Sample records for pattern recognition technologies

  1. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  2. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  3. A Compact Prototype of an Optical Pattern Recognition System

    NASA Technical Reports Server (NTRS)

    Jin, Y.; Liu, H. K.; Marzwell, N. I.

    1996-01-01

    In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.

  4. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  5. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  6. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  7. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  8. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  9. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  10. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  11. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  12. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  13. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth

    2016-01-01

    Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.

  14. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  15. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  16. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  17. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  18. Optical Pattern Recognition for Missile Guidance.

    DTIC Science & Technology

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  19. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  1. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.

    PubMed

    Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui

    2016-01-01

    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  2. Developing Signal-Pattern-Recognition Programs

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Hammen, David

    2006-01-01

    Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.

  3. Classification and machine recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.

  4. Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang

    2017-03-01

    Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.

  5. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  6. ICPR-2016 - International Conference on Pattern Recognition

    Science.gov Websites

    Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and

  7. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  8. New pattern recognition system in the e-nose for Chinese spirit identification

    NASA Astrophysics Data System (ADS)

    Hui, Zeng; Qiang, Li; Yu, Gu

    2016-02-01

    This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (Sf), crest factor value (Cf), impulse factor value (If), clearance factor value (CLf), kurtosis factor value (Kv) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-14-120A2).

  9. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  10. Composite Artistry Meets Facial Recognition Technology: Exploring the Use of Facial Recognition Technology to Identify Composite Images

    DTIC Science & Technology

    2011-09-01

    be submitted into a facial recognition program for comparison with millions of possible matches, offering abundant opportunities to identify the...to leverage the robust number of comparative opportunities associated with facial recognition programs. This research investigates the efficacy of...combining composite forensic artistry with facial recognition technology to create a viable investigative tool to identify suspects, as well as better

  11. Real-valued composite filters for correlation-based optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Balendra, Anushia

    1992-01-01

    Advances in the technology of optical devices such as spatial light modulators (SLMs) have influenced the research and growth of optical pattern recognition. In the research leading to this report, the design of real-valued composite filters that can be implemented using currently available SLMs for optical pattern recognition and classification was investigated. The design of real-valued minimum average correlation energy (RMACE) filter was investigated. Proper selection of the phase of the output response was shown to reduce the correlation energy. The performance of the filter was evaluated using computer simulations and compared with the complex filters. It was found that the performance degraded only slightly. Continuing the above investigation, the design of a real filter that minimizes the output correlation energy and the output variance due to noise was developed. Simulation studies showed that this filter had better tolerance to distortion and noise compared to that of the RMACE filter. Finally, the space domain design of RMACE filter was developed and implemented on the computer. It was found that the sharpness of the correlation peak was slightly reduced but the filter design was more computationally efficient than the complex filter.

  12. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  13. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  14. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  15. Pattern recognition with "materials that compute".

    PubMed

    Fang, Yan; Yashin, Victor V; Levitan, Steven P; Balazs, Anna C

    2016-09-01

    Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The "stored" patterns are set of polarities of the individual BZ-PZ units, and the "input" patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating "materials that compute."

  16. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  17. Fuzzy tree automata and syntactic pattern recognition.

    PubMed

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  18. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  19. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  20. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  1. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  2. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Gregory; Hoff, James; Jindariani, Sergo

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less

  3. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  4. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  5. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  6. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  7. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats

  8. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    ERIC Educational Resources Information Center

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  9. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  10. Pattern recognition for cache management in distributed medical imaging environments.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís; Matos, Sérgio; Costa, Carlos

    2016-02-01

    Traditionally, medical imaging repositories have been supported by indoor infrastructures with huge operational costs. This paradigm is changing thanks to cloud outsourcing which not only brings technological advantages but also facilitates inter-institutional workflows. However, communication latency is one main problem in this kind of approaches, since we are dealing with tremendous volumes of data. To minimize the impact of this issue, cache and prefetching are commonly used. The effectiveness of these mechanisms is highly dependent on their capability of accurately selecting the objects that will be needed soon. This paper describes a pattern recognition system based on artificial neural networks with incremental learning to evaluate, from a set of usage pattern, which one fits the user behavior at a given time. The accuracy of the pattern recognition model in distinct training conditions was also evaluated. The solution was tested with a real-world dataset and a synthesized dataset, showing that incremental learning is advantageous. Even with very immature initial models, trained with just 1 week of data samples, the overall accuracy was very similar to the value obtained when using 75% of the long-term data for training the models. Preliminary results demonstrate an effective reduction in communication latency when using the proposed solution to feed a prefetching mechanism. The proposed approach is very interesting for cache replacement and prefetching policies due to the good results obtained since the first deployment moments.

  11. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  12. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  13. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  14. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  15. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  16. Pattern Recognition by Retina-Like Devices.

