Pattern Recognition Using Artificial Neural Network: A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.
The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.
Marée, Raphaël
2017-01-01
Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.
ERIC Educational Resources Information Center
Annett, John
An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation
USDA-ARS?s Scientific Manuscript database
Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
NASA Astrophysics Data System (ADS)
Sato, Ayuko; Iwasaki, Akiko
2004-11-01
Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection
Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David
2017-11-01
Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision
Kwon, MiYoung; Legge, Gordon E.
2011-01-01
It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800
ERIC Educational Resources Information Center
Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.
2014-01-01
Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…
NASA Astrophysics Data System (ADS)
Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.
1990-09-01
The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.
PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,
A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)
VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,
In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
The chemical structure of DNA sequence signals for RNA transcription
NASA Technical Reports Server (NTRS)
George, D. G.; Dayhoff, M. O.
1982-01-01
The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.
Transformations in the Recognition of Visual Forms
ERIC Educational Resources Information Center
Charness, Neil; Bregman, Albert S.
1973-01-01
In a study which required college students to learn to recognize four flexible plastic shapes photographed on different backgrounds from different angles, the importance of a context-rich environment for the learning and recognition of visual patterns was illustrated. (Author)
Real-Time Pattern Recognition - An Industrial Example
NASA Astrophysics Data System (ADS)
Fitton, Gary M.
1981-11-01
Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.
NASA Astrophysics Data System (ADS)
Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang
2009-09-01
Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.
Auditory orientation in crickets: Pattern recognition controls reactive steering
NASA Astrophysics Data System (ADS)
Poulet, James F. A.; Hedwig, Berthold
2005-10-01
Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Ferrari, José A.
2017-05-01
Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.
People Patterns: Fingerprinting. Environmental Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Trojan, Arthur; Zastrocky, Mike
This module uses concepts of fingerprinting to illustrate and apply selected mathematical ideas. Specifically, students participate in activities that require pattern recognition, measuring using mm and cm, and identification of similar patterns. Inking of students' prints is done. Teaching suggestions are provided. (MK)
2017-12-01
satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY
Collected Notes on the Workshop for Pattern Discovery in Large Databases
NASA Technical Reports Server (NTRS)
Buntine, Wray (Editor); Delalto, Martha (Editor)
1991-01-01
These collected notes are a record of material presented at the Workshop. The core data analysis is addressed that have traditionally required statistical or pattern recognition techniques. Some of the core tasks include classification, discrimination, clustering, supervised and unsupervised learning, discovery and diagnosis, i.e., general pattern discovery.
Variability in the impairment of recognition memory in patients with frontal lobe lesions.
Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric
2006-10-01
Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.
System integration of pattern recognition, adaptive aided, upper limb prostheses
NASA Technical Reports Server (NTRS)
Lyman, J.; Freedy, A.; Solomonow, M.
1975-01-01
The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.
NASA Astrophysics Data System (ADS)
Lhamon, Michael Earl
A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2017-12-01
The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bush, Sarah L.; Schul, Johannes
2010-01-01
Background Significance Communication signals that function to bring together the sexes are important for maintaining reproductive isolation in many taxa. Changes in male calls are often attributed to sexual selection, in which female preferences initiate signal divergence. Natural selection can also influence signal traits if calls attract predators or parasitoids, or if calling is energetically costly. Neutral evolution is often neglected in the context of acoustic communication. Methodology/Principal Findings We describe a signal trait that appears to have evolved in the absence of either sexual or natural selection. In the katydid genus Neoconocephalus, calls with a derived pattern in which pulses are grouped into pairs have evolved five times independently. We have previously shown that in three of these species, females require the double pulse pattern for call recognition, and hence the recognition system of the females is also in a derived state. Here we describe the remaining two species and find that although males produce the derived call pattern, females use the ancestral recognition mechanism in which no pulse pattern is required. Females respond equally well to the single and double pulse calls, indicating that the derived trait is selectively neutral in the context of mate recognition. Conclusions/Significance These results suggest that 1) neutral changes in signal traits could be important in the diversification of communication systems, and 2) males rather than females may be responsible for initiating signal divergence. PMID:20805980
Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D
2016-03-01
In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Jutamulia, Suganda
2008-10-01
Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.
Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams
NASA Astrophysics Data System (ADS)
Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge
This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.
Vibrotactile pattern recognition: a portable compact tactile matrix.
Thullier, Francine; Bolmont, Benoît; Lestienne, Francis G
2012-02-01
Compact tactile matrix (CTM) is a vibrotactile device composed of a seven-by-seven array of electromechanical vibrators "tactip" used to represent tactile patterns applied to a small skin area. The CTM uses a dynamic feature to generate spatiotemporal tactile patterns. The design requirements focus particularly on maximizing the transmission of the vibration from one tactip to the others as well as to the skin over a square area of 16 cm (2) while simultaneously minimizing the transmission of vibrations throughout the overall structure of the CTM. Experiments were conducted on 22 unpracticed subjects to evaluate how the CTM could be used to develop a tactile semantics for communication of instructions in order to test the ability of the subjects to identify: 1) directional prescriptors for gesture guidance and 2) instructional commands for operational task requirements in a military context. The results indicate that, after familiarization, recognition accuracies in the tactile patterns were remarkably precise for more 80% of the subjects. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Cyganek, Boguslaw; Smolka, Bogdan
2015-02-01
In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.
Learning pattern recognition and decision making in the insect brain
NASA Astrophysics Data System (ADS)
Huerta, R.
2013-01-01
We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.
Introduction to Neural Networks.
1992-03-01
parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.
Higher-order neural network software for distortion invariant object recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Use of Biometrics within Sub-Saharan Refugee Communities
2013-12-01
fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is
Rotation-invariant neural pattern recognition system with application to coin recognition.
Fukumi, M; Omatu, S; Takeda, F; Kosaka, T
1992-01-01
In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.
Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant; Jayadeva J
2016-02-01
Identifying functional handgrip patterns using surface electromygram (sEMG) signal recorded from amputee residual muscle is required for controlling the myoelectric prosthetic hand. In this study, we have computed the signal fractal dimension (FD) and maximum fractal length (MFL) during different grip patterns performed by healthy and transradial amputee subjects. The FD and MFL of the sEMG, referred to as the fractal features, were classified using twin support vector machines (TSVM) to recognize the handgrips. TSVM requires fewer support vectors, is suitable for data sets with unbalanced distributions, and can simultaneously be trained for improving both sensitivity and specificity. When compared with other methods, this technique resulted in improved grip recognition accuracy, sensitivity, and specificity, and this improvement was significant (κ=0.91).
Ultrafast learning in a hard-limited neural network pattern recognizer
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
1996-03-01
As we published in the last five years, the supervised learning in a hard-limited perceptron system can be accomplished in a noniterative manner if the input-output mapping to be learned satisfies a certain positive-linear-independency (or PLI) condition. When this condition is satisfied (for most practical pattern recognition applications, this condition should be satisfied,) the connection matrix required to meet this mapping can be obtained noniteratively in one step. Generally, there exist infinitively many solutions for the connection matrix when the PLI condition is satisfied. We can then select an optimum solution such that the recognition of any untrained patterns will become optimally robust in the recognition mode. The learning speed is very fast and close to real-time because the learning process is noniterative and one-step. This paper reports the theoretical analysis and the design of a practical charter recognition system for recognizing hand-written alphabets. The experimental result is recorded in real-time on an unedited video tape for demonstration purposes. It is seen from this real-time movie that the recognition of the untrained hand-written alphabets is invariant to size, location, orientation, and writing sequence, even the training is done with standard size, standard orientation, central location and standard writing sequence.
Pattern recognition for passive polarimetric data using nonparametric classifiers
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.
2005-08-01
Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.
Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya
2018-01-01
One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the algorithm and the subsequent conducting of the experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pattern recognition and feature extraction with an optical Hough transform
NASA Astrophysics Data System (ADS)
Fernández, Ariel
2016-09-01
Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.
Dectin-1 is required for β-glucan recognition and control of fungal infection
Taylor, Philip R; Tsoni, S Vicky; Willment, Janet A; Dennehy, Kevin M; Rosas, Marcela; Findon, Helen; Haynes, Ken; Steele, Chad; Botto, Marina; Gordon, Siamon; Brown, Gordon D
2007-01-01
β-Glucan is one of the most abundant polysaccharides in fungal pathogens, yet its importance in antifungal immunity is unclear. Here we show that deficiency of dectin-1, the myeloid receptor for β-glucan, rendered mice susceptible to infection with Candida albicans. Dectin-1-deficient leukocytes demonstrated significantly impaired responses to fungi even in the presence of opsonins. Impaired leukocyte responses were manifested in vivo by reduced inflammatory cell recruitment after fungal infection, resulting in substantially increased fungal burdens and enhanced fungal dissemination. Our results establish a fundamental function for β-glucan recognition by dectin-1 in antifungal immunity and demonstrate a signaling non–Toll-like pattern-recognition receptor required for the induction of protective immune responses. PMID:17159984
Compact holographic optical neural network system for real-time pattern recognition
NASA Astrophysics Data System (ADS)
Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.
1996-08-01
One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.
7 CFR 246.12 - Food delivery systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operational requirements for food delivery systems. In recognition of emergent electronic benefits transfer... incidence of a violation for which a pattern of incidences must be established in order to impose a sanction...
Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation
Fernández-Llatas, Carlos; Meneu, Teresa; Traver, Vicente; Benedi, José-Miguel
2013-01-01
Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized. PMID:24185841
Artificial neural network detects human uncertainty
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.
2018-03-01
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
Recognition of Arabic Sign Language Alphabet Using Polynomial Classifiers
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Al-Rousan, M.
2005-12-01
Building an accurate automatic sign language recognition system is of great importance in facilitating efficient communication with deaf people. In this paper, we propose the use of polynomial classifiers as a classification engine for the recognition of Arabic sign language (ArSL) alphabet. Polynomial classifiers have several advantages over other classifiers in that they do not require iterative training, and that they are highly computationally scalable with the number of classes. Based on polynomial classifiers, we have built an ArSL system and measured its performance using real ArSL data collected from deaf people. We show that the proposed system provides superior recognition results when compared with previously published results using ANFIS-based classification on the same dataset and feature extraction methodology. The comparison is shown in terms of the number of misclassified test patterns. The reduction in the rate of misclassified patterns was very significant. In particular, we have achieved a 36% reduction of misclassifications on the training data and 57% on the test data.
42 CFR 488.8 - Federal review of accreditation organizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... information— (1) A statement of the requirements, instances, rates or patterns of discrepancies that were... recognition of deemed authority effective 30 days from the date that it provides written notice to the...
42 CFR 488.8 - Federal review of accreditation organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... information— (1) A statement of the requirements, instances, rates or patterns of discrepancies that were... recognition of deemed authority effective 30 days from the date that it provides written notice to the...
All optical logic for optical pattern recognition and networking applications
NASA Astrophysics Data System (ADS)
Khoury, Jed
2017-05-01
In this paper, we propose architectures for the implementation 16 Boolean optical gates from two inputs using externally pumped phase- conjugate Michelson interferometer. Depending on the gate to be implemented, some require single stage interferometer and others require two stages interferometer. The proposed optical gates can be used in several applications in optical networks including, but not limited to, all-optical packet routers switching, and all-optical error detection. The optical logic gates can also be used in recognition of noiseless rotation and scale invariant objects such as finger prints for home land security applications.
Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos
2016-05-18
Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.
Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos
2016-01-01
Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... wildlife by significantly impairing essential behavior patterns, including breeding, feeding, or sheltering... section 10 permit is not required. However, plant species may be included on a permit in recognition of...
L1 track trigger for the CMS HL-LHC upgrade using AM chips and FPGAs
NASA Astrophysics Data System (ADS)
Fedi, Giacomo
2017-08-01
The increase of luminosity at the HL-LHC will require the introduction of tracker information in CMS's Level-1 trigger system to maintain an acceptable trigger rate when selecting interesting events, despite the order of magnitude increase in minimum bias interactions. To meet the latency requirements, dedicated hardware has to be used. This paper presents the results of tests of a prototype system (pattern recognition ezzanine) as core of pattern recognition and track fitting for the CMS experiment, combining the power of both associative memory custom ASICs and modern Field Programmable Gate Array (FPGA) devices. The mezzanine uses the latest available associative memory devices (AM06) and the most modern Xilinx Ultrascale FPGAs. The results of the test for a complete tower comprising about 0.5 million patterns is presented, using as simulated input events traversing the upgraded CMS detector. The paper shows the performance of the pattern matching, track finding and track fitting, along with the latency and processing time needed. The pT resolution over pT of the muons measured using the reconstruction algorithm is at the order of 1% in the range 3-100 GeV/c.
Face recognition system and method using face pattern words and face pattern bytes
Zheng, Yufeng
2014-12-23
The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.
Window-based method for approximating the Hausdorff in three-dimensional range imagery
Koch, Mark W [Albuquerque, NM
2009-06-02
One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.
NASA Astrophysics Data System (ADS)
Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn
2013-03-01
There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.
Connectivity strategies for higher-order neural networks applied to pattern recognition
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1990-01-01
Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.
Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders
ERIC Educational Resources Information Center
Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia
2006-01-01
Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…
Synthesis of Common Arabic Handwritings to Aid Optical Character Recognition Research.
Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-Etriby, Sherif
2016-03-11
Document analysis tasks such as pattern recognition, word spotting or segmentation, require comprehensive databases for training and validation. Not only variations in writing style but also the used list of words is of importance in the case that training samples should reflect the input of a specific area of application. However, generation of training samples is expensive in the sense of manpower and time, particularly if complete text pages including complex ground truth are required. This is why there is a lack of such databases, especially for Arabic, the second most popular language. However, Arabic handwriting recognition involves different preprocessing, segmentation and recognition methods. Each requires particular ground truth or samples to enable optimal training and validation, which are often not covered by the currently available databases. To overcome this issue, we propose a system that synthesizes Arabic handwritten words and text pages and generates corresponding detailed ground truth. We use these syntheses to validate a new, segmentation based system that recognizes handwritten Arabic words. We found that a modification of an Active Shape Model based character classifiers-that we proposed earlier-improves the word recognition accuracy. Further improvements are achieved, by using a vocabulary of the 50,000 most common Arabic words for error correction.
Synthesis of Common Arabic Handwritings to Aid Optical Character Recognition Research
Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-etriby, Sherif
2016-01-01
Document analysis tasks such as pattern recognition, word spotting or segmentation, require comprehensive databases for training and validation. Not only variations in writing style but also the used list of words is of importance in the case that training samples should reflect the input of a specific area of application. However, generation of training samples is expensive in the sense of manpower and time, particularly if complete text pages including complex ground truth are required. This is why there is a lack of such databases, especially for Arabic, the second most popular language. However, Arabic handwriting recognition involves different preprocessing, segmentation and recognition methods. Each requires particular ground truth or samples to enable optimal training and validation, which are often not covered by the currently available databases. To overcome this issue, we propose a system that synthesizes Arabic handwritten words and text pages and generates corresponding detailed ground truth. We use these syntheses to validate a new, segmentation based system that recognizes handwritten Arabic words. We found that a modification of an Active Shape Model based character classifiers—that we proposed earlier—improves the word recognition accuracy. Further improvements are achieved, by using a vocabulary of the 50,000 most common Arabic words for error correction. PMID:26978368
Pose Invariant Face Recognition Based on Hybrid Dominant Frequency Features
NASA Astrophysics Data System (ADS)
Wijaya, I. Gede Pasek Suta; Uchimura, Keiichi; Hu, Zhencheng
Face recognition is one of the most active research areas in pattern recognition, not only because the face is a human biometric characteristics of human being but also because there are many potential applications of the face recognition which range from human-computer interactions to authentication, security, and surveillance. This paper presents an approach to pose invariant human face image recognition. The proposed scheme is based on the analysis of discrete cosine transforms (DCT) and discrete wavelet transforms (DWT) of face images. From both the DCT and DWT domain coefficients, which describe the facial information, we build compact and meaningful features vector, using simple statistical measures and quantization. This feature vector is called as the hybrid dominant frequency features. Then, we apply a combination of the L2 and Lq metric to classify the hybrid dominant frequency features to a person's class. The aim of the proposed system is to overcome the high memory space requirement, the high computational load, and the retraining problems of previous methods. The proposed system is tested using several face databases and the experimental results are compared to a well-known Eigenface method. The proposed method shows good performance, robustness, stability, and accuracy without requiring geometrical normalization. Furthermore, the purposed method has low computational cost, requires little memory space, and can overcome retraining problem.
Understanding eye movements in face recognition using hidden Markov models.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2014-09-16
We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.
Familiarity Breeds Attempts: A Critical Review of Dual-Process Theories of Recognition.
Mandler, George
2008-09-01
Recognition memory and recall/recollection are the major divisions of the psychology of human memory. Theories of recognition have shifted from a "strength" approach to a dual-process view, which distinguishes between knowing that one has experienced an object before and knowing what it was. In this article, I discuss the history of this approach and the two processes of familiarity and recollection and locate their origin in pattern matching and organization. I evaluate various theories in terms of their basic requirements and their defining research and propose the extension of the original two process theory to domains such as pictorial recognition. Finally, I present the main phenomena that a dual-process theory of recognition must account for and discuss future needs and directions of research and development. © 2008 Association for Psychological Science.
A hierarchical graph neuron scheme for real-time pattern recognition.
Nasution, B B; Khan, A I
2008-02-01
The hierarchical graph neuron (HGN) implements a single cycle memorization and recall operation through a novel algorithmic design. The HGN is an improvement on the already published original graph neuron (GN) algorithm. In this improved approach, it recognizes incomplete/noisy patterns. It also resolves the crosstalk problem, which is identified in the previous publications, within closely matched patterns. To accomplish this, the HGN links multiple GN networks for filtering noise and crosstalk out of pattern data inputs. Intrinsically, the HGN is a lightweight in-network processing algorithm which does not require expensive floating point computations; hence, it is very suitable for real-time applications and tiny devices such as the wireless sensor networks. This paper describes that the HGN's pattern matching capability and the small response time remain insensitive to the increases in the number of stored patterns. Moreover, the HGN does not require definition of rules or setting of thresholds by the operator to achieve the desired results nor does it require heuristics entailing iterative operations for memorization and recall of patterns.
Online recognition of Chinese characters: the state-of-the-art.
Liu, Cheng-Lin; Jaeger, Stefan; Nakagawa, Masaki
2004-02-01
Online handwriting recognition is gaining renewed interest owing to the increase of pen computing applications and new pen input devices. The recognition of Chinese characters is different from western handwriting recognition and poses a special challenge. To provide an overview of the technical status and inspire future research, this paper reviews the advances in online Chinese character recognition (OLCCR), with emphasis on the research works from the 1990s. Compared to the research in the 1980s, the research efforts in the 1990s aimed to further relax the constraints of handwriting, namely, the adherence to standard stroke orders and stroke numbers and the restriction of recognition to isolated characters only. The target of recognition has shifted from regular script to fluent script in order to better meet the requirements of practical applications. The research works are reviewed in terms of pattern representation, character classification, learning/adaptation, and contextual processing. We compare important results and discuss possible directions of future research.
Pattern activation/recognition theory of mind
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228
Pattern activation/recognition theory of mind.
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.
NASA Astrophysics Data System (ADS)
Sarparandeh, Mohammadali; Hezarkhani, Ardeshir
2017-12-01
The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed methods and geological studies leads to finding some hidden information, and this approach has the best results compared to using only one of them.
