMed

    Greco, Alberto; Caneva, Claudio

    2010-01-01

    We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.

  16. Experimental study on the seismic performance of new sandwich masonry walls

    NASA Astrophysics Data System (ADS)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  17. Gas Source Localization via Behaviour Based Mobile Robot and Weighted Arithmetic Mean

    NASA Astrophysics Data System (ADS)

    Yeon, Ahmad Shakaff Ali; Kamarudin, Kamarulzaman; Visvanathan, Retnam; Mamduh Syed Zakaria, Syed Muhammad; Zakaria, Ammar; Munirah Kamarudin, Latifah

    2018-03-01

    This work is concerned with the localization of gas source in dynamic indoor environment using a single mobile robot system. Algorithms such as Braitenberg, Zig-Zag and the combination of the two were implemented on the mobile robot as gas plume searching and tracing behaviours. To calculate the gas source location, a weighted arithmetic mean strategy was used. All experiments were done on an experimental testbed consisting of a large gas sensor array (LGSA) to monitor real-time gas concentration within the testbed. Ethanol gas was released within the testbed and the source location was marked using a pattern that can be tracked by a pattern tracking system. A pattern template was also mounted on the mobile robot to track the trajectory of the mobile robot. Measurements taken by the mobile robot and the LGSA were then compared to verify the experiments. A combined total of 36.5 hours of real time experimental runs were done and the typical results from such experiments were presented in this paper. From the results, we obtained gas source localization errors between 0.4m to 1.2m from the real source location.

  18. Reasons for Marijuana Use Among Young Adults and Long-Term Associations With Marijuana Use and Problems

    PubMed Central

    Patrick, Megan E.; Bray, Bethany C.; Berglund, Patricia A.

    2016-01-01

    Objective: This study examines reasons for marijuana use among young adults age 19/20 in the United States and the extent to which patterns of reasons are associated with marijuana use and problems 15 years later. Method: The national Monitoring the Future study provided data on marijuana users at age 19/20 who were also surveyed at age 35 (n = 2,288; 50% women; 83% White). Latent class analysis was used to identify distinct patterns of reasons for marijuana use, which were then used as predictors of later marijuana use and problems. Results: Five latent classes described the following patterns of reasons for marijuana use at age 19/20: Experimental, Get High + Relax, Typical, Typical + Escape, and Coping + Drug Use. Highest risk for later marijuana use and problems was found for people with Coping + Drug Use and Get High + Relax reasons in young adulthood; those with Experimental reasons were at lowest risk for later use or problems. Conclusions: Coping and getting high emerged as strong predictors of later marijuana use and problems. Results support the predictive value of self-reported reasons for using marijuana among young adults. PMID:27797689

  19. A Comparative Study of Random Patterns for Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Stoilov, G.; Kavardzhikov, V.; Pashkouleva, D.

    2012-06-01

    Digital Image Correlation (DIC) is a computer based image analysis technique utilizing random patterns, which finds applications in experimental mechanics of solids and structures. In this paper a comparative study of three simulated random patterns is done. One of them is generated according to a new algorithm, introduced by the authors. A criterion for quantitative evaluation of random patterns after the calculation of their autocorrelation functions is introduced. The patterns' deformations are simulated numerically and realized experimentally. The displacements are measured by using the DIC method. Tensile tests are performed after printing the generated random patterns on surfaces of standard iron sheet specimens. It is found that the new designed random pattern keeps relatively good quality until reaching 20% deformation.

  20. 2D Analytical Model for the Directivity Prediction of Ultrasonic Contact Type Transducers in the Generation of Guided Waves.

    PubMed

    Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas

    2018-03-26

    In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.

  1. The genetics of geometry

    PubMed Central

    Coen, Enrico; Rolland-Lagan, Anne-Gaëlle; Matthews, Mark; Bangham, J. Andrew; Prusinkiewicz, Przemyslaw

    2004-01-01

    Although much progress has been made in understanding how gene expression patterns are established during development, much less is known about how these patterns are related to the growth of biological shapes. Here we describe conceptual and experimental approaches to bridging this gap, with particular reference to plant development where lack of cell movement simplifies matters. Growth and shape change in plants can be fully described with four types of regional parameter: growth rate, anisotropy, direction, and rotation. A key requirement is to understand how these parameters both influence and respond to the action of genes. This can be addressed by using mechanistic models that capture interactions among three components: regional identities, regionalizing morphogens, and polarizing morphogens. By incorporating these interactions within a growing framework, it is possible to generate shape changes and associated gene expression patterns according to particular hypotheses. The results can be compared with experimental observations of growth of normal and mutant forms, allowing further hypotheses and experiments to be formulated. We illustrate these principles with a study of snapdragon petal growth. PMID:14960734

  2. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  3. Baseline acoustic levels of the NASA Active Noise Control Fan rig

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.

    1996-01-01

    Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.

  4. Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi

    2001-10-01

    An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.

  5. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  6. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency.

    PubMed

    Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K; Brown, Ryan; Wiggins, Graham C; Lattanzi, Riccardo

    2016-02-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic ( B 1 ) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B 1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B 1 spatial distributions for surface coils and can provide guidance for RF engineers.

  7. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  8. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  9. Alternative mechanisms alter the emergent properties of self-organization in mussel beds

    PubMed Central

    Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan

    2012-01-01

    Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256

  10. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  11. Quantitative method for gait pattern detection based on fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Tong, Xinglin; Yu, Lie

    2017-03-01

    This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.

  12. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  13. Novel layered clustering-based approach for generating ensemble of classifiers.

    PubMed

    Rahman, Ashfaqur; Verma, Brijesh

    2011-05-01

    This paper introduces a novel concept for creating an ensemble of classifiers. The concept is based on generating an ensemble of classifiers through clustering of data at multiple layers. The ensemble classifier model generates a set of alternative clustering of a dataset at different layers by randomly initializing the clustering parameters and trains a set of base classifiers on the patterns at different clusters in different layers. A test pattern is classified by first finding the appropriate cluster at each layer and then using the corresponding base classifier. The decisions obtained at different layers are fused into a final verdict using majority voting. As the base classifiers are trained on overlapping patterns at different layers, the proposed approach achieves diversity among the individual classifiers. Identification of difficult-to-classify patterns through clustering as well as achievement of diversity through layering leads to better classification results as evidenced from the experimental results.

  14. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    NASA Astrophysics Data System (ADS)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  15. Experimental measurements on transverse vibration characteristics of piezoceramic rectangular plates by optical methods

    NASA Astrophysics Data System (ADS)

    Ma, Chien-Ching; Lin, Hsien-Yang

    2005-09-01

    This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.

  16. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.

    PubMed

    Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan

    2014-01-21

    Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.

  17. Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids

    NASA Technical Reports Server (NTRS)

    Adler, Laszlo; Cantrell, John H.; Yost, William T.

    2016-01-01

    Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.

  18. Infrared target recognition based on improved joint local ternary pattern

    NASA Astrophysics Data System (ADS)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  19. The development of methods for predicting and measuring distribution patterns of aerial sprays

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1979-01-01

    The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  20. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    PubMed Central

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  1. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  2. Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Guldén, M.; Hermanson, A.

    Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.

  3. Equipment for the Production of Wood-Polymeric Thermal Insulation Materials

    NASA Astrophysics Data System (ADS)

    Saldaev, Vladimir A.; Prosvirnikov, Dmitry B.; Stepanov, Vladislav V.; Sadrtdinov, Almaz R.; Kapustin, Alexey N.

    2016-08-01

    This article presents developed pilot-plant equipment for slabby patterns of wood- filled polyurethane foam insulation material and its specifications are presented. Based on the results of experimental studies of pilot models the allowable range of equipment's technological parameters was defined.

  4. Scramjet Fuel Injection Array Optimization Utilizing Mixed Variable Pattern Search With Kriging Surrogates

    DTIC Science & Technology

    2008-03-01

    injector con- figurations for Scramjet applications.” International Journal of Heat and Mass Transfer 49: 3634–3644 (2006). 8. Anderson, C.D...Experimental Attainment of Optimal Conditions,” Journal of the Royal Statistical Society, B(13): 1–38, 1951. 19. Brewer, K.M. Exergy Methods for the Mission...second applies mvps to a new scramjet design in support of the Hypersonic International Flight Re- search Experimentation (hifire). The results

  5. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  6. Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection

    NASA Astrophysics Data System (ADS)

    Taji, S. G.; Parishwad, G. V.; Sane, N. K.

    2014-07-01

    This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52-5.78 W/m2 K) at 100 W for S = 5-12 mm. The ha is very small (1.12-1.8 W/m2 K) at 100 W for 2-4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2-4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8-10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is -0.32 %.

  7. Optical diffraction for measurements of nano-mechanical bending

    NASA Astrophysics Data System (ADS)

    Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel

    2016-06-01

    We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.

  8. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  9. Argon ion beam induced surface pattern formation on Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofsäss, H.; Bobes, O.; Zhang, K.

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°.more » We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.« less

  10. Dehydration kinetics and thermochemistry of selected hydrous phases, and simulated gas release pattern in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Ganguly, J.

    1992-01-01

    As part of our continued program of study on the volatile bearing phases and volatile resource potential of carbonaceous chondrite, results of our experimental studies on the dehydration kinetics of talc as a function of temperature and grain size (50 to 0.5 microns), equilibrium dehydration boundary of talc to 40 kbars, calorimetric study of enthalpy of formation of both natural and synthetic talc as a function of grain size, and preliminary results on the dehydration kinetics of epsomite are reported. In addition, theoretical calculations on the gas release pattern of Murchison meteorite, which is a C2(CM) carbonaceous chondrite, were performed. The kinetic study of talc leads to a dehydration rate constant for 40-50 microns size fraction of k = (3.23 x 10(exp 4))exp(-Q/RT)/min with the activation energy Q = 376 (plus or minus 20) kJ/mole. The dehydration rate was found to increase somewhat with decreasing grain size. The enthalpy of formation of talc from elements was measured to be -5896(10) kJ/mol. There was no measurable effect of grain size on the enthalpy beyond the limits of precision of the calorimetric studies. Also the calorimetric enthalpy of both synthetic and natural talc was found to be essentially the same, within the precision of measurements, although the natural talc had a slightly larger field of stability in our phase equilibrium studies. The high pressure experimental data the dehydration equilibrium of talc (talc = enstatite + coesite + H2O) is in strong disagreement with that calculated from the available thermochemical data, which were constrained to fit the low pressure experimental results. The calculated gas release pattern of Murchison meteorite were in reasonable agreement with that determined by stepwise heating in a gas chromatograph.

  11. Airborne antenna radiation pattern code user's manual

    NASA Technical Reports Server (NTRS)

    Burnside, Walter D.; Kim, Jacob J.; Grandchamp, Brett; Rojas, Roberto G.; Law, Philip

    1985-01-01

    The use of a newly developed computer code to analyze the radiation patterns of antennas mounted on a ellipsoid and in the presence of a set of finite flat plates is described. It is shown how the code allows the user to simulate a wide variety of complex electromagnetic radiation problems using the ellipsoid/plates model. The code has the capacity of calculating radiation patterns around an arbitrary conical cut specified by the user. The organization of the code, definition of input and output data, and numerous practical examples are also presented. The analysis is based on the Uniform Geometrical Theory of Diffraction (UTD), and most of the computed patterns are compared with experimental results to show the accuracy of this solution.

  12. Frequency guided methods for demodulation of a single fringe pattern.

    PubMed

    Wang, Haixia; Kemao, Qian

    2009-08-17

    Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America

  13. Histopathological study of experimental and natural infections by Trypanosoma cruzi in Didelphis marsupialis.

    PubMed

    Araujo Carreira, J C; Jansen, A M; Deane, M P; Lenzi, H L

    1996-01-01

    Didelphis marsupialis, the most important sylvatic reservoir of Trypanosoma cruzi, can also maintain in their anal scent glands the multiplicative forms only described in the intestinal tract of triatomine bugs. A study of 21 experimentally and 10 naturally infected opossums with T. cruzi was undertaken in order to establish the histopathological pattern under different conditions. Our results showed that the inflammation was predominantly lymphomacrophagic and more severe in the naturally infected animals but never as intense as those described in Chagas' disease or in other animal models. The parasitism in both groups was always mild with very scarce amastigote nests in the tissues. In the experimentally infected animals, the inflammation was directly related to the presence of amastigotes nests. Four 24 days-old animals, still in embryonic stage, showed multiple amastigotes nests and moderate inflammatory reactions, but even so they survived longer and presented less severe lesions than experimentally infected adult mice. Parasites were found in smooth, cardiac and/or predominantly striated muscles, as well as in nerve cells. Differing from the experimentally infected opossums parasitism in the naturally infected animals predominated in the heart, esophagus and stomach. Parasitism of the scent glands did not affect the histopathological pattern observed in extraglandular tissues.

  14. Patterns across multiple memories are identified over time.

    PubMed

    Richards, Blake A; Xia, Frances; Santoro, Adam; Husse, Jana; Woodin, Melanie A; Josselyn, Sheena A; Frankland, Paul W

    2014-07-01

    Memories are not static but continue to be processed after encoding. This is thought to allow the integration of related episodes via the identification of patterns. Although this idea lies at the heart of contemporary theories of systems consolidation, it has yet to be demonstrated experimentally. Using a modified water-maze paradigm in which platforms are drawn stochastically from a spatial distribution, we found that mice were better at matching platform distributions 30 d compared to 1 d after training. Post-training time-dependent improvements in pattern matching were associated with increased sensitivity to new platforms that conflicted with the pattern. Increased sensitivity to pattern conflict was reduced by pharmacogenetic inhibition of the medial prefrontal cortex (mPFC). These results indicate that pattern identification occurs over time, which can lead to conflicts between new information and existing knowledge that must be resolved, in part, by computations carried out in the mPFC.

  15. Saw-tooth pattern from flux jumps observed by high resolution M-H curves in MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeap; Lee, Hu-Jong; Jung, Myung-Hwa; Lee, Sung-Ik; Choi, Eun-Mi; Kang, W. N.

    2010-08-01

    While flux jumps have been observed in the magnetic hysteresis loops of superconductors, a saw-tooth pattern of the flux jump is known to appear only in a bulk superconductor. But in this study, we were able to observe the saw-tooth pattern in MgB2 thin film with the careful data acquisition method enhancing the data taking capability and report the details of the distribution of the field interval between jumps Bfj, and the size of the flux jump, Mfj. The theory based on Bean's model in the adiabatic approach was adapted and it was compared with experimental results. In addition, we observe the cross-over between the saw-tooth pattern and a rounded saw-tooth pattern, as a byproduct. A patterns diagram of the vortex jump was drawn on the H-T plane.

  16. Turing mechanism underlying a branching model for lung morphogenesis.

    PubMed

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  17. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    PubMed

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  18. Vibration characteristics of walls and a plate glass window representative of those of a wood-frame house

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1979-01-01

    Mechanical excitation was used, and measurements of acceleration response, natural frequencies, and nodal patterns were performed. Results indicate that the wall sections and the complete wall did not act as a unit in responding to sinusoidal vibration inputs. Calculated frequencies of the components that account for this independent behavior of the studs and face sheets agreed resonably well with experimental frequencies. Experimental vibrations of the plate glass window agreed with the calculated behavior, and responses of the window exposed to airplane flyover noise were readily correlated with the test results.

  19. Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam.

    PubMed

    Nicolas, F; Coëtmellec, S; Brunel, M; Allano, D; Lebrun, D; Janssen, A J E M

    2005-11-01

    The authors have studied the diffraction pattern produced by a particle field illuminated by an elliptic and astigmatic Gaussian beam. They demonstrate that the bidimensional fractional Fourier transformation is a mathematically suitable tool to analyse the diffraction pattern generated not only by a collimated plane wave [J. Opt. Soc. Am A 19, 1537 (2002)], but also by an elliptic and astigmatic Gaussian beam when two different fractional orders are considered. Simulations and experimental results are presented.