    ERIC Educational Resources Information Center

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

  17. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    NASA Astrophysics Data System (ADS)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  18. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  19. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  20. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square

  1. Multiclassifier information fusion methods for microarray pattern recognition

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Herzig-Marx, Rachel

    2004-04-01

    This paper addresses automatic recognition of microarray patterns, a capability that could have a major significance for medical diagnostics, enabling development of diagnostic tools for automatic discrimination of specific diseases. The paper presents multiclassifier information fusion methods for microarray pattern recognition. The input space partitioning approach based on fitness measures that constitute an a-priori gauging of classification efficacy for each subspace is investigated. Methods for generation of fitness measures, generation of input subspaces and their use in the multiclassifier fusion architecture are presented. In particular, two-level quantification of fitness that accounts for the quality of each subspace as well as the quality of individual neighborhoods within the subspace is described. Individual-subspace classifiers are Support Vector Machine based. The decision fusion stage fuses the information from mulitple SVMs along with the multi-level fitness information. Final decision fusion stage techniques, including weighted fusion as well as Dempster-Shafer theory based fusion are investigated. It should be noted that while the above methods are discussed in the context of microarray pattern recognition, they are applicable to a broader range of discrimination problems, in particular to problems involving a large number of information sources irreducible to a low-dimensional feature space.

  2. Pattern association--a key to recognition of shark attacks.

    PubMed

    Cirillo, G; James, H

    2004-12-01

    Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.

  3. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  4. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  5. Conformal Predictions in Multimedia Pattern Recognition

    ERIC Educational Resources Information Center

    Nallure Balasubramanian, Vineeth

    2010-01-01

    The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…

  6. PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,

    DTIC Science & Technology

    A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)

  7. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  8. Associative Pattern Recognition In Analog VLSI Circuits

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  9. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  10. Multi-texture local ternary pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Essa, Almabrok; Asari, Vijayan

    2017-05-01

    In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.

  11. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  12. Pattern recognition with “materials that compute”

    PubMed Central

    Fang, Yan; Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2016-01-01

    Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating “materials that compute.” PMID:27617290

  13. Pattern Recognition of the Multiple Sclerosis Syndrome

    PubMed Central

    Stewart, Renee; Healey, Kathleen M.

    2017-01-01

    During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis. PMID:29064441

  14. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  15. Development of Personalized Urination Recognition Technology Using Smart Bands.

    PubMed

    Eun, Sung-Jong; Whangbo, Taeg-Keun; Park, Dong Kyun; Kim, Khae-Hawn

    2017-04-01

    This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. This study aimed to develop an algorithm that recognizes urination based on a patient's posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement) was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.

  16. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  17. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  18. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  19. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  20. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  1. The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.

    PubMed

    Marée, Raphaël

    2017-01-01

    Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.

  2. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  3. Proceedings of the NASA/MPRIA Workshop: Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.

  4. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  5. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  6. Summary of 1971 pattern recognition program development

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1972-01-01

    Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.

  7. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  8. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  9. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  10. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  11. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  12. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    PubMed

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  13. Do pattern recognition skills transfer across sports? A preliminary analysis.

    PubMed

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  14. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    PubMed Central

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  15. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  16. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  17. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  18. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  19. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  20. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  1. Consonant-recognition patterns and self-assessment of hearing handicap.

    PubMed

    Hustedde, C G; Wiley, T L

    1991-12-01

    Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory--Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal-hearing and hearing-impaired listeners.

  2. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  3. Conditional random fields for pattern recognition applied to structured data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Skurikhin, Alexei

    In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  4. Conditional random fields for pattern recognition applied to structured data

    DOE PAGES

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  5. DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, V; Coffee, K; Gard, E

    2006-04-21

    The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. Themore » last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.« less

  6. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  7. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  8. VLSI Microsystem for Rapid Bioinformatic Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Lue, Jaw-Chyng

    2009-01-01

    A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).

  9. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  10. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  11. Recent progress in invariant pattern recognition

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  12. Development of a written music-recognition system using Java and open source technologies

    NASA Astrophysics Data System (ADS)

    Loibner, Gernot; Schwarzl, Andreas; Kovač, Matthias; Paulus, Dietmar; Pölzleitner, Wolfgang

    2005-10-01

    We report on the development of a software system to recognize and interpret printed music. The overall goal is to scan printed music sheets, analyze and recognize the notes, timing, and written text, and derive the all necessary information to use the computers MIDI sound system to play the music. This function is primarily useful for musicians who want to digitize printed music for editing purposes. There exist a number of commercial systems that offer such a functionality. However, on testing these systems, we were astonished on how weak they behave in their pattern recognition parts. Although we submitted very clear and rather flawless scanning input, none of these systems was able to e.g. recognize all notes, staff lines, and systems. They all require a high degree of interaction, post-processing, and editing to get a decent digital version of the hard copy material. In this paper we focus on the pattern recognition area. In a first approach we tested more or less standard methods of adaptive thresholding, blob detection, line detection, and corner detection to find the notes, staff lines, and candidate objects subject to OCR. Many of the objects on this type of material can be learned in a training phase. None of the commercial systems we saw offers the option to train special characters or unusual signatures. A second goal in this project is to use a modern software engineering platform. We were interested in how well Java and open source technologies are suitable for pattern recognition and machine vision. The scanning of music served as a case-study.