NASA Astrophysics Data System (ADS)
Ko, Bonggyun; Song, Jae Wook; Chang, Woojin
2018-02-01
The aim of this research is to propose an alarm index to forecast the crash of the Korean financial market in extension to the idea of Johansen-Ledoit-Sornette model, which uses the log-periodic functions and pattern recognition algorithm. We discover that the crashes of the Korean financial market can be classified into domestic and global crises where each category requires different window length of fitted datasets. Therefore, we add the window length as a new parameter to enhance the performance of alarm index. Distinguishing the domestic and global crises separately, our alarm index demonstrates more robust forecasting than previous model by showing the error diagram and the results of trading performance.
Differential theory of learning for efficient neural network pattern recognition
NASA Astrophysics Data System (ADS)
Hampshire, John B., II; Vijaya Kumar, Bhagavatula
1993-09-01
We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.
Differential theory of learning for efficient neural network pattern recognition
NASA Astrophysics Data System (ADS)
Hampshire, John B., II; Vijaya Kumar, Bhagavatula
1993-08-01
We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generalize well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.
The Immune System as a Model for Pattern Recognition and Classification
Carter, Jerome H.
2000-01-01
Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961
PLAYGROUND: Preparing Students for the Cyber Battleground
ERIC Educational Resources Information Center
Nielson, Seth James
2017-01-01
Attempting to educate practitioners of computer security can be difficult if for no other reason than the breadth of knowledge required today. The security profession includes widely diverse subfields including cryptography, network architectures, programming, programming languages, design, coding practices, software testing, pattern recognition,…
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Creating a meaningful visual perception in blind volunteers by optic nerve stimulation
NASA Astrophysics Data System (ADS)
Brelén, M. E.; Duret, F.; Gérard, B.; Delbeke, J.; Veraart, C.
2005-03-01
A blind volunteer, suffering from retinitis pigmentosa, has been chronically implanted with an optic nerve visual prosthesis. Vision rehabilitation with this volunteer has concentrated on the development of a stimulation strategy according to which video camera images are converted into stimulation pulses. The aim is to convey as much information as possible about the visual scene within the limits of the device's capabilities. Pattern recognition tasks were used to assess the effectiveness of the stimulation strategy. The results demonstrate how even a relatively basic algorithm can efficiently convey useful information regarding the visual scene. By increasing the number of phosphenes used in the algorithm, better performance is observed but a longer training period is required. After a learning period, the volunteer achieved a pattern recognition score of 85% at 54 s on average per pattern. After nine evaluation sessions, when using a stimulation strategy exploiting all available phosphenes, no saturation effect has yet been observed.
Polur, Prasad D; Miller, Gerald E
2006-10-01
Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients requires a robust technique that can handle conditions of very high variability and limited training data. In this study, application of a 10 state ergodic hidden Markov model (HMM)/artificial neural network (ANN) hybrid structure for a dysarthric speech (isolated word) recognition system, intended to act as an assistive tool, was investigated. A small size vocabulary spoken by three cerebral palsy subjects was chosen. The effect of such a structure on the recognition rate of the system was investigated by comparing it with an ergodic hidden Markov model as a control tool. This was done in order to determine if this modified technique contributed to enhanced recognition of dysarthric speech. The speech was sampled at 11 kHz. Mel frequency cepstral coefficients were extracted from them using 15 ms frames and served as training input to the hybrid model setup. The subsequent results demonstrated that the hybrid model structure was quite robust in its ability to handle the large variability and non-conformity of dysarthric speech. The level of variability in input dysarthric speech patterns sometimes limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor impaired individuals holds sufficient promise.
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.
Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N
2017-08-01
Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Elfman, Kane W; Aly, Mariam; Yonelinas, Andrew P
2014-12-01
Recent evidence suggests that the hippocampus, a region critical for long-term memory, also supports certain forms of high-level visual perception. A seemingly paradoxical finding is that, unlike the thresholded hippocampal signals associated with memory, the hippocampus produces graded, strength-based signals in perception. This article tests a neurocomputational model of the hippocampus, based on the complementary learning systems framework, to determine if the same model can account for both memory and perception, and whether it produces the appropriate thresholded and strength-based signals in these two types of tasks. The simulations showed that the hippocampus, and most prominently the CA1 subfield, produced graded signals when required to discriminate between highly similar stimuli in a perception task, but generated thresholded patterns of activity in recognition memory. A threshold was observed in recognition memory because pattern completion occurred for only some trials and completely failed to occur for others; conversely, in perception, pattern completion always occurred because of the high degree of item similarity. These results offer a neurocomputational account of the distinct hippocampal signals associated with perception and memory, and are broadly consistent with proposals that CA1 functions as a comparator of expected versus perceived events. We conclude that the hippocampal computations required for high-level perceptual discrimination are congruous with current neurocomputational models that account for recognition memory, and fit neatly into a broader description of the role of the hippocampus for the processing of complex relational information. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Deng, Meihong; Loughran, Patricia; Gibson, Gregory; Sodhi, Chhinder; Watkins, Simon; Hackam, David
2013-01-01
The morbidity associated with bacterial sepsis is the result of host immune responses to pathogens, which are dependent on pathogen recognition by pattern recognition receptors, such as TLR4. TLR4 is expressed on a range of cell types, yet the mechanisms by which cell-specific functions of TLR4 lead to an integrated sepsis response are poorly understood. To address this, we generated mice in which TLR4 was specifically deleted from myeloid cells (LysMTLR4KO) or hepatocytes (HCTLR4KO) and then determined survival, bacterial counts, host inflammatory responses, and organ injury in a model of cecal ligation and puncture (CLP), with or without antibiotics. LysM-TLR4 was required for phagocytosis and efficient bacterial clearance in the absence of antibiotics. Survival, the magnitude of the systemic and local inflammatory responses, and liver damage were associated with bacterial levels. HCTLR4 was required for efficient LPS clearance from the circulation, and deletion of HCTLR4 was associated with enhanced macrophage phagocytosis, lower bacterial levels, and improved survival in CLP without antibiotics. Antibiotic administration during CLP revealed an important role for hepatocyte LPS clearance in limiting sepsis-induced inflammation and organ injury. Our work defines cell type–selective roles for TLR4 in coordinating complex immune responses to bacterial sepsis and suggests that future strategies for modulating microbial molecule recognition should account for varying roles of pattern recognition receptors in multiple cell populations. PMID:23562812
Holographic implementation of a binary associative memory for improved recognition
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.
1998-03-01
Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.
da Glória Sousa, Maria; Reid, Delyth M.; Schweighoffer, Edina; Tybulewicz, Victor; Ruland, Jürgen; Langhorne, Jean; Yamasaki, Sho; Taylor, Philip R.; Almeida, Sandro R.; Brown, Gordon D.
2011-01-01
Summary Chromoblastomycosis is a chronic skin infection caused by the fungus Fonsecaea pedrosoi. Exploring the reasons underlying the chronic nature of F. pedrosoi infection in a murine model of chromoblastomycosis, we find that chronicity develops due to a lack of pattern recognition receptor (PRR) costimulation. F. pedrosoi was recognized primarily by C-type lectin receptors (CLRs), but not by Toll-like receptors (TLRs), which resulted in the defective induction of proinflammatory cytokines. Inflammatory responses to F. pedrosoi could be reinstated by TLR costimulation, but also required the CLR Mincle and signaling via the Syk/CARD9 pathway. Importantly, exogenously administering TLR ligands helped clear F. pedrosoi infection in vivo. These results demonstrate how a failure in innate recognition can result in chronic infection, highlight the importance of coordinated PRR signaling, and provide proof of the principle that exogenously applied PRR agonists can be used therapeutically. PMID:21575914
The Value of Humans in the Biological Exploration of Space
NASA Astrophysics Data System (ADS)
Cockell, C. S.
2004-06-01
Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.
Possibility expectation and its decision making algorithm
NASA Technical Reports Server (NTRS)
Keller, James M.; Yan, Bolin
1992-01-01
The fuzzy integral has been shown to be an effective tool for the aggregation of evidence in decision making. Of primary importance in the development of a fuzzy integral pattern recognition algorithm is the choice (construction) of the measure which embodies the importance of subsets of sources of evidence. Sugeno fuzzy measures have received the most attention due to the recursive nature of the fabrication of the measure on nested sequences of subsets. Possibility measures exhibit an even simpler generation capability, but usually require that one of the sources of information possess complete credibility. In real applications, such normalization may not be possible, or even desirable. In this report, both the theory and a decision making algorithm for a variation of the fuzzy integral are presented. This integral is based on a possibility measure where it is not required that the measure of the universe be unity. A training algorithm for the possibility densities in a pattern recognition application is also presented with the results demonstrated on the shuttle-earth-space training and testing images.
FPGA design of correlation-based pattern recognition
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2017-05-01
Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.
Neural network for intelligent query of an FBI forensic database
NASA Astrophysics Data System (ADS)
Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric
1997-02-01
Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.
Human Expertise Helps Computer Classify Images
NASA Technical Reports Server (NTRS)
Rorvig, Mark E.
1991-01-01
Two-domain method of computational classification of images requires less computation than other methods for computational recognition, matching, or classification of images or patterns. Does not require explicit computational matching of features, and incorporates human expertise without requiring translation of mental processes of classification into language comprehensible to computer. Conceived to "train" computer to analyze photomicrographs of microscope-slide specimens of leucocytes from human peripheral blood to distinguish between specimens from healthy and specimens from traumatized patients.
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
NASA Astrophysics Data System (ADS)
Heger, Daniel; Krischer, Katharina
2016-08-01
Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.
Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B
2014-01-01
Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.
Cat-eye effect target recognition with single-pixel detectors
NASA Astrophysics Data System (ADS)
Jian, Weijian; Li, Li; Zhang, Xiaoyue
2015-12-01
A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.
Personal authentication through dorsal hand vein patterns
NASA Astrophysics Data System (ADS)
Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun
2011-08-01
Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.
Automatic ground control point recognition with parallel associative memory
NASA Technical Reports Server (NTRS)
Al-Tahir, Raid; Toth, Charles K.; Schenck, Anton F.
1990-01-01
The basic principle of the associative memory is to match the unknown input pattern against a stored training set, and responding with the 'closest match' and the corresponding label. Generally, an associative memory system requires two preparatory steps: selecting attributes of the pattern class, and training the system by associating patterns with labels. Experimental results gained from using Parallel Associative Memory are presented. The primary concern is an automatic search for ground control points in aerial photographs. Synthetic patterns are tested followed by real data. The results are encouraging as a relatively high level of correct matches is reached.
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2018-01-01
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors
NASA Astrophysics Data System (ADS)
Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.;
2017-09-01
The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.
Recognition of In-Vehicle Group Activities (iVGA): Phase-I, Feasibility Study
2014-08-27
the driver is either adjusting his/her eyeglasses , adjusting his/her makeup, or possibly attempt to hiding his/her face from getting recognized. In...closest of two patterns measured based on hamming distance determine the best class representing a test pattern. Figure 61 presents the Hamming neural...symbols are different. In another way, it measures the minimum number of substitutions required to change one string into the other, or the minimum
Real Time Large Memory Optical Pattern Recognition.
1984-06-01
AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical
Classification and machine recognition of severe weather patterns
NASA Technical Reports Server (NTRS)
Wang, P. P.; Burns, R. C.
1976-01-01
Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
New Optical Transforms For Statistical Image Recognition
NASA Astrophysics Data System (ADS)
Lee, Sing H.
1983-12-01
In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
Pattern recognition: A basis for remote sensing data analysis
NASA Technical Reports Server (NTRS)
Swain, P. H.
1973-01-01
The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.
Optical Pattern Recognition With Self-Amplification
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1994-01-01
In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.
He, Jun-Zhou; Wang, Rui-Wu; Jensen, Christopher X J; Li, Yao-Tang
2015-01-14
Avoiding the tragedy of the commons requires that one or more individuals in a group or partnership "volunteer", benefiting the group at a cost to themselves. Recognition and negotiation with social partners can maintain cooperation, but are often not possible. If recognition and negotiation are not always the mechanism by which cooperative partnerships avoid collective tragedies, what might explain the diverse social cooperation observed in nature? Assuming that individuals interact asymmetrically and that both "weak" and "strong" players employ a super-rational strategy, we find that tragedy of the commons can be avoided without requiring either recognition or negotiation. Whereas in the volunteer's dilemma game a rational "strong" player is less likely to volunteer to provide a common good in larger groups, we show that under a wide range of conditions a super-rational "strong" player is more likely to provide a common good. These results imply that the integration of super-rationality and asymmetric interaction might have the potential to resolve the tragedy of the commons. By illuminating the conditions under which players are likely to volunteer, we shed light on the patterns of volunteerism observed in variety of well-studied cooperative social systems, and explore how societies might avert social tragedies.
He, Jun-Zhou; Wang, Rui-Wu; Jensen, Christopher X. J.; Li, Yao-Tang
2015-01-01
Avoiding the tragedy of the commons requires that one or more individuals in a group or partnership “volunteer”, benefiting the group at a cost to themselves. Recognition and negotiation with social partners can maintain cooperation, but are often not possible. If recognition and negotiation are not always the mechanism by which cooperative partnerships avoid collective tragedies, what might explain the diverse social cooperation observed in nature? Assuming that individuals interact asymmetrically and that both “weak” and “strong” players employ a super-rational strategy, we find that tragedy of the commons can be avoided without requiring either recognition or negotiation. Whereas in the volunteer's dilemma game a rational “strong” player is less likely to volunteer to provide a common good in larger groups, we show that under a wide range of conditions a super-rational “strong” player is more likely to provide a common good. These results imply that the integration of super-rationality and asymmetric interaction might have the potential to resolve the tragedy of the commons. By illuminating the conditions under which players are likely to volunteer, we shed light on the patterns of volunteerism observed in variety of well-studied cooperative social systems, and explore how societies might avert social tragedies. PMID:25586876
NASA Astrophysics Data System (ADS)
He, Jun-Zhou; Wang, Rui-Wu; Jensen, Christopher X. J.; Li, Yao-Tang
2015-01-01
Avoiding the tragedy of the commons requires that one or more individuals in a group or partnership ``volunteer'', benefiting the group at a cost to themselves. Recognition and negotiation with social partners can maintain cooperation, but are often not possible. If recognition and negotiation are not always the mechanism by which cooperative partnerships avoid collective tragedies, what might explain the diverse social cooperation observed in nature? Assuming that individuals interact asymmetrically and that both ``weak'' and ``strong'' players employ a super-rational strategy, we find that tragedy of the commons can be avoided without requiring either recognition or negotiation. Whereas in the volunteer's dilemma game a rational ``strong'' player is less likely to volunteer to provide a common good in larger groups, we show that under a wide range of conditions a super-rational ``strong'' player is more likely to provide a common good. These results imply that the integration of super-rationality and asymmetric interaction might have the potential to resolve the tragedy of the commons. By illuminating the conditions under which players are likely to volunteer, we shed light on the patterns of volunteerism observed in variety of well-studied cooperative social systems, and explore how societies might avert social tragedies.
Remote sensing. [land use mapping
NASA Technical Reports Server (NTRS)
Jinich, A.
1979-01-01
Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.
A paperless autoimmunity laboratory: myth or reality?
Lutteri, Laurence; Dierge, Laurine; Pesser, Martine; Watrin, Pascale; Cavalier, Etienne
2016-08-01
Testing for antinuclear antibodies is the most frequently prescribed analysis for the diagnosis of rheumatic diseases. Indirect immunofluorescence remains the gold standard method for their detection despite the increasing use of alternative techniques. In order to standardize the manual microscopy reading, automated acquisition and interpretation systems have emerged. This publication enables us to present our method of interpretation and characterization of antinuclear antibodies based on a cascade of analyses and to share our everyday experience of the G Sight from Menarini. The positive/negative discrimination on Hep cells 2000 is correct in 85% of the cases. In most of the false negative results, it is a question of aspecific or low titers patterns, but a few cases of SSA speckled patterns of low titers demonstrated a probability index below 8. Regarding the pattern recognition, some types and mixed patterns are not properly recognized. Concerning the probability index correlated in some studies to final titer, the weak fluorescence of certain patterns and the random presence of artifacts that distort the index don't lead us to continue it in our daily practice. In conclusion, automated reading systems facilitate the reporting of results and traceability of patterns but still require the expertise of a laboratory technologist for positive/negative discrimination and for pattern recognition.
Degraded character recognition based on gradient pattern
NASA Astrophysics Data System (ADS)
Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash
2010-02-01
Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.
Automatic Target Recognition Based on Cross-Plot
Wong, Kelvin Kian Loong; Abbott, Derek
2011-01-01
Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Acciarri, R.; Adams, C.; An, R.; ...
2018-01-29
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
Woolley, Josh D; Strobl, Eric V; Sturm, Virginia E; Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott; Nguyen, Lauren; Eckart, Janet A; Levenson, Robert W; Seeley, William W; Miller, Bruce L; Rankin, Katherine P
2015-10-01
The ventroanterior insula is implicated in the experience, expression, and recognition of disgust; however, whether this brain region is required for recognizing disgust or regulating disgusting behaviors remains unknown. We examined the brain correlates of the presence of disgusting behavior and impaired recognition of disgust using voxel-based morphometry in a sample of 305 patients with heterogeneous patterns of neurodegeneration. Permutation-based analyses were used to determine regions of decreased gray matter volume at a significance level p <= .05 corrected for family-wise error across the whole brain and within the insula. Patients with behavioral variant frontotemporal dementia and semantic variant primary progressive aphasia were most likely to exhibit disgusting behaviors and were, on average, the most impaired at recognizing disgust in others. Imaging analysis revealed that patients who exhibited disgusting behaviors had significantly less gray matter volume bilaterally in the ventral anterior insula. A region of interest analysis restricted to behavioral variant frontotemporal dementia and semantic variant primary progressive aphasia patients alone confirmed this result. Moreover, impaired recognition of disgust was associated with decreased gray matter volume in the bilateral ventroanterior and ventral middle regions of the insula. There was an area of overlap in the bilateral anterior insula where decreased gray matter volume was associated with both the presence of disgusting behavior and impairments in recognizing disgust. These findings suggest that regulating disgusting behaviors and recognizing disgust in others involve two partially overlapping neural systems within the insula. Moreover, the ventral anterior insula is required for both processes. Published by Elsevier Inc.
Woolley, Joshua; Strobl, Eric V; Sturm, Virginia E; Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott; Nguyen, Lauren; Eckart, Janet A; Levenson, Robert W; Seeley, William W; Miller, Bruce L; Rankin, Katherine P
2015-01-01
Background The ventroanterior insula is implicated in the experience, expression, and recognition of disgust; however, whether this brain region is required for recognizing disgust or regulating disgusting behaviors remains unknown. Methods We examined the brain correlates of the presence of disgusting behavior and impaired recognition of disgust using voxel-based morphometry in a sample of 305 patients with heterogeneous patterns of neurodegeneration. Permutation-based analyses were used to determine regions of decreased grey matter volume at a significance level p<0.05 corrected for family-wise error across the whole brain and within the insula. Results Patients with behavioral variant frontotemporal dementia (bvFTD) and semantic variant primary progressive aphasia (svPPA) were most likely to exhibit disgusting behaviors and were, on average, the most impaired at recognizing disgust in others. Imaging analysis revealed that patients who exhibited disgusting behaviors had significantly less grey matter volume bilaterally in the ventral anterior insula. A region of interest analysis restricted to bvFTD and svPPA patients alone confirmed this result. Moreover, impaired recognition of disgust was associated with decreased grey matter volume in the bilateral ventroanterior and ventral middle regions of the insula. There was an area of overlap in the bilateral anterior insula where decreased grey matter volume was associated with both the presence of disgusting behavior and impairments in recognizing disgust. Conclusion These findings suggest that regulating disgusting behaviors and recognizing disgust in others involve two partially overlapping neural systems within the insula. Moreover, the ventral anterior insula is required for both processes. PMID:25890642
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Tan, J; Kavanaugh, J
Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less
The recognition of graphical patterns invariant to geometrical transformation of the models
NASA Astrophysics Data System (ADS)
Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian
2010-11-01
In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.
Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.
Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris
2007-04-09
In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.
Introducing memory and association mechanism into a biologically inspired visual model.
Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng
2014-09-01
A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.
NASA Technical Reports Server (NTRS)
Hong, J. P.
1971-01-01
Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
Vieira, Manuel; Fonseca, Paulo J; Amorim, M Clara P; Teixeira, Carlos J C
2015-12-01
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.
Can Changes in Eye Movement Scanning Alter the Age-Related Deficit in Recognition Memory?
Chan, Jessica P. K.; Kamino, Daphne; Binns, Malcolm A.; Ryan, Jennifer D.
2011-01-01
Older adults typically exhibit poorer face recognition compared to younger adults. These recognition differences may be due to underlying age-related changes in eye movement scanning. We examined whether older adults’ recognition could be improved by yoking their eye movements to those of younger adults. Participants studied younger and older faces, under free viewing conditions (bases), through a gaze-contingent moving window (own), or a moving window which replayed the eye movements of a base participant (yoked). During the recognition test, participants freely viewed the faces with no viewing restrictions. Own-age recognition biases were observed for older adults in all viewing conditions, suggesting that this effect occurs independently of scanning. Participants in the bases condition had the highest recognition accuracy, and participants in the yoked condition were more accurate than participants in the own condition. Among yoked participants, recognition did not depend on age of the base participant. These results suggest that successful encoding for all participants requires the bottom-up contribution of peripheral information, regardless of the locus of control of the viewer. Although altering the pattern of eye movements did not increase recognition, the amount of sampling of the face during encoding predicted subsequent recognition accuracy for all participants. Increased sampling may confer some advantages for subsequent recognition, particularly for people who have declining memory abilities. PMID:21687460
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information
NASA Astrophysics Data System (ADS)
Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.
Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.
Basics of identification measurement technology
NASA Astrophysics Data System (ADS)
Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.
2018-01-01
All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.
Automated designation of tie-points for image-to-image coregistration.
R.E. Kennedy; W.B. Cohen
2003-01-01
Image-to-image registration requires identification of common points in both images (image tie-points: ITPs). Here we describe software implementing an automated, area-based technique for identifying ITPs. The ITP software was designed to follow two strategies: ( I ) capitalize on human knowledge and pattern recognition strengths, and (2) favour robustness in many...
USDA-ARS?s Scientific Manuscript database
The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against multiple pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whet...
EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans
Swidergall, Marc; Solis, Norma V.; Lionakis, Michail S.; Filler, Scott G.
2017-01-01
Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase signaling in an inoculum-dependent manner, and is required for induction of a pro-inflammatory and antifungal response. EphA2−/− mice have impaired inflammatory responses and reduced IL-17 signaling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans. PMID:29133884
Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models
Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.
2015-01-01
It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497
Pattern recognition neural-net by spatial mapping of biology visual field
NASA Astrophysics Data System (ADS)
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
33 CFR 106.215 - Company or OCS facility personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...
33 CFR 106.215 - Company or OCS facility personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Davis, D. E.
1982-09-01
This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
NASA Astrophysics Data System (ADS)
Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.
2017-01-01
In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.
Attentional biases and memory for emotional stimuli in men and male rhesus monkeys.
Lacreuse, Agnès; Schatz, Kelly; Strazzullo, Sarah; King, Hanna M; Ready, Rebecca
2013-11-01
We examined attentional biases for social and non-social emotional stimuli in young adult men and compared the results to those of male rhesus monkeys (Macaca mulatta) previously tested in a similar dot-probe task (King et al. in Psychoneuroendocrinology 37(3):396-409, 2012). Recognition memory for these stimuli was also analyzed in each species, using a recognition memory task in humans and a delayed non-matching-to-sample task in monkeys. We found that both humans and monkeys displayed a similar pattern of attentional biases toward threatening facial expressions of conspecifics. The bias was significant in monkeys and of marginal significance in humans. In addition, humans, but not monkeys, exhibited an attentional bias away from negative non-social images. Attentional biases for social and non-social threat differed significantly, with both species showing a pattern of vigilance toward negative social images and avoidance of negative non-social images. Positive stimuli did not elicit significant attentional biases for either species. In humans, emotional content facilitated the recognition of non-social images, but no effect of emotion was found for the recognition of social images. Recognition accuracy was not affected by emotion in monkeys, but response times were faster for negative relative to positive images. Altogether, these results suggest shared mechanisms of social attention in humans and monkeys, with both species showing a pattern of selective attention toward threatening faces of conspecifics. These data are consistent with the view that selective vigilance to social threat is the result of evolutionary constraints. Yet, selective attention to threat was weaker in humans than in monkeys, suggesting that regulatory mechanisms enable non-anxious humans to reduce sensitivity to social threat in this paradigm, likely through enhanced prefrontal control and reduced amygdala activation. In addition, the findings emphasize important differences in attentional biases to social versus non-social threat in both species. Differences in the impact of emotional stimuli on recognition memory between monkeys and humans will require further study, as methodological differences in the recognition tasks may have affected the results.
ICPR-2016 - International Conference on Pattern Recognition
Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Hopfield's Model of Patterns Recognition and Laws of Artistic Perception
NASA Astrophysics Data System (ADS)
Yevin, Igor; Koblyakov, Alexander
The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.
Computer discrimination procedures applicable to aerial and ERTS multispectral data
NASA Technical Reports Server (NTRS)
Richardson, A. J.; Torline, R. J.; Allen, W. A.
1970-01-01
Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
Development of a written music-recognition system using Java and open source technologies
NASA Astrophysics Data System (ADS)
Loibner, Gernot; Schwarzl, Andreas; Kovač, Matthias; Paulus, Dietmar; Pölzleitner, Wolfgang
2005-10-01
We report on the development of a software system to recognize and interpret printed music. The overall goal is to scan printed music sheets, analyze and recognize the notes, timing, and written text, and derive the all necessary information to use the computers MIDI sound system to play the music. This function is primarily useful for musicians who want to digitize printed music for editing purposes. There exist a number of commercial systems that offer such a functionality. However, on testing these systems, we were astonished on how weak they behave in their pattern recognition parts. Although we submitted very clear and rather flawless scanning input, none of these systems was able to e.g. recognize all notes, staff lines, and systems. They all require a high degree of interaction, post-processing, and editing to get a decent digital version of the hard copy material. In this paper we focus on the pattern recognition area. In a first approach we tested more or less standard methods of adaptive thresholding, blob detection, line detection, and corner detection to find the notes, staff lines, and candidate objects subject to OCR. Many of the objects on this type of material can be learned in a training phase. None of the commercial systems we saw offers the option to train special characters or unusual signatures. A second goal in this project is to use a modern software engineering platform. We were interested in how well Java and open source technologies are suitable for pattern recognition and machine vision. The scanning of music served as a case-study.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Advanced methods in NDE using machine learning approaches
NASA Astrophysics Data System (ADS)
Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank
2018-04-01
Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.
Pattern association--a key to recognition of shark attacks.
Cirillo, G; James, H
2004-12-01
Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.
Advanced Age Dissociates Dual Functions of the Perirhinal Cortex
Burke, Sara N.; Maurer, Andrew P.; Nematollahi, Saman; Uprety, Ajay; Wallace, Jenelle L.
2014-01-01
The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time. PMID:24403147
Advanced age dissociates dual functions of the perirhinal cortex.
Burke, Sara N; Maurer, Andrew P; Nematollahi, Saman; Uprety, Ajay; Wallace, Jenelle L; Barnes, Carol A
2014-01-08
The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time.
A Portable Electronic Nose For Hydrazine and Monomethyl Hydrazine Detection
NASA Technical Reports Server (NTRS)
Young, Rebecca C.; Linnell, Bruce R.; Peterson, Barbara V.; Brooks, Kathy B.; Griffin, Tim P.
2004-01-01
The Space Program and military use large quantities Hydrazine (Hz) and monomethyl hydrazine (MMI-I) as rocket propellant. These substances are very toxic and are suspected human carcinogens. The American Conference of Governmental Industrial Hygienist set the threshold limit value to be 10 parts per billion (ppb). Current off-the-shelf portable instruments require 10 to 20 minutes of exposure to detect 10 ppb concentration. This shortcofriing is not acceptable for many operations. A new prototype instrument using a gas sensor array and pattern recognition software technology (i.e., an electronic nose) has demonstrated the ability to identify either Hz or MM}{ and quantify their concentrations at 10 parts per billion in 90 seconds. This paper describes the design of the portable electronic nose (e-nose) instrument, test equipment setup, test protocol, pattern recognition algorithm, concentration estimation method, and laboratory test results.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie
2017-06-01
Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.
Automated real-time structure health monitoring via signature pattern recognition
NASA Astrophysics Data System (ADS)
Sun, Fanping P.; Chaudhry, Zaffir A.; Rogers, Craig A.; Majmundar, M.; Liang, Chen
1995-05-01
Described in this paper are the details of an automated real-time structure health monitoring system. The system is based on structural signature pattern recognition. It uses an array of piezoceramic patches bonded to the structure as integrated sensor-actuators, an electric impedance analyzer for structural frequency response function acquisition and a PC for control and graphic display. An assembled 3-bay truss structure is employed as a test bed. Two issues, the localization of sensing area and the sensor temperature drift, which are critical for the success of this technique are addressed and a novel approach of providing temperature compensation using probability correlation function is presented. Due to the negligible weight and size of the solid-state sensor array and its ability to sense incipient-type damage, the system can eventually be implemented on many types of structures such as aircraft, spacecraft, large-span dome roof and steel bridges requiring multilocation and real-time health monitoring.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Threat Based Risk Assessment for Enterprise Networks
2016-02-15
served as the program chair of the Research in Attacks, Intrusions , and Defenses workshop; the Neural Information Processing Systems (NIPS) annual...Threat- Based Risk Assessment for Enterprise Networks Richard P. Lippmann and James F. Riordan Protecting enterprise networks requires...include aids for the hearing impaired, speech recognition, pattern classification, neural networks , and cybersecurity. He has taught three courses
Working group organizational meeting
NASA Technical Reports Server (NTRS)
1982-01-01
Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.
USDA-ARS?s Scientific Manuscript database
Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant path...
An overview of computer vision
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
An overview of computer vision is provided. Image understanding and scene analysis are emphasized, and pertinent aspects of pattern recognition are treated. The basic approach to computer vision systems, the techniques utilized, applications, the current existing systems and state-of-the-art issues and research requirements, who is doing it and who is funding it, and future trends and expectations are reviewed.
The LAC Test: A New Look at Auditory Conceptualization and Literacy Development K-12.
ERIC Educational Resources Information Center
Lindamood, Charles; And Others
The Lindamood Auditory Conceptualization (LAC) Test was constructed with the recognition that the process of decoding involves an integration of the auditory, visual, and motor senses. Requiring the manipulation of colored blocks to indicate conceptualization of test patterns spoken by the examiner, subtest 1 entails coding of identity, number,…
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
Finger vein recognition based on personalized weight maps.
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-09-10
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.
Finger Vein Recognition Based on Personalized Weight Maps
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-01-01
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-22
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-01-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
NASA Astrophysics Data System (ADS)
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds
NASA Astrophysics Data System (ADS)
Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert
2014-06-01
Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.
Unsupervised EEG analysis for automated epileptic seizure detection
NASA Astrophysics Data System (ADS)
Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad
2016-07-01
Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2011 CFR
2011-07-01
... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...
Infrared face recognition based on LBP histogram and KW feature selection
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2014-07-01
The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes
Fernández-Llatas, Carlos; Benedi, José-Miguel; García-Gómez, Juan M.; Traver, Vicente
2013-01-01
The analysis of human behavior patterns is increasingly used for several research fields. The individualized modeling of behavior using classical techniques requires too much time and resources to be effective. A possible solution would be the use of pattern recognition techniques to automatically infer models to allow experts to understand individual behavior. However, traditional pattern recognition algorithms infer models that are not readily understood by human experts. This limits the capacity to benefit from the inferred models. Process mining technologies can infer models as workflows, specifically designed to be understood by experts, enabling them to detect specific behavior patterns in users. In this paper, the eMotiva process mining algorithms are presented. These algorithms filter, infer and visualize workflows. The workflows are inferred from the samples produced by an indoor location system that stores the location of a resident in a nursing home. The visualization tool is able to compare and highlight behavior patterns in order to facilitate expert understanding of human behavior. This tool was tested with nine real users that were monitored for a 25-week period. The results achieved suggest that the behavior of users is continuously evolving and changing and that this change can be measured, allowing for behavioral change detection. PMID:24225907
Effect of Context and Hearing Loss on Time-Gated Word Recognition in Children.
Lewis, Dawna; Kopun, Judy; McCreery, Ryan; Brennan, Marc; Nishi, Kanae; Cordrey, Evan; Stelmachowicz, Pat; Moeller, Mary Pat
The purpose of this study was to examine word recognition in children who are hard of hearing (CHH) and children with normal hearing (CNH) in response to time-gated words presented in high- versus low-predictability sentences (HP, LP), where semantic cues were manipulated. Findings inform our understanding of how CHH combine cognitive-linguistic and acoustic-phonetic cues to support spoken word recognition. It was hypothesized that both groups of children would be able to make use of linguistic cues provided by HP sentences to support word recognition. CHH were expected to require greater acoustic information (more gates) than CNH to correctly identify words in the LP condition. In addition, it was hypothesized that error patterns would differ across groups. Sixteen CHH with mild to moderate hearing loss and 16 age-matched CNH participated (5 to 12 years). Test stimuli included 15 LP and 15 HP age-appropriate sentences. The final word of each sentence was divided into segments and recombined with the sentence frame to create series of sentences in which the final word was progressively longer by the gated increments. Stimuli were presented monaurally through headphones and children were asked to identify the target word at each successive gate. They also were asked to rate their confidence in their word choice using a five- or three-point scale. For CHH, the signals were processed through a hearing aid simulator. Standardized language measures were used to assess the contribution of linguistic skills. Analysis of language measures revealed that the CNH and CHH performed within the average range on language abilities. Both groups correctly recognized a significantly higher percentage of words in the HP condition than in the LP condition. Although CHH performed comparably with CNH in terms of successfully recognizing the majority of words, differences were observed in the amount of acoustic-phonetic information needed to achieve accurate word recognition. CHH needed more gates than CNH to identify words in the LP condition. CNH were significantly lower in rating their confidence in the LP condition than in the HP condition. CHH, however, were not significantly different in confidence between the conditions. Error patterns for incorrect word responses across gates and predictability varied depending on hearing status. The results of this study suggest that CHH with age-appropriate language abilities took advantage of context cues in the HP sentences to guide word recognition in a manner similar to CNH. However, in the LP condition, they required more acoustic information (more gates) than CNH for word recognition. Differences in the structure of incorrect word responses and their nomination patterns across gates for CHH compared with their peers with NH suggest variations in how these groups use limited acoustic information to select word candidates.
2D DOST based local phase pattern for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.
Optical Pattern Recognition for Missile Guidance.
1982-11-15
directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec
Pattern recognition of native plant communities: Manitou Colorado test site
NASA Technical Reports Server (NTRS)
Driscoll, R. S.
1972-01-01
Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information about 11 vegetation classes and two nonvegetation classes at the Manitou Experimental Forest. Intensive preprocessing of the scanner signals was required to eliminate a serious scan angle effect. Final processing of the normalized data provided acceptable recognition results of generalized plant community types. Serious errors occurred with attempts to classify specific community types within upland grassland areas. The consideration of the convex mixtures concept (effects of amounts of live plant cover, exposed soil, and plant litter cover on apparent scene radiances) significantly improved the classification of some of the grassland classes.
Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?
ERIC Educational Resources Information Center
Howe, Christine; Taylor Tavares, Joana; Devine, Amy
2016-01-01
Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…
33 CFR 105.210 - Facility personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...
33 CFR 105.210 - Facility personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...
Romero-Flores, Adrian; McConnell, Laura L; Hapeman, Cathleen J; Ramirez, Mark; Torrents, Alba
2017-11-01
Electronic noses have been widely used in the food industry to monitor process performance and quality control, but use in wastewater and biosolids treatment has not been fully explored. Therefore, we examined the feasibility of an electronic nose to discriminate between treatment conditions of alkaline stabilized biosolids and compared its performance with quantitative analysis of key odorants. Seven lime treatments (0-30% w/w) were prepared and the resultant off-gas was monitored by GC-MS and by an electronic nose equipped with ten metal oxide sensors. A pattern recognition model was created using linear discriminant analysis (LDA) and principal component analysis (PCA) of the electronic nose data. In general, LDA performed better than PCA. LDA showed clear discrimination when single tests were evaluated, but when the full data set was included, discrimination between treatments was reduced. Frequency of accurate recognition was tested by three algorithms with Euclidan and Mahalanobis performing at 81% accuracy and discriminant function analysis at 70%. Concentrations of target compounds by GC-MS were in agreement with those reported in literature and helped to elucidate the behavior of the pattern recognition via comparison of individual sensor responses to different biosolids treatment conditions. Results indicated that the electronic nose can discriminate between lime percentages, thus providing the opportunity to create classes of under-dosed and over-dosed relative to regulatory requirements. Full scale application will require careful evaluation to maintain accuracy under variable process and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Capturing specific abilities as a window into human individuality: the example of face recognition.
Wilmer, Jeremy B; Germine, Laura; Chabris, Christopher F; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken
2012-01-01
Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality.
Autonomous learning in gesture recognition by using lobe component analysis
NASA Astrophysics Data System (ADS)
Lu, Jian; Weng, Juyang
2007-02-01
Gesture recognition is a new human-machine interface method implemented by pattern recognition(PR).In order to assure robot safety when gesture is used in robot control, it is required to implement the interface reliably and accurately. Similar with other PR applications, 1) feature selection (or model establishment) and 2) training from samples, affect the performance of gesture recognition largely. For 1), a simple model with 6 feature points at shoulders, elbows, and hands, is established. The gestures to be recognized are restricted to still arm gestures, and the movement of arms is not considered. These restrictions are to reduce the misrecognition, but are not so unreasonable. For 2), a new biological network method, called lobe component analysis(LCA), is used in unsupervised learning. Lobe components, corresponding to high-concentrations in probability of the neuronal input, are orientation selective cells follow Hebbian rule and lateral inhibition. Due to the advantage of LCA method for balanced learning between global and local features, large amount of samples can be used in learning efficiently.
The Potential of Using Brain Images for Authentication
Zhou, Zongtan; Shen, Hui; Hu, Dewen
2014-01-01
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604
The potential of using brain images for authentication.
Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen
2014-01-01
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.
Sheehan, Michael J; Nachman, Michael W
2014-09-16
Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
NASA Technical Reports Server (NTRS)
Rajan, P. K.; Khan, Ajmal
1993-01-01
Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.