  20. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures. © 2011 Optical Society of America

  1. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  2. SOI layout decomposition for double patterning lithography on high-performance computer platforms

    NASA Astrophysics Data System (ADS)

    Verstov, Vladimir; Zinchenko, Lyudmila; Makarchuk, Vladimir

    2014-12-01

    In the paper silicon on insulator layout decomposition algorithms for the double patterning lithography on high performance computing platforms are discussed. Our approach is based on the use of a contradiction graph and a modified concurrent breadth-first search algorithm. We evaluate our technique on 45 nm Nangate Open Cell Library including non-Manhattan geometry. Experimental results show that our soft computing algorithms decompose layout successfully and a minimal distance between polygons in layout is increased.

  3. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  4. Axial jet mixing of ethanol in spherical containers during weightlessness

    NASA Technical Reports Server (NTRS)

    Audelott, J. C.

    1976-01-01

    An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter spherical containers in weightlessness. Complete liquid circulation flow patterns were easily established in containers that were less than half full of liquid, while for higher liquid fill conditions, vapor was drawn into the inlet of the simulated mixer unit. Increasing the liquid-jet or lowering the position at which the liquid jet entered the container caused increasing turbulence and bubble formation.

  5. Axial jet mixing of ethanol in cylindrical containers during weightlessness

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.

    1979-01-01

    An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter cylindrical tanks in weightlessness. A convex hemispherically ended tank and two Centaur liquid-hydrogen-tank models were used for the study. Four distinct liquid flow patterns were observed to be a function of the tank geometry, the liquid-jet velocity, the volume of liquid in the tank, and the location of the tube from which the liquid jet exited.

  6. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study.

    PubMed

    Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei

    2016-09-01

    We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.

  7. The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems

    NASA Astrophysics Data System (ADS)

    Morillo, Robin; Manz, Niklas

    We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.

  8. Periodic cracks and temperature-dependent stress in Mo/Si multilayers on Si substrates

    NASA Astrophysics Data System (ADS)

    Kravchenko, Grygoriy; Tran, Hai T.; Volinsky, Alex A.

    2018-07-01

    This work examines formation of the peculiar periodic crack patterns observed in the thermally loaded Mo/Si multilayers. Using the substrate curvature measurements, the macroscopic film stress evolution during thermal cycling was investigated. Then high-speed microscopic observation of crack propagation in the annealed Mo/Si multilayers was presented providing experimental evidence of the mechanism underlying formation of the periodic crack patterns. The origin of the peculiar periodic crack patterns was determined. They were observed to form by the slow crack propagation under quasi-static conditions as a result of the interaction between the channelling crack propagation and the advance of the delamination front.

  9. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  10. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates.

    PubMed

    Yang, Jing; Jiang, Shuoxing; Liu, Xiangrong; Pan, Linqiang; Zhang, Cheng

    2016-12-14

    In this study, an aptamer-substrate strategy is introduced to control programmable DNA origami pattern. Combined with DNA aptamer-substrate binding and DNAzyme-cutting, small DNA tiles were specifically controlled to fill into the predesigned DNA origami frame. Here, a set of DNA logic gates (OR, YES, and AND) are performed in response to the stimuli of adenosine triphosphate (ATP) and cocaine. The experimental results are confirmed by AFM imaging and time-dependent fluorescence changes, demonstrating that the geometric patterns are regulated in a controllable and programmable manner. Our approach provides a new platform for engineering programmable origami nanopatterns and constructing complex DNA nanodevices.

  11. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.

  12. Computed tomography of adult colonic intussusception: clinical and experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iko, B.O.; Teal, J.S.; Siram, S.M.

    1984-10-01

    The CT features of a case of adult ileocolic intussusception and of experimentally induced ileocolic, cecocolic, and colocolic intussusceptions are presented. Both the clinical and experimental cases demonstrated (1) target masses with enveloped, eccentrically located areas of low density and (2) interspersed low- and high-density stripes within the intussusception producing a layered or stratified pattern. This layered pattern of abdominal masses may be characteristic of intussusceptions regardless of location.

  13. Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.

    PubMed

    Golombeck, M A; Dössel, O; Raiser, J

    2003-09-01

    Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.

  14. Larval aquatic insect responses to cadmium and zinc in experimental streams

    USGS Publications Warehouse

    Mebane, Christopher A.; Schmidt, Travis S.; Balistrieri, Laurie S.

    2017-01-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration–response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pKa bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams.

  15. Cuisenaire Rods Go to College.

    ERIC Educational Resources Information Center

    Chinn, Phyllis; And Others

    1992-01-01

    Presents examples of questions and answers arising from a hands-on and exploratory approach to discrete mathematics using cuisenaire rods. Combinatorial questions about trains formed of cuisenaire rods provide the setting for discovering numerical patterns by experimentation and organizing the results using induction and successive differences.…

  16. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    PubMed

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  17. Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System

    PubMed Central

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  18. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  19. Long-term experimental loss of foundation species: consequences for dynamics at ecotones across heterogeneous landscapes

    USDA-ARS?s Scientific Manuscript database

    Long-term (> 13 years) patterns in dominance and community composition were examined following the experimental removal of one of three foundation species at an arid - semiarid biome transition zone. Objectives were to identify key processes influencing these patterns, and to predict future landscap...

  20. Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects

    NASA Astrophysics Data System (ADS)

    Neubecker, R.; Oppo, G.-L.; Thuering, B.; Tschudi, T.

    1995-07-01

    The use of liquid-crystal light valves (LCLV's) as nonlinear elements in diffractive optical systems with feedback leads to the formation of a variety of optical patterns. The spectrum of possible spatial instabilities is shown to be even richer when the LCLV's capability for polarization modulation is utilized and internal threshold and saturation effects are considered. We derive a model for the feedback system based on a realistic description of the LCLV's internal function and coupling to a polarizer. Thresholds of pattern formation are compared to the common Kerr-type approximation and show transitions involving rolls, squares, hexagons, and tiled patterns. Numerical and experimental results confirm our theoretical predictions and unveil how patterns and their typical length scales can be easily controlled by changes of the parameters.

  1. Testability of evolutionary game dynamics based on experimental economics data

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Chen, Xiaojie; Wang, Zhijian

    2017-11-01

    Understanding the dynamic processes of a real game system requires an appropriate dynamics model, and rigorously testing a dynamics model is nontrivial. In our methodological research, we develop an approach to testing the validity of game dynamics models that considers the dynamic patterns of angular momentum and speed as measurement variables. Using Rock-Paper-Scissors (RPS) games as an example, we illustrate the geometric patterns in the experiment data. We then derive the related theoretical patterns from a series of typical dynamics models. By testing the goodness-of-fit between the experimental and theoretical patterns, we show that the validity of these models can be evaluated quantitatively. Our approach establishes a link between dynamics models and experimental systems, which is, to the best of our knowledge, the most effective and rigorous strategy for ascertaining the testability of evolutionary game dynamics models.

  2. A mathematical basis for plant patterning derived from physico-chemical phenomena.

    PubMed

    Beleyur, Thejasvi; Abdul Kareem, Valiya Kadavu; Shaji, Anil; Prasad, Kalika

    2013-04-01

    The position of leaves and flowers along the stem axis generates a specific pattern, known as phyllotaxis. A growing body of evidence emerging from recent computational modeling and experimental studies suggests that regulators controlling phyllotaxis are chemical, e.g. the plant growth hormone auxin and its dynamic accumulation pattern by polar auxin transport, and physical, e.g. mechanical properties of the cell. Here we present comprehensive views on how chemical and physical properties of cells regulate the pattern of leaf initiation. We further compare different computational modeling studies to understand their scope in reproducing the observed patterns. Despite a plethora of experimental studies on phyllotaxis, understanding of molecular mechanisms of pattern initiation in plants remains fragmentary. Live imaging of growth dynamics and physicochemical properties at the shoot apex of mutants displaying stable changes from one pattern to another should provide mechanistic insights into organ initiation patterns. Copyright © 2013 WILEY Periodicals, Inc.

  3. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  4. An (almost) solvable model for bacterial pattern formation

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.; Badoual, M.; Aubert, M.

    2007-10-01

    We present a simple model for the description of ring-like concentric structures in bacterial colonies. We model the differences between Bacillus subtilis and Proteus mirabilis colonies by using a different dependence of the duration of the consolidation phase on the concentration of agar. We compare our results to experimental data from these two bacterial species colonies and obtain a good agreement. Based on this analysis, we formulate a hypothesis on the connection of the diffusion constant that appears in the model to the experimental agar concentration.

  5. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.

  6. Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria.

    PubMed

    Muñoz-García, Javier; Ares, Saúl

    2016-05-31

    Cyanobacteria forming one-dimensional filaments are paradigmatic model organisms of the transition between unicellular and multicellular living forms. Under nitrogen-limiting conditions, in filaments of the genus Anabaena, some cells differentiate into heterocysts, which lose the possibility to divide but are able to fix environmental nitrogen for the colony. These heterocysts form a quasiregular pattern in the filament, representing a prototype of patterning and morphogenesis in prokaryotes. Recent years have seen advances in the identification of the molecular mechanism regulating this pattern. We use these data to build a theory on heterocyst pattern formation, for which both genetic regulation and the effects of cell division and filament growth are key components. The theory is based on the interplay of three generic mechanisms: local autoactivation, early long-range inhibition, and late long-range inhibition. These mechanisms can be identified with the dynamics of hetR, patS, and hetN expression. Our theory reproduces quantitatively the experimental dynamics of pattern formation and maintenance for wild type and mutants. We find that hetN alone is not enough to play the role as the late inhibitory mechanism: a second mechanism, hypothetically the products of nitrogen fixation supplied by heterocysts, must also play a role in late long-range inhibition. The preponderance of even intervals between heterocysts arises naturally as a result of the interplay between the timescales of genetic regulation and cell division. We also find that a purely stochastic initiation of the pattern, without a two-stage process, is enough to reproduce experimental observations.

  7. The Effects of Live Patterned Sensory Enhancement on Group Exercise Participation and Mood in Older Adults in Rehabilitation.

    PubMed

    Clark, Imogen N; Baker, Felicity; Taylor, Nicholas F

    2012-01-01

    Older adults in rehabilitation often experience barriers to exercise, which may impede recovery. Patterned sensory enhancement (PSE) is a neurologic music therapy intervention for sensorimotor rehabilitation. The use of live music during patterned sensory enhancement (live-PSE) may be particularly beneficial in meeting patient needs and improving older adults' exercise participation and mood during therapy. To examine the effects of live-PSE on exercise output, exercise adherence, ratings of perceived exertion, and mood for 24 older adult inpatients in a rehabilitation facility attending a group exercise program. Using a within-subjects design, results from sessions involving exercise instruction and live-PSE (experimental condition) were compared with sessions of exercise instruction alone (control condition). A logbook documenting participant comments and behaviors was also maintained. There were no significant between condition differences for the exercise outcome measures. Between condition session outcome measures for mood were non-significant for all profiles except confusion, which suggested that some participants might have become more confused during sessions with live-PSE. Unsolicited participant comments and behaviors recorded in the logbook indicated that 21 participants perceived experimental sessions positively, 2 reacted negatively, and 1 did not express any preferences. Live-PSE did not significantly improve exercise outcomes and there were indications of increased confusion during experimental sessions for some participants. However, participant comments and behaviors also suggested positive experiences during sessions with live-PSE Further research to investigate these discrepant results is warranted, and might best be explored using a mixed methods approach.

  8. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    USGS Publications Warehouse

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  9. Dual-domain mass-transfer parameters from electrical hysteresis: Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-10-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  10. A Node Linkage Approach for Sequential Pattern Mining

    PubMed Central

    Navarro, Osvaldo; Cumplido, René; Villaseñor-Pineda, Luis; Feregrino-Uribe, Claudia; Carrasco-Ochoa, Jesús Ariel

    2014-01-01

    Sequential Pattern Mining is a widely addressed problem in data mining, with applications such as analyzing Web usage, examining purchase behavior, and text mining, among others. Nevertheless, with the dramatic increase in data volume, the current approaches prove inefficient when dealing with large input datasets, a large number of different symbols and low minimum supports. In this paper, we propose a new sequential pattern mining algorithm, which follows a pattern-growth scheme to discover sequential patterns. Unlike most pattern growth algorithms, our approach does not build a data structure to represent the input dataset, but instead accesses the required sequences through pseudo-projection databases, achieving better runtime and reducing memory requirements. Our algorithm traverses the search space in a depth-first fashion and only preserves in memory a pattern node linkage and the pseudo-projections required for the branch being explored at the time. Experimental results show that our new approach, the Node Linkage Depth-First Traversal algorithm (NLDFT), has better performance and scalability in comparison with state of the art algorithms. PMID:24933123

  11. Distal-less induces elemental color patterns in Junonia butterfly wings.

    PubMed

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M

    2016-01-01

    The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.

  12. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, L.I.; Bui, R.T.; Charette, A.

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects ofmore » the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.« less

  14. Experimental study on nonlinear vibrating of aluminum foam using electronic speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Fujun; Ma, Yinhang; Tao, Nan; He, Xiaoyuan

    2017-06-01

    Due to its multi properties, including excellent stiffness-to-weight and strength-to-weight ratios, closed-cell aluminum and its alloy foams become candidate materials for use in many high-technology industries, such as the automotive and aerospace industries. For the efficient use of closed-cell foams in structural applications, it is necessary and important to detailly understand their mechanical characteristics. In this paper, the nonlinear vibration responses of the cantilever beams of closed-cell aluminum foams were investigated by use of electronic speckle pattern interferometry (ESPI). The nonlinear resonant mode shapes of testing specimens under harmonic excitation were measured. It is first time to obtain from the experimental results that there exist super-harmonic responses when the cantilever beams of closed-cell aluminum foam were forced to vibrate, which was caused by its specific cellular structures.

  15. Gender and Social Exchange: A Developmental Perspective.

    ERIC Educational Resources Information Center

    Maccoby, Eleanor E.

    2002-01-01

    Uses a developmental perspective on social interaction to trace gender differences in adulthood to relationship patterns that emerge in childhood. Summarizes results of: (1) experimental studies and naturalistic studies of workplace interaction in mixed-sex task-oriented groups; (2) same-sex interaction; (3) adult friendship; and (4) heterosexual…

  16. A polarized digital shearing speckle pattern interferometry system based on temporal wavelet transformation.

    PubMed

    Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie

    2015-09-01

    Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized.

  17. Nanosilicon dot arrays with a bit pitch and a track pitch of 25 nm formed by electron-beam drawing and reactive ion etching for 1 Tbit/in.{sup 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosaka, Sumio; Sano, Hirotaka; Shirai, Masumi

    2006-11-27

    The formation of very fine Si dots with a bit pitch and a track pitch of less than 25 nm using electron-beam (EB) lithography on ZEP520 and calixarene EB resists and CF{sub 4} reactive ion etching has been demonstrated. The experimental results indicate that the calixarene resist is very suitable for forming an ultrahigh-packed bit array pattern of Si dots. This result promises to open the way toward 1 Tbit/in.{sup 2} storage using patterned media with a dot size of <15 nm.

  18. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  19. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  20. On the origin and removal of interference patterns in coated multimode fibres

    NASA Astrophysics Data System (ADS)

    Padilla Michel, Yazmin; Pulwer, Silvio; Saffari, Pouneh; Ksianzou, Viachaslau; Schrader, Sigurd

    2016-07-01

    In this study, we present the experimental investigations on interference patterns, such as those already reported in VIMOS-IFU, and up to now no appropriate explanation has been presented. These interference patterns are produced in multimode fibres coated with acrylate or polyimide, which is the preferred coating material for the fibres used in IFUs. Our experiments show that, under specific conditions, cladding modes interact with the coating and produce interference. Our results show that the conditions at which the fibre is held during data acquisition has an impact in the output spectrum. Altering the positioning conditions of the fibre leads to the changes into the interference pattern, therefore, fibres should be carefully manipulated in order to minimise this potential problem and improve the performance of these instruments. Finally we present a simple way of predicting and modelling this interference produced from the visible to the near infrared spectra. This model can be included in the data reduction pipeline in order to remove the interference patterns. These results should be of interest for the optimisation of the data reduction pipelines of instruments using optical fibres. Considering these results will benefit innovations and developments of high performance fibre systems.