  13. Infrared Ship Classification Using A New Moment Pattern Recognition Concept

    NASA Astrophysics Data System (ADS)

    Casasent, David; Pauly, John; Fetterly, Donald

    1982-03-01

    An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.

  14. Listening for Recollection: A Multi-Voxel Pattern Analysis of Recognition Memory Retrieval Strategies

    PubMed Central

    Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.

    2010-01-01

    Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073

  15. Pattern recognition tool based on complex network-based approach

    NASA Astrophysics Data System (ADS)

    Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir

    2013-02-01

    This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.

  16. Collocation and Pattern Recognition Effects on System Failure Remediation

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Press, Hayes N.

    2007-01-01

    Previous research found that operators prefer to have status, alerts, and controls located on the same screen. Unfortunately, that research was done with displays that were not designed specifically for collocation. In this experiment, twelve subjects evaluated two displays specifically designed for collocating system information against a baseline that consisted of dial status displays, a separate alert area, and a controls panel. These displays differed in the amount of collocation, pattern matching, and parameter movement compared to display size. During the data runs, subjects kept a randomly moving target centered on a display using a left-handed joystick and they scanned system displays to find a problem in order to correct it using the provided checklist. Results indicate that large parameter movement aided detection and then pattern recognition is needed for diagnosis but the collocated displays centralized all the information subjects needed, which reduced workload. Therefore, the collocated display with large parameter movement may be an acceptable display after familiarization because of the possible pattern recognition developed with training and its use.

  17. Pattern recognition and feature extraction with an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2016-09-01

    Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.

  18. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  19. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    PubMed Central

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  20. Speech recognition technology: an outlook for human-to-machine interaction.

    PubMed

    Erdel, T; Crooks, S

    2000-01-01

    Speech recognition, as an enabling technology in healthcare-systems computing, is a topic that has been discussed for quite some time, but is just now coming to fruition. Traditionally, speech-recognition software has been constrained by hardware, but improved processors and increased memory capacities are starting to remove some of these limitations. With these barriers removed, companies that create software for the healthcare setting have the opportunity to write more successful applications. Among the criticisms of speech-recognition applications are the high rates of error and steep training curves. However, even in the face of such negative perceptions, there remains significant opportunities for speech recognition to allow healthcare providers and, more specifically, physicians, to work more efficiently and ultimately spend more time with their patients and less time completing necessary documentation. This article will identify opportunities for inclusion of speech-recognition technology in the healthcare setting and examine major categories of speech-recognition software--continuous speech recognition, command and control, and text-to-speech. We will discuss the advantages and disadvantages of each area, the limitations of the software today, and how future trends might affect them.

  1. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  2. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  3. Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?

    PubMed

    Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai

    2013-01-01

    The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.

  4. Page Recognition: Quantum Leap In Recognition Technology

    NASA Astrophysics Data System (ADS)

    Miller, Larry

    1989-07-01

    No milestone has proven as elusive as the always-approaching "year of the LAN," but the "year of the scanner" might claim the silver medal. Desktop scanners have been around almost as long as personal computers. And everyone thinks they are used for obvious desktop-publishing and business tasks like scanning business documents, magazine articles and other pages, and translating those words into files your computer understands. But, until now, the reality fell far short of the promise. Because it's true that scanners deliver an accurate image of the page to your computer, but the software to recognize this text has been woefully disappointing. Old optical-character recognition (OCR) software recognized such a limited range of pages as to be virtually useless to real users. (For example, one OCR vendor specified 12-point Courier font from an IBM Selectric typewriter: the same font in 10-point, or from a Diablo printer, was unrecognizable!) Computer dealers have told me the chasm between OCR expectations and reality is so broad and deep that nine out of ten prospects leave their stores in disgust when they learn the limitations. And this is a very important, very unfortunate gap. Because the promise of recognition -- what people want it to do -- carries with it tremendous improvements in our productivity and ability to get tons of written documents into our computers where we can do real work with it. The good news is that a revolutionary new development effort has led to the new technology of "page recognition," which actually does deliver the promise we've always wanted from OCR. I'm sure every reader appreciates the breakthrough represented by the laser printer and page-makeup software, a combination so powerful it created new reasons for buying a computer. A similar breakthrough is happening right now in page recognition: the Macintosh (and, I must admit, other personal computers) equipped with a moderately priced scanner and OmniPage software (from Caere

  5. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the

  6. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the

  7. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    PubMed

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract

  8. Star Pattern Recognition and Spacecraft Attitude Determination.

    DTIC Science & Technology

    1978-10-01

    Mr. Lawrence D. Ziems, Computer Programuer Prepared For: ,ti U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060 Contract No...CONTENTS PORIVAD i SIMARY iii 1.0 Introduction and System Overviev 1 2.0 Reference Frames Geometry and Kinematics 9 3.0 Star Pattern Recognition/Attitude...Laboratories (USAETL). The authors appreciate the capable guidance of Mr. L. A. Gambino, Director of the Computer Science Laboratory (USAETL), who served as

  9. Automated target recognition and tracking using an optical pattern recognition neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  10. The role of pattern recognition receptors in lung sarcoidosis.