Reid, Jeffrey C.
1989-01-01
Computer processing and high resolution graphics display of geochemical data were used to quickly, accurately, and efficiently obtain important decision-making information for tin (cassiterite) exploration, Seward Peninsula, Alaska (USA). Primary geochemical dispersion patterns were determined for tin-bearing intrusive granite phases of Late Cretaceous age with exploration bedrock lithogeochemistry at the Kougarok tin prospect. Expensive diamond drilling footage was required to reach exploration objectives. Recognition of element distribution and dispersion patterns was useful in subsurface interpretation and correlation, and to aid location of other holes.
Smart sensor for terminal homing
NASA Astrophysics Data System (ADS)
Panda, D.; Aggarwal, R.; Hummel, R.
1980-01-01
The practical scene matching problem is considered to present certain complications which must extend classical image processing capabilities. Certain aspects of the scene matching problem which must be addressed by a smart sensor for terminal homing are discussed. First a philosophy for treating the matching problem for the terminal homing scenario is outlined. Then certain aspects of the feature extraction process and symbolic pattern matching are considered. It is thought that in the future general ideas from artificial intelligence will be more useful for terminal homing requirements of fast scene recognition and pattern matching.
Repetition and lag effects in movement recognition.
Hall, C R; Buckolz, E
1982-03-01
Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong
2010-12-01
Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.
Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition
Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan
2017-01-01
Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273
Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition
Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan
2017-11-26
Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Seth; Chen Bin; Holbrook, Kristen
CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less
Investigating the anticipatory nature of pattern perception in sport.
Gorman, Adam D; Abernethy, Bruce; Farrow, Damian
2011-07-01
The aim of the present study was to examine the anticipatory nature of pattern perception in sport by using static and moving basketball patterns across three different display types. Participants of differing skill levels were included in order to determine whether the effects would be moderated by the knowledge and experience of the observer in the same manner reported previously for simple images. The results from a pattern recognition task showed that both expert and recreational participants were more likely to anticipate the next likely state of a pattern when it was presented as a moving video, but only the experts appeared to have the depth of understanding required to elicit the same anticipatory encoding for patterns presented as schematic images. The results extend those reported in previous research and provide further evidence of an anticipatory encoding in pattern perception for images containing complex, interrelated patterns.
ERIC Educational Resources Information Center
Borowsky, Ron; Besner, Derek
2006-01-01
D. C. Plaut and J. R. Booth presented a parallel distributed processing model that purports to simulate human lexical decision performance. This model (and D. C. Plaut, 1995) offers a single mechanism account of the pattern of factor effects on reaction time (RT) between semantic priming, word frequency, and stimulus quality without requiring a…
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
Optical character recognition based on nonredundant correlation measurements.
Braunecker, B; Hauck, R; Lohmann, A W
1979-08-15
The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.
Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung
2018-01-01
Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417
Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung
2018-02-26
Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.
Self-organizing neural network models for visual pattern recognition.
Fukushima, K
1987-01-01
Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.
A strip chart recorder pattern recognition tool kit for Shuttle operations
NASA Technical Reports Server (NTRS)
Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.
1993-01-01
During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.
A dynamical pattern recognition model of gamma activity in auditory cortex
Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.
2012-01-01
This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049
Visual cluster analysis and pattern recognition methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
2001-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1984-01-01
Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.
Proceedings of the NASA/MPRIA Workshop: Pattern Recognition
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.
Wiley, R H
2013-02-01
Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Intriligator, M.
2011-12-01
Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.
Running Improves Pattern Separation during Novel Object Recognition.
Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef
2015-10-09
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
Visual cluster analysis and pattern recognition template and methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
1999-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
Photonic correlator pattern recognition: Application to autonomous docking
NASA Technical Reports Server (NTRS)
Sjolander, Gary W.
1991-01-01
Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.
Functional differences among those high and low on a trait measure of psychopathy.
Gordon, Heather L; Baird, Abigail A; End, Alison
2004-10-01
It has been established that individuals who score high on measures of psychopathy demonstrate difficulty when performing tasks requiring the interpretation of other's emotional states. The aim of this study was to elucidate the relation of emotion and cognition to individual differences on a standard psychopathy personality inventory (PPI) among a nonpsychiatric population. Twenty participants completed the PPI. Following survey completion, a mean split of their scores on the emotional-interpersonal factor was performed, and participants were placed into a high or low group. Functional magnetic resonance imaging data were collected while participants performed a recognition task that required attention be given to either the affect or identity of target stimuli. No significant behavioral differences were found. In response to the affect recognition task, significant differences between high- and low-scoring subjects were observed in several subregions of the frontal cortex, as well as the amygdala. No significant differences were found between the groups in response to the identity recognition condition. Results indicate that participants scoring high on the PPI, although not behaviorally distinct, demonstrate a significantly different pattern of neural activity (as measured by blood oxygen level-dependent contrast)in response to tasks that require affective processing. The results suggest a unique neural signature associated with personality differences in a nonpsychiatric population.
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
Finger Vein Recognition Based on a Personalized Best Bit Map
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735
Finger vein recognition based on a personalized best bit map.
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.
Large-memory real-time multichannel multiplexed pattern recognition
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Liu, H. K.
1984-01-01
The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.
Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.
2010-01-01
Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073
Music causes deterioration of source memory: evidence from normal ageing.
El Haj, Mohamad; Omigie, Diana; Clément, Sylvain
2014-01-01
Previous research has shown that music exposure can impair a wide variety of cognitive and behavioural performance. We investigated whether this is the case for source memory. Forty-one younger adults and 35 healthy elderly were required to retain the location in which pictures of coloured objects were displayed. On a subsequent recognition test they were required to decide whether the objects were displayed in the same location as before or not. Encoding took place (a) in silence, (b) while listening to street noise, or (c) while listening to Vivaldi's "Four Seasons". Recognition always took place during silence. A significant reduction in source memory was observed following music exposure, a reduction that was more pronounced for older adults than for younger adults. This pattern was significantly correlated with performance on an executive binding task. The exposure to music appeared to interfere with binding in working memory, worsening source recall.
Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu
2013-10-01
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.
Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.
ERIC Educational Resources Information Center
Mhlolo, Michael Kainose
2016-01-01
The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…
Cutaneous metastases of internal tumors.
Fernández-Antón Martínez, M C; Parra-Blanco, V; Avilés Izquierdo, J A; Suárez Fernández, R M
2013-12-01
Cutaneous metastases are relatively rare in clinical practice and their diagnosis requires a high index of suspicion because clinical findings can be subtle. These metastases reveal the presence of disseminated malignant disease and can lead to the diagnosis of unsuspected internal tumors or the spread or recurrence of an already diagnosed tumor. Early recognition of cutaneous metastases can facilitate prompt and accurate diagnosis resulting in early treatment; however, they are generally indicative of a poor prognosis. Some tumors have a predilection to metastasize to specific areas. Recognition of these patterns provides essential information that can guide the search for the underlying tumor. Copyright © 2011 Elsevier España, S.L. y AEDV. All rights reserved.
Patterns of source monitoring bias in incarcerated youths with and without conduct problems.
Morosan, Larisa; Badoud, Deborah; Salaminios, George; Eliez, Stephan; Van der Linden, Martial; Heller, Patrick; Debbané, Martin
2018-01-01
Antisocial individuals present behaviours that violate the social norms and the rights of others. In the present study, we examine whether biases in monitoring the self-generated cognitive material might be linked to antisocial manifestations during adolescence. We further examine the association with psychopathic traits and conduct problems (CPs). Sixty-five incarcerated adolescents (IAs; M age = 15.85, SD = 1.30) and 88 community adolescents (CAs; M age = 15.78, SD = 1.60) participated in our study. In the IA group, 28 adolescents presented CPs (M age = 16.06, SD = 1.41) and 19 did not meet the diagnostic criteria for CPs (M age = 15.97, SD = 1.20). Source monitoring was assessed through a speech-monitoring task, using items requiring different levels of cognitive effort; recognition and source-monitoring bias scores (internalising and externalising biases) were calculated. Between-group comparisons indicate greater overall biases and different patterns of biases in the source monitoring. IA participants manifest a greater externalising bias, whereas CA participants present a greater internalising bias. In addition, IA with CPs present different patterns of item recognition. These results indicate that the two groups of adolescents present different types of source-monitoring bias for self-generated speech. In addition, the IAs with CPs present impairments in item recognition. Future studies may examine the developmental implications of self-monitoring biases in the perseverance of antisocial behaviours from adolescence to adulthood.
NASA Astrophysics Data System (ADS)
Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.
2015-02-01
An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking; in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.; Deptuch, G.; Hoff, J.
An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the shortmore » latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.« less
Knowledge Management for Command and Control
2004-06-01
interfaces relies on rich visual and conceptual understanding of what is sketched, rather than the pattern-recognition technologies that most systems use...recognizers) required by other approaches. • The underlying conceptual representations that nuSketch uses enable it to serve as a front end to knowledge...constructing enemy-intent hypotheses via mixed visual and conceptual analogies. II.C. Multi-ViewPoint Clustering Analysis (MVP-CA) technology To
ERIC Educational Resources Information Center
de Zubicaray, Greig I.; McMahon, Katie L.; Hayward, Lydia; Dunn, John C.
2011-01-01
In the present study, items pre-exposed in a familiarization series were included in a list discrimination task to manipulate memory strength. At test, participants were required to discriminate strong targets and strong lures from weak targets and new lures. This resulted in a concordant pattern of increased "old" responses to strong targets and…
Mirror representations innate versus determined by experience: a viewpoint from learning theory.
Giese, Martin A
2014-04-01
From the viewpoint of pattern recognition and computational learning, mirror neurons form an interesting multimodal representation that links action perception and planning. While it seems unlikely that all details of such representations are specified by the genetic code, robust learning of such complex representations likely requires an appropriate interplay between plasticity, generalization, and anatomical constraints of the underlying neural architecture.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.
2017-01-01
The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.
Postprocessing for character recognition using pattern features and linguistic information
NASA Astrophysics Data System (ADS)
Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi
1993-04-01
We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).
Facial emotion recognition in patients with focal and diffuse axonal injury.
Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita
2017-01-01
Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.
Capturing specific abilities as a window into human individuality: The example of face recognition
Wilmer, Jeremy B.; Germine, Laura; Chabris, Christopher F.; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken
2013-01-01
Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality. PMID:23428079
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2011 CFR
2011-07-01
... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...
Visual cluster analysis and pattern recognition template and methods
Osbourn, G.C.; Martinez, R.F.
1999-05-04
A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
Ultrasonography of ovarian masses using a pattern recognition approach
Jung, Sung Il
2015-01-01
As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108
Application of pattern recognition techniques to crime analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.
1976-08-15
The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, B.H.; Narasimhan, R.
1963-01-01
The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)
Fraser, D A; Tenner, A J
2008-02-01
Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.
Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.
Siu, Ho Chit; Shah, Julie A; Stirling, Leia A
2016-10-25
Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces.
Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography
Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.
2016-01-01
Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155
Visual scanning behavior is related to recognition performance for own- and other-age faces
Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela
2015-01-01
It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056
An information-processing model of three cortical regions: evidence in episodic memory retrieval.
Sohn, Myeong-Ho; Goode, Adam; Stenger, V Andrew; Jung, Kwan-Jin; Carter, Cameron S; Anderson, John R
2005-03-01
ACT-R (Anderson, J.R., et al., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261) relates the inferior dorso-lateral prefrontal cortex to a retrieval buffer that holds information retrieved from memory and the posterior parietal cortex to an imaginal buffer that holds problem representations. Because the number of changes in a problem representation is not necessarily correlated with retrieval difficulties, it is possible to dissociate prefrontal-parietal activations. In two fMRI experiments, we examined this dissociation using the fan effect paradigm. Experiment 1 compared a recognition task, in which representation requirement remains the same regardless of retrieval difficulty, with a recall task, in which both representation and retrieval loads increase with retrieval difficulty. In the recognition task, the prefrontal activation revealed a fan effect but not the parietal activation. In the recall task, both regions revealed fan effects. In Experiment 2, we compared visually presented stimuli and aurally presented stimuli using the recognition task. While only the prefrontal region revealed the fan effect, the activation patterns in the prefrontal and the parietal region did not differ by stimulus presentation modality. In general, these results provide support for the prefrontal-parietal dissociation in terms of retrieval and representation and the modality-independent nature of the information processed by these regions. Using ACT-R, we also provide computational models that explain patterns of fMRI responses in these two areas during recognition and recall.
Effect of Context and Hearing Loss on Time-Gated Word Recognition in Children
Lewis, Dawna E.; Kopun, Judy; McCreery, Ryan; Brennan, Marc; Nishi, Kanae; Cordrey, Evan; Stelmachowicz, Pat; Moeller, Mary Pat
2016-01-01
Objectives The purpose of this study was to examine word recognition in children who are hard of hearing (CHH) and children with normal hearing (CNH) in response to time-gated words presented in high- vs. low-predictability sentences (HP, LP), where semantic cues were manipulated. Findings inform our understanding of how CHH combine cognitive-linguistic and acoustic-phonetic cues to support spoken word recognition. It was hypothesized that both groups of children would be able to make use of linguistic cues provided by HP sentences to support word recognition. CHH were expected to require greater acoustic information (more gates) than CNH to correctly identify words in the LP condition. In addition, it was hypothesized that error patterns would differ across groups. Design Sixteen CHH with mild-to-moderate hearing loss and 16 age-matched CNH participated (5–12 yrs). Test stimuli included 15 LP and 15 HP age-appropriate sentences. The final word of each sentence was divided into segments and recombined with the sentence frame to create series of sentences in which the final word was progressively longer by the gated increments. Stimuli were presented monaurally through headphones and children were asked to identify the target word at each successive gate. They also were asked to rate their confidence in their word choice using a 5- or 3-point scale. For CHH, the signals were processed through a hearing aid simulator. Standardized language measures were used to assess the contribution of linguistic skills. Results Analysis of language measures revealed that the CNH and CHH performed within the average range on language abilities. Both groups correctly recognized a significantly higher percentage of words in the HP condition than in the LP condition. Although CHH performed comparably to CNH in terms of successfully recognizing the majority of words, differences were observed in the amount of acoustic-phonetic information needed to achieve accurate word recognition. CHH needed more gates than CNH to identify words in the LP condition. CNH were significantly lower in rating their confidence in the LP condition than in the HP condition. CHH, however, were not significantly different in confidence between the conditions. Error patterns for incorrect word responses across gates and predictability varied depending on hearing status. Conclusions The results of this study suggest that CHH with age-appropriate language abilities took advantage of context cues in the HP sentences to guide word recognition in a manner similar to CNH. However, in the LP condition, they required more acoustic information (more gates) than CNH for word recognition. Differences in the structure of incorrect word responses and their nomination patterns across gates for CHH compared to their peers with normal hearing suggest variations in how these groups use limited acoustic information to select word candidates. PMID:28045838
Vasou, Andri; Sultanoglu, Nazife; Goodbourn, Stephen
2017-01-01
Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation. PMID:28703784
CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern
NASA Astrophysics Data System (ADS)
Gong, Qian; Qu, Zhiyi; Hao, Kun
2017-07-01
Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns
Noh, Soo Rim; Isaacowitz, Derek M.
2014-01-01
While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713
Comparing the visual spans for faces and letters
He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.
2015-01-01
The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858
Oxytocin Reduces Face Processing Time but Leaves Recognition Accuracy and Eye-Gaze Unaffected.
Hubble, Kelly; Daughters, Katie; Manstead, Antony S R; Rees, Aled; Thapar, Anita; van Goozen, Stephanie H M
2017-01-01
Previous studies have found that oxytocin (OXT) can improve the recognition of emotional facial expressions; it has been proposed that this effect is mediated by an increase in attention to the eye-region of faces. Nevertheless, evidence in support of this claim is inconsistent, and few studies have directly tested the effect of oxytocin on emotion recognition via altered eye-gaze Methods: In a double-blind, within-subjects, randomized control experiment, 40 healthy male participants received 24 IU intranasal OXT and placebo in two identical experimental sessions separated by a 2-week interval. Visual attention to the eye-region was assessed on both occasions while participants completed a static facial emotion recognition task using medium intensity facial expressions. Although OXT had no effect on emotion recognition accuracy, recognition performance was improved because face processing was faster across emotions under the influence of OXT. This effect was marginally significant (p<.06). Consistent with a previous study using dynamic stimuli, OXT had no effect on eye-gaze patterns when viewing static emotional faces and this was not related to recognition accuracy or face processing time. These findings suggest that OXT-induced enhanced facial emotion recognition is not necessarily mediated by an increase in attention to the eye-region of faces, as previously assumed. We discuss several methodological issues which may explain discrepant findings and suggest the effect of OXT on visual attention may differ depending on task requirements. (JINS, 2017, 23, 23-33).
Scheme, Erik; Englehart, Kevin
2013-01-01
The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224
Space infrared telescope pointing control system. Automated star pattern recognition
NASA Technical Reports Server (NTRS)
Powell, J. D.; Vanbezooijen, R. W. H.
1985-01-01
The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.
DOT National Transportation Integrated Search
2015-11-01
One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...
Neural correlates of auditory recognition memory in the primate dorsal temporal pole
Ng, Chi-Wing; Plakke, Bethany
2013-01-01
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Emotional content enhances true but not false memory for categorized stimuli.
Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna
2013-04-01
Past research has shown that emotion enhances true memory, but that emotion can either increase or decrease false memory. Two theoretical possibilities-the distinctiveness of emotional stimuli and the conceptual relatedness of emotional content-have been implicated as being responsible for influencing both true and false memory for emotional content. In the present study, we sought to identify the mechanisms that underlie these mixed findings by equating the thematic relatedness of the study materials across each type of valence used (negative, positive, or neutral). In three experiments, categorically bound stimuli (e.g., funeral, pets, and office items) were used for this purpose. When the encoding task required the processing of thematic relatedness, a significant true-memory enhancement for emotional content emerged in recognition memory, but no emotional boost to false memory (exp. 1). This pattern persisted for true memory with a longer retention interval between study and test (24 h), and false recognition was reduced for emotional items (exp. 2). Finally, better recognition memory for emotional items once again emerged when the encoding task (arousal ratings) required the processing of the emotional aspect of the study items, with no emotional boost to false recognition (EXP. 3). Together, these findings suggest that when emotional and neutral stimuli are equivalently high in thematic relatedness, emotion continues to improve true memory, but it does not override other types of grouping to increase false memory.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
Quantum pattern recognition with multi-neuron interactions
NASA Astrophysics Data System (ADS)
Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.
2018-03-01
We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.
The biometric recognition on contactless multi-spectrum finger images
NASA Astrophysics Data System (ADS)
Kang, Wenxiong; Chen, Xiaopeng; Wu, Qiuxia
2015-01-01
This paper presents a novel multimodal biometric system based on contactless multi-spectrum finger images, which aims to deal with the limitations of unimodal biometrics. The chief merits of the system are the richness of the permissible texture and the ease of data access. We constructed a multi-spectrum instrument to simultaneously acquire three different types of biometrics from a finger: contactless fingerprint, finger vein, and knuckleprint. On the basis of the samples with these characteristics, a moderate database was built for the evaluation of our system. Considering the real-time requirements and the respective characteristics of the three biometrics, the block local binary patterns algorithm was used to extract features and match for the fingerprints and finger veins, while the Oriented FAST and Rotated BRIEF algorithm was applied for knuckleprints. Finally, score-level fusion was performed on the matching results from the aforementioned three types of biometrics. The experiments showed that our proposed multimodal biometric recognition system achieves an equal error rate of 0.109%, which is 88.9%, 94.6%, and 89.7% lower than the individual fingerprint, knuckleprint, and finger vein recognitions, respectively. Nevertheless, our proposed system also satisfies the real-time requirements of the applications.