  1. Gene Profiling in Experimental Models of Eye Growth: Clues to Myopia Pathogenesis

    PubMed Central

    Stone, Richard A.; Khurana, Tejvir S.

    2010-01-01

    To understand the complex regulatory pathways that underlie the development of refractive errors, expression profiling has evaluated gene expression in ocular tissues of well-characterized experimental models that alter postnatal eye growth and induce refractive errors. Derived from a variety of platforms (e.g. differential display, spotted microarrays or Affymetrix GeneChips), gene expression patterns are now being identified in species that include chicken, mouse and primate. Reconciling available results is hindered by varied experimental designs and analytical/statistical features. Continued application of these methods offers promise to provide the much-needed mechanistic framework to develop therapies to normalize refractive development in children. PMID:20363242

  2. A Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical Data: An Approach for Building Effective Clinical Decision-Making System.

    PubMed

    Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan

    2016-01-01

    Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.

  3. Differences in intermittent and continuous fecal shedding patterns between natural and experimental Mycobacterium avium subspecies paratuberculosis infections in cattle

    USDA-ARS?s Scientific Manuscript database

    The objective of this paper is to study shedding patterns of cows infected with Mycobacterium avium subsp. paratuberculosis (MAP). While multiple single farm studies of MAP dynamics were reported, there is not large-scale meta-analysis of both natural and experimental infections. Large difference...

  4. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  5. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    PubMed

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.

  6. Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Esker, Barbara S.; Debonis, James R.

    1991-01-01

    Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns.

  7. Evaluation of True Power Luminous Efficiency from Experimental Luminance Values

    NASA Astrophysics Data System (ADS)

    Tsutsui, Tetsuo; Yamamato, Kounosuke

    1999-05-01

    A method for obtaining true external power luminous efficiencyfrom experimentally obtained luminance in organic light-emittingdiodes (LEDs) wasdemonstrated. Conventional two-layer organic LEDs with different electron-transport layer thicknesses wereprepared. Spatial distributions of emission intensities wereobserved. The large deviation in both emission spectra and spatialemission patterns were observed when the electron-transport layerthickness was varied. The deviation of emission patterns from thestandard Lambertian pattern was found to cause overestimations ofpower luminous efficiencies as large as 30%. A method for evaluatingcorrection factors was proposed.

  8. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.

  9. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Li, Beiwen; Zhang, Song

    2017-07-01

    This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  10. High-speed 3D imaging using digital binary defocusing method vs sinusoidal method

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Hyun, Jae-Sang; Li, Beiwen

    2017-02-01

    This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  11. Variations of flow in human airways as a consequence of lung diseases

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Stejskal, David; Belka, Miloslav; Jedelsky, Jan; Jicha, Miroslav; Brat, Kristian; Herout, Vladimir; Lizalova Sujanska, Elena

    2018-06-01

    The efficiency of drug delivery administered by inhalation depends, among other factors, such as size and shape of aerosol particles, significantly also on the flow in the airways. As many lung diseases change both the breathing pattern and the shape of airways, we focus in this study on the influence of several selected diseases on the distribution of flow between the lung lobes and on changes the diseases induce on the course of flowrate. First, we present results of a literature survey focused on the published records of pathological breathing patterns. In the second part, we describe the newly designed breathing simulator and the implementation of the patterns into it. The last part is focused on the experimental verification of fidelity of the simulated breathing patterns.

  12. Online phase measuring profilometry for rectilinear moving object by image correction

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Cao, Yi-Ping; Chen, Chen; Wang, Ya-Pin

    2015-11-01

    In phase measuring profilometry (PMP), the object must be static for point-to-point reconstruction with the captured deformed patterns. While the object is rectilinearly moving online, the size and pixel position differences of the object in different captured deformed patterns do not meet the point-to-point requirement. We propose an online PMP based on image correction to measure the three-dimensional shape of the rectilinear moving object. In the proposed method, the deformed patterns captured by a charge-coupled diode camera are reprojected from the oblique view to an aerial view first and then translated based on the feature points of the object. This method makes the object appear stationary in the deformed patterns. Experimental results show the feasibility and efficiency of the proposed method.

  13. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  14. Novel methods for matter interferometry with nanosized objects

    NASA Astrophysics Data System (ADS)

    Arndt, Markus

    2005-05-01

    We discuss the current status and prospects for novel experimental methods for coherence^1,2 and decoherence^3 experiments with large molecules. Quantum interferometry with nanosized objects is interesting for the exploration of the quantum-classical transition. The same experimental setup is also promising for metrology applications and molecular nanolithography. Our coherence experiments with macromolecules employ a Talbot-Lau interferometer. We discuss some modifications to this scheme, which are required to extend it to particles with masses in excess of several thousand mass units. In particular, the detection in all previous interference experiments with large clusters and molecules, was based on either laser ionization^1 (e.g. Fullerenes) or electron impact ionization^2 (e.g. Porphyrins etc.). However, most ionization schemes run into efficiency limits when the mass and complexity of the target particle increases. Here we present experimental results for an interference detector which is truly scalable, i.e. one which will even improve with increasing particle size and complexity. ``Mechanically magnified fluorescence imaging'' (MMFI), combines the high spatial resolution, which is intrinsic to Talbot Lau interferometry with the high detection efficiency of fluorophores adsorbed onto a substrate. In the Talbot Lau setup a molecular interference pattern is revealed by scanning the 3^rd grating across the molecular beam^1. The number of transmitted molecules is a function of the relative position between the mask and the molecular density pattern. Both the particle interference pattern and the mechanical mask structure may be far smaller than any optical resolution limit. After mechanical magnification by an arbitrary factor, in our case a factor 5000, the interference pattern can still be inspected in fluorescence microscopy. The fluorescent molecules are collected on a surface which is scanned collinearly and synchronously behind the 3rd grating. The resulting image of the interference pattern is by far large enough to be easily seen by the unaided eye. High contrast interference fringes could be recorded with dyes molecules. ^1B. Brezger et al. , Phys. Rev. Lett. 88, 100404 (2002). ^2L. Hackermüller et al. Phys. Rev. Lett 91, 90408 (2003). ^3L. Hackermüller et al. Nature 427, 711 (2004).

  15. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies.

    PubMed

    Van den Berg, Cornelis A T; Bartels, Lambertus W; van den Bergen, Bob; Kroeze, Hugo; de Leeuw, Astrid A C; Van de Kamer, Jeroen B; Lagendijk, Jan J W

    2006-10-07

    In this study, MR B(+)(1) imaging is employed to experimentally verify the validity of FDTD simulations of electromagnetic field patterns in human anatomies. Measurements and FDTD simulations of the B(+)(1) field induced by a 3 T MR body coil in a human corpse were performed. It was found that MR B(+)(1) imaging is a sensitive method to measure the radiofrequency (RF) magnetic field inside a human anatomy with a precision of approximately 3.5%. A good correlation was found between the B(+)(1) measurements and FDTD simulations. The measured B(+)(1) pattern for a human pelvis consisted of a global, diagonal modulation pattern plus local B(+)(1) heterogeneties. It is believed that these local B(+)(1) field variations are the result of peaks in the induced electric currents, which could not be resolved by the FDTD simulations on a 5 mm(3) simulation grid. The findings from this study demonstrate that B(+)(1) imaging is a valuable experimental technique to gain more knowledge about the dielectric interaction of RF fields with the human anatomy.

  16. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study

    PubMed Central

    Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K. W.; Zhang, Yong-Wei

    2016-01-01

    We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures. PMID:27580943

  17. Effects of Professional Development on Teachers' Gendered Feedback Patterns, Students' Misbehaviour and Students' Sense of Equity: Results from a One-Year Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Consuegra, Els; Engels, Nadine

    2016-01-01

    There have been numerous studies investigating the extent to which teacher-student classroom interactions differ between boys and girls and the results of these studies suggest that teacher negative feedback is higher for boys, which in turn leads to lower levels of on-task behaviour. The article describes the results of a quasi-experimental…

  18. Theoretical and experimental analysis of the electromechanical behavior of a compact spherical loudspeaker array for directivity control.

    PubMed

    Pasqual, Alexander Mattioli; Herzog, Philippe; Arruda, José Roberto de França

    2010-12-01

    Sound directivity control is made possible by a compact array of independent loudspeakers operating at the same frequency range. The drivers are usually distributed over a sphere-like frame according to a Platonic solid geometry to obtain a highly symmetrical configuration. The radiation pattern of spherical loudspeaker arrays has been predicted from the surface velocity pattern by approximating the drivers membranes as rigid vibrating spherical caps, although a rigorous assessment of this model has not been provided so far. Many aspects concerning compact array electromechanics remain unclear, such as the effects on the acoustical performance of the drivers interaction inside the array cavity, or the fact that voltages rather than velocities are controlled in practice. This work presents a detailed investigation of the electromechanical behavior of spherical loudspeaker arrays. Simulation results are shown to agree with laser vibrometer measurements and experimental sound power data obtained for a 12-driver spherical array prototype at low frequencies, whereas the non-rigid body motion and the first cavity eigenfrequency yield a discrepancy between theoretical and experimental results at high frequencies. Finally, although the internal acoustic coupling affects the drivers vibration in the low-frequency range, it does not play an important role on the radiated sound power.

  19. Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges.

    PubMed

    Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien

    2018-02-18

    In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.

  20. Weakly and strongly coupled Belousov-Zhabotinsky patterns.

    PubMed

    Weiss, Stephan; Deegan, Robert D

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  1. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  2. Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Gray, Ron E.

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These factors influenced both the structure and use of presumptive reasoning in the arguments. The results have implications for classroom practice, teacher education, and further research.

  3. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargupta, H.; Stafford, B.; Hamzaoglu, I.

    This paper describes an experimental parallel/distributed data mining system PADMA (PArallel Data Mining Agents) that uses software agents for local data accessing and analysis and a web based interface for interactive data visualization. It also presents the results of applying PADMA for detecting patterns in unstructured texts of postmortem reports and laboratory test data for Hepatitis C patients.

  5. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  6. Depth and Elaboration of Processing in Relation to Age.

    ERIC Educational Resources Information Center

    Simon, Eileen

    1979-01-01

    The recall effectiveness of semantic and phonemic cues was compared to uncover the pattern of deep and elaborate processing in relation to age and experimental treatment. It was concluded that aging results in poor elaboration, especially in inefficient integration of word events with the context of presentation. (Author/CP)

  7. Self-folding origami at any energy scale

    NASA Astrophysics Data System (ADS)

    Pinson, Matthew B.; Stern, Menachem; Carruthers Ferrero, Alexandra; Witten, Thomas A.; Chen, Elizabeth; Murugan, Arvind

    2017-05-01

    Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying `typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

  8. Walking-age analyzer for healthcare applications.

    PubMed

    Jin, Bo; Thu, Tran Hoai; Baek, Eunhye; Sakong, SungHwan; Xiao, Jin; Mondal, Tapas; Deen, M Jamal

    2014-05-01

    This paper describes a walking-age pattern analysis and identification system using a 3-D accelerometer and a gyroscope. First, a walking pattern database from 79 volunteers of ages ranging from 10 to 83 years is constructed. Second, using feature extraction and clustering, three distinct walking-age groups, children of ages 10 and below, adults in 20-60s, and elders in 70s and 80s, were identified. For this study, low-pass filtering, empirical mode decomposition, and K-means were used to process and analyze the experimental results. Analysis shows that volunteers' walking-ages can be categorized into distinct groups based on simple walking pattern signals. This grouping can then be used to detect persons with walking patterns outside their age groups. If the walking pattern puts an individual in a higher "walking age" grouping, then this could be an indicator of potential health/walking problems, such as weak joints, poor musculoskeletal support system or a tendency to fall.

  9. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  10. Polariton Pattern Formation and Photon Statistics of the Associated Emission

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Dzurnak, B.; Egorov, O. A.; Buonaiuto, G.; Walker, P. M.; Cancellieri, E.; Whittaker, D. M.; Clarke, E.; Gavrilov, S. S.; Skolnick, M. S.; Krizhanovskii, D. N.

    2017-07-01

    We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high-order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second-order coherence g(2 )(0 ) of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations.

  11. Self-evaluation on Motion Adaptation for Service Robots

    NASA Astrophysics Data System (ADS)

    Funabora, Yuki; Yano, Yoshikazu; Doki, Shinji; Okuma, Shigeru

    We suggest self motion evaluation method to adapt to environmental changes for service robots. Several motions such as walking, dancing, demonstration and so on are described with time series patterns. These motions are optimized with the architecture of the robot and under certain surrounding environment. Under unknown operating environment, robots cannot accomplish their tasks. We propose autonomous motion generation techniques based on heuristic search with histories of internal sensor values. New motion patterns are explored under unknown operating environment based on self-evaluation. Robot has some prepared motions which realize the tasks under the designed environment. Internal sensor values observed under the designed environment with prepared motions show the interaction results with the environment. Self-evaluation is composed of difference of internal sensor values between designed environment and unknown operating environment. Proposed method modifies the motions to synchronize the interaction results on both environment. New motion patterns are generated to maximize self-evaluation function without external information, such as run length, global position of robot, human observation and so on. Experimental results show that the possibility to adapt autonomously patterned motions to environmental changes.

  12. Experimental taphonomy and the anatomy and diversity of the earliest fossil vertebrates (Chengjiang Biota, Cambrian, China)

    NASA Astrophysics Data System (ADS)

    Purnell, Mark; Gabbott, Sarah; Murdock, Duncan; Cong, Peiyun

    2016-04-01

    The oldest fossil vertebrates are from the Lower Cambrian Chengjiang biota of China, which contains four genera of fish-like, primitive vertebrates: Haikouichthys, Myllokunmingia, Zhongjianichthys and Zhongxiniscus. These fossils play key roles in calibrating molecular clocks and informing our view of the anatomy of animals close to the origin of vertebrates, potentially including transitional forms between vertebrates and their nearest relatives. Despite the evident importance of these fossils, the degree to which taphonomic processes have affected their anatomical completeness has not been investigated. For example, some or all might have been affected by stemward slippage - the pattern observed in experimental decay of non-biomineralised chordates in which preferential decay of synapomorphies and retention of plesiomorphic characters would cause fossil taxa to erroneously occupy more basal positions than they should. This hypothesis is based on experimental data derived from decay of non-biomineralised chordates under laboratory conditions. We have expanded this analysis to include a broader range of potentially significant environmental variables; we have also compared and combined the results of experiments from several taxa to identify general patterns of chordate decay. Examination of the Chengjiang vertebrates in the light of these results demonstrates that, contrary to some assertions, experimentally derived models of phylogenetic bias are applicable to fossils. Anatomical and phylogenetic interpretations of early vertebrates that do not take taphonomic biases into account risk overestimating diversity and the evolutionary significance of differences between fossil specimens.

  13. On the mechanochemical theory of biological pattern formation with application to vasculogenesis.

    PubMed

    Murray, James D

    2003-02-01

    We first describe the Murray-Oster mechanical theory of pattern formation, the biological basis of which is experimentally well documented. The model quantifies the interaction of cells and the extracellular matrix via the cell-generated forces. The model framework is described in quantitative detail. Vascular endothelial cells, when cultured on gelled basement membrane matrix, rapidly aggregate into clusters while deforming the matrix into a network of cord-like structures tessellating the planar culture. We apply the mechanical theory of pattern formation to this culture system and show that neither strain-biased anisotropic cell traction nor cell migration are necessary for pattern formation: isotropic, strain-stimulated cell traction is sufficient to form the observed patterns. Predictions from the model were confirmed experimentally.