    PubMed

    Mortaz, Esmaeil; Adcock, Ian M; Abedini, Atefhe; Kiani, Arda; Kazempour-Dizaji, Mehdi; Movassaghi, Masoud; Garssen, Johan

    2017-08-05

    Sarcoidosis is a granulomatous disorder of unknown etiology. Infection, genetic factors, autoimmunity and an aberrant innate immune system have been explored as potential causes of sarcoidosis. The etiology of sarcoidosis remains unknown, and it is thought that it might be caused by an infectious agent in a genetically predisposed, susceptible host. Inflammation results from recognition of evolutionarily conserved structures of pathogens (Pathogen-associated molecular patterns, PAMPs) and/or from reaction to tissue damage associated patterns (DAMPs) through recognition by a limited number of germ line-encoded pattern recognition receptors (PRRs). Due to the similar clinical and histopathological picture of sarcoidosis and tuberculosis, Mycobacterium tuberculosis antigens such early secreted antigen (ESAT-6), heat shock proteins (Mtb-HSP), catalase-peroxidase (katG) enzyme and superoxide dismutase A peptide (sodA) have been often considered as factors in the etiopathogenesis of sarcoidosis. Potential non-TB-associated PAMPs include lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria, peptidoglycan, lipoteichoic acid, bacterial DNA, viral DNA/RNA, chitin, flagellin, leucine-rich repeats (LRR), mannans in the yeast cell wall, and microbial HSPs. Furthermore, exogenous non-organic antigens such as metals, silica, pigments with/without aluminum in tattoos, pesticides, and pollen have been evoked as potential causes of sarcoidosis. Exposure of the airways to diverse infectious and non-infectious agents may be important in the pathogenesis of sarcoidosis. The current review provides and update on the role of PPRs and DAMPs in the pathogenesis of sarcoidsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition[OPEN

    PubMed Central

    2017-01-01

    Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis. PMID:28302675

  12. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    NASA Astrophysics Data System (ADS)

    Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.

    2015-02-01

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking; in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.

  13. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.; Deptuch, G.; Hoff, J.

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the shortmore » latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.« less

  14. Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Hurtado, John E.

    2011-01-01

    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.

  15. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  16. Document Form and Character Recognition using SVM

    NASA Astrophysics Data System (ADS)

    Park, Sang-Sung; Shin, Young-Geun; Jung, Won-Kyo; Ahn, Dong-Kyu; Jang, Dong-Sik

    2009-08-01

    Because of development of computer and information communication, EDI (Electronic Data Interchange) has been developing. There is OCR (Optical Character Recognition) of Pattern recognition technology for EDI. OCR contributed to changing many manual in the past into automation. But for the more perfect database of document, much manual is needed for excluding unnecessary recognition. To resolve this problem, we propose document form based character recognition method in this study. Proposed method is divided into document form recognition part and character recognition part. Especially, in character recognition, change character into binarization by using SVM algorithm and extract more correct feature value.

  17. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  18. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  19. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE PAGES

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; ...

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  20. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  1. Automatic recognition of postural allocations.

    PubMed

    Sazonov, Edward; Krishnamurthy, Vidya; Makeyev, Oleksandr; Browning, Ray; Schutz, Yves; Hill, James

    2007-01-01

    A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.

  2. Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements

    NASA Astrophysics Data System (ADS)

    Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo

    1999-05-01

    Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  3. Growing Misconception of Technology: Investigation of Elementary Students' Recognition of and Reasoning about Technological Artifacts

    ERIC Educational Resources Information Center

    Firat, Mehmet

    2017-01-01

    Knowledge of technology is an educational goal of science education. A primary way of increasing technology literacy in a society is to develop students' conception of technology starting from their elementary school years. However, there is a lack of research on student recognition of and reasoning about technology and technological artifacts. In…

  4. The time course of individual face recognition: A pattern analysis of ERP signals.

    PubMed

    Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian

    2016-05-15

    An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Symbol Recognition Using a Concept Lattice of Graphical Patterns

    NASA Astrophysics Data System (ADS)

    Rusiñol, Marçal; Bertet, Karell; Ogier, Jean-Marc; Lladós, Josep

    In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.