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.
Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Liu, Dan; Bai, Ou
2018-01-01
Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem renders the performance of EEG-based emotion recognition highly specific to subjects, requiring time-consuming individual calibration sessions to adapt an emotion recognition system to new subjects. Recently, domain adaptation (DA) strategies have achieved a great deal success in dealing with inter-subject adaptation. However, most of them can only adapt one subject to another subject, which limits their applicability in real-world scenarios. To alleviate this issue, a novel unsupervised DA strategy called Multi-Subject Subspace Alignment (MSSA) is proposed in this paper, which takes advantage of subspace alignment solution and multi-subject information in a unified framework to build personalized models without user-specific labeled data. Experiments on a public EEG dataset known as SEED verify the effectiveness and superiority of MSSA over other state of the art methods for dealing with multi-subject scenarios.
Quantifying facial expression recognition across viewing conditions.
Goren, Deborah; Wilson, Hugh R
2006-04-01
Facial expressions are key to social interactions and to assessment of potential danger in various situations. Therefore, our brains must be able to recognize facial expressions when they are transformed in biologically plausible ways. We used synthetic happy, sad, angry and fearful faces to determine the amount of geometric change required to recognize these emotions during brief presentations. Five-alternative forced choice conditions involving central viewing, peripheral viewing and inversion were used to study recognition among the four emotions. Two-alternative forced choice was used to study affect discrimination when spatial frequency information in the stimulus was modified. The results show an emotion and task-dependent pattern of detection. Facial expressions presented with low peak frequencies are much harder to discriminate from neutral than faces defined by either mid or high peak frequencies. Peripheral presentation of faces also makes recognition much more difficult, except for happy faces. Differences between fearful detection and recognition tasks are probably due to common confusions with sadness when recognizing fear from among other emotions. These findings further support the idea that these emotions are processed separately from each other.
Face and Word Recognition Can Be Selectively Affected by Brain Injury or Developmental Disorders.
Robotham, Ro J; Starrfelt, Randi
2017-01-01
Face and word recognition have traditionally been thought to rely on highly specialised and relatively independent cognitive processes. Some of the strongest evidence for this has come from patients with seemingly category-specific visual perceptual deficits such as pure prosopagnosia, a selective face recognition deficit, and pure alexia, a selective word recognition deficit. Together, the patterns of impaired reading with preserved face recognition and impaired face recognition with preserved reading constitute a double dissociation. The existence of these selective deficits has been questioned over the past decade. It has been suggested that studies describing patients with these pure deficits have failed to measure the supposedly preserved functions using sensitive enough measures, and that if tested using sensitive measurements, all patients with deficits in one visual category would also have deficits in the other. The implications of this would be immense, with most textbooks in cognitive neuropsychology requiring drastic revisions. In order to evaluate the evidence for dissociations, we review studies that specifically investigate whether face or word recognition can be selectively affected by acquired brain injury or developmental disorders. We only include studies published since 2004, as comprehensive reviews of earlier studies are available. Most of the studies assess the supposedly preserved functions using sensitive measurements. We found convincing evidence that reading can be preserved in acquired and developmental prosopagnosia and also evidence (though weaker) that face recognition can be preserved in acquired or developmental dyslexia, suggesting that face and word recognition are at least in part supported by independent processes.
Word Recognition in Auditory Cortex
ERIC Educational Resources Information Center
DeWitt, Iain D. J.
2013-01-01
Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…
33 CFR 104.220 - Company or vessel personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...
33 CFR 104.220 - Company or vessel personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...
Genetic dissection of the maize (Zea mays L.) MAMP response
USDA-ARS?s Scientific Manuscript database
Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...
The Functional Architecture of Visual Object Recognition
1991-07-01
different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying
DOT National Transportation Integrated Search
2009-01-01
This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...
Spatial pattern recognition of seismic events in South West Colombia
NASA Astrophysics Data System (ADS)
Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber
2013-09-01
Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.
Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri
2014-05-01
Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.
Computer Vision for Artificially Intelligent Robotic Systems
NASA Astrophysics Data System (ADS)
Ma, Chialo; Ma, Yung-Lung
1987-04-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
Study and response time for the visual recognition of 'similarity' and identity
NASA Technical Reports Server (NTRS)
Derks, P. L.; Bauer, T. M.
1974-01-01
Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.
Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition
NASA Technical Reports Server (NTRS)
Amador, Jose J (Inventor)
2007-01-01
A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.
Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus.
Stappers, Mark H T; Clark, Alexandra E; Aimanianda, Vishukumar; Bidula, Stefan; Reid, Delyth M; Asamaphan, Patawee; Hardison, Sarah E; Dambuza, Ivy M; Valsecchi, Isabel; Kerscher, Bernhard; Plato, Anthony; Wallace, Carol A; Yuecel, Raif; Hebecker, Betty; da Glória Teixeira Sousa, Maria; Cunha, Cristina; Liu, Yan; Feizi, Ten; Brakhage, Axel A; Kwon-Chung, Kyung J; Gow, Neil A R; Zanda, Matteo; Piras, Monica; Zanato, Chiara; Jaeger, Martin; Netea, Mihai G; van de Veerdonk, Frank L; Lacerda, João F; Campos, António; Carvalho, Agostinho; Willment, Janet A; Latgé, Jean-Paul; Brown, Gordon D
2018-03-15
Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31 + endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.
Looking into Candida albicans infection, host response, and antifungal strategies.
Wang, Yan
2015-01-01
Candida albicans, a commonly encountered fungal pathogen, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders. Among the virulence traits of C. albicans, yeast-to-hypha transition is most widely acknowledged. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs), and defence against C. albicans infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system.
Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing
NASA Astrophysics Data System (ADS)
Tian, Q.; Fainman, Y.; Lee, Sing H.
1989-02-01
The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.
2003-01-01
A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.
Fourier transform magnitudes are unique pattern recognition templates.
Gardenier, P H; McCallum, B C; Bates, R H
1986-01-01
Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.
Detection and recognition of analytes based on their crystallization patterns
Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA
2008-05-06
The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.
Recognition of neural brain activity patterns correlated with complex motor activity
NASA Astrophysics Data System (ADS)
Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.
2018-04-01
In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.
Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit
2015-01-01
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927
Peptidoglycan recognition proteins in Drosophila immunity.
Kurata, Shoichiro
2014-01-01
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.
Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition
NASA Astrophysics Data System (ADS)
Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.
1993-03-01
The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.
Age-related increases in false recognition: the role of perceptual and conceptual similarity.
Pidgeon, Laura M; Morcom, Alexa M
2014-01-01
Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.
Age-related increases in false recognition: the role of perceptual and conceptual similarity
Pidgeon, Laura M.; Morcom, Alexa M.
2014-01-01
Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576
Image-based automatic recognition of larvae
NASA Astrophysics Data System (ADS)
Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai
2010-08-01
As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.
Enemy at the gates: traffic at the plant cell pathogen interface.
Hoefle, Caroline; Hückelhoven, Ralph
2008-12-01
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
DOT National Transportation Integrated Search
2009-04-28
A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...
USDA-ARS?s Scientific Manuscript database
The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941
Opitz, Bertram; Cornell, Sonia
2006-09-01
Within the dual-process perspective of recognition memory, it has been claimed that familiarity is sufficient to support recognition of single items, but recollection is necessary for associative recognition of item pairs. However, there are some reports suggesting that familiarity might support associative recognition judgments when the items form an easy to access bound representation. In contrast, recollection seems to be required for the recognition of bindings that might be flexibly rearranged in novel situations. We investigated whether both forms of binding are mediated by different mechanisms as reflected by a qualitatively different spatiotemporal eventrelated potential (ERP) pattern. In a recognition memory experiment, subjects gave old/new judgments to words learned by focusing either on interitem associations or on size relation of word triplets. Results revealed higher hit rates in the relational condition as compared to the associative condition. In addition, the proportion of triplets from which all three items were remembered was significantly larger in the relational condition suggesting that memory retrieval in this condition relies primarily on bound representations of word triplets. The ERP revealed a late parietal old/new effect for both conditions, with relational processing resulting in a greater effect. In contrast, an early frontal old/new effect was solely present in the associative condition. Taken together, these data provide evidence that familiarity might support associative recognition if the associated components are coherently encoded into a bound representation. Recollection might foster the recognition of relational bindings among items. This indicates that the contribution of familiarity and recollection to associative recognition depends on the kind of binding operations performed on the items rather than on the single versus multiple item distinction.
Human body as a set of biometric features identified by means of optoelectronics
NASA Astrophysics Data System (ADS)
Podbielska, Halina; Bauer, Joanna
2005-09-01
Human body posses many unique, singular features that are impossible to copy or forge. Nowadays, to establish and to ensure the public security requires specially designed devices and systems. Biometrics is a field of science and technology, exploiting human body characteristics for people recognition. It identifies the most characteristic and unique ones in order to design and construct systems capable to recognize people. In this paper some overview is given, presenting the achievements in biometrics. The verification and identification process is explained, along with the way of evaluation of biometric recognition systems. The most frequently human biometrics used in practice are shortly presented, including fingerprints, facial imaging (including thermal characteristic), hand geometry and iris patterns.
Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.
Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal
2013-05-29
Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.
Summary of 1971 pattern recognition program development
NASA Technical Reports Server (NTRS)
Whitley, S. L.
1972-01-01
Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.
Pattern Recognition by Retina-Like Devices.
ERIC Educational Resources Information Center
Weiman, Carl F. R.; Rothstein, Jerome
This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…
Cognitive Development and Reading Processes. Developmental Program Report Number 76.
ERIC Educational Resources Information Center
West, Richard F.
In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)
1987-01-01
The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
Distributed cooperating processes in a mobile robot control system
NASA Technical Reports Server (NTRS)
Skillman, Thomas L., Jr.
1988-01-01
A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.
A mechatronics platform to study prosthetic hand control using EMG signals.
Geethanjali, P
2016-09-01
In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Toward faster and more accurate star sensors using recursive centroiding and star identification
NASA Astrophysics Data System (ADS)
Samaan, Malak Anees
The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.
Do pattern recognition skills transfer across sports? A preliminary analysis.
Smeeton, Nicholas J; Ward, Paul; Williams, A Mark
2004-02-01
The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
STANFORD ARTIFICIAL INTELLIGENCE PROJECT.
ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
Speaker normalization for chinese vowel recognition in cochlear implants.
Luo, Xin; Fu, Qian-Jie
2005-07-01
Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.
Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging
Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice
2012-01-01
Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800
NASA Astrophysics Data System (ADS)
Baccar, D.; Söffker, D.
2017-11-01
Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.
Zhang, Yi; Vuković, Lela; Rudack, Till; Han, Wei; Schulten, Klaus
2016-08-25
Specificity of protein degradation by cellular proteasomes comes from tetra-ubiquitin recognition. We carry out molecular dynamics simulations to characterize how the ubiquitin receptor Rpn10 recognizes in the 26S proteasome K48-linked tetra-ubiquitin. In the binding pose, ubiquitin and Rpn10 interact primarily through hydrophobic patches. However, K48-linked tetra-ubiquitin mostly assumes a closed form in solution prior to binding, in which its hydrophobic patches are not exposed to solvent. Likewise, the hydrophobic ubiquitin interacting motifs (UIMs) of Rpn10 are mostly protected prior to binding. As a result, ubiquitin recognition in the proteasome requires refolding of both K48-linked tetra-ubiquitin and Rpn10. Simulations suggest that conserved complementary electrostatic patterns of Rpn10 and ubiquitins guide protein association (stage 1 in the recognition process), which induces refolding (stage 2), and then facilitates formation of hydrophobic contacts (stage 3). The simulations also explain why Rpn10 has a higher affinity for K48-linked tetra-ubiquitin than for mono-ubiquitin and K48-linked di- and tri-ubiquitins. Simulation results expand on the current view that the flexible arm of Rpn10 acts as an extended fragment of α-helices and flexible coils in the recognition process.
Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques
NASA Technical Reports Server (NTRS)
Melhorn, W. N.; Sinnock, S.
1973-01-01
Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.
Infrared Ship Classification Using A New Moment Pattern Recognition Concept
NASA Astrophysics Data System (ADS)
Casasent, David; Pauly, John; Fetterly, Donald
1982-03-01
An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.
Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements
NASA Astrophysics Data System (ADS)
Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo
1999-05-01
Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
Data handling and analysis for the 1971 corn blight watch experiment
NASA Technical Reports Server (NTRS)
Anuta, P. E.; Phillips, T. L.
1973-01-01
The overall corn blight watch experiment data flow is described and the organization of the LARS/Purdue data center is discussed. Data analysis techniques are discussed in general and the use of statistical multispectral pattern recognition methods for automatic computer analysis of aircraft scanner data is described. Some of the results obtained are discussed and the implications of the experiment on future data communication requirements for earth resource survey systems is discussed.
Foundations for a syntatic pattern recognition system for genomic DNA sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searles, D.B.
1993-03-01
The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.
The time course of individual face recognition: A pattern analysis of ERP signals.
Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian
2016-05-15
An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts
ERIC Educational Resources Information Center
Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-01-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…
ERIC Educational Resources Information Center
Welk, Dorette Sugg
2002-01-01
Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…
Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.
Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M
2018-05-31
Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.
Classifier dependent feature preprocessing methods
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M., II; Peterson, Gilbert L.
2008-04-01
In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.
Complex auditory behaviour emerges from simple reactive steering
NASA Astrophysics Data System (ADS)
Hedwig, Berthold; Poulet, James F. A.
2004-08-01
The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.
Learning a Taxonomy of Predefined and Discovered Activity Patterns
Krishnan, Narayanan; Cook, Diane J.; Wemlinger, Zachary
2013-01-01
Many intelligent systems that focus on the needs of a human require information about the activities that are being performed by the human. At the core of this capability is activity recognition. Activity recognition techniques have become robust but rarely scale to handle more than a few activities. They also rarely learn from more than one smart home data set because of inherent differences between labeling techniques. In this paper we investigate a data-driven approach to creating an activity taxonomy from sensor data found in disparate smart home datasets. We investigate how the resulting taxonomy can help analyze the relationship between classes of activities. We also analyze how the taxonomy can be used to scale activity recognition to a large number of activity classes and training datasets. We describe our approach and evaluate it on 34 smart home datasets. The results of the evaluation indicate that the hierarchical modeling can reduce training time while maintaining accuracy of the learned model. PMID:25302084
JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR
Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem
2013-01-01
Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554
Prediction-based dynamic load-sharing heuristics
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.
1993-01-01
The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.
Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm. PMID:27711125
Cadavid, Sara; Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm.
Palmer, Clovis S; Henstridge, Darren C; Yu, Di; Singh, Amit; Balderson, Brad; Duette, Gabriel; Cherry, Catherine L; Anzinger, Joshua J; Ostrowski, Matias; Crowe, Suzanne M
2016-06-01
Immune cells cycle between a resting and an activated state. Their metabolism is tightly linked to their activation status and, consequently, functions. Ag recognition induces T lymphocyte activation and proliferation and acquisition of effector functions that require and depend on cellular metabolic reprogramming. Likewise, recognition of pathogen-associated molecular patterns by monocytes and macrophages induces changes in cellular metabolism. As obligate intracellular parasites, viruses manipulate the metabolism of infected cells to meet their structural and functional requirements. For example, HIV-induced changes in immune cell metabolism and redox state are associated with CD4(+) T cell depletion, immune activation, and inflammation. In this review, we highlight how HIV modifies immunometabolism with potential implications for cure research and pathogenesis of comorbidities observed in HIV-infected patients, including those with virologic suppression. In addition, we highlight recently described key methods that can be applied to study the metabolic dysregulation of immune cells in disease states. Copyright © 2016 by The American Association of Immunologists, Inc.
Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses
Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.
2012-01-01
SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970
Talker variability in audio-visual speech perception
Heald, Shannon L. M.; Nusbaum, Howard C.
2014-01-01
A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker’s face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker’s face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker’s face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred. PMID:25076919
Talker variability in audio-visual speech perception.
Heald, Shannon L M; Nusbaum, Howard C
2014-01-01
A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker's face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker's face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker's face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred.
Golden, Hannah L; Clark, Camilla N; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Foulkes, Alexander J M; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D
2017-01-01
Despite much recent interest in music and dementia, music perception has not been widely studied across dementia syndromes using an information processing approach. Here we addressed this issue in a cohort of 30 patients representing major dementia syndromes of typical Alzheimer's disease (AD, n = 16), logopenic aphasia (LPA, an Alzheimer variant syndrome; n = 5), and progressive nonfluent aphasia (PNFA; n = 9) in relation to 19 healthy age-matched individuals. We designed a novel neuropsychological battery to assess perception of musical patterns in the dimensions of pitch and temporal information (requiring detection of notes that deviated from the established pattern based on local or global sequence features) and musical scene analysis (requiring detection of a familiar tune within polyphonic harmony). Performance on these tests was referenced to generic auditory (timbral) deviance detection and recognition of familiar tunes and adjusted for general auditory working memory performance. Relative to healthy controls, patients with AD and LPA had group-level deficits of global pitch (melody contour) processing while patients with PNFA as a group had deficits of local (interval) as well as global pitch processing. There was substantial individual variation within syndromic groups. Taking working memory performance into account, no specific deficits of musical temporal processing, timbre processing, musical scene analysis, or tune recognition were identified. The findings suggest that particular aspects of music perception such as pitch pattern analysis may open a window on the processing of information streams in major dementia syndromes. The potential selectivity of musical deficits for particular dementia syndromes and particular dimensions of processing warrants further systematic investigation.
St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.
2012-01-01
There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616
Imaging in gynaecology: How good are we in identifying endometriomas?
Van Holsbeke, C.; Van Calster, B.; Guerriero, S.; Savelli, L.; Leone, F.; Fischerova, D; Czekierdowski, A.; Fruscio, R.; Veldman, J.; Van de Putte, G.; Testa, A.C.; Bourne, T.; Valentin, L.; Timmerman, D.
2009-01-01
Aim: To evaluate the performance of subjective evaluation of ultrasound findings (pattern recognition) to discriminate endometriomas from other types of adnexal masses and to compare the demographic and ultrasound characteristics of the true positive cases with those cases that were presumed to be an endometrioma but proved to have a different histology (false positive cases) and the endometriomas missed by pattern recognition (false negative cases). Methods: All patients in the International Ovarian Tumor Analysis (IOTA ) studies were included for analysis. In the IOTA studies, patients with an adnexal mass that were preoperatively examined by expert sonologists following the same standardized ultrasound protocol were prospectively included in 21 international centres. Sensitivity and specificity to discriminate endometriomas from other types of adnexal masses using pattern recognition were calculated. Ultrasound and some demographic variables of the masses presumed to be an endometrioma were analysed (true positives and false positives) and compared with the variables of the endometriomas missed by pattern recognition (false negatives) as well as the true negatives. Results: IOTA phase 1, 1b and 2 included 3511 patients of which 2560 were benign (73%) and 951 malignant (27%). The dataset included 713 endometriomas. Sensitivity and specificity for pattern recognition were 81% (577/713) and 97% (2723/2798). The true positives were more often unilocular with ground glass echogenicity than the masses in any other category. Among the 75 false positive cases, 66 were benign but 9 were malignant (5 borderline tumours, 1 rare primary invasive tumour and 3 endometrioid adenocarcinomas). The presumed diagnosis suggested by the sonologist in case of a missed endometrioma was mostly functional cyst or cystadenoma. Conclusion: Expert sonologists can quite accurately discriminate endometriomas from other types of adnexal masses, but in this dataset 1% of the masses that were classified as endometrioma by pattern recognition proved to be malignancies. PMID:25478066
Remote Video Monitor of Vehicles in Cooperative Information Platform
NASA Astrophysics Data System (ADS)
Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan
Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.