  14. Denoising Medical Images using Calculus of Variations

    PubMed Central

    Kohan, Mahdi Nakhaie; Behnam, Hamid

    2011-01-01

    We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674

  15. Pattern transfer with stabilized nanoparticle etch masks

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R.; Picard, Yoosuf N.; Narasimhan, Amrit; Bain, James A.; Majetich, Sara A.

    2013-03-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiOx substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results.

  16. Range pattern matching with layer operations and continuous refinements

    NASA Astrophysics Data System (ADS)

    Tseng, I.-Lun; Lee, Zhao Chuan; Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Ong, Jonathan Yoong Seang

    2018-03-01

    At advanced and mainstream process nodes (e.g., 7nm, 14nm, 22nm, and 55nm process nodes), lithography hotspots can exist in layouts of integrated circuits even if the layouts pass design rule checking (DRC). Existence of lithography hotspots in a layout can cause manufacturability issues, which can result in yield losses of manufactured integrated circuits. In order to detect lithography hotspots existing in physical layouts, pattern matching (PM) algorithms and commercial PM tools have been developed. However, there are still needs to use DRC tools to perform PM operations. In this paper, we propose a PM synthesis methodology, which uses a continuous refinement technique, for the automatic synthesis of a given lithography hotspot pattern into a DRC deck, which consists of layer operation commands, so that an equivalent PM operation can be performed by executing the synthesized deck with the use of a DRC tool. Note that the proposed methodology can deal with not only exact patterns, but also range patterns. Also, lithography hotspot patterns containing multiple layers can be processed. Experimental results show that the proposed methodology can accurately and efficiently detect lithography hotspots in physical layouts.

  17. Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection

    PubMed Central

    Gottschlich, Carsten

    2016-01-01

    We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544

  18. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  19. Meandered conformal antenna for ISM-band ingestible capsule communication systems.

    PubMed

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2016-08-01

    The wireless capsule has been used to measure physiological parameters in the gastrointestinal tract where communication from in-body to external receiver is necessary using a miniaturized antenna with high gain and onmidirectional radiation pattern. This paper presents a meandered conformal antenna with center frequency of 433 MHz for a wireless link between an in-body capsule system and an ex-body receiver system. The antenna is wrapped around the wireless capsule, which provides extra space for other circuits and sensors inside the capsule as well as allows it having larger dimensions compared to inner antennas. This paper analyses return loss, radiation pattern, antenna gain, and propagation loss using pork as the gastrointestinal tissue simulating medium. From the radiation pattern and return loss results, the antenna shows an omni-directional radiation pattern and an ultrawide bandwidth of 124.4 MHz (371.6 to 496 MHz) for VSWR <; 2. Experimental results shows that the path loss is 17.24 dB for an in-body propagation distance of 140 mm.

  20. Patterns of Carbon Nanotubes by Flow-Directed Deposition on Substrates with Architectured Topographies.

    PubMed

    K Jawed, M; Hadjiconstantinou, N G; Parks, D M; Reis, P M

    2018-03-14

    We develop and perform continuum mechanics simulations of carbon nanotube (CNT) deployment directed by a combination of surface topography and rarefied gas flow. We employ the discrete elastic rods method to model the deposition of CNT as a slender elastic rod that evolves in time under two external forces, namely, van der Waals (vdW) and aerodynamic drag. Our results confirm that this self-assembly process is analogous to a previously studied macroscopic system, the "elastic sewing machine", where an elastic rod deployed onto a moving substrate forms nonlinear patterns. In the case of CNTs, the complex patterns observed on the substrate, such as coils and serpentines, result from an intricate interplay between van der Waals attraction, rarefied aerodynamics, and elastic bending. We systematically sweep through the multidimensional parameter space to quantify the pattern morphology as a function of the relevant material, flow, and geometric parameters. Our findings are in good agreement with available experimental data. Scaling analysis involving the relevant forces helps rationalize our observations.

  1. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Vallurupalli, S.; Evans, J. M.; Bruce, E. N.; Knapp, C. F.

    1995-01-01

    We investigated the effects of voluntary control of breathing on autonomic function in cardiovascular regulation. Variability in heart rate was compared between 5 min of spontaneous and controlled breathing. During controlled breathing, for 5 min, subjects voluntarily reproduced their own spontaneous breathing pattern (both rate and volume on a breath-by-breath basis). With the use of this experimental design, we could unmask the effects of voluntary override of the spontaneous respiratory pattern generator on autonomic function in cardiovascular regulation without the confounding effects of altered respiratory pattern. Results from 10 subjects showed that during voluntary control of breathing, mean values of heart rate and blood pressure increased, whereas fractal and spectral powers in heart rate in the respiratory frequency region decreased. End-tidal PCO2 was similar during spontaneous and controlled breathing. These results indicate that the act of voluntary control of breathing decreases the influence of the vagal component, which is the principal parasympathetic influence in cardiovascular regulation.

  2. Patterning nonisometric origami in nematic elastomer sheets

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  3. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study.

    PubMed

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K; Anguera, M Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally "deceptive" signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors' frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior's distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the testing of directional hypothesis on a larger probabilistic sample of population.

  4. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study

    PubMed Central

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K.; Anguera, M. Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally “deceptive” signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors’ frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior’s distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the testing of directional hypothesis on a larger probabilistic sample of population. PMID:29551986

  5. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    PubMed Central

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  6. Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin

    2011-01-01

    Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799

  7. From atomistic interfaces to dendritic patterns

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Alexandrov, D. V.

    2018-01-01

    Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models-all these themes are highlighted in the present issue. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  8. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis

    PubMed Central

    Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou

    2013-01-01

    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690

  9. Microscale optical cryptography using a subdiffraction-limit optical key

    NASA Astrophysics Data System (ADS)

    Ogura, Yusuke; Aino, Masahiko; Tanida, Jun

    2018-04-01

    We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.

  10. Simulation and Testing of a Linear Array of Modified Four-Square Feed Antennas for the Tianlai Cylindrical Radio Telescope

    NASA Astrophysics Data System (ADS)

    Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong

    A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.

  11. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

    PubMed

    Ekeberg, Tomas; Svenda, Martin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; Claverie, Jean-Michel; Hantke, Max; Jönsson, Olof; Nettelblad, Carl; van der Schot, Gijs; Liang, Mengning; DePonte, Daniel P; Barty, Anton; Seibert, M Marvin; Iwan, Bianca; Andersson, Inger; Loh, N Duane; Martin, Andrew V; Chapman, Henry; Bostedt, Christoph; Bozek, John D; Ferguson, Ken R; Krzywinski, Jacek; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Kimmel, Nils; Hajdu, Janos

    2015-03-06

    We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.

  12. Optically phase-locked electronic speckle pattern interferometer system performance for vibration measurement in random displacement fields

    NASA Astrophysics Data System (ADS)

    Moran, Steve E.; Lugannani, Robert; Craig, Peter N.; Law, Robert L.

    1989-02-01

    An analysis is made of the performance of an optically phase-locked electronic speckle pattern interferometer in the presence of random noise displacements. Expressions for the phase-locked speckle contrast for single-frame imagery and the composite rms exposure for two sequentially subtracted frames are obtained in terms of the phase-locked composite and single-frame fringe functions. The noise fringe functions are evaluated for stationary, coherence-separable noise displacements obeying Gauss-Markov temporal statistics. The theoretical findings presented here are qualitatively supported by experimental results.

  13. Assessing Granger Causality in Electrophysiological Data: Removing the Adverse Effects of Common Signals via Bipolar Derivations.

    PubMed

    Trongnetrpunya, Amy; Nandi, Bijurika; Kang, Daesung; Kocsis, Bernat; Schroeder, Charles E; Ding, Mingzhou

    2015-01-01

    Multielectrode voltage data are usually recorded against a common reference. Such data are frequently used without further treatment to assess patterns of functional connectivity between neuronal populations and between brain areas. It is important to note from the outset that such an approach is valid only when the reference electrode is nearly electrically silent. In practice, however, the reference electrode is generally not electrically silent, thereby adding a common signal to the recorded data. Volume conduction further complicates the problem. In this study we demonstrate the adverse effects of common signals on the estimation of Granger causality, which is a statistical measure used to infer synaptic transmission and information flow in neural circuits from multielectrode data. We further test the hypothesis that the problem can be overcome by utilizing bipolar derivations where the difference between two nearby electrodes is taken and treated as a representation of local neural activity. Simulated data generated by a neuronal network model where the connectivity pattern is known were considered first. This was followed by analyzing data from three experimental preparations where a priori predictions regarding the patterns of causal interactions can be made: (1) laminar recordings from the hippocampus of an anesthetized rat during theta rhythm, (2) laminar recordings from V4 of an awake-behaving macaque monkey during alpha rhythm, and (3) ECoG recordings from electrode arrays implanted in the middle temporal lobe and prefrontal cortex of an epilepsy patient during fixation. For both simulation and experimental analysis the results show that bipolar derivations yield the expected connectivity patterns whereas the untreated data (referred to as unipolar signals) do not. In addition, current source density signals, where applicable, yield results that are close to the expected connectivity patterns, whereas the commonly practiced average re-reference method leads to erroneous results.

  14. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    PubMed

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  15. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also discussed, corresponding to a design analysis of the current experimental study.

  16. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  17. The fin-to-limb transition as the re-organization of a Turing pattern

    PubMed Central

    Onimaru, Koh; Marcon, Luciano; Musy, Marco; Tanaka, Mikiko; Sharpe, James

    2016-01-01

    A Turing mechanism implemented by BMP, SOX9 and WNT has been proposed to control mouse digit patterning. However, its generality and contribution to the morphological diversity of fins and limbs has not been explored. Here we provide evidence that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp–Sox9–Wnt Turing network. In catshark fins, the distal nodular elements arise from a periodic spot pattern of Sox9 expression, in contrast to the stripe pattern in mouse digit patterning. However, our computer model shows that the Bmp–Sox9–Wnt network with altered spatial modulation can explain the Sox9 expression in catshark fins. Finally, experimental perturbation of Bmp or Wnt signalling in catshark embryos produces skeletal alterations which match in silico predictions. Together, our results suggest that the broad morphological diversity of the distal fin and limb elements arose from the spatial re-organization of a deeply conserved Turing mechanism. PMID:27211489

  18. Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities.

    PubMed

    Dai, Meiling; Yang, Fujun; He, Xiaoyuan

    2012-04-20

    A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.

  19. Layout decomposition of self-aligned double patterning for 2D random logic patterning

    NASA Astrophysics Data System (ADS)

    Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.

    2011-04-01

    Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.

  20. Confining standing waves in optical corrals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babayan, Y.; McMahon, J. M.; Li, S.

    2009-03-01

    Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can bemore » attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner.« less

  1. Periodic Pattern Formation of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroto; Wakita, Jun-ichi; Matsuyama, Tohey; Matsushita, Mitsugu

    1999-04-01

    We have experimentally investigated pattern formation of colonies ofbacterial species Proteus mirabilis, which is famous forforming concentric-ring-like colonies.The colony grows cyclically with the interface repeating an advance anda stop alternately on a surface of a solid agar medium.We distinguish three phases (initial lag phase, the followingmigration and consolidation phases that appear alternately) for the colony growth.When we cut a colony just behind a migrating front shortly after the migrationstarted, the migration ended earlier and the following consolidationlasted longer.However, the following cycles were not influenced by the cut, i.e., thephases of the migration and consolidation were not affected.Global chemical signals governing the colony formation from thecenter were not found to exist.We also quantitatively checked phase entrainment by letting two coloniescollide with each other and found that it does not take place in macroscopic scales.All these experimental results suggest that the most important factorfor the migration is the cell population density.

  2. Importance of dose-rate and cell proliferation in the evaluation of biological experimental results

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.

    1994-01-01

    The nuclei of cells within the bodies of astronauts traveling on extended missions outside the geomagnetosphere will experience single traversals of particles with high Linear Energy Transfer (LET) (e.g., one iron ion per one hundred years, on average) superimposed on a background of tracks with low LET (approximately one proton every two to three days, and one helium ion per month). In addition, some cell populations within the body will be proliferating, thus possibly providing increasing numbers of cells with 'initiated' targets for subsequent radiation hits. These temporal characteristics are not generally reproduced in laboratory experimental protocols. Implications of the differences in the temporal patterns of radiation delivery between conventionally designed radiation biology experiments and the pattern to be experienced in space are examined and the importance of dose-rate and cell proliferation are pointed out in the context of radiation risk assessment on long mission in space.

  3. An experimental study of mushroom shaped stall cells. [on finite wings with separated flow

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1982-01-01

    Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.

  4. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  5. From Statistics to Meaning: Infants’ Acquisition of Lexical Categories

    PubMed Central

    Lany, Jill; Saffran, Jenny R.

    2013-01-01

    Infants are highly sensitive to statistical patterns in their auditory language input that mark word categories (e.g., noun and verb). However, it is unknown whether experience with these cues facilitates the acquisition of semantic properties of word categories. In a study testing this hypothesis, infants first listened to an artificial language in which word categories were reliably distinguished by statistical cues (experimental group) or in which these properties did not cue category membership (control group). Both groups were then trained on identical pairings between the words and pictures from two categories (animals and vehicles). Only infants in the experimental group learned the trained associations between specific words and pictures. Moreover, these infants generalized the pattern to include novel pairings. These results suggest that experience with statistical cues marking lexical categories sets the stage for learning the meanings of individual words and for generalizing meanings to new category members. PMID:20424058

  6. Hydrodynamic Fingering Instability Induced by a Precipitation Reaction

    NASA Astrophysics Data System (ADS)

    Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A.

    2014-07-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the buildup of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A +B→C type of reaction when a solution containing one of the reactants is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Fingerlike precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice versa. A mathematical modeling of the underlying mobility profile confirms that the instability originates from a local decrease in mobility driven by the localized precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  7. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    NASA Technical Reports Server (NTRS)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  8. Information spreading by a combination of MEG source estimation and multivariate pattern classification.

    PubMed

    Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.

  9. Information spreading by a combination of MEG source estimation and multivariate pattern classification

    PubMed Central

    Sato, Masashi; Yamashita, Okito; Sato, Masa-aki

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968

  10. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less

  11. Experimental far-field imaging properties of a ~5-μm diameter spherical lens.

    PubMed

    Ye, Ran; Ye, Yong-Hong; Ma, Hui Feng; Ma, Jun; Wang, Bin; Yao, Jie; Liu, Shuai; Cao, Lingling; Xu, Huanhuan; Zhang, Jia-Yu

    2013-06-01

    Microscale lenses are mostly used as near-sighted lenses. The far-field imaging properties of a microscale spherical lens, where the lens is spatially separated from the object, are experimentally studied. Our experimental results show that, for a blu-ray disc (an object) whose spacing is 300 nm, the lens can magnify the stripe patterns of the disc when the lens is spatially separated from the object. In the experimentally tested range (0-14 μm), all the magnified images are virtual images. When the distance is increased from 0 to 14 μm the magnification decreases from 1.47× to 1.20× and the field of view increases from 3.8 to 12.2 μm. The image magnification cannot be described by standard geometrical optics.