  6. Recognition of anaerobic bacterial isolates in vitro using electronic nose technology.

    PubMed

    Pavlou, A; Turner, A P F; Magan, N

    2002-01-01

    Use of an electronic nose (e.nose) system to differentiation between anaerobic bacteria grown in vitro on agar media. Cultures of Clostridium spp. (14 strains) and Bacteroides fragilis (12 strains) were grown on blood agar plates and incubated in sampling bags for 30 min before head space analysis of the volatiles. Qualitative analyses of the volatile production patterns was carried out using an e.nose system with 14 conducting polymer sensors. Using data analysis techniques such as principal components analysis (PCA), genetic algorithms and neural networks it was possible to differentiate between agar blanks and individual species which accounted for all the data. A total of eight unknowns were correctly discriminated into the bacterial groups. This is the first report of in vitro complex volatile pattern recognition and differentiation of anaerobic pathogens. These results suggest the potential for application of e.nose technology in early diagnosis of microbial pathogens of medical importance.

  7. Control of antiviral immunity by pattern recognition and the microbiome

    PubMed Central

    Pang, Iris K.; Iwasaki, Akiko

    2013-01-01

    Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422

  8. Margined winner-take-all: New learning rule for pattern recognition.

    PubMed

    Fukushima, Kunihiko

    2018-01-01

    The neocognitron is a deep (multi-layered) convolutional neural network that can be trained to recognize visual patterns robustly. In the intermediate layers of the neocognitron, local features are extracted from input patterns. In the deepest layer, based on the features extracted in the intermediate layers, input patterns are classified into classes. A method called IntVec (interpolating-vector) is used for this purpose. This paper proposes a new learning rule called margined Winner-Take-All (mWTA) for training the deepest layer. Every time when a training pattern is presented during the learning, if the result of recognition by WTA (Winner-Take-All) is an error, a new cell is generated in the deepest layer. Here we put a certain amount of margin to the WTA. In other words, only during the learning, a certain amount of handicap is given to cells of classes other than that of the training vector, and the winner is chosen under this handicap. By introducing the margin to the WTA, we can generate a compact set of cells, with which a high recognition rate can be obtained with a small computational cost. The ability of this mWTA is demonstrated by computer simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.

    PubMed

    Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando

    2016-08-01

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  10. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  11. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  12. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  13. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures

    NASA Astrophysics Data System (ADS)

    Yao, Ruigen; Pakzad, Shamim N.

    2012-08-01

    Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.

  14. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    PubMed

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  15. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  16. DYNAMIC PATTERN RECOGNITION BY MEANS OF THRESHOLD NETS,

    DTIC Science & Technology

    A method is expounded for the recognition of visual patterns. A circuit diagram of a device is described which is based on a multilayer threshold ...structure synthesized in accordance with the proposed method. Coded signals received each time an image is displayed are transmitted to the threshold ...circuit which distinguishes the signs, and from there to the layers of threshold resolving elements. The image at each layer is made to correspond

  17. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  18. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  19. Inverse scattering approach to improving pattern recognition

    NASA Astrophysics Data System (ADS)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  20. Inverse Scattering Approach to Improving Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less

  1. Learning pattern recognition and decision making in the insect brain

    NASA Astrophysics Data System (ADS)

    Huerta, R.

    2013-01-01

    We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.

  2. Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging

    PubMed Central

    Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice

    2012-01-01

    Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800

  3. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase

  4. Electronic system with memristive synapses for pattern recognition

    PubMed Central

    Park, Sangsu; Chu, Myonglae; Kim, Jongin; Noh, Jinwoo; Jeon, Moongu; Hun Lee, Byoung; Hwang, Hyunsang; Lee, Boreom; Lee, Byung-geun

    2015-01-01

    Memristive synapses, the most promising passive devices for synaptic interconnections in artificial neural networks, are the driving force behind recent research on hardware neural networks. Despite significant efforts to utilize memristive synapses, progress to date has only shown the possibility of building a neural network system that can classify simple image patterns. In this article, we report a high-density cross-point memristive synapse array with improved synaptic characteristics. The proposed PCMO-based memristive synapse exhibits the necessary gradual and symmetrical conductance changes, and has been successfully adapted to a neural network system. The system learns, and later recognizes, the human thought pattern corresponding to three vowels, i.e. /a /, /i /, and /u/, using electroencephalography signals generated while a subject imagines speaking vowels. Our successful demonstration of a neural network system for EEG pattern recognition is likely to intrigue many researchers and stimulate a new research direction. PMID:25941950

  5. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  6. Method of synthesized phase objects for pattern recognition with rotation invariance

    NASA Astrophysics Data System (ADS)

    Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.

    2015-11-01

    We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.