Culture modulates implicit ownership-induced self-bias in memory.
Sparks, Samuel; Cunningham, Sheila J; Kritikos, Ada
2016-08-01
The relation of incoming stimuli to the self implicitly determines the allocation of cognitive resources. Cultural variations in the self-concept shape cognition, but the extent is unclear because the majority of studies sample only Western participants. We report cultural differences (Asian versus Western) in ownership-induced self-bias in recognition memory for objects. In two experiments, participants allocated a series of images depicting household objects to self-owned or other-owned virtual baskets based on colour cues before completing a surprise recognition memory test for the objects. The 'other' was either a stranger or a close other. In both experiments, Western participants showed greater recognition memory accuracy for self-owned compared with other-owned objects, consistent with an independent self-construal. In Experiment 1, which required minimal attention to the owned objects, Asian participants showed no such ownership-related bias in recognition accuracy. In Experiment 2, which required attention to owned objects to move them along the screen, Asian participants again showed no overall memory advantage for self-owned items and actually exhibited higher recognition accuracy for mother-owned than self-owned objects, reversing the pattern observed for Westerners. This is consistent with an interdependent self-construal which is sensitive to the particular relationship between the self and other. Overall, our results suggest that the self acts as an organising principle for allocating cognitive resources, but that the way it is constructed depends upon cultural experience. Additionally, the manifestation of these cultural differences in self-representation depends on the allocation of attentional resources to self- and other-associated stimuli. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Peters, R; King, C Y; Ukiyama, E; Falsafi, S; Donahoe, P K; Weiss, M A
1995-04-11
SRY, a genetic "master switch" for male development in mammals, exhibits two biochemical activities: sequence-specific recognition of duplex DNA and sequence-independent binding to the sharp angles of four-way DNA junctions. Here, we distinguish between these activities by analysis of a mutant SRY associated with human sex reversal (46, XY female with pure gonadal dysgenesis). The substitution (168T in human SRY) alters a nonpolar side chain in the minor-groove DNA recognition alpha-helix of the HMG box [Haqq, C.M., King, C.-Y., Ukiyama, E., Haqq, T.N., Falsalfi, S., Donahoe, P.K., & Weiss, M.A. (1994) Science 266, 1494-1500]. The native (but not mutant) side chain inserts between specific base pairs in duplex DNA, interrupting base stacking at a site of induced DNA bending. Isotope-aided 1H-NMR spectroscopy demonstrates that analogous side-chain insertion occurs on binding of SRY to a four-way junction, establishing a shared mechanism of sequence- and structure-specific DNA binding. Although the mutant DNA-binding domain exhibits > 50-fold reduction in sequence-specific DNA recognition, near wild-type affinity for four-way junctions is retained. Our results (i) identify a shared SRY-DNA contact at a site of either induced or intrinsic DNA bending, (ii) demonstrate that this contact is not required to bind an intrinsically bent DNA target, and (iii) rationalize patterns of sequence conservation or diversity among HMG boxes. Clinical association of the I68T mutation with human sex reversal supports the hypothesis that specific DNA recognition by SRY is required for male sex determination.
Online recognition of the multiphase flow regime and study of slug flow in pipeline
NASA Astrophysics Data System (ADS)
Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu
2009-02-01
Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single sensor performance. Among various flow patterns of gas-liquid flow, slug flow occurs frequently in the petroleum, chemical, civil and nuclear industries. In the offshore oil and gas field, the maximum slug length and its statistical distribution are very important for the design of separator and downstream processing facility at steady state operations. However transient conditions may be encountered in the production, such as operational upsets, start-up, shut-down, pigging and blowdown, which are key operational and safety issues related to oil field development. So it is necessary to have an understanding the flow parameters under transient conditions. In this paper, the evolution of slug length along a horizontal pipe in gas-liquid flow is also studied in details and then an experimental study of flowrate transients in slug flow is provided. Also, the special gas-liquid flow phenomena easily encountered in the life span of offshore oil fields, called severe slugging, is studied experimentally and some results are presented.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
NASA Astrophysics Data System (ADS)
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-03-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.
Ji, Guoli; Ye, Pengchao; Shi, Yijian; Yuan, Leiming; Chen, Xiaojing; Yuan, Mingshun; Zhu, Dehua; Chen, Xi; Hu, Xinyu; Jiang, Jing
2017-01-01
Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn), cadmium (Cd), and lead (Pb) were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS) technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA), then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA). As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF), among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments. PMID:29149053
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network.
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-03-21
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices' non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-01-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2017-04-01
A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.
Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering
Shin, Kwang Yong; Park, Young Ho; Nguyen, Dat Tien; Park, Kang Ryoung
2014-01-01
Because of the advantages of finger-vein recognition systems such as live detection and usage as bio-cryptography systems, they can be used to authenticate individual people. However, images of finger-vein patterns are typically unclear because of light scattering by the skin, optical blurring, and motion blurring, which can degrade the performance of finger-vein recognition systems. In response to these issues, a new enhancement method for finger-vein images is proposed. Our method is novel compared with previous approaches in four respects. First, the local and global features of the vein lines of an input image are amplified using Gabor filters in four directions and Retinex filtering, respectively. Second, the means and standard deviations in the local windows of the images produced after Gabor and Retinex filtering are used as inputs for the fuzzy rule and fuzzy membership function, respectively. Third, the optimal weights required to combine the two Gabor and Retinex filtered images are determined using a defuzzification method. Fourth, the use of a fuzzy-based method means that image enhancement does not require additional training data to determine the optimal weights. Experimental results using two finger-vein databases showed that the proposed method enhanced the accuracy of finger-vein recognition compared with previous methods. PMID:24549251
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
NASA Astrophysics Data System (ADS)
Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin
2018-01-01
This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.
Polur, Prasad D; Miller, Gerald E
2005-01-01
Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients, requires a robust technique that can handle conditions of very high variability and limited training data. In this study, a hidden Markov model (HMM) was constructed and conditions investigated that would provide improved performance for a dysarthric speech (isolated word) recognition system intended to act as an assistive/control tool. In particular, we investigated the effect of high-frequency spectral components on the recognition rate of the system to determine if they contributed useful additional information to the system. A small-size vocabulary spoken by three cerebral palsy subjects was chosen. Mel-frequency cepstral coefficients extracted with the use of 15 ms frames served as training input to an ergodic HMM setup. Subsequent results demonstrated that no significant useful information was available to the system for enhancing its ability to discriminate dysarthric speech above 5.5 kHz in the current set of dysarthric data. The level of variability in input dysarthric speech patterns limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor-impaired individuals such as cerebral palsy subjects holds sufficient promise.
de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.
2016-01-01
The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633
Extended depth of field system for long distance iris acquisition
NASA Astrophysics Data System (ADS)
Chen, Yuan-Lin; Hsieh, Sheng-Hsun; Hung, Kuo-En; Yang, Shi-Wen; Li, Yung-Hui; Tien, Chung-Hao
2012-10-01
Using biometric signatures for identity recognition has been practiced for centuries. Recently, iris recognition system attracts much attention due to its high accuracy and high stability. The texture feature of iris provides a signature that is unique for each subject. Currently most commercial iris recognition systems acquire images in less than 50 cm, which is a serious constraint that needs to be broken if we want to use it for airport access or entrance that requires high turn-over rate . In order to capture the iris patterns from a distance, in this study, we developed a telephoto imaging system with image processing techniques. By using the cubic phase mask positioned front of the camera, the point spread function was kept constant over a wide range of defocus. With adequate decoding filter, the blurred image was restored, where the working distance between the subject and the camera can be achieved over 3m associated with 500mm focal length and aperture F/6.3. The simulation and experimental results validated the proposed scheme, where the depth of focus of iris camera was triply extended over the traditional optics, while keeping sufficient recognition accuracy.
Conformal Predictions in Multimedia Pattern Recognition
ERIC Educational Resources Information Center
Nallure Balasubramanian, Vineeth
2010-01-01
The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…
ERIC Educational Resources Information Center
Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.
2012-01-01
Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…
Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology
ERIC Educational Resources Information Center
Suresh, Rahul; Mosser, David M.
2013-01-01
Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…
Machine Learning Through Signature Trees. Applications to Human Speech.
ERIC Educational Resources Information Center
White, George M.
A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…
NASA Astrophysics Data System (ADS)
Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana
2011-04-01
The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.
Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J
2011-02-26
HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.
Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition[OPEN
2017-01-01
Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis. PMID:28302675
Developing Signal-Pattern-Recognition Programs
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Hammen, David
2006-01-01
Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.
Document Form and Character Recognition using SVM
NASA Astrophysics Data System (ADS)
Park, Sang-Sung; Shin, Young-Geun; Jung, Won-Kyo; Ahn, Dong-Kyu; Jang, Dong-Sik
2009-08-01
Because of development of computer and information communication, EDI (Electronic Data Interchange) has been developing. There is OCR (Optical Character Recognition) of Pattern recognition technology for EDI. OCR contributed to changing many manual in the past into automation. But for the more perfect database of document, much manual is needed for excluding unnecessary recognition. To resolve this problem, we propose document form based character recognition method in this study. Proposed method is divided into document form recognition part and character recognition part. Especially, in character recognition, change character into binarization by using SVM algorithm and extract more correct feature value.
Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.
Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui
2016-01-01
Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.
Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin
2018-03-12
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals
Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin
2018-01-01
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515
Associative Pattern Recognition In Analog VLSI Circuits
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1995-01-01
Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.
Quantum Mechanics, Pattern Recognition, and the Mammalian Brain
NASA Astrophysics Data System (ADS)
Chapline, George
2008-10-01
Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.
Mining sequential patterns for protein fold recognition.
Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I
2008-02-01
Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Fuzzy tree automata and syntactic pattern recognition.
Lee, E T
1982-04-01
An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
Data handling and analysis for the 1971 corn blight watch experiment.
NASA Technical Reports Server (NTRS)
Anuta, P. E.; Phillips, T. L.; Landgrebe, D. A.
1972-01-01
Review of the data handling and analysis methods used in the near-operational test of remote sensing systems provided by the 1971 corn blight watch experiment. The general data analysis techniques and, particularly, the statistical multispectral pattern recognition methods for automatic computer analysis of aircraft scanner data are described. Some of the results obtained are examined, and the implications of the experiment for future data communication requirements of earth resource survey systems are discussed.
Isolated scaphoid dislocation associated with axial carpal dissociation: an unusual injury report.
Horton, Todd; Shin, Alexander Y; Cooney, William P
2004-11-01
We present a report of a patient with an isolated scaphoid dislocation associated with a hyperextension and axial loading injury of the carpus required a careful and extensive clinical and radiographic evaluation leading to surgical intervention to reduce and stabilize the scaphoid and to reduce and hold internally the axial carpal injury. Knowledge of the anatomy and the potential injury patterns of the carpus will aid the hand surgeon with injury recognition and proper treatment.
Neves, Maila de Castro Lourenço das; Tremeau, Fabien; Nicolato, Rodrigo; Lauar, Hélio; Romano-Silva, Marco Aurélio; Correa, Humberto
2011-09-01
A large body of evidence suggests that several aspects of face processing are impaired in autism and that this impairment might be hereditary. This study was aimed at assessing facial emotion recognition in parents of children with autism and its associations with a functional polymorphism of the serotonin transporter (5HTTLPR). We evaluated 40 parents of children with autism and 41 healthy controls. All participants were administered the Penn Emotion Recognition Test (ER40) and were genotyped for 5HTTLPR. Our study showed that parents of children with autism performed worse in the facial emotion recognition test than controls. Analyses of error patterns showed that parents of children with autism over-attributed neutral to emotional faces. We found evidence that 5HTTLPR polymorphism did not influence the performance in the Penn Emotion Recognition Test, but that it may determine different error patterns. Facial emotion recognition deficits are more common in first-degree relatives of autistic patients than in the general population, suggesting that facial emotion recognition is a candidate endophenotype for autism.
An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.
1977-01-01
The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searles, D.B.
1993-03-01
The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.
NASA Technical Reports Server (NTRS)
Mellstrom, J. A.; Smyth, P.
1991-01-01
The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.
Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman
2014-01-01
Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230
Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman
2014-01-01
Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.
Põder, Endel
2014-11-06
Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.
Huo, Guanying
2017-01-01
As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614
Apparatus for detecting and recognizing analytes based on their crystallization patterns
Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam
2010-12-14
The invention contemplates apparatuses for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization patterns") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. Changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. Also, changes in the crystallization patterns, as well as the character of such changes, can be used as recognition elements in analysis of protein molecules.
Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.
Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues
2014-03-18
Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside.
Tibbetts, Elizabeth A; Injaian, Allison; Sheehan, Michael J; Desjardins, Nicole
2018-05-01
Research on individual recognition often focuses on species-typical recognition abilities rather than assessing intraspecific variation in recognition. As individual recognition is cognitively costly, the capacity for recognition may vary within species. We test how individual face recognition differs between nest-founding queens (foundresses) and workers in Polistes fuscatus paper wasps. Individual recognition mediates dominance interactions among foundresses. Three previously published experiments have shown that foundresses (1) benefit by advertising their identity with distinctive facial patterns that facilitate recognition, (2) have robust memories of individuals, and (3) rapidly learn to distinguish between face images. Like foundresses, workers have variable facial patterns and are capable of individual recognition. However, worker dominance interactions are muted. Therefore, individual recognition may be less important for workers than for foundresses. We find that (1) workers with unique faces receive amounts of aggression similar to those of workers with common faces, indicating that wasps do not benefit from advertising their individual identity with a unique appearance; (2) workers lack robust memories for individuals, as they cannot remember unique conspecifics after a 6-day separation; and (3) workers learn to distinguish between facial images more slowly than foundresses during training. The recognition differences between foundresses and workers are notable because Polistes lack discrete castes; foundresses and workers are morphologically similar, and workers can take over as queens. Overall, social benefits and receiver capacity for individual recognition are surprisingly plastic.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-11-17
Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.
Drechsler, Axel; Helling, Tobias; Steinfartz, Sebastian
2015-01-01
Capture–mark–recapture (CMR) approaches are the backbone of many studies in population ecology to gain insight on the life cycle, migration, habitat use, and demography of target species. The reliable and repeatable recognition of an individual throughout its lifetime is the basic requirement of a CMR study. Although invasive techniques are available to mark individuals permanently, noninvasive methods for individual recognition mainly rest on photographic identification of external body markings, which are unique at the individual level. The re-identification of an individual based on comparing shape patterns of photographs by eye is commonly used. Automated processes for photographic re-identification have been recently established, but their performance in large datasets (i.e., > 1000 individuals) has rarely been tested thoroughly. Here, we evaluated the performance of the program AMPHIDENT, an automatic algorithm to identify individuals on the basis of ventral spot patterns in the great crested newt (Triturus cristatus) versus the genotypic fingerprint of individuals based on highly polymorphic microsatellite loci using GENECAP. Between 2008 and 2010, we captured, sampled and photographed adult newts and calculated for 1648 samples/photographs recapture rates for both approaches. Recapture rates differed slightly with 8.34% for GENECAP and 9.83% for AMPHIDENT. With an estimated rate of 2% false rejections (FRR) and 0.00% false acceptances (FAR), AMPHIDENT proved to be a highly reliable algorithm for CMR studies of large datasets. We conclude that the application of automatic recognition software of individual photographs can be a rather powerful and reliable tool in noninvasive CMR studies for a large number of individuals. Because the cross-correlation of standardized shape patterns is generally applicable to any pattern that provides enough information, this algorithm is capable of becoming a single application with broad use in CMR studies for many species. PMID:25628871
Effects of Cooperative Group Work Activities on Pre-School Children's Pattern Recognition Skills
ERIC Educational Resources Information Center
Tarim, Kamuran
2015-01-01
The aim of this research is twofold; to investigate the effects of cooperative group-based work activities on children's pattern recognition skills in pre-school and to examine the teachers' opinions about the implementation process. In line with this objective, for the study, 57 children (25 girls and 32 boys) were chosen from two private schools…
VLSI Microsystem for Rapid Bioinformatic Pattern Recognition
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Lue, Jaw-Chyng
2009-01-01
A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).
Neural correlates of own- and other-race face perception: spatial and temporal response differences.
Natu, Vaidehi; Raboy, David; O'Toole, Alice J
2011-02-01
Humans show an "other-race effect" for face recognition, with more accurate recognition of own- versus other-race faces. We compared the neural representations of own- and other-race faces using functional magnetic resonance imaging (fMRI) data in combination with a multi-voxel pattern classifier. Neural activity was recorded while Asians and Caucasians viewed Asian and Caucasian faces. A pattern classifier, applied to voxels across a broad range of ventral temporal areas, discriminated the brain activity maps elicited in response to Asian versus Caucasian faces in the brains of both Asians and Caucasians. Classification was most accurate in the first few time points of the block and required the use of own-race faces in the localizer scan to select voxels for classifier input. Next, we examined differences in the time-course of neural responses to own- and other-race faces and found evidence for a temporal "other-race effect." Own-race faces elicited a larger neural response initially that attenuated rapidly. The response to other-race faces was weaker at first, but increased over time, ultimately surpassing the magnitude of the own-race response in the fusiform "face" area (FFA). A similar temporal response pattern held across a broad range of ventral temporal areas. The pattern-classification results indicate the early availability of categorical information about own- versus other-race face status in the spatial pattern of neural activity. The slower, more sustained, brain response to other-race faces may indicate the need to recruit additional neural resources to process other-race faces for identification. Copyright © 2010 Elsevier Inc. All rights reserved.
Training Spiking Neural Models Using Artificial Bee Colony
Vazquez, Roberto A.; Garro, Beatriz A.
2015-01-01
Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644
Multiclassifier information fusion methods for microarray pattern recognition
NASA Astrophysics Data System (ADS)
Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Herzig-Marx, Rachel
2004-04-01
This paper addresses automatic recognition of microarray patterns, a capability that could have a major significance for medical diagnostics, enabling development of diagnostic tools for automatic discrimination of specific diseases. The paper presents multiclassifier information fusion methods for microarray pattern recognition. The input space partitioning approach based on fitness measures that constitute an a-priori gauging of classification efficacy for each subspace is investigated. Methods for generation of fitness measures, generation of input subspaces and their use in the multiclassifier fusion architecture are presented. In particular, two-level quantification of fitness that accounts for the quality of each subspace as well as the quality of individual neighborhoods within the subspace is described. Individual-subspace classifiers are Support Vector Machine based. The decision fusion stage fuses the information from mulitple SVMs along with the multi-level fitness information. Final decision fusion stage techniques, including weighted fusion as well as Dempster-Shafer theory based fusion are investigated. It should be noted that while the above methods are discussed in the context of microarray pattern recognition, they are applicable to a broader range of discrimination problems, in particular to problems involving a large number of information sources irreducible to a low-dimensional feature space.