  12. Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134A

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Wen William

    This dissertation is to document experimental, local condensation and single-phase heat transfer and flow data of the minute diameter, microchannel tube and to develop correlation methods for optimizing the design of horizontal-microchannel condensers. It is essential to collect local data as the condensation progresses through several different flow patterns, since as more liquid is formed, the mechanism conducting heat transfer and flow is also changing. Therefore, the identification of the flow pattern is as important as the thermal and dynamic data. The experimental results were compared with correlation and flow regime maps from literature. The experiment using refrigerant HFC-134a in flat, multi-port aluminum tubing with 1.46mm hydraulic diameter was conducted. The characteristic of single-phase friction can be described with the analytical solution of square channel. The Gnielinski correlation provided good prediction of single-phase turbulent flow heat transfer. Higher mass fluxes and qualities resulted in increased condensation heat transfer and were more effective in the shear-dominated annular flow. The effect of temperature gradient from wall to refrigerant attributed profoundly in the gravity-dominated wavy/slug flow. Two correlation based on different flow mechanisms were developed for specified flow regimes. Finally, an asymptotic correlation was successfully proposed to account for the entire data regardless of flow patterns. Data taken from experiment and observations obtained from flow visualization, resulted in a better understanding of the physics in microchannel condensation, optimized designs in the microchannel condensers are now possible.

  13. Wavelength dependence of picosecond laser-induced periodic surface structures on copper

    NASA Astrophysics Data System (ADS)

    Maragkaki, Stella; Derrien, Thibault J.-Y.; Levy, Yoann; Bulgakova, Nadezhda M.; Ostendorf, Andreas; Gurevich, Evgeny L.

    2017-09-01

    The physical mechanisms of the laser-induced periodic surface structures (LIPSS) formation are studied in this paper for single-pulse irradiation regimes. The change in the LIPSS period with wavelength of incident laser radiation is investigated experimentally, using a picosecond laser system, which provides 7-ps pulses in near-IR, visible, and UV spectral ranges. The experimental results are compared with predictions made under the assumption that the surface-scattered waves are involved in the LIPSS formation. Considerable disagreement suggests that hydrodynamic mechanisms can be responsible for the observed pattern periodicity.

  14. The CRISP theory of hippocampal function in episodic memory

    PubMed Central

    Cheng, Sen

    2013-01-01

    Over the past four decades, a “standard framework” has emerged to explain the neural mechanisms of episodic memory storage. This framework has been instrumental in driving hippocampal research forward and now dominates the design and interpretation of experimental and theoretical studies. It postulates that cortical inputs drive plasticity in the recurrent cornu ammonis 3 (CA3) synapses to rapidly imprint memories as attractor states in CA3. Here we review a range of experimental studies and argue that the evidence against the standard framework is mounting, notwithstanding the considerable evidence in its support. We propose CRISP as an alternative theory to the standard framework. CRISP is based on Context Reset by dentate gyrus (DG), Intrinsic Sequences in CA3, and Pattern completion in cornu ammonis 1 (CA1). Compared to previous models, CRISP uses a radically different mechanism for storing episodic memories in the hippocampus. Neural sequences are intrinsic to CA3, and inputs are mapped onto these intrinsic sequences through synaptic plasticity in the feedforward projections of the hippocampus. Hence, CRISP does not require plasticity in the recurrent CA3 synapses during the storage process. Like in other theories DG and CA1 play supporting roles, however, their function in CRISP have distinct implications. For instance, CA1 performs pattern completion in the absence of CA3 and DG contributes to episodic memory retrieval, increasing the speed, precision, and robustness of retrieval. We propose the conceptual theory, discuss its implications for experimental results and suggest testable predictions. It appears that CRISP not only accounts for those experimental results that are consistent with the standard framework, but also for results that are at odds with the standard framework. We therefore suggest that CRISP is a viable, and perhaps superior, theory for the hippocampal function in episodic memory. PMID:23653597

  15. Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with one-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu

    2016-04-01

    In optical lithography, high-performance exposure tools are indispensable to obtain not only fine patterns but also preciseness in pattern width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane wave onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental pattern width for one-dimensional pattern, we have validated our theoretical consideration.

  16. A preliminary study of wildland fire pattern indicator reliability following an experimental fire

    Treesearch

    Albert Simeoni; Zachary C. Owens; Erik W. Christiansen; Abid Kemal; Michael Gallagher; Kenneth L. Clark; Nicholas Skowronski; Eric V. Mueller; Jan C. Thomas; Simon Santamaria; Rory M. Hadden

    2017-01-01

    An experimental fire was conducted in 2016, in the Pinelands National Reserve of New Jersey, to assess the reliability of the fire pattern indicators used in wildland fire investigation. Objects were planted in the burn area to support the creation of the indicators. Fuel properties and environmental data were recorded. Video and infrared cameras were used to document...

  17. The Teaching of General Solution Methods to Pattern Finding Problems through Focusing on an Evaluation and Improvement Process.

    ERIC Educational Resources Information Center

    Ishida, Junichi

    1997-01-01

    Examines the effects of a teaching strategy in which fifth-grade students evaluated the strengths or weaknesses of solution methods to pattern finding problems, including an experimental and control group each consisting of 34 elementary students, in Japan. The experimental group showed a significantly better performance on the retention test…

  18. Traveling waves in a magnetized Taylor-Couette flow.

    PubMed

    Liu, Wei; Goodman, Jeremy; Ji, Hantao

    2007-07-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes.

  19. Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.

    PubMed

    Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban

    2015-07-20

    In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.

  20. Using ProMED-Mail and MedWorm blogs for cross-domain pattern analysis in epidemic intelligence.

    PubMed

    Stewart, Avaré; Denecke, Kerstin

    2010-01-01

    In this work we motivate the use of medical blog user generated content for gathering facts about disease reporting events to support biosurveillance investigation. Given the characteristics of blogs, the extraction of such events is made more difficult due to noise and data abundance. We address the problem of automatically inferring disease reporting event extraction patterns in this more noisy setting. The sublanguage used in outbreak reports is exploited to align with the sequences of disease reporting sentences in blogs. Based our Cross Domain Pattern Analysis Framework, experimental results show that Phase-Level sequences tend to produce more overlap across the domains than Word-Level sequences. The cross domain alignment process is effective at filtering noisy sequences from blogs and extracting good candidate sequence patterns from an abundance of text.

  1. Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays.

    PubMed

    Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L

    2018-02-07

    Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

  2. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  3. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    PubMed

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  4. Faraday waves in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun

    2018-04-01

    We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.

  5. Characteristics of digital micromirror projection for 3D shape measurement at extreme speed

    NASA Astrophysics Data System (ADS)

    Höfling, Roland; Aswendt, Petra; Leischnig, Frank; Förster, Matthias

    2015-03-01

    3D shape measurement is one of the growing industrial applications of the Texas Instruments DLP® micro-mirror device. This paper presents investigations on precision and repeatability of that spatial light modulators output when it is driven up to its high-speed limit. The study concerns the basic switching behavior of the individual micro-mirror at different frame rates ranging over three orders of magnitude. The 3D shape measuring methodologies are focused on phase encoded triangulation, i.e. the projection of sinusoidal patterns. The DLP chip is a bi-stable device providing an on/off pattern at each certain moment in time, i.e. it has a native binary output. Sinusoidal patterns are the result of either a temporal integration of multiple on/off patterns or a spatial integration within one on/off pattern. Both approaches are studied experimentally with respect to precision and stability of the pattern output. The STAR-07 industrial projection unit, based upon the 0.7" DLP Discovery™4100 chipset, has been used for this work and the pattern frame rates cover the range from 225 frames per second (fps) to 50,000 fps. The STAR-07 output is detected by a photodiode, amplified, and analyzed in a Yokogawa digital storage oscilloscope. All results prove the very high precision and repeatability of the STAR-07 pattern projection, up to the extreme speed of 50,000 fps.

  6. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  7. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  8. Coulomb Fission in Multiply-Charged Ammonia Clusters: Accurate Measurements of the Rayleigh Instability Limit from Fragmentation Patterns.

    PubMed

    Harris, Christopher; Stace, Anthony J

    2018-03-15

    A series of experiments have been undertaken on the fragmentation of multiply charged ammonia clusters, (NH 3 ) n z+ , where z ≤ 8 and n ≤ 850, to establish Rayleigh instability limits, whereby clusters at certain critical sizes become unstable due to Coulomb repulsion between the resident charges. Experimental results on size-selected clusters are found to be in excellent agreement with theoretical predictions of Rayleigh instability limits at all values of the charge. Electrostatic theory has been used to help identify fragmentation patterns on the assumption that the clusters separate into two dielectric spheres, and the predicted Coulomb repulsion energies used to establish pathways and the sizes of cluster fragments. The results show that fragmentation is very asymmetric in terms of both the numbers of molecules involved and the amount of charge each fragment accommodates. For clusters carrying a charge ≤+4, the results show that fragmentation proceeds via the loss of small, singly charged clusters. When clusters carry a charge of +5 or more, the experimental observations suggest a marked switch in behavior. Although the laboratory measurements equate to fragmentation via the loss of a large dication cluster, electrostatic theory supports an interpretation that involves the sequential loss of two smaller, singly charged clusters possibly accompanied by the extensive evaporation of neutral molecules. It is suggested that this change in fragmentation pattern is driven by the channelling of Coulomb repulsion energy into intermolecular modes within these larger clusters. Overall, the results appear to support the ion evaporation model that is frequently used to interpret electrospray experiments.

  9. Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.

    2015-01-01

    The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time

  10. Low power femtosecond tip-based nanofabrication with advanced control

    NASA Astrophysics Data System (ADS)

    Liu, Jiangbo; Guo, Zhixiong; Zou, Qingze

    2018-02-01

    In this paper, we propose an approach to enable the use of low power femtosecond laser in tip-based nanofabrication (TBN) without thermal damage. One major challenge in laser-assisted TBN is in maintaining precision control of the tip-surface positioning throughout the fabrication process. An advanced iterative learning control technique is exploited to overcome this challenge in achieving high-quality patterning of arbitrary shape on a metal surface. The experimental results are analyzed to understand the ablation mechanism involved. Specifically, the near-field radiation enhancement is examined via the surface-enhanced Raman scattering effect, and it was revealed the near-field enhanced plasma-mediated ablation. Moreover, silicon nitride tip is utilized to alleviate the adverse thermal damage. Experiment results including line patterns fabricated under different writing speeds and an "R" pattern are presented. The fabrication quality with regard to the line width, depth, and uniformity is characterized to demonstrate the efficacy of the proposed approach.

  11. Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Kucherenko, Yu.

    2002-04-01

    The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.

  12. On the mechanism of pattern formation in glow dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, andmore » external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.« less

  13. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.

    2017-02-01

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  14. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, Ivan; Wang, Yonglei; Xiao, Zhili; Kwok, Wai-Kwong; Glatz, Andreas

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers - varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic field dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  15. Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. III. Pharmacological dissection of the feeding rhythm.

    PubMed

    Elliott, C J

    1992-05-29

    The feeding activity of the pond snail Lymnaea stagnalis was stimulated by depolarization of a modulatory interneuron (SO) or of a N1 pattern-generating interneuron. The cholinergic antagonists phenyltrimethylammonium (PTMA), methylxylocholine (MeXCh), hexamethonium (HMT) and atropine (ATR) were applied at 0.5 mM in the bath and their effects on the rhythmic feeding pattern were monitored. Each of the antagonists slowed or blocked the feeding rhythm. The block was due to interference in the pattern generating network, not to disturbance of modulatory inputs. The experimental results favour a model in which the alternation of protraction (N1) and retraction (N2) phases occurs by recurrent inhibition. The results would be more difficult to explain on the reciprocal inhibition model. When all the N1 output was blocked, the N1 neurons fired rhythmic bursts endogenously.

  16. Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern

    NASA Astrophysics Data System (ADS)

    Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan

    2017-02-01

    We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.

  17. The Emergence of Sub-Syllabic Representations

    ERIC Educational Resources Information Center

    Lee, Yongeun; Goldrick, Matthew

    2008-01-01

    In a variety of experimental paradigms speakers do not treat all sub-syllabic sequences equally. In languages like English, participants tend to group vowels and codas together to the exclusion of onsets (i.e., /bet/=/b/-/et/). Three possible accounts of these patterns are examined. A hierarchical account attributes these results to the presence…

  18. Sex differences in sleep pattern of rats in an experimental model of osteoarthritis.

    PubMed

    Silva, Andressa; Araujo, Paula; Zager, Adriano; Tufik, Sergio; Andersen, Monica Levy

    2011-07-01

    Osteoarthritis (OA) is a major healthcare burden with increasing incidence, and is characterised by the degeneration of articular cartilage. OA is associated with chronic pain and sleep disturbance. The current study examined and compared the long-term effects of chronic articular pain on sleep patterns between female and male rats in an experimental model of OA. Rats were implanted with electrodes for electrocorticography and electromyography and assigned to control, sham or OA groups. OA was induced by the intra-articular administration of (2 mg) monosodium iodoacetate into the left knee joint in male and female rats (at estrus and diestrus phases). Sleep was monitored at days 1, 10, 15, 20 and 28 after iodoacetate injection during light and dark periods. The results showed that the overall sleep architecture changed in both sexes. These alterations occurred during the light and dark periods, began on D1 and persisted until the end of the study. OA rats, regardless of sex, showed a fragmented sleep pattern with reduced sleep efficiency, slow-wave sleep and paradoxical sleep, and fewer paradoxical sleep bouts. However, the males showed lower sleep efficiency and reduced slow-wave sleep compared to females during the dark period. Additionally, OA affected the hormonal levels in male rats, as testosterone levels were reduced in comparison to the control and sham groups. In females, progesterone and estradiol remained unchanged throughout the study. Our results suggest that the chronic model of OA influenced the sleep patterns in both sexes. However, males appeared to be more affected. Copyright © 2010. Published by Elsevier Ltd.

  19. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  20. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  1. Gender classification from face images by using local binary pattern and gray-level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Uzbaş, Betül; Arslan, Ahmet

    2018-04-01

    Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.

  2. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    PubMed

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  3. BFDCA: A Comprehensive Tool of Using Bayes Factor for Differential Co-Expression Analysis.

    PubMed

    Wang, Duolin; Wang, Juexin; Jiang, Yuexu; Liang, Yanchun; Xu, Dong

    2017-02-03

    Comparing the gene-expression profiles between biological conditions is useful for understanding gene regulation underlying complex phenotypes. Along this line, analysis of differential co-expression (DC) has gained attention in the recent years, where genes under one condition have different co-expression patterns compared with another. We developed an R package Bayes Factor approach for Differential Co-expression Analysis (BFDCA) for DC analysis. BFDCA is unique in integrating various aspects of DC patterns (including Shift, Cross, and Re-wiring) into one uniform Bayes factor. We tested BFDCA using simulation data and experimental data. Simulation results indicate that BFDCA outperforms existing methods in accuracy and robustness of detecting DC pairs and DC modules. Results of using experimental data suggest that BFDCA can cluster disease-related genes into functional DC subunits and estimate the regulatory impact of disease-related genes well. BFDCA also achieves high accuracy in predicting case-control phenotypes by using significant DC gene pairs as markers. BFDCA is publicly available at http://dx.doi.org/10.17632/jdz4vtvnm3.1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. LiNbO{sub 3}: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.

    The application of evanescent photovoltaic (PV) fields, generated by visible illumination of Fe:LiNbO{sub 3} substrates, for parallel massive trapping and manipulation of micro- and nano-objects is critically reviewed. The technique has been often referred to as photovoltaic or photorefractive tweezers. The main advantage of the new method is that the involved electrophoretic and/or dielectrophoretic forces do not require any electrodes and large scale manipulation of nano-objects can be easily achieved using the patterning capabilities of light. The paper describes the experimental techniques for particle trapping and the main reported experimental results obtained with a variety of micro- and nano-particles (dielectricmore » and conductive) and different illumination configurations (single beam, holographic geometry, and spatial light modulator projection). The report also pays attention to the physical basis of the method, namely, the coupling of the evanescent photorefractive fields to the dielectric response of the nano-particles. The role of a number of physical parameters such as the contrast and spatial periodicities of the illumination pattern or the particle deposition method is discussed. Moreover, the main properties of the obtained particle patterns in relation to potential applications are summarized, and first demonstrations reviewed. Finally, the PV method is discussed in comparison to other patterning strategies, such as those based on the pyroelectric response and the electric fields associated to domain poling of ferroelectric materials.« less

  5. Contribution to an effective design method for stationary reaction-diffusion patterns.

    PubMed

    Szalai, István; Horváth, Judit; De Kepper, Patrick

    2015-06-01

    The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.