  7. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  8. Evaluation of Anomaly Detection Method Based on Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Fontugne, Romain; Himura, Yosuke; Fukuda, Kensuke

    The number of threats on the Internet is rapidly increasing, and anomaly detection has become of increasing importance. High-speed backbone traffic is particularly degraded, but their analysis is a complicated task due to the amount of data, the lack of payload data, the asymmetric routing and the use of sampling techniques. Most anomaly detection schemes focus on the statistical properties of network traffic and highlight anomalous traffic through their singularities. In this paper, we concentrate on unusual traffic distributions, which are easily identifiable in temporal-spatial space (e.g., time/address or port). We present an anomaly detection method that uses a pattern recognition technique to identify anomalies in pictures representing traffic. The main advantage of this method is its ability to detect attacks involving mice flows. We evaluate the parameter set and the effectiveness of this approach by analyzing six years of Internet traffic collected from a trans-Pacific link. We show several examples of detected anomalies and compare our results with those of two other methods. The comparison indicates that the only anomalies detected by the pattern-recognition-based method are mainly malicious traffic with a few packets.

  9. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  10. Automatic speech recognition and training for severely dysarthric users of assistive technology: the STARDUST project.

    PubMed

    Parker, Mark; Cunningham, Stuart; Enderby, Pam; Hawley, Mark; Green, Phil

    2006-01-01

    The STARDUST project developed robust computer speech recognizers for use by eight people with severe dysarthria and concomitant physical disability to access assistive technologies. Independent computer speech recognizers trained with normal speech are of limited functional use by those with severe dysarthria due to limited and inconsistent proximity to "normal" articulatory patterns. Severe dysarthric output may also be characterized by a small mass of distinguishable phonetic tokens making the acoustic differentiation of target words difficult. Speaker dependent computer speech recognition using Hidden Markov Models was achieved by the identification of robust phonetic elements within the individual speaker output patterns. A new system of speech training using computer generated visual and auditory feedback reduced the inconsistent production of key phonetic tokens over time.

  11. Pattern recognition for Space Applications Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Singley, M. E.

    1984-01-01

    Results and conclusions are presented on the application of recent developments in pattern recognition to spacecraft star mapping systems. Sensor data for two representative starfields are processed by an adaptive shape-seeking version of the Fc-V algorithm with good results. Cluster validity measures are evaluated, but not found especially useful to this application. Recommendations are given two system configurations worthy of additional study,

  12. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the

  13. Vibrotactile pattern recognition: a portable compact tactile matrix.

    PubMed

    Thullier, Francine; Bolmont, Benoît; Lestienne, Francis G

    2012-02-01

    Compact tactile matrix (CTM) is a vibrotactile device composed of a seven-by-seven array of electromechanical vibrators "tactip" used to represent tactile patterns applied to a small skin area. The CTM uses a dynamic feature to generate spatiotemporal tactile patterns. The design requirements focus particularly on maximizing the transmission of the vibration from one tactip to the others as well as to the skin over a square area of 16 cm (2) while simultaneously minimizing the transmission of vibrations throughout the overall structure of the CTM. Experiments were conducted on 22 unpracticed subjects to evaluate how the CTM could be used to develop a tactile semantics for communication of instructions in order to test the ability of the subjects to identify: 1) directional prescriptors for gesture guidance and 2) instructional commands for operational task requirements in a military context. The results indicate that, after familiarization, recognition accuracies in the tactile patterns were remarkably precise for more 80% of the subjects. © 2011 IEEE

  14. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    NASA Astrophysics Data System (ADS)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures

  15. The Immune System as a Model for Pattern Recognition and Classification

    PubMed Central

    Carter, Jerome H.

    2000-01-01

    Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961

  16. Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.

    PubMed

    Põder, Endel

    2014-11-06

    Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.

  17. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  18. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  19. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  20. Automated phenotype pattern recognition of zebrafish for high-throughput screening.

    PubMed

    Schutera, Mark; Dickmeis, Thomas; Mione, Marina; Peravali, Ravindra; Marcato, Daniel; Reischl, Markus; Mikut, Ralf; Pylatiuk, Christian

    2016-07-03

    Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.

  1. Linear Programming and Its Application to Pattern Recognition Problems

    NASA Technical Reports Server (NTRS)

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  2. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  3. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  4. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  5. Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques

    NASA Technical Reports Server (NTRS)

    Melhorn, W. N.; Sinnock, S.

    1973-01-01

    Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.

  6. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  7. Pattern recognition and image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khalid J.; Eastwood, DeLyle

    1999-12-01

    Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.

  8. FaceIt: face recognition from static and live video for law enforcement

    NASA Astrophysics Data System (ADS)

    Atick, Joseph J.; Griffin, Paul M.; Redlich, A. N.

    1997-01-01

    Recent advances in image and pattern recognition technology- -especially face recognition--are leading to the development of a new generation of information systems of great value to the law enforcement community. With these systems it is now possible to pool and manage vast amounts of biometric intelligence such as face and finger print records and conduct computerized searches on them. We review one of the enabling technologies underlying these systems: the FaceIt face recognition engine; and discuss three applications that illustrate its benefits as a problem-solving technology and an efficient and cost effective investigative tool.

  9. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  10. A pattern recognition approach to transistor array parameter variance

    NASA Astrophysics Data System (ADS)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  11. Comparison of eye imaging pattern recognition using neural network

    NASA Astrophysics Data System (ADS)

    Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.