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2018-01-01
Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.
Conditional random fields for pattern recognition applied to structured data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom; Skurikhin, Alexei
In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less
Kafkas, Alexandros; Montaldi, Daniela
2011-10-01
Thirty-five healthy participants incidentally encoded a set of man-made and natural object pictures, while their pupil response and eye movements were recorded. At retrieval, studied and new stimuli were rated as novel, familiar (strong, moderate, or weak), or recollected. We found that both pupil response and fixation patterns at encoding predict later recognition memory strength. The extent of pupillary response accompanying incidental encoding was found to be predictive of subsequent memory. In addition, the number of fixations was also predictive of later recognition memory strength, suggesting that the accumulation of greater visual detail, even for single objects, is critical for the creation of a strong memory. Moreover, fixation patterns at encoding distinguished between recollection and familiarity at retrieval, with more dispersed fixations predicting familiarity and more clustered fixations predicting recollection. These data reveal close links between the autonomic control of pupil responses and eye movement patterns on the one hand and memory encoding on the other. Moreover, the data illustrate quantitative as well as qualitative differences in the incidental visual processing of stimuli, which are differentially predictive of the strength and the kind of memory experienced at recognition.
Ponomarev, S A; Berendeeva, T A; Kalinin, S A; Muranova, A V
The system of signaling pattern recognition receptors was studied in 8 cosmonauts aged 35 to 56 years before and after (R+) long-duration missions to the International space station. Peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll- like (TLR) receptors localized as on cell surface (TLR1, TLR2, TLR4, TLR5, TLR6), so inside cells (TLR3, TLR8, TLR9). In parallel, serum concentrations of TLR2 (HSP60) and TLR4 ligands (HSP70, HMGB1) were measured. The results of investigations showed growth of HSP60, HSP70 and HMGB1 concentrations on R+1. In the;majority of cosmonauts increases in endogenous ligands were followed by growth in the number of both monocytes and granulocytes that express TLR2 1 TLR4. This consistency gives ground to assume that changes in the system of signaling pattern recognition receptors can stem .from the predominantly endogenous ligands' response to the effects of long-duration space flight on human organism.
Conditional random fields for pattern recognition applied to structured data
Burr, Tom; Skurikhin, Alexei
2015-07-14
In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less
Neonatal Recognition Processes and Attachment: The Masking Experiment.
ERIC Educational Resources Information Center
Cassel, Thomas Z. K.; Sander, Louis W.
This research project was designed to determine whether 1-week-old neonates would indicate biological recognition of their mothers. Biological recognition is defined as the particular configuration of sensory, kinesthetic, and motor cues and the temporal patterning of these cues which characterizes infants' exchange processes with their…
Real-time image restoration for iris recognition systems.
Kang, Byung Jun; Park, Kang Ryoung
2007-12-01
In the field of biometrics, it has been reported that iris recognition techniques have shown high levels of accuracy because unique patterns of the human iris, which has very many degrees of freedom, are used. However, because conventional iris cameras have small depth-of-field (DOF) areas, input iris images can easily be blurred, which can lead to lower recognition performance, since iris patterns are transformed by the blurring caused by optical defocusing. To overcome these problems, an autofocusing camera can be used. However, this inevitably increases the cost, size, and complexity of the system. Therefore, we propose a new real-time iris image-restoration method, which can increase the camera's DOF without requiring any additional hardware. This paper presents five novelties as compared to previous works: 1) by excluding eyelash and eyelid regions, it is possible to obtain more accurate focus scores from input iris images; 2) the parameter of the point spread function (PSF) can be estimated in terms of camera optics and measured focus scores; therefore, parameter estimation is more accurate than it has been in previous research; 3) because the PSF parameter can be obtained by using a predetermined equation, iris image restoration can be done in real-time; 4) by using a constrained least square (CLS) restoration filter that considers noise, performance can be greatly enhanced; and 5) restoration accuracy can also be enhanced by estimating the weight value of the noise-regularization term of the CLS filter according to the amount of image blurring. Experimental results showed that iris recognition errors when using the proposed restoration method were greatly reduced as compared to those results achieved without restoration or those achieved using previous iris-restoration methods.
Application of star identification using pattern matching to space ground systems at GSFC
NASA Technical Reports Server (NTRS)
Fink, D.; Shoup, D.
1994-01-01
This paper reports the application of pattern recognition techniques for star identification based on those proposed by Van Bezooijen to space ground systems for near-real-time attitude determination. A prototype was developed using these algorithms, which was used to assess the suitability of these techniques for support of the X-Ray Timing Explorer (XTE), Submillimeter Wave Astronomy Satellite (SWAS), and the Solar and Heliospheric Observatory (SOHO) missions. Experience with the prototype was used to refine specifications for the operational system. Different geometry tests appropriate to the mission requirements of XTE, SWAS, and SOHO were adopted. The applications of these techniques to upcoming mission support of XTE, SWAS, and SOHO are discussed.
Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Zhang, Y; Kundu, S J
2004-03-29
This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.
Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm
2008-01-01
There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.
A new approach for cancelable iris recognition
NASA Astrophysics Data System (ADS)
Yang, Kai; Sui, Yan; Zhou, Zhi; Du, Yingzi; Zou, Xukai
2010-04-01
The iris is a stable and reliable biometric for positive human identification. However, the traditional iris recognition scheme raises several privacy concerns. One's iris pattern is permanently bound with him and cannot be changed. Hence, once it is stolen, this biometric is lost forever as well as all the applications where this biometric is used. Thus, new methods are desirable to secure the original pattern and ensure its revocability and alternatives when compromised. In this paper, we propose a novel scheme which incorporates iris features, non-invertible transformation and data encryption to achieve "cancelability" and at the same time increases iris recognition accuracy.
NASA Astrophysics Data System (ADS)
He, Xianjin; Zhang, Xinchang; Xin, Qinchuan
2018-02-01
Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.
Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K
2016-01-01
Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.
Neural network-based system for pattern recognition through a fiber optic bundle
NASA Astrophysics Data System (ADS)
Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.
2001-04-01
A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.
Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.
Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando
2016-08-01
Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.
United States Homeland Security and National Biometric Identification
2002-04-09
security number. Biometrics is the use of unique individual traits such as fingerprints, iris eye patterns, voice recognition, and facial recognition to...technology to control access onto their military bases using a Defense Manpower Management Command developed software application. FACIAL Facial recognition systems...installed facial recognition systems in conjunction with a series of 200 cameras to fight street crime and identify terrorists. The cameras, which are
The Wireless Ubiquitous Surveillance Testbed
2003-03-01
c. Eye Patterns.............................................................................17 d. Facial Recognition ..................................................................19...27). ...........................................98 Table F.4. Facial Recognition Products. (After: Polemi, p. 25 and BiometriTech, 15 May 2002...it applies to homeland security. C. RESEARCH TASKS The main goals of this thesis are to: • Set up the biometric sensors and facial recognition surveillance
33 CFR 106.220 - Security training for all other OCS facility personnel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; and (e) Recognition of techniques used to circumvent security measures. (f) Familiarity with all relevant aspects of...
33 CFR 106.220 - Security training for all other OCS facility personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; and (e) Recognition of techniques used to circumvent security measures. (f) Familiarity with all relevant aspects of...
Asymmetries in Early Word Recognition: The Case of Stops and Fricatives
ERIC Educational Resources Information Center
Altvater-Mackensen, Nicole; van der Feest, Suzanne V. H.; Fikkert, Paula
2014-01-01
Toddlers' discrimination of native phonemic contrasts is generally unproblematic. Yet using those native contrasts in word learning and word recognition can be more challenging. In this article, we investigate perceptual versus phonological explanations for asymmetrical patterns found in early word recognition. We systematically investigated the…
Hoerzer, Stefan; von Tscharner, Vinzenz; Jacob, Christian; Nigg, Benno M
2015-07-16
A functional group is a collection of individuals who react in a similar way to a specific intervention/product such as a sport shoe. Matching footwear features to a functional group can possibly enhance footwear-related comfort, improve running performance, and decrease the risk of movement-related injuries. To match footwear features to a functional group, one has to first define the different groups using their distinctive movement patterns. Therefore, the main objective of this study was to propose and apply a methodological approach to define functional groups with different movement patterns using Self-Organizing Maps and Support Vector Machines. Further study objectives were to identify differences in age, gender and footwear-related comfort preferences between the functional groups. Kinematic data and subjective comfort preferences of 88 subjects (16-76 years; 45 m/43 f) were analysed. Eight functional groups with distinctive movement patterns were defined. The findings revealed that most of the groups differed in age or gender. Certain functional groups differed in their comfort preferences and, therefore, had group-specific footwear requirements to enhance footwear-related comfort. Some of the groups, which had group-specific footwear requirements, did not show any differences in age or gender. This is important because when defining functional groups simply using common grouping criteria like age or gender, certain functional groups with group-specific movement patterns and footwear requirements might not be detected. This emphasises the power of the proposed pattern recognition approach to automatically define groups by their distinctive movement patterns in order to be able to address their group-specific product requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quinley, J C; Baker, T D
1986-07-01
Historically, the Agency for International Development (AIDS) health budget has been closely tied to overall development spending. A large increase in the international health appropriations in 1984 broke this pattern. Investigation shows that active grass roots organizing and congressional lobbying are the most likely responsible factors in the increase. Maintenance and expansion of this success will require increased recognition of and participation in these activities by individuals and organizations involved in international health.
Neurofeedback Training for BCI Control
NASA Astrophysics Data System (ADS)
Neuper, Christa; Pfurtscheller, Gert
Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].
The use of ERTS imagery in reservoir management and operation
NASA Technical Reports Server (NTRS)
Cooper, S. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. Preliminary analysis of ERTS-1 imagery suggests that the configuration and areal coverage of surface waters, as well as other hydrologically related terrain features, may be obtained from ERTS-1 imagery to an extent that would be useful. Computer-oriented pattern recognition techniques are being developed to help automate the identification and analysis of hydrologic features. Considerable man-machine interaction is required while training the computer for these tasks.
Pediatric Thoracic Trauma: Recognition and Management.
Reynolds, Stacy L
2018-05-01
Thoracic injuries account for less than one-tenth of all pediatric trauma-related injuries but comprise 14% of pediatric trauma-related deaths. Thoracic trauma includes injuries to the lungs, heart, aorta and great vessels, esophagus, tracheobronchial tree, and structures of the chest wall. Children have unique anatomic features that change the patterns of observed injury compared with adults. This review article outlines the clinical presentation, diagnostic testing, and management principles required to successfully manage injured children with thoracic trauma. Copyright © 2018 Elsevier Inc. All rights reserved.
Inconsistent emotion recognition deficits across stimulus modalities in Huntington׳s disease.
Rees, Elin M; Farmer, Ruth; Cole, James H; Henley, Susie M D; Sprengelmeyer, Reiner; Frost, Chris; Scahill, Rachael I; Hobbs, Nicola Z; Tabrizi, Sarah J
2014-11-01
Recognition of negative emotions is impaired in Huntington׳s Disease (HD). It is unclear whether these emotion-specific problems are driven by dissociable cognitive deficits, emotion complexity, test cue difficulty, or visuoperceptual impairments. This study set out to further characterise emotion recognition in HD by comparing patterns of deficits across stimulus modalities; notably including for the first time in HD, the more ecologically and clinically relevant modality of film clips portraying dynamic facial expressions. Fifteen early HD and 17 control participants were tested on emotion recognition from static facial photographs, non-verbal vocal expressions and one second dynamic film clips, all depicting different emotions. Statistically significant evidence of impairment of anger, disgust and fear recognition was seen in HD participants compared with healthy controls across multiple stimulus modalities. The extent of the impairment, as measured by the difference in the number of errors made between HD participants and controls, differed according to the combination of emotion and modality (p=0.013, interaction test). The largest between-group difference was seen in the recognition of anger from film clips. Consistent with previous reports, anger, disgust and fear were the most poorly recognised emotions by the HD group. This impairment did not appear to be due to task demands or expression complexity as the pattern of between-group differences did not correspond to the pattern of errors made by either group; implicating emotion-specific cognitive processing pathology. There was however evidence that the extent of emotion recognition deficits significantly differed between stimulus modalities. The implications in terms of designing future tests of emotion recognition and care giving are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
1993-06-18
the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991
Pattern recognition for Space Applications Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Singley, M. E.
1984-01-01
Results and conclusions are presented on the application of recent developments in pattern recognition to spacecraft star mapping systems. Sensor data for two representative starfields are processed by an adaptive shape-seeking version of the Fc-V algorithm with good results. Cluster validity measures are evaluated, but not found especially useful to this application. Recommendations are given two system configurations worthy of additional study,
Method of synthesized phase objects for pattern recognition with rotation invariance
NASA Astrophysics Data System (ADS)
Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.
2015-11-01
We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.
NASA Astrophysics Data System (ADS)
Poock, G. K.; Martin, B. J.
1984-02-01
This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.
Das, Soumita; Owen, Katherine A.; Ly, Kim T.; Park, Daeho; Black, Steven G.; Wilson, Jeffrey M.; Sifri, Costi D.; Ravichandran, Kodi S.; Ernst, Peter B.; Casanova, James E.
2011-01-01
Bacterial recognition by host cells is essential for initiation of infection and the host response. Bacteria interact with host cells via multiple pattern recognition receptors that recognize microbial products or pathogen-associated molecular patterns. In response to this interaction, host cell signaling cascades are activated that lead to inflammatory responses and/or phagocytic clearance of attached bacteria. Brain angiogenesis inhibitor 1 (BAI1) is a receptor that recognizes apoptotic cells through its conserved type I thrombospondin repeats and triggers their engulfment through an ELMO1/Dock/Rac1 signaling module. Because thrombospondin repeats in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1 may also mediate the recognition and clearance of pathogenic bacteria. We found that preincubation of bacteria with recombinant soluble BAI1 ectodomain or knockdown of endogenous BAI1 in primary macrophages significantly reduced binding and internalization of the Gram-negative pathogen Salmonella typhimurium. Conversely, overexpression of BAI1 enhanced attachment and engulfment of Salmonella in macrophages and in heterologous nonphagocytic cells. Bacterial uptake is triggered by the BAI1-mediated activation of Rac through an ELMO/Dock-dependent mechanism, and inhibition of the BAI1/ELMO1 interaction prevents both Rac activation and bacterial uptake. Moreover, inhibition of ELMO1 or Rac function significantly impairs the proinflammatory response to infection. Finally, we show that BAI1 interacts with a variety of Gram-negative, but not Gram-positive, bacteria through recognition of their surface lipopolysaccharide. Together these findings identify BAI1 as a pattern recognition receptor that mediates nonopsonic phagocytosis of Gram-negative bacteria by macrophages and directly affects the host response to infection. PMID:21245295
Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?
Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai
2013-01-01
The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.
Beyond sensory images: Object-based representation in the human ventral pathway
Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.
2004-01-01
We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396
Recognition of factitial hand injuries.
Carlson, M J; Linscheid, R L; Lucas, A R
1977-01-01
Facitial injuries with various presentations occur with some frequency to the hand because it is a body part that is easily accessible. Methods used to produce wounds included insertion of porcupine quills, application of constrictive rubber bands, mascara injections and excoriation of healing wounds. It is important to recognize the factitial origin in order to avoid needless repetitive surgery and permanent hand disability. No specific pattern of psychopathology was found in our cases. The patients' attitude toward their lesions was one of bland unconcern and stoicism. The patients were resistant to psychiatric referral and persisted in seeking medical responsibility for cure. Successful management requires early suspicion and prompt recognition as well as establishment of non-accusatory relationship with the primary physician. Confrontation should be avoided if possible. Even if reinforced with collaborative evidence, such confrontation will have limited effect on the patient's subsequent behavior.
Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line
NASA Astrophysics Data System (ADS)
Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang
2017-03-01
Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.
Pattern recognition monitoring of PEM fuel cell
Meltser, M.A.
1999-08-31
The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.
Pattern recognition monitoring of PEM fuel cell
Meltser, Mark Alexander
1999-01-01
The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.
Symbol Recognition Using a Concept Lattice of Graphical Patterns
NASA Astrophysics Data System (ADS)
Rusiñol, Marçal; Bertet, Karell; Ogier, Jean-Marc; Lladós, Josep
In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.
Gottschlich, Carsten
2016-01-01
We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544
An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.
Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten
2015-10-05
Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.
Model driven mobile care for patients with type 1 diabetes.
Skrøvseth, Stein Olav; Arsand, Eirik; Godtliebsen, Fred; Joakimsen, Ragnar M
2012-01-01
We gathered a data set from 30 patients with type 1 diabetes by giving the patients a mobile phone application, where they recorded blood glucose measurements, insulin injections, meals, and physical activity. Using these data as a learning data set, we describe a new approach of building a mobile feedback system for these patients based on periodicities, pattern recognition, and scale-space trends. Most patients have important patterns for periodicities and trends, though better resolution of input variables is needed to provide useful feedback using pattern recognition.
Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.
Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung
2007-05-01
This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.
The effect of inversion on face recognition in adults with autism spectrum disorder.
Hedley, Darren; Brewer, Neil; Young, Robyn
2015-05-01
Face identity recognition has widely been shown to be impaired in individuals with autism spectrum disorders (ASD). In this study we examined the influence of inversion on face recognition in 26 adults with ASD and 33 age and IQ matched controls. Participants completed a recognition test comprising upright and inverted faces. Participants with ASD performed worse than controls on the recognition task but did not show an advantage for inverted face recognition. Both groups directed more visual attention to the eye than the mouth region and gaze patterns were not found to be associated with recognition performance. These results provide evidence of a normal effect of inversion on face recognition in adults with ASD.
Unmanned Aircraft Systems Sensors
2005-05-01
to development of UAS and UA sensor capabilities UNCLASSIFIED Small UA EO/IR Sensors • EO – Requirement for a facial recognition capability while...UNCLASSIFIED Tactical UA EO/IR Sensors • EO – Requirement for a facial recognition capability while remaining undetected. (NIIRS 8+) • IR – Requirement for...Operational & Theater UA EO/IR Sensors • EO – Requirement for a facial recognition capability while remaining undetected. (NIIRS 8+) • IR – Requirement
A shared representation of order between encoding and recognition in visual short-term memory.
Kalm, Kristjan; Norris, Dennis
2017-07-15
Many complex tasks require people to bind individual events into a sequence that can be held in short term memory (STM). For this purpose information about the order of the individual events in the sequence needs to be maintained in an active and accessible form in STM over a period of few seconds. Here we investigated how the temporal order information is shared between the presentation and response phases of an STM task. We trained a classification algorithm on the fMRI activity patterns from the presentation phase of the STM task to predict the order of the items during the subsequent recognition phase. While voxels in a number of brain regions represented positional information during either presentation and recognition phases, only voxels in the lateral prefrontal cortex (PFC) and the anterior temporal lobe (ATL) represented position consistently across task phases. A shared positional code in the ATL might reflect verbal recoding of visual sequences to facilitate the maintenance of order information over several seconds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1973-01-01
The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.