  6. A novel method linking neural connectivity to behavioral fluctuations: Behavior-regressed connectivity.

    PubMed

    Passaro, Antony D; Vettel, Jean M; McDaniel, Jonathan; Lawhern, Vernon; Franaszczuk, Piotr J; Gordon, Stephen M

    2017-03-01

    During an experimental session, behavioral performance fluctuates, yet most neuroimaging analyses of functional connectivity derive a single connectivity pattern. These conventional connectivity approaches assume that since the underlying behavior of the task remains constant, the connectivity pattern is also constant. We introduce a novel method, behavior-regressed connectivity (BRC), to directly examine behavioral fluctuations within an experimental session and capture their relationship to changes in functional connectivity. This method employs the weighted phase lag index (WPLI) applied to a window of trials with a weighting function. Using two datasets, the BRC results are compared to conventional connectivity results during two time windows: the one second before stimulus onset to identify predictive relationships, and the one second after onset to capture task-dependent relationships. In both tasks, we replicate the expected results for the conventional connectivity analysis, and extend our understanding of the brain-behavior relationship using the BRC analysis, demonstrating subject-specific BRC maps that correspond to both positive and negative relationships with behavior. Comparison with Existing Method(s): Conventional connectivity analyses assume a consistent relationship between behaviors and functional connectivity, but the BRC method examines performance variability within an experimental session to understand dynamic connectivity and transient behavior. The BRC approach examines connectivity as it covaries with behavior to complement the knowledge of underlying neural activity derived from conventional connectivity analyses. Within this framework, BRC may be implemented for the purpose of understanding performance variability both within and between participants. Published by Elsevier B.V.

  7. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    NASA Astrophysics Data System (ADS)

    Jia, Bing

    2014-03-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.

  8. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  9. Metals Electroprocessing in Molten Salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1985-01-01

    The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.

  10. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    PubMed

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  11. Effects of prompting and reinforcement of one response pattern upon imitation of a different modeled pattern

    PubMed Central

    Bondy, Andrew S.

    1982-01-01

    Twelve preschool children participated in a study of the effects of explicit training on the imitation of modeled behavior. The responses trained involved a marble-dropping pattern that differed from the modeled pattern. Training consisted of physical prompts and verbal praise during a single session. No prompts or praise were used during test periods. After operant levels of the experimental responses were measured, training either preceded or was interposed within a series of exposures to modeled behavior that differed from the trained behavior. Children who were initially exposed to a modeling session immediately imitated, whereas those children who were initially trained immediately performed the appropriate response. Children initially trained on one pattern generally continued to exhibit that pattern even after many modeling sessions. Children who first viewed the modeled response and then were exposed to explicit training of a different response reversed their response pattern from the trained response to the modeled response within a few sessions. The results suggest that under certain conditions explicit training will exert greater control over responding than immediate modeling stimuli. PMID:16812260

  12. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.

    PubMed

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-02-08

    This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.

  13. Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays.

    PubMed

    Luis Martínez Fuentes, Jose; Moreno, Ignacio

    2018-03-05

    A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.

  14. Experimental Analysis of Critical Current and Alternating Current Losses of High-Temperature Superconductor Tape with Resin and Gallium-Indium-Tin

    PubMed Central

    Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu

    2018-01-01

    This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation. PMID:29642490

  15. Experimental Analysis of Critical Current and Alternating Current Losses of High-Temperature Superconductor Tape with Resin and Gallium-Indium-Tin.

    PubMed

    Yu, Dongmin; Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu; Liu, Huanan

    2018-04-08

    This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation.

  16. Numerical and experimental investigation of the bending response of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.

    1993-01-01

    A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end-rotation, and non-ideal boundary conditions. Buckling end-rotations, strains, and moments are influenced by laminate orthotropy and initial geometric imperfections. Measured buckling results correlate well with predictions for the geometrically imperfect specimens. The postbuckling analyses predict equilibrium paths with a number of scallop-shaped branches that correspond to unique deflection patterns. The observed postbuckling deflection patterns and measured strain profiles show striking similarities to the predictions in some cases. Ultimate failure of the cylinders is attributed to an interlaminar shear failure mode along the nodal lines of the postbuckling deflection patterns.

  17. Multiple dynamics in a single predator-prey system: experimental effects of food quality.

    PubMed Central

    Nelson, W A; McCauley, E; Wrona, F J

    2001-01-01

    Recent work with the freshwater zooplankton Daphnia has suggested that the quality of its algal prey can have a significant effect on its demographic rates and life-history patterns. Predator-prey theory linking food quantity and food quality predicts that a single system should be able to display two distinct patterns of population dynamics. One pattern is predicted to have high herbivore and low algal biomass dynamics (high HBD), whereas the other is predicted to have low herbivore and high algal biomass dynamics (low HBD). Despite these predictions and the stoichiometric evidence that many phytoplankton communities may have poor access to food of quality, there have been few tests of whether a dynamic predator-prey system can display both of these distinct patterns. Here we report, to the authors' knowledge, the first evidence for two dynamical patterns, as predicted by theory, in a single predator-prey system. We show that the high HBD is a result of food quantity effects and that the low HBD is a result of food quality effects, which are maintained by phosphorus limitation in the predator. These results provide an important link between the known effects of nutrient limitation in herbivores and the significance of prey quality in predator-prey population dynamics in natural zooplankton communities. PMID:11410147

  18. Electromagnetic correlates of musical expertise in processing of tone patterns.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2012-01-01

    Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.

  19. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems in the literature. PMID:26421616

  20. Effect of Physician Tutorials on Prescribing Patterns of Graduate Physicians.

    ERIC Educational Resources Information Center

    Klein, Lawrence E.; And Others

    1981-01-01

    Physicians in an experimental group were surveyed to assess their knowledge of the effectiveness, cost, and side effects of antibiotics, and a tutorial was developed to modify some prescribing patterns. Prescribing patterns were statistically different. (Author/MLW)

  1. Fluorescence molecular imaging system with a novel mouse surface extraction method and a rotary scanning scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-03-01

    We have developed a new fluorescence molecular tomography (FMT) imaging system, in which we utilized a phase shifting method to extract the mouse surface geometry optically and a rotary laser scanning approach to excite fluorescence molecules and acquire fluorescent measurements on the whole mouse body. Nine fringe patterns with a phase shifting of 2π/9 are projected onto the mouse surface by a projector. The fringe patterns are captured using a webcam to calculate a phase map that is converted to the geometry of the mouse surface with our algorithms. We used a DigiWarp approach to warp a finite element mesh of a standard digital mouse to the measured mouse surface thus the tedious and time-consuming procedure from a point cloud to mesh is avoided. Experimental results indicated that the proposed method is accurate with errors less than 0.5 mm. In the FMT imaging system, the mouse is placed inside a conical mirror and scanned with a line pattern laser that is mounted on a rotation stage. After being reflected by the conical mirror, the emitted fluorescence photons travel through central hole of the rotation stage and the band pass filters in a motorized filter wheel, and are collected by a CCD camera. Phantom experimental results of the proposed new FMT imaging system can reconstruct the target accurately.

  2. Individuals with clinically significant insomnia symptoms are characterised by a negative sleep-related expectancy bias: Results from a cognitive-experimental assessment.

    PubMed

    Courtauld, Hannah; Notebaert, Lies; Milkins, Bronwyn; Kyle, Simon D; Clarke, Patrick J F

    2017-08-01

    Cognitive models of insomnia consistently suggest that negative expectations regarding the consequences of poor sleep contribute to the maintenance of insomnia. To date, however, no research has sought to determine whether insomnia is indeed characterised by such a negative sleep-related expectancy bias, using objective cognitive assessment tasks which are more immune to response biases than questionnaire assessments. Therefore, the current study employed a reaction-time task assessing biased expectations among a group with clinically significant insomnia symptoms (n = 30) and a low insomnia symptoms group (n = 40). The task involved the presentation of scenarios describing the consequences of poor sleep, and non-sleep related activities, which could be resolved in a benign or a negative manner. The results demonstrated that the high insomnia symptoms group were disproportionately fast to resolve sleep-related scenarios in line with negative outcomes, as compared to benign outcomes, relative to the low insomnia symptoms group. The two groups did not differ in their pattern of resolving non-sleep related scenarios. This pattern of findings is entirely consistent with a sleep-specific expectancy bias operating in individuals with clinically significant insomnia symptoms, and highlights the potential of cognitive-experimental assessment tasks to objectively index patterns of biased cognition in insomnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram.

    PubMed

    Bhardwaj, Rajneesh; Fang, Xiaohua; Somasundaran, Ponisseril; Attinger, Daniel

    2010-06-01

    The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central bump, or a uniform layer. Simulations and experiments are found in very good agreement.

  4. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  5. Calcium Signaling enhancement during oocyte maturation

    NASA Astrophysics Data System (ADS)

    Jung, Peter; Ullah, Ghanim; Machaca, Khaled

    2006-03-01

    A Ca2+ signal with a special spatial and temporal characteristic universally removes cell-cycle arrest after fertilization of a mature egg cell. The Ca2+ signal is characterized by a fast rise of intracellular Ca2+ and a slow decay on the time scale of minutes. We use computational modeling of Ca2+ release on the microscale (Ca2+ puffs) and cell-scale in conjunction with experimental knowledge of the changes in the Ca2+ signaling apparatus during oocyte maturation and changing signaling patterns to explore the relationship between organization and sensitivity of IP3 receptors and SERCA pumps and the resulting signaling patterns. We hypothesize that potentiation of the IP3 receptors during oocyte maturation is the main cause for the differentiation in the signaling patterns.

  6. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Bratkovsky, Alexandr

    2009-03-01

    We investigate the effects of a lattice misfit strain on a ground state and polarization patterns in flat perovskite nanoparticles (nanoislands of BaTiO3 and PbZr0.5Ti0.5O3) with the use of an ab-initio derived effective Hamiltonian. We show that the strain strongly controls the balance between the depolarizing field and the polarization anizotropy in determining the equilibrium polarization patterns. Compressive strain favors 180 ^0 stripe/tweed domains while a tensile strain leads to in-plane vortex formation, with the unusual intermediate phase (s) where both ordering motifs coexist [1]. The results may allow to explain contradictions in recent experimental data for ferroelectric nanoparticles. [1] Ivan Naumov and Alexander M. Bratkovsky, Phys. Rev. Lett. 101, 107601 (2008).

  7. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  8. Improvement of sub-20nm pattern quality with dose modulation technique for NIL template production

    NASA Astrophysics Data System (ADS)

    Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kanamitsu, Shingo; Motokawa, Takeharu; Hagihara, Kazuki; Arisawa, Yukiyasu; Kobayashi, Sachiko; Saito, Masato; Ito, Masamitsu

    2016-04-01

    Nanoimprint lithography (NIL) technology is in the spotlight as a next-generation semiconductor manufacturing technique for integrated circuits at 22 nm and beyond. NIL is the unmagnified lithography technique using template which is replicated from master templates. On the other hand, master templates are currently fabricated by electron-beam (EB) lithography[1]. In near future, finer patterns less than 15nm will be required on master template and EB data volume increases exponentially. So, we confront with a difficult challenge. A higher resolution EB mask writer and a high performance fabrication process will be required. In our previous study, we investigated a potential of photomask fabrication process for finer patterning and achieved 15.5nm line and space (L/S) pattern on template by using VSB (Variable Shaped Beam) type EB mask writer and chemically amplified resist. In contrast, we found that a contrast loss by backscattering decreases the performance of finer patterning. For semiconductor devices manufacturing, we must fabricate complicated patterns which includes high and low density simultaneously except for consecutive L/S pattern. Then it's quite important to develop a technique to make various size or coverage patterns all at once. In this study, a small feature pattern was experimentally formed on master template with dose modulation technique. This technique makes it possible to apply the appropriate exposure dose for each pattern size. As a result, we succeed to improve the performance of finer patterning in bright field area. These results show that the performance of current EB lithography process have a potential to fabricate NIL template.

  9. Slug Flow Analysis in Vertical Large Diameter Pipes

    NASA Astrophysics Data System (ADS)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show linear trends at low mixture velocities and non-linear behaviors at high mixture velocities. The translational velocity trends seem to be related to the flow-pattern observed, namely to the ability of the gas to flow through the liquid structures. A simplified Taylor bubble stability model is proposed. The model allows to estimate under which conditions Taylor bubbles disappear, properly accounting for the diameter effect and velocity effect observed experimentally. In addition, annular flow distribution coefficient relating true holdup to centerline holdup in vertical flow is proposed. The proposed coefficient defines the tendency of the liquid to remain near the walls. This coefficient increases linearly with the void fraction.

  10. Conformal fractal antenna and FSS for low-RCS applications

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Vinoy, K. J.; Jose, K. A.; Varadan, Vasundara V.

    2000-06-01

    On many situations the reduction of radar cross section (RCS) is of continued strategic interest, especially with aircraft and missiles. Once the overall RCS of the vehicle is reduced, the reflections from the antennas can dominate. The commonly known approaches to RCS reduction may not be applicable for antennas, and hence special techniques are followed. These include configuring the antennas completely conformal, and using band pass frequency selective surfaces. The use fractal patterns have shown to result in such band pass characteristics. The overall RCS of a typical target body is experimentally found to be reduced when these screens are used. The paper presents the experimental result on the transmission and backscatter characteristics of a fractal FSS screen.

  11. Patterning control strategies for minimum edge placement error in logic devices

    NASA Astrophysics Data System (ADS)

    Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim

    2017-03-01

    In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.

  12. A Study of Early Afterdepolarizations in a Model for Human Ventricular Tissue

    PubMed Central

    Vandersickel, Nele; Kazbanov, Ivan V.; Nuitermans, Anita; Weise, Louis D.; Pandit, Rahul; Panfilov, Alexander V.

    2014-01-01

    Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium. PMID:24427289

  13. Effects of hydroperiod duration on survival, developmental rate, and size at metamorphosis in boreal chorus frog tadpoles (Pseudacris maculata)

    USGS Publications Warehouse

    Amburgey, Staci; Funk, W. Chris; Murphy, Melanie; Muths, Erin

    2012-01-01

    Understanding the relationship between climate-driven habitat conditions and survival is key to preserving biodiversity in the face of rapid climate change. Hydroperiod—the length of time water is in a wetland—is a critical limiting habitat variable for amphibians as larvae must metamorphose before ponds dry. Changes in precipitation and temperature patterns are affecting hydroperiod globally, but the impact of these changes on amphibian persistence is poorly understood. We studied the responses of Boreal Chorus Frog (Pseudacris maculata) tadpoles to simulated hydroperiods (i.e., water level reductions) in the laboratory using individuals collected from ponds spanning a range of natural hydroperiods (Colorado Front Range, USA). To assess the effects of experimental hydroperiod reduction, we measured mortality, time to metamorphosis, and size at metamorphosis. We found that tadpoles grew at rates reflecting the hydroperiods of their native ponds, regardless of experimental treatment. Tadpoles from permanent ponds metamorphosed faster than those from ephemeral ponds across all experimental treatments, a pattern which may represent a predation selection gradient or countergradient variation in developmental rates. Size at metamorphosis did not vary across experimental treatments. Mortality was low overall but varied with pond of origin. Our results suggest that adaptation to local hydroperiod and/or predation and temperature conditions is important in P. maculata. Moreover, the lack of a plastic response to reduced hydroperiods suggests that P. maculata may not be able to metamorphose quickly enough to escape drying ponds. These results have important implications for amphibian persistence in ponds predicted to dry more quickly due to rapid climate change.