    2015-05-01

    The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.

  12. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  13. Compact holographic optical neural network system for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  14. Mask pattern generator employing EPL technology

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Yamabe, Masaki; Wakamiya, Wataru; Endo, Nobuhiro

    2003-08-01

    Mask cost is one of crucial issues in device fabrication, especially in SoC (System on a Chip) with small-volume production. The cost mainly depends on productivity of mask manufacturing tools such as mask writers and defect inspection tools. EPL (Electron Projection Lithography) has been developing as a high-throughput electron beam exposure technology that will succeed optical lithography. The application of EPL technology to mask writing will result in high productivity and contribute to decrease the mask cost. The concept of a mask pattern generator employing EPL technology is proposed in this paper. It is very similar to EPL technology used for pattern printing on a wafer. The mask patterns on the glass substrate are exposed by projecting the basic circuit patterns formed on the mother EPL mask. One example of the mother EPL mask is a stencil type made with 200-mm Si wafer. The basic circuit patterns are IP patterns and logical primitive patterns such as cell libraries (AND, OR, Inverter, Flip-Flop and etc.) to express the SoC device patterns. Since the SoC patterns are exposed with its collective units such as IP and logical primitive patterns by using this method, the high throughput will be expected comparing with conventional mask E-beam writers. In this paper, the mask pattern generator with the EPL technology is proposed. The concept, its advantages and issues to be solved are discussed.

  15. Classifying performance impairment in response to sleep loss using pattern recognition algorithms on single session testing

    PubMed Central

    St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.

    2012-01-01

    There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in

  16. Review of Speech-to-Text Recognition Technology for Enhancing Learning

    ERIC Educational Resources Information Center

    Shadiev, Rustam; Hwang, Wu-Yuin; Chen, Nian-Shing; Huang, Yueh-Min

    2014-01-01

    This paper reviewed literature from 1999 to 2014 inclusively on how Speech-to-Text Recognition (STR) technology has been applied to enhance learning. The first aim of this review is to understand how STR technology has been used to support learning over the past fifteen years, and the second is to analyze all research evidence to understand how…

  17. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  18. Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.

    2011-01-01

    It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800

  19. Application of affinity propagation algorithm based on manifold distance for transformer PD pattern recognition

    NASA Astrophysics Data System (ADS)

    Wei, B. G.; Huo, K. X.; Yao, Z. F.; Lou, J.; Li, X. Y.

    2018-03-01

    It is one of the difficult problems encountered in the research of condition maintenance technology of transformers to recognize partial discharge (PD) pattern. According to the main physical characteristics of PD, three models of oil-paper insulation defects were set up in laboratory to study the PD of transformers, and phase resolved partial discharge (PRPD) was constructed. By using least square method, the grey-scale images of PRPD were constructed and features of each grey-scale image were 28 box dimensions and 28 information dimensions. Affinity propagation algorithm based on manifold distance (AP-MD) for transformers PD pattern recognition was established, and the data of box dimension and information dimension were clustered based on AP-MD. Study shows that clustering result of AP-MD is better than the results of affinity propagation (AP), k-means and fuzzy c-means algorithm (FCM). By choosing different k values of k-nearest neighbor, we find clustering accuracy of AP-MD falls when k value is larger or smaller, and the optimal k value depends on sample size.

  20. A Motion-Based Feature for Event-Based Pattern Recognition

    PubMed Central

    Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.

    2017-01-01

    This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001

  1. Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition.

    PubMed

    Ding, Changxing; Choi, Jonghyun; Tao, Dacheng; Davis, Larry S

    2016-03-01

    To perform unconstrained face recognition robust to variations in illumination, pose and expression, this paper presents a new scheme to extract "Multi-Directional Multi-Level Dual-Cross Patterns" (MDML-DCPs) from face images. Specifically, the MDML-DCPs scheme exploits the first derivative of Gaussian operator to reduce the impact of differences in illumination and then computes the DCP feature at both the holistic and component levels. DCP is a novel face image descriptor inspired by the unique textural structure of human faces. It is computationally efficient and only doubles the cost of computing local binary patterns, yet is extremely robust to pose and expression variations. MDML-DCPs comprehensively yet efficiently encodes the invariant characteristics of a face image from multiple levels into patterns that are highly discriminative of inter-personal differences but robust to intra-personal variations. Experimental results on the FERET, CAS-PERL-R1, FRGC 2.0, and LFW databases indicate that DCP outperforms the state-of-the-art local descriptors (e.g., LBP, LTP, LPQ, POEM, tLBP, and LGXP) for both face identification and face verification tasks. More impressively, the best performance is achieved on the challenging LFW and FRGC 2.0 databases by deploying MDML-DCPs in a simple recognition scheme.