Handwritten-word spotting using biologically inspired features.
van der Zant, Tijn; Schomaker, Lambert; Haak, Koen
2008-11-01
For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language and collection. We propose a biologically inspired whole-word recognition method which is used to incrementally elicit word labels in a live, web-based annotation system, named Monk. Since human labor should be minimized given the massive amount of image data, it becomes important to rely on robust perceptual mechanisms in the machine. Recent computational models of the neuro-physiology of vision are applied to isolated word classification. A primate cortex-like mechanism allows to classify text-images that have a low frequency of occurrence. Typically these images are the most difficult to retrieve and often contain named entities and are regarded as the most important to people. Usually standard pattern-recognition technology cannot deal with these text-images if there are not enough labeled instances. The results of this retrieval system are compared to normalized word-image matching and appear to be very promising.
Recognition without Awareness: Encoding and Retrieval Factors
ERIC Educational Resources Information Center
Craik, Fergus I. M.; Rose, Nathan S.; Gopie, Nigel
2015-01-01
The article reports 4 experiments that explore the notion of recognition without awareness using words as the material. Previous work by Voss and associates has shown that complex visual patterns were correctly selected as targets in a 2-alternative forced-choice (2-AFC) recognition test although participants reported that they were guessing. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burse, V.W.; Groce, D.F.; Caudill, S.P.
1994-01-01
Gas chromatographic patterns of polychlorinated biophenyls (PCBs) found in the serum of New Bedford, MA residents with high serum PCBs were compared to patterns found in lobsters and bluefish taken from local waters, and goats fed selected technical Aroclors (e.g., Aroclors 1016, 1242, 1254, or 1260) using Jaccard measures of similarity and Principal Component Analysis. Pattern in humans were silimar to patterns in lobsters and both were more similar to those in the goat fed Aroclor 1254 as demonstrated by both pattern recognition techniques. However, patterns observed in humans, lobsters and bluefish all exhibited some presence of PCBs more characteristicmore » of Aroclors 1016 and/or 1242 or 1260.« less
Parallel and orthogonal stimulus in ultradiluted neural networks
NASA Astrophysics Data System (ADS)
Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.
2006-10-01
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobral, G. A. Jr.; Vieira, V. M.; Lyra, M. L.
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonalmore » to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0.« less
Artificial Immune System for Recognizing Patterns
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2005-01-01
A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.
Collocation and Pattern Recognition Effects on System Failure Remediation
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Press, Hayes N.
2007-01-01
Previous research found that operators prefer to have status, alerts, and controls located on the same screen. Unfortunately, that research was done with displays that were not designed specifically for collocation. In this experiment, twelve subjects evaluated two displays specifically designed for collocating system information against a baseline that consisted of dial status displays, a separate alert area, and a controls panel. These displays differed in the amount of collocation, pattern matching, and parameter movement compared to display size. During the data runs, subjects kept a randomly moving target centered on a display using a left-handed joystick and they scanned system displays to find a problem in order to correct it using the provided checklist. Results indicate that large parameter movement aided detection and then pattern recognition is needed for diagnosis but the collocated displays centralized all the information subjects needed, which reduced workload. Therefore, the collocated display with large parameter movement may be an acceptable display after familiarization because of the possible pattern recognition developed with training and its use.
NASA Technical Reports Server (NTRS)
Hinton, Yolanda L.
1999-01-01
Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
33 CFR 104.225 - Security training for all other vessel personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (MARSEC) Levels, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
33 CFR 104.225 - Security training for all other vessel personnel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (MARSEC) Levels, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
Serial position effects in recognition memory for odors: a reexamination.
Miles, Christopher; Hodder, Kathryn
2005-10-01
Seven experiments examined recognition memory for sequentially presented odors. Following Reed (2000), participants were presented with a sequence of odors and then required to identify an odor from the sequence in a test probe comprising 2 odors. The pattern of results obtained by Reed (2000, although statistically marginal) demonstrated enhanced recognition for odors presented at the start (primacy) and end (recency) of the sequence: a result that we failed to replicate in any of the experiments reported here. Experiments 1 and 3 were designed to replicate Reed (2000), employing five-item and seven-item sequences, respectively, and each demonstrated significant recency, with evidence of primacy in Experiment 3 only. Experiment 2 replicated Experiment 1, with reduced interstimulus intervals, and produced a null effect of serial position. The ease with which the odors could be verbally labeled was manipulated in Experiments 4 and 5. Nameable odors produced a null effect of serial position (Experiment 4), and hard-to-name odors produced a pronounced recency effect (Experiment 5); nevertheless, overall rates of recognition were remarkably similar for the two experiments at around 70%. Articulatory suppression reduced recognition accuracy (Experiment 6), but recency was again present in the absence of primacy. Odor recognition performance was immune to the effects of an interleaved odor (Experiment 7), and, again, both primacy and recency effects were absent. There was no evidence of olfactory fatigue: Recognition accuracy improved across trials (Experiment 1). It is argued that the results of the experiments reported here are generally consistent with that body of work employing hard-to-name visual stimuli, where recency is obtained in the absence of primacy when the retention interval is short.
A probabilistic union model with automatic order selection for noisy speech recognition.
Jancovic, P; Ming, J
2001-09-01
A critical issue in exploiting the potential of the sub-band-based approach to robust speech recognition is the method of combining the sub-band observations, for selecting the bands unaffected by noise. A new method for this purpose, i.e., the probabilistic union model, was recently introduced. This model has been shown to be capable of dealing with band-limited corruption, requiring no knowledge about the band position and statistical distribution of the noise. A parameter within the model, which we call its order, gives the best results when it equals the number of noisy bands. Since this information may not be available in practice, in this paper we introduce an automatic algorithm for selecting the order, based on the state duration pattern generated by the hidden Markov model (HMM). The algorithm has been tested on the TIDIGITS database corrupted by various types of additive band-limited noise with unknown noisy bands. The results have shown that the union model equipped with the new algorithm can achieve a recognition performance similar to that achieved when the number of noisy bands is known. The results show a very significant improvement over the traditional full-band model, without requiring prior information on either the position or the number of noisy bands. The principle of the algorithm for selecting the order based on state duration may also be applied to other sub-band combination methods.
Yassin, Ali A
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.
Yassin, Ali A.
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051
The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2
Fridh, Veronica; Rittinger, Katrin
2012-01-01
Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs. PMID:22470564
Effects of age and hearing loss on recognition of unaccented and accented multisyllabic words.
Gordon-Salant, Sandra; Yeni-Komshian, Grace H; Fitzgibbons, Peter J; Cohen, Julie I
2015-02-01
The effects of age and hearing loss on recognition of unaccented and accented words of varying syllable length were investigated. It was hypothesized that with increments in length of syllables, there would be atypical alterations in syllable stress in accented compared to native English, and that these altered stress patterns would be sensitive to auditory temporal processing deficits with aging. Sets of one-, two-, three-, and four-syllable words with the same initial syllable were recorded by one native English and two Spanish-accented talkers. Lists of these words were presented in isolation and in sentence contexts to younger and older normal-hearing listeners and to older hearing-impaired listeners. Hearing loss effects were apparent for unaccented and accented monosyllabic words, whereas age effects were observed for recognition of accented multisyllabic words, consistent with the notion that altered syllable stress patterns with accent are sensitive for revealing effects of age. Older listeners also exhibited lower recognition scores for moderately accented words in sentence contexts than in isolation, suggesting that the added demands on working memory for words in sentence contexts impact recognition of accented speech. The general pattern of results suggests that hearing loss, age, and cognitive factors limit the ability to recognize Spanish-accented speech.
Effects of age and hearing loss on recognition of unaccented and accented multisyllabic words
Gordon-Salant, Sandra; Yeni-Komshian, Grace H.; Fitzgibbons, Peter J.; Cohen, Julie I.
2015-01-01
The effects of age and hearing loss on recognition of unaccented and accented words of varying syllable length were investigated. It was hypothesized that with increments in length of syllables, there would be atypical alterations in syllable stress in accented compared to native English, and that these altered stress patterns would be sensitive to auditory temporal processing deficits with aging. Sets of one-, two-, three-, and four-syllable words with the same initial syllable were recorded by one native English and two Spanish-accented talkers. Lists of these words were presented in isolation and in sentence contexts to younger and older normal-hearing listeners and to older hearing-impaired listeners. Hearing loss effects were apparent for unaccented and accented monosyllabic words, whereas age effects were observed for recognition of accented multisyllabic words, consistent with the notion that altered syllable stress patterns with accent are sensitive for revealing effects of age. Older listeners also exhibited lower recognition scores for moderately accented words in sentence contexts than in isolation, suggesting that the added demands on working memory for words in sentence contexts impact recognition of accented speech. The general pattern of results suggests that hearing loss, age, and cognitive factors limit the ability to recognize Spanish-accented speech. PMID:25698021
Image processing and recognition for biological images
Uchida, Seiichi
2013-01-01
This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. PMID:23560739
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-06-13
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
Consonant-recognition patterns and self-assessment of hearing handicap.
Hustedde, C G; Wiley, T L
1991-12-01
Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory--Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal-hearing and hearing-impaired listeners.
Syntactic/semantic techniques for feature description and character recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, R.C.
1983-01-01
The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC/G) Division, of the Naval Ocean Research and Development Activity (NORDA) has been involved over the past several years in the development of algorithms and techniques for computer recognition of free-form handprinted symbols as they appear on the Defense Mapping Agency (DMA) maps and charts. NORDA has made significant contributions to the automation of MC/G through advancing the state of the art in such information extraction techniques. In particular, new concepts in character (symbol) skeletonization, rugged feature measurements, and expert system-oriented decision logic have allowed the development of a very high performancemore » Handprinted Symbol Recognition (HSR) system for identifying depth soundings from naval smooth sheets (accuracies greater than 99.5%). The study reported in this technical note is part of NORDA's continuing research and development in pattern and shape analysis as it applies to Navy and DMA ocean/environment problems. The issue addressed in this technical note deals with emerging areas of syntactic and semantic techniques in pattern recognition as they might apply to the free-form symbol problem.« less
Star Pattern Recognition and Spacecraft Attitude Determination.
1978-10-01
Mr. Lawrence D. Ziems, Computer Programuer Prepared For: ,ti U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060 Contract No...CONTENTS PORIVAD i SIMARY iii 1.0 Introduction and System Overviev 1 2.0 Reference Frames Geometry and Kinematics 9 3.0 Star Pattern Recognition/Attitude...Laboratories (USAETL). The authors appreciate the capable guidance of Mr. L. A. Gambino, Director of the Computer Science Laboratory (USAETL), who served as
Linear Programming and Its Application to Pattern Recognition Problems
NASA Technical Reports Server (NTRS)
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
Learning and Inductive Inference
1982-07-01
a set of graph grammars to describe visual scenes . Other researchers have applied graph grammars to the pattern recognition of handwritten characters...345 1. Issues / 345 2. Mostows’ operationalizer / 350 0. Learning from ezamples / 360 1. Issues / 3t60 2. Learning in control and pattern recognition ...art.icleis on rote learntinig and ailvice- tAik g. K(ennieth Clarkson contributed Ltte article on grmvit atical inference, anid Geoff’ lroiney wrote
DYNAMIC PATTERN RECOGNITION BY MEANS OF THRESHOLD NETS,
A method is expounded for the recognition of visual patterns. A circuit diagram of a device is described which is based on a multilayer threshold ...structure synthesized in accordance with the proposed method. Coded signals received each time an image is displayed are transmitted to the threshold ...circuit which distinguishes the signs, and from there to the layers of threshold resolving elements. The image at each layer is made to correspond
Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye
Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael
2017-01-01
Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847
Katagiri, Fumiaki; Glazebrook, Jane
2003-01-01
A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373
An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.
Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A
2016-04-01
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.
An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control
Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.
2015-01-01
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth
2016-01-01
Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.
Bee, Mark A
2004-12-01
Acoustic signals provide a basis for social recognition in a wide range of animals. Few studies, however, have attempted to relate the patterns of individual variation in signals to behavioral discrimination thresholds used by receivers to discriminate among individuals. North American bullfrogs (Rana catesbeiana) discriminate among familiar and unfamiliar individuals based on individual variation in advertisement calls. The sources, patterns, and magnitudes of variation in eight acoustic properties of multiple-note advertisement calls were examined to understand how patterns of within-individual variation might either constrain, or provide additional cues for, vocal recognition. Six of eight acoustic properties exhibited significant note-to-note variation within multiple-note calls. Despite this source of within-individual variation, all call properties varied significantly among individuals, and multivariate analyses indicated that call notes were individually distinct. Fine-temporal and spectral call properties exhibited less within-individual variation compared to gross-temporal properties and contributed most toward statistically distinguishing among individuals. Among-individual differences in the patterns of within-individual variation in some properties suggest that within-individual variation could also function as a recognition cue. The distributions of among-individual and within-individual differences were used to generate hypotheses about the expected behavioral discrimination thresholds of receivers.
Liu, Chung-Tse; Chan, Chia-Tai
2016-08-19
Sufficient physical activity can reduce many adverse conditions and contribute to a healthy life. Nevertheless, inactivity is prevalent on an international scale. Improving physical activity is an essential concern for public health. Reminders that help people change their health behaviors are widely applied in health care services. However, timed-based reminders deliver periodic prompts suffer from flexibility and dependency issues which may decrease prompt effectiveness. We propose a fuzzy logic prompting mechanism, Accumulated Activity Effective Index Reminder (AAEIReminder), based on pattern recognition and activity effective analysis to manage physical activity. AAEIReminder recognizes activity levels using a smartphone-embedded sensor for pattern recognition and analyzing the amount of physical activity in activity effective analysis. AAEIReminder can infer activity situations such as the amount of physical activity and days spent exercising through fuzzy logic, and decides whether a prompt should be delivered to a user. This prompting system was implemented in smartphones and was used in a short-term real-world trial by seventeenth participants for validation. The results demonstrated that the AAEIReminder is feasible. The fuzzy logic prompting mechanism can deliver prompts automatically based on pattern recognition and activity effective analysis. AAEIReminder provides flexibility which may increase the prompts' efficiency.
Koelkebeck, Katja; Kohl, Waldemar; Luettgenau, Julia; Triantafillou, Susanna; Ohrmann, Patricia; Satoh, Shinji; Minoshita, Seiko
2015-07-30
A novel emotion recognition task that employs photos of a Japanese mask representing a highly ambiguous stimulus was evaluated. As non-Asians perceive and/or label emotions differently from Asians, we aimed to identify patterns of task-performance in non-Asian healthy volunteers with a view to future patient studies. The Noh mask test was presented to 42 adult German participants. Reaction times and emotion attribution patterns were recorded. To control for emotion identification abilities, a standard emotion recognition task was used among others. Questionnaires assessed personality traits. Finally, results were compared to age- and gender-matched Japanese volunteers. Compared to other tasks, German participants displayed slowest reaction times on the Noh mask test, indicating higher demands of ambiguous emotion recognition. They assigned more positive emotions to the mask than Japanese volunteers, demonstrating culture-dependent emotion identification patterns. As alexithymic and anxious traits were associated with slower reaction times, personality dimensions impacted on performance, as well. We showed an advantage of ambiguous over conventional emotion recognition tasks. Moreover, we determined emotion identification patterns in Western individuals impacted by personality dimensions, suggesting performance differences in clinical samples. Due to its properties, the Noh mask test represents a promising tool in the differential diagnosis of psychiatric disorders, e.g. schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
33 CFR 105.215 - Security training for all other facility personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apply to them, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
33 CFR 105.215 - Security training for all other facility personnel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apply to them, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
The software peculiarities of pattern recognition in track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, N.
The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.
A multimodal approach to emotion recognition ability in autism spectrum disorders.
Jones, Catherine R G; Pickles, Andrew; Falcaro, Milena; Marsden, Anita J S; Happé, Francesca; Scott, Sophie K; Sauter, Disa; Tregay, Jenifer; Phillips, Rebecca J; Baird, Gillian; Simonoff, Emily; Charman, Tony
2011-03-01
Autism spectrum disorders (ASD) are characterised by social and communication difficulties in day-to-day life, including problems in recognising emotions. However, experimental investigations of emotion recognition ability in ASD have been equivocal, hampered by small sample sizes, narrow IQ range and over-focus on the visual modality. We tested 99 adolescents (mean age 15;6 years, mean IQ 85) with an ASD and 57 adolescents without an ASD (mean age 15;6 years, mean IQ 88) on a facial emotion recognition task and two vocal emotion recognition tasks (one verbal; one non-verbal). Recognition of happiness, sadness, fear, anger, surprise and disgust were tested. Using structural equation modelling, we conceptualised emotion recognition ability as a multimodal construct, measured by the three tasks. We examined how the mean levels of recognition of the six emotions differed by group (ASD vs. non-ASD) and IQ (≥ 80 vs. < 80). We found no evidence of a fundamental emotion recognition deficit in the ASD group and analysis of error patterns suggested that the ASD group were vulnerable to the same pattern of confusions between emotions as the non-ASD group. However, recognition ability was significantly impaired in the ASD group for surprise. IQ had a strong and significant effect on performance for the recognition of all six emotions, with higher IQ adolescents outperforming lower IQ adolescents. The findings do not suggest a fundamental difficulty with the recognition of basic emotions in adolescents with ASD. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
Correlation-based pattern recognition for implantable defibrillators.
Wilkins, J.
1996-01-01
An estimated 300,000 Americans die each year from cardiac arrhythmias. Historically, drug therapy or surgery were the only treatment options available for patients suffering from arrhythmias. Recently, implantable arrhythmia management devices have been developed. These devices allow abnormal cardiac rhythms to be sensed and corrected in vivo. Proper arrhythmia classification is critical to selecting the appropriate therapeutic intervention. The classification problem is made more challenging by the power/computation constraints imposed by the short battery life of implantable devices. Current devices utilize heart rate-based classification algorithms. Although easy to implement, rate-based approaches have unacceptably high error rates in distinguishing supraventricular tachycardia (SVT) from ventricular tachycardia (VT). Conventional morphology assessment techniques used in ECG analysis often require too much computation to be practical for implantable devices. In this paper, a computationally-efficient, arrhythmia classification architecture using correlation-based morphology assessment is presented. The architecture classifies individuals heart beats by assessing similarity between an incoming cardiac signal vector and a series of prestored class templates. A series of these beat classifications are used to make an overall rhythm assessment. The system makes use of several new results in the field of pattern recognition. The resulting system achieved excellent accuracy in discriminating SVT and VT. PMID:8947674
Song, Zhibin; Zhang, Songyuan
2016-01-01
Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range. PMID:27775573
A model for size- and rotation-invariant pattern processing in the visual system.
Reitboeck, H J; Altmann, J
1984-01-01
The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale- and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size- and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via "Mexican hat" filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.
Song, Zhibin; Zhang, Songyuan
2016-10-19
Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range.
The Boundaries of Hemispheric Processing in Visual Pattern Recognition
1989-11-01
Allen, M. W. (1968). Impairment in facial recognition in patients cerebral disease. Cortex, 4, 344-358. Bogen, J. E. (1969). The other side of the brain...effects on a facial recognition task in normal subjects. Cortex, 9, 246-258. tliscock, M. (1988). Behavioral asymmetries in normal children. In D. L... facial recognition . Neuropsychologia, 22, 471-477. Ross-Kossak, P., & Turkewitz, G. (1986). A micro and macro developmental view of the nature of changes
Control of antiviral immunity by pattern recognition and the microbiome
Pang, Iris K.; Iwasaki, Akiko
2013-01-01
Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422
Human activities recognition by head movement using partial recurrent neural network
NASA Astrophysics Data System (ADS)
Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.
2003-06-01
Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.
Gesture recognition for smart home applications using portable radar sensors.
Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip
2014-01-01
In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy
2011-04-01
Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.