  14. Differences in cytokinin control on cellular dynamics of zucchini cotyledons cultivated in two experimental systems.

    PubMed

    Stoynova-Bakalova, E; Petrov, P; Gigova, L; Ivanova, N

    2011-01-01

    The effect of endogenous cytokinins on the pattern of palisade cell division post-germination does not depend on the conditions of cotyledon development -in planta (attached to seedlings) or in vitro (isolated from dry zucchini seeds and cultured on water). In cotyledons originating from 4-day-old seedlings (experimental system 1), exogenous cytokinin temporarily (in the first 2 day of cultivation) enhanced post-mitotic cell enlargement of palisade cells, mainly due to enhanced water uptake and use of cell storage compounds, all of which lead to cotyledon senescence. Cytokinin is not able to resume the completed palisade cell division on day 5. As a result, the number of cells and the final areas of treated and control cotyledons are quite similar. By contrast, the effects of cytokinin on cotyledons isolated from dry seeds (experimental system 2) are better expressed, promoting an increase in number of palisade cells accompanied by additional cotyledon area enlargement. However, the prolonged post-mitotic cell expansion in control cotyledons compensates for the reduced speed of cell growth and division activity and decreases differences in final cotyledon area between treatments. The results define cell division as the primary target of cytokinin stimulation in cotyledon tissues competent for division, and determine the temporal patterns of palisade cell cycling related to cotyledon age. This knowledge permits a better choice of experimental system to study effects on cell proliferation and cell growth, as well as cell enlargement and senescence-related events using physiologically homogeneous material. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  16. Image restoration approach to address reduced modulation contrast in structured illumination microscopy

    PubMed Central

    Patwary, Nurmohammed; Doblas, Ana; Preza, Chrysanthe

    2018-01-01

    The performance of structured illumination microscopy (SIM) is hampered in many biological applications due to the inability to modulate the light when imaging deep into the sample. This is in part because sample-induced aberration reduces the modulation contrast of the structured pattern. In this paper, we present an image restoration approach suitable for processing raw incoherent-grid-projection SIM data with a low fringe contrast. Restoration results from simulated and experimental ApoTome SIM data show results with improved signal-to-noise ratio (SNR) and optical sectioning compared to the results obtained from existing methods, such as 2D demodulation and 3D SIM deconvolution. Our proposed method provides satisfactory results (quantified by the achieved SNR and normalized mean square error) even when the modulation contrast of the illumination pattern is as low as 7%. PMID:29675307

  17. Evidence for {100}<011> slip in ferropericlase in Earth's lower mantle from high-pressure/high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Immoor, J.; Marquardt, H.; Miyagi, L.; Lin, F.; Speziale, S.; Merkel, S.; Buchen, J.; Kurnosov, A.; Liermann, H.-P.

    2018-05-01

    Seismic anisotropy in Earth's lowermost mantle, resulting from Crystallographic Preferred Orientation (CPO) of elastically anisotropic minerals, is among the most promising observables to map mantle flow patterns. A quantitative interpretation, however, is hampered by the limited understanding of CPO development in lower mantle minerals at simultaneously high pressures and temperatures. Here, we experimentally determine CPO formation in ferropericlase, one of the elastically most anisotropic deep mantle phases, at pressures of the lower mantle and temperatures of up to 1400 K using a novel experimental setup. Our data reveal a significant contribution of slip on {100} to ferropericlase CPO in the deep lower mantle, contradicting previous inferences based on experimental work at lower mantle pressures but room temperature. We use our results along with a geodynamic model to show that deformed ferropericlase produces strong shear wave anisotropy in the lowermost mantle, where horizontally polarized shear waves are faster than vertically polarized shear waves, consistent with seismic observations. We find that ferropericlase alone can produce the observed seismic shear wave splitting in D″ in regions of downwelling, which may be further enhanced by post-perovskite. Our model further shows that the interplay between ferropericlase (causing VSH > VSV) and bridgmanite (causing VSV > VSH) CPO can produce a more complex anisotropy patterns as observed in regions of upwelling at the margin of the African Large Low Shear Velocity Province.

  18. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  19. Practical method for evaluating the visibility of moire patterns for CRT design

    NASA Astrophysics Data System (ADS)

    Shiramatsu, Naoki; Tanigawa, Masashi; Iwata, Shuji

    1995-04-01

    The high resolution CRT displays used for computer monitor and high performance TV often produce a pattern of bright and dark stripes on the screen called a moire pattern. The elimination of the moire is an important consideration in the CRT design. The objective of this study is to provide a practical method for estimating and evaluating a moire pattern considering the visibility by the human vision. On the basis of the mathematical model of a moire generation, precise value of the period and the intensity of a moire are calculated from the actual data of the electron beam profile and the transmittance distribution of apertures of the shadow mask. The visibility of the moire is evaluated by plotting the calculation results on the contrast-period plane, which consists of visible and invisible moire pattern regions based on experimental results of the psychological tests. Not only fundamental design parameters such as a shadow mask pitch and a scanning line pitch but also details of an electron beam profile such as a distortion or an asymmetry can be examined. In addition to the analysis, the image simulation of a moire using the image memory is also available.

  20. Collective iteration behavior for online social networks

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Li, Ren-De; Guo, Qiang; Zhang, Yi-Cheng

    2018-06-01

    Understanding the patterns of collective behavior in online social network (OSNs) is critical to expanding the knowledge of human behavior and tie relationship. In this paper, we investigate a specific pattern called social signature in Facebook and Wiki users' online communication behaviors, capturing the distribution of frequency of interactions between different alters over time in the ego network. The empirical results show that there are robust social signatures of interactions no matter how friends change over time, which indicates that a stable commutation pattern exists in online communication. By comparing a random null model, we find the that commutation pattern is heterogeneous between ego and alters. Furthermore, in order to regenerate the pattern of the social signature, we present a preferential interaction model, which assumes that new users intend to look for the old users with strong ties while old users have tendency to interact with new friends. The experimental results show that the presented model can reproduce the heterogeneity of social signature by adjusting 2 parameters, the number of communicating targets m and the max number of interactions n, for Facebook users, m = n = 5, for Wiki users, m = 2 and n = 8. This work helps in deeply understanding the regularity of social signature.

  1. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  3. A complete passive blind image copy-move forensics scheme based on compound statistics features.

    PubMed

    Peng, Fei; Nie, Yun-ying; Long, Min

    2011-10-10

    Since most sensor pattern noise based image copy-move forensics methods require a known reference sensor pattern noise, it generally results in non-blinded passive forensics, which significantly confines the application circumstances. In view of this, a novel passive-blind image copy-move forensics scheme is proposed in this paper. Firstly, a color image is transformed into a grayscale one, and wavelet transform based de-noising filter is used to extract the sensor pattern noise, then the variance of the pattern noise, the signal noise ratio between the de-noised image and the pattern noise, the information entropy and the average energy gradient of the original grayscale image are chosen as features, non-overlapping sliding window operations are done to the images to divide them into different sub-blocks. Finally, the tampered areas are detected by analyzing the correlation of the features between the sub-blocks and the whole image. Experimental results and analysis show that the proposed scheme is completely passive-blind, has a good detection rate, and is robust against JPEG compression, noise, rotation, scaling and blurring. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Patterning flows and polymers

    NASA Astrophysics Data System (ADS)

    Stroock, Abraham Duncan

    This thesis presents the use of patterned surfaces for controlling fluid dynamics on a sub-millimeter scale, and for fabricating a new class of polymeric materials. In chapters 1--4, chemical and mechanical structures were used to control the form of flows of fluids in microchannels. This work was done in the context of the development of microfluidic technology for performing chemical tasks in portable, integrated devices. Chapter 1 reviews this work for an audience of chemists who are potential users of these techniques in the development of micro-analytical and micro-synthetic devices. Appendix 1 contains a more general review of microfluidics. Chapter 2 presents experimental results on the use of patterned surface charge density to create new electroosmotic (EO) flows in microchannels; the chapter includes a successful model of the observed flows. In Chapter 3, patterns of topography on the wall of a microchannel were used to generate recirculation in pressure-driven flows. The design and characterization of an efficient mixer based on these flows is presented. A theoretical treatment of these flows is given in Appendix 2. The experimental methods used for the work with both EO and pressure-driven flows are presented in Chapter 4. In Chapter 5, a pattern of asymmetrical grooves in a heated plate was used to perturb Marangoni-Benard (M-B) convection, a dynamic system that spontaneously forms patterned flows. The interaction of the imposed pattern and the inherent pattern of the M-B convection led to a net flow in the plane of convecting layer of fluid. The direction of this flow depended on the orientation of the asymmetrical grooves, the temperature difference across the layer, and the thickness of the layer. A phenomenological model is presented to explain this ratchet effect in which local recirculation was coupled into a global flow. In Chapter 6, surfaces patterned by microcontact printing were used as a workbench on which to build molecularly thin polymer films of well-defined lateral size and shape for subsequent release into solution; the released structures are referred to as two-dimensional (2D) polymers. This type of structure has been a theoretical curiosity and an experimental challenge for several decades. The key element of this method was the use of hydrophobic interactions as a "switchable" adhesive that attached the films to the surface during growth in water and then allowed the completed films to be removed in air. The structure and chemical composition of the films was characterized.

  5. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  6. Slug to churn transition analysis using wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    H. F. Velasco, P.; Ortiz-Vidal, L. E.; Rocha, D. M.; Rodriguez, O. M. H.

    2016-06-01

    A comparison between some theoretical slug to churn flow-pattern transition models and experimental data is performed. The flow-pattern database considers vertical upward air-water flow at standard temperature and pressure for 50 mm and 32 mm ID pipes. A briefly description of the models and its phenomenology is presented. In general, the performance of the transition models is poor. We found that new experimental studies describing objectively both stable and unstable slug flow-pattern are required. In this sense, the Wire Mesh Sensor (WMS) can assist to that aim. The potential of the WMS is outlined.

  7. A pattern recognition approach to transistor array parameter variance

    NASA Astrophysics Data System (ADS)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  8. Fish and Robots Swimming Together in a Water Tunnel: Robot Color and Tail-Beat Frequency Influence Fish Behavior

    PubMed Central

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective. PMID:24204882

  9. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    PubMed

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  10. CDUCT-LaRC Status - Shear Layer Refraction and Noise Radiation

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, F.

    2006-01-01

    A proposed boundary condition accounting for shear layer effects within the Ffowcs Williams-Hawkings radiation module of the CDUCT-LaRC code is investigated. The development and numerical justification of the boundary condition formulation are reviewed. An initial assessment of the effectiveness of the shear layer correction is conducted through comparison with experimental data. Preliminary results indicate that the correction provides physically meaningful modifications of the baseline predicted directivity patterns. Trends of peak directivity steepening and shifting that appeared in predicted patterns were found to follow similar structures in measured data, particularly at higher radiation angles.

  11. Particle Line Assembly/Patterning by Microfluidic AC Electroosmosis

    NASA Astrophysics Data System (ADS)

    Lian, Meng; Islam, Nazmul; Wu, Jie

    2006-04-01

    Recently AC electroosmosis has attracted research interests worldwide. This paper is the first to investigate particle line assembly/patterning by AC electroosmosis. Since AC electroosmotic force has no dependence on particle sizes, this technique is particularly useful for manipulating nanoscale substance, and hopefully constructs functional nanoscale devices. Two types of ACEO devices, in the configurations of planar interdigitated electrodes and parallel plate electrodes, and a biased ACEO technique are studied, which provides added flexibility in particle manipulation and line assembly. The paper also investigates the effects of electrical field distributions on generating microflows for particle assembly. The results are corroborated experimentally.

  12. Ultraviolet Patterns on Rear of Flowers: Basis of Disparity of Buds and Blossoms

    PubMed Central

    Eisner, Thomas; Eisner, Maria; Aneshansley, D.

    1973-01-01

    Flowers of Jasminium primulinum and Hypericum spp. have ultraviolet patterns on the reverse surface of the corolla. Those areas of the surface that are exposed to the outside in the bud are ultraviolet absorbent, whereas the portions that come into view at maturity in the open blossom are ultraviolet reflectant. Buds and blossoms, as a result, appear different in color to insects sensitive to ultraviolet light. Experimental evidence indicates that the ultraviolet-absorbent quality of the outer surface of the bud is a consequence of exposure itself, attributable possibly to a “sun tanning” effect. Images PMID:16592074

  13. Observation of an optical vortex beam from a helical undulator in the XUV region.

    PubMed

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  14. Designing Pattern Recognition-Based Method for Fast Visual Inspection of the Bucket Wheel Excavator Lattice Structure

    NASA Astrophysics Data System (ADS)

    Risteiu, M.; Lorincz, A.; Dobra, R.; Dasic, P.; Andras, I.; Roventa, M.

    2017-06-01

    The proposed paper shows some experimental results of a research in metallic structures inspection by using a high definition camera controller by high processing capabilities. The dedicated ARM Cortex-M4 initializes the ARM Cortex-M0 system for image acquiring. Then, by programming options, we are action for patterns (abnormal situations like metal cracks, or discontinuities) types and tuning, for enabling overexposure highlighting and adjusting camera brightness/exposure, to adjust minimum brightness, and to adjust the pattern’s teach threshold. The proposed system has been tested in normal lighting conditions from the typical site.

  15. Effect of pH on chitosan hydrogel polymer network structure.

    PubMed

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  16. Spatially periodic patterns in rotating fluids: a new spin on the old "soup-can race"

    NASA Astrophysics Data System (ADS)

    Carnevali, Antonino; Carnevali, Dora; Christ, Jessica

    2000-11-01

    A student's investigation of the old "soup-can race" experiment revealed spatially periodic structures at the surface of the rotating fluid. To better observe this effect, the experiment was transferred to a test bench, where an electric motor was used to spin a cylindrical bottle, partially filled with fluids of varied densities, about its longitudinal axis. A photogate and event-counter software provided real-time measurements of the rotational frequency. Various cell-formation patterns were observed. Experimental results will be presented, and connections with the theory will be explored.

  17. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  18. Blind color isolation for color-channel-based fringe pattern profilometry using digital projection

    NASA Astrophysics Data System (ADS)

    Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai

    2007-08-01

    We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.

  19. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-07-01

    Gas puff imaging (GPI) observations made in NSTX (Zweben et al 2017 Phys. Plasmas 24 102509) have revealed two-point spatial correlations of edge and scrape-off layer (SOL) turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or SOL), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Other properties of the experimentally observed extrema are discussed.

  20. Effect of manufacturing defects on optical performance of discontinuous freeform lenses.

    PubMed

    Wang, Kai; Liu, Sheng; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing

    2009-03-30

    Discontinuous freeform lens based secondary optics are essential to LED illumination systems. Surface roughness and smooth transition between two discrete sub-surfaces are two of the most common manufacturing defects existing in discontinuous freeform lenses. The effects of these two manufacturing defects on the optical performance of two discontinuous freeform lenses were investigated by comparing the experimental results with the numerical simulation results based on Monte Carlo ray trace method. The results demonstrated that manufacturing defects induced surface roughness had small effect on the light output efficiency and the shape of light pattern of the PMMA lens but significantly affected the uniformity of light pattern, which declined from 0.644 to 0.313. The smooth transition surfaces with deviation angle more than 60 degrees existing in the BK7 glass lens, not only reduced the uniformity of light pattern, but also reduced the light output efficiency from 96.9% to 91.0% and heavily deformed the shape of the light pattern. Comparing with the surface roughness, the smooth transition surface had a much more adverse effect on the optical performance of discontinuous freeform lenses. Three methods were suggested to improve the illumination performance according to the analysis and discussion.

  1. Complementary Speckle Patterns: Deterministic Interchange of Intrinsic Vortices and Maxima through Scattering Media.

    PubMed

    Gateau, Jérôme; Rigneault, Hervé; Guillon, Marc

    2017-01-27

    Intensity maxima and zeros of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1 to the impinging coherent beam. This transform arises from the expectation that tightly focused beams, which have a planar wave front around the focus, are so changed into vortex beams and vice versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor of sqrt[3]. A cyclic permutation of optical vortices and intensity maxima is unexpectedly observed and discussed.

  2. Investigation of thermocapillary convection in a three-liquid-layer system

    NASA Astrophysics Data System (ADS)

    Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.

    1999-06-01

    This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.

  3. Diagnostics of seeded RF plasmas: An experimental study related to the gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Thompson, S. D.; Clement, J. D.; Williams, J. R.

    1974-01-01

    Measurements of the temperature profiles in an RF argon plasma were made over magnetic field intensities ranging from 20 amp turns/cm to 80 amp turns/cm. The results were compared with a one-dimensional numerical treatment of the governing equations and with an approximate closed form analytical solution that neglected radiation losses. The average measured temperatures in the plasma compared well with the numerical treatment, though the experimental profile showed less of an off center temperature peak than predicted by theory. This may be a result of the complex turbulent flow pattern present in the experimental torch and not modeled in the numerical treatment. The radiation term cannot be neglected for argon at the power levels investigated. The closed form analytical approximation that neglected radiation led to temperature predictions on the order of 1000 K to 2000 K higher than measured or predicted by the numerical treatment which considered radiation losses.

  4. Branching instability in expanding bacterial colonies.

    PubMed

    Giverso, Chiara; Verani, Marco; Ciarletta, Pasquale

    2015-03-06

    Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Design and analysis of grid stiffened fuselage panel with curved stiffeners

    NASA Astrophysics Data System (ADS)

    Hemanth, Bharath; Babu, N. C. Mahendra; Shivakumar, H. G.; Srikari, S.

    2018-04-01

    Designing and analyzing grid stiffened panel to understand the effect of stiffeners on stiffness of the panel is crucial in designing grid stiffened cylinder for fuselage application. Traditionally only straight stiffeners were used due to limited manufacturing capabilities and in recent years GSS with curved stiffeners have become a reality. The present work is on flat grid stiffened panel and the focus is to realize the change in stiffness by converting straight stiffeners in an isogrid panel to curved stiffeners. An isogrid stiffened panel is identified from literature for which experimental results were available and was considered for replacing straight stiffeners with curved stiffeners. Defining and designing the curve for curved stiffeners which can be used to replace straight stiffeners in isogrid pattern is crucial. FE model of the grid stiffened fuselage panel with isogrid pattern identified from the literature for which experimental data was available was developed and evaluated for stiffness. For the same panel, curved grid pattern to enhance stiffness of the panel was designed following existing design procedure. FE model of the grid stiffened fuselage panel with designed curved stiffeners was developed and evaluated for stiffness. It is established that the stiffness of panel can be increased by minimum of 2.82% to maximum of 11.93% by using curved stiffeners of particular curvature as a replacement for straight stiffeners in isogrid pattern with a slight mass penalty.

  6. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  7. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting

    PubMed Central

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-01-01

    This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740

  8. A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer

    2017-06-01

    In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal allowable change of one micropixel. We provide a detailed scheme to calculate the desired DMD aperture radius as well as the focal length setting of the ECTL to obtain any given split ratio. By setting tolerance limits on the split ratio, we also show that our method affords diversity by providing multiple possible solutions to achieve a desired optical power split ratio within the specified tolerances. We also demonstrate the validation of the proposed concept with initial experimental results and discussions. These experimental results show a repeatable splitter operation and the resulting power split ratios according to the theoretical predictions. With the experimental data, we also demonstrate the effectiveness of the method in obtaining any particular split ratio through different DMD and ECTL configurations with specific split ratio tolerance values.

  9. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current.

    PubMed

    Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed

    2016-01-15

    This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  11. Automatic hammering of nano-patterns on special polymer film by using a vibrating AFM tip

    PubMed Central

    2012-01-01

    Complicated nano-patterns with linewidth less than 18 nm can be automatically hammered by using atomic force microscopy (AFM) tip in tapping mode with high speed. In this study, the special sample was thin poly(styrene-ethylene/butylenes-styrene) (SEBS) block copolymer film with hexagonal spherical microstructures. An ordinary silicon tip was used as a nano-hammer, and the entire hammering process is controlled by a computer program. Experimental results demonstrate that such structure-tailored thin films enable AFM tip hammering to be performed on their surfaces. Both imprinted and embossed nano-patterns can be generated by using a vibrating tip with a larger tapping load and by using a predefined program to control the route of tip movement as it passes over the sample’s surface. Specific details for the fabrication of structure-tailored SEBS film and the theory for auto-hammering patterns were presented in detail. PMID:22889045

  12. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  13. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system

    NASA Astrophysics Data System (ADS)

    Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang

    2018-03-01

    A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.

  14. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  15. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    PubMed Central

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  16. Nonlinear gamma correction via normed bicoherence minimization in optical fringe projection metrology

    NASA Astrophysics Data System (ADS)

    Kamagara, Abel; Wang, Xiangzhao; Li, Sikun

    2018-03-01

    We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.

  17. Extrinsic effects on the disorder dynamics of Bénard-Marangoni patterns

    NASA Astrophysics Data System (ADS)

    Cerisier, P.; Rahal, S.; Billia, B.

    1996-10-01

    The influence of the vessel shape, the initial conditions, and the vertical temperature gradient on dynamics and amount of disorder in convective patterns evolving in Bénard-Marangoni instability have been analyzed by using statistical tools, namely the density of defects, a disorder function, the order-disorder (m,σ) diagram introduced from the minimal spanning tree approach by Dussert et al., [Phys. Rev. B 34, 3528 (1986)] and the entropy function recently defined by Loeffler (unpublished). Pattern disorder is studied for transient and steady states. Experimental results show that the disorder in the hexagonal patterns of Bénard-Marangoni convection (i) is minimized in a hexagonal vessel and (ii) can be described as a Gaussian noise superimposed on a perfect array of hexagonal cells. Starting from imposed arrays, both hexagonal and nonhexagonal, with a wavelength different from the one that is naturally selected, the final state is independent of initial conditions. Disorder increases with the distance from the threshold. Depending on the Prandtl number, different behaviors of the patterns are observed.

  18. Adaptive correction to the speckle correlation fringes by using a twisted-nematic liquid-crystal display.

    PubMed

    Hack, Erwin; Gundu, Phanindra Narayan; Rastogi, Pramod

    2005-05-10

    An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.

  19. A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks

    PubMed Central

    Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan

    2014-01-01

    Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747

  20. The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress

    PubMed Central

    Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.

    2016-01-01

    The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop and semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should use either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591

  1. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  2. Long-term sedimentation effects of different patterns of timber harvesting

    Treesearch

    R. R. Ziemer; J. Lewis; T. E. Lisle; Rice. R. M.

    1991-01-01

    Abstract - It is impractical to address the long-term effect of forest management strategies on erosion, sedimentation, and the resultant damage to fish habitat experimentally because to do so would require studying large watersheds for a century or more. Monte Carlo simulations were conducted on three hypothetical 10 000 ha, fifth-order forested watersheds. One...

  3. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  4. Dada Typography: Patterns of Experimentation with Graphic Design 1912-1930.

    ERIC Educational Resources Information Center

    McComb, Don

    Dada was a collective movement among avant-garde artists who rejected the existing culture of post-World War I Europe on the grounds that it belonged to the same society that had produced the war. This paper discusses Dada typography in relation to typography's role and function in the history of printing, the changes resulting from the…

  5. Computer Simulations to Study Diffraction Effects of Stacking Faults in Beta-SiC: II. Experimental Verification. 2; Experimental Verification

    NASA Technical Reports Server (NTRS)

    Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)

    2000-01-01

    Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.

  6. A shift in anterior–posterior positional information underlies the fin-to-limb evolution

    PubMed Central

    Onimaru, Koh; Kuraku, Shigehiro; Takagi, Wataru; Hyodo, Susumu; Sharpe, James; Tanaka, Mikiko

    2015-01-01

    The pectoral fins of ancestral fishes had multiple proximal elements connected to their pectoral girdles. During the fin-to-limb transition, anterior proximal elements were lost and only the most posterior one remained as the humerus. Thus, we hypothesised that an evolutionary alteration occurred in the anterior–posterior (AP) patterning system of limb buds. In this study, we examined the pectoral fin development of catshark (Scyliorhinus canicula) and revealed that the AP positional values in fin buds are shifted more posteriorly than mouse limb buds. Furthermore, examination of Gli3 function and regulation shows that catshark fins lack a specific AP patterning mechanism, which restricts its expression to an anterior domain in tetrapods. Finally, experimental perturbation of AP patterning in catshark fin buds results in an expansion of posterior values and loss of anterior skeletal elements. Together, these results suggest that a key genetic event of the fin-to-limb transformation was alteration of the AP patterning network. DOI: http://dx.doi.org/10.7554/eLife.07048.001 PMID:26283004

  7. Graph rigidity, cyclic belief propagation, and point pattern matching.

    PubMed

    McAuley, Julian J; Caetano, Tibério S; Barbosa, Marconi S

    2008-11-01

    A recent paper [1] proposed a provably optimal polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Its fundamental result is that the chordal graph in question is shown to be globally rigid, implying that exact inference provides the same matching solution as exact inference in a complete graphical model. This implies that the algorithm is optimal when there is no noise in the point patterns. In this paper, we present a new graph that is also globally rigid but has an advantage over the graph proposed in [1]: Its maximal clique size is smaller, rendering inference significantly more efficient. However, this graph is not chordal, and thus, standard Junction Tree algorithms cannot be directly applied. Nevertheless, we show that loopy belief propagation in such a graph converges to the optimal solution. This allows us to retain the optimality guarantee in the noiseless case, while substantially reducing both memory requirements and processing time. Our experimental results show that the accuracy of the proposed solution is indistinguishable from that in [1] when there is noise in the point patterns.

  8. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  9. Doubly-excited pulse-waves on flowing liquid films: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Adebayo, Idris; Xie, Zhihua; Che, Zhizhao; Wray, Alex; Matar, Omar

    2016-11-01

    The interaction patterns between doubly-excited pulse waves on a flowing liquid film are studied both experimentally and numerically. The flowing film is constituted on an inclined glass substrate while pulse-waves are excited on the film surface by means of a solenoid valve connected to a relay which receives signals from customised Matlab routines. The effect of varying the system parameters i.e. film flow rate, inter-pulse interval and substrate inclination angle on the pulse interaction patterns are then studied. Results show that different interaction patterns exist for these binary pulses; which include a singular behaviour, complete merger, partial merger and total non-coalescence. A regime map of these patterns is then plotted for each inclination angles examined, based on the film Re and the inter-pulse interval. Finally, the individual effect of the system parameters on the merging distance of these binary pulses in the merger mode is then studied and the results validated using both numerical simulations and mathematical modelling. Funding from the Nigerian Government (for Idris Adebayo), and the EPSRC through a programme Grant MEMPHIS (EP/K003976/1) gratefully acknowledged.

  10. Estimation of color modification in digital images by CFA pattern change.

    PubMed

    Choi, Chang-Hee; Lee, Hae-Yeoun; Lee, Heung-Kyu

    2013-03-10

    Extensive studies have been carried out for detecting image forgery such as copy-move, re-sampling, blurring, and contrast enhancement. Although color modification is a common forgery technique, there is no reported forensic method for detecting this type of manipulation. In this paper, we propose a novel algorithm for estimating color modification in images acquired from digital cameras when the images are modified. Most commercial digital cameras are equipped with a color filter array (CFA) for acquiring the color information of each pixel. As a result, the images acquired from such digital cameras include a trace from the CFA pattern. This pattern is composed of the basic red green blue (RGB) colors, and it is changed when color modification is carried out on the image. We designed an advanced intermediate value counting method for measuring the change in the CFA pattern and estimating the extent of color modification. The proposed method is verified experimentally by using 10,366 test images. The results confirmed the ability of the proposed method to estimate color modification with high accuracy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Reaction-diffusion pattern in shoot apical meristem of plants.

    PubMed

    Fujita, Hironori; Toyokura, Koichi; Okada, Kiyotaka; Kawaguchi, Masayoshi

    2011-03-29

    A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants.

  12. Reaction-Diffusion Pattern in Shoot Apical Meristem of Plants

    PubMed Central

    Fujita, Hironori; Toyokura, Koichi; Okada, Kiyotaka; Kawaguchi, Masayoshi

    2011-01-01

    A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants. PMID:21479227

  13. Deposition and clearance of inhaled particles.

    PubMed Central

    Stuart, B O

    1984-01-01

    Theoretical models of respiratory tract deposition of inhaled particles are compared to experimental studies of deposition patterns in humans and animals, as governed principally by particle size, density, respiratory rate and flow parameters. Various models of inhaled particle deposition make use of approximations of the respiratory tract to predict fractional deposition caused by fundamental physical processes of particle impaction, sedimentation, and diffusion. These models for both total deposition and regional (nasopharyngeal, tracheobronchial, and pulmonary) deposition are compared with early and recent experimental studies. Reasonable correlation has been obtained between theoretical and experimental studies, but the behavior in the respiratory tract of very fine (less than 0.1 micron) particles requires further investigation. Properties of particle shape, charge and hygroscopicity as well as the degree of respiratory tract pathology also influence deposition patterns; definitive experimental work is needed in these areas. The influence upon deposition patterns of dynamic alterations in inspiratory flow profiles caused by a variety of breathing patterns also requires further study, and the use of differing ventilation techniques with selected inhaled particle sizes holds promise in diagnosis of respiratory tract diseases. Mechanisms of conducting airway and alveolar clearance processes involving the pulmonary macrophage, mucociliary clearance, dissolution, transport to systemic circulation, and translocation via regional lymphatic vessels are discussed. PMID:6376108

  14. Complex Degradation Processes Lead to Non-Exponential Decay Patterns and Age-Dependent Decay Rates of Messenger RNA

    PubMed Central

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-01-01

    Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982

  15. Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results.

    PubMed

    Naghshine, Babak B; Kiani, Amirkianoosh

    2017-01-01

    In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs).

  16. Prediction of Thermodynamic Equilibrium Temperature of Cu-Based Shape-Memory Smart Materials

    NASA Astrophysics Data System (ADS)

    Eskİl, Murat; Aldaş, Kemal; Özkul, İskender

    2015-01-01

    The thermodynamic equilibrium temperature ( T 0) is an important factor in the austenite and martensitic phases. In this study, the effects of alloying elements and heat treatments on T 0 temperature were investigated using Genetic Programming (GP) which has become one of the tools used in the study of condensed matter. Due to the changes in T 0, it is possible to analyze the changes in the entropy of the phase transitions. The data patterns of the GP formulation are based on well-established experimental results from the literature. The results of the GP-based formulation were compared with experimental results and found to be reliable with a very high correlation ( R 2 = 0.965 for training and R 2 = 0.952 for testing).

  17. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves.

    PubMed

    He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin

    2014-11-08

    We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water.

  18. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves

    PubMed Central

    He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin

    2014-01-01

    We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water. PMID:25383023

  19. Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2009-08-01

    A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) process is determined. The martensite transformation as well as martensite tempering is considered to calculate the final fraction of martensite, ferrite, cementite, ɛ-carbide, and retained austenite. Comparing the surface hardness topography of different patterns reveals that path planning is a critical parameter in laser surface modification. The predicted results are in a close agreement with the experimental results.

  20. Prediction of customer behaviour analysis using classification algorithms

    NASA Astrophysics Data System (ADS)

    Raju, Siva Subramanian; Dhandayudam, Prabha

    2018-04-01

    Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.

Top