  2. Heuristics in primary care for recognition of unreported vision loss in older people: a technology development study.

    PubMed

    Wijeyekoon, Skanda; Kharicha, Kalpa; Iliffe, Steve

    2015-09-01

    To evaluate heuristics (rules of thumb) for recognition of undetected vision loss in older patients in primary care. Vision loss is associated with ageing, and its prevalence is increasing. Visual impairment has a broad impact on health, functioning and well-being. Unrecognised vision loss remains common, and screening interventions have yet to reduce its prevalence. An alternative approach is to enhance practitioners' skills in recognising undetected vision loss, by having a more detailed picture of those who are likely not to act on vision changes, report symptoms or have eye tests. This paper describes a qualitative technology development study to evaluate heuristics for recognition of undetected vision loss in older patients in primary care. Using a previous modelling study, two heuristics in the form of mnemonics were developed to aid pattern recognition and allow general practitioners to identify potential cases of unreported vision loss. These heuristics were then analysed with experts. Findings It was concluded that their implementation in modern general practice was unsuitable and an alternative solution should be sort.

  3. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  4. Dynamic texture recognition using local binary patterns with an application to facial expressions.

    PubMed

    Zhao, Guoying; Pietikäinen, Matti

    2007-06-01

    Dynamic texture (DT) is an extension of texture to the temporal domain. Description and recognition of DTs have attracted growing attention. In this paper, a novel approach for recognizing DTs is proposed and its simplifications and extensions to facial image analysis are also considered. First, the textures are modeled with volume local binary patterns (VLBP), which are an extension of the LBP operator widely used in ordinary texture analysis, combining motion and appearance. To make the approach computationally simple and easy to extend, only the co-occurrences of the local binary patterns on three orthogonal planes (LBP-TOP) are then considered. A block-based method is also proposed to deal with specific dynamic events such as facial expressions in which local information and its spatial locations should also be taken into account. In experiments with two DT databases, DynTex and Massachusetts Institute of Technology (MIT), both the VLBP and LBP-TOP clearly outperformed the earlier approaches. The proposed block-based method was evaluated with the Cohn-Kanade facial expression database with excellent results. The advantages of our approach include local processing, robustness to monotonic gray-scale changes, and simple computation.

  5. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  6. Students' Dichotomous Experiences of the Illuminating and Illusionary Nature of Pattern Recognition in Mathematics

    ERIC Educational Resources Information Center

    Mhlolo, Michael Kainose

    2016-01-01

    The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…

  7. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications.

    PubMed

    Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.

  8. Finger crease pattern recognition using Legendre moments and principal component analysis

    NASA Astrophysics Data System (ADS)

    Luo, Rongfang; Lin, Tusheng

    2007-03-01

    The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.

  9. Pattern recognition applied to infrared images for early alerts in fog

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien

    2014-09-01

    Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.

  10. Spectral pattern recognition of controlled substances in street samples using artificial neural network system

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana

    2011-04-01

    The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.

  11. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  12. [Application of image recognition technology in census of national traditional Chinese medicine resources].

    PubMed

    Zhang, Xiao-Bo; Ge, Xiao-Guang; Jin, Yan; Shi, Ting-Ting; Wang, Hui; Li, Meng; Jing, Zhi-Xian; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    With the development of computer and image processing technology, image recognition technology has been applied to the national medicine resources census work at all stages.Among them: ①In the preparatory work, in order to establish a unified library of traditional Chinese medicine resources, using text recognition technology based on paper materials, be the assistant in the digitalization of various categories related to Chinese medicine resources; to determine the representative area and plots of the survey from each census team, based on the satellite remote sensing image and vegetation map and other basic data, using remote sensing image classification and other technical methods to assist in determining the key investigation area. ②In the process of field investigation, to obtain the planting area of Chinese herbal medicine was accurately, we use the decision tree model, spectral feature and object-oriented method were used to assist the regional identification and area estimation of Chinese medicinal materials.③In the process of finishing in the industry, in order to be able to relatively accurately determine the type of Chinese medicine resources in the region, based on the individual photos of the plant, the specimens and the name of the use of image recognition techniques, to assist the statistical summary of the types of traditional Chinese medicine resources. ④In the application of the results of transformation, based on the pharmaceutical resources and individual samples of medicinal herbs, the development of Chinese medicine resources to identify APP and authentic herbs 3D display system, assisted the identification of Chinese medicine resources and herbs identification characteristics. The introduction of image recognition technology in the census of Chinese medicine resources, assisting census personnel to carry out related work, not only can reduce the workload of the artificial, improve work efficiency, but also improve the census results

  13. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    PubMed

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  14. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

    PubMed Central

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2015-01-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989

  15. Pattern-Recognition System for Approaching a Known Target

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Cheng, Yang

    2008-01-01

    A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the

  16. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition Based Myoelectric Control

    PubMed Central

    Scheme, Erik; Englehart, Kevin

    2013-01-01

    The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224

  17. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  18. Keys to the Adoption and Use of Voice Recognition Technology in Organizations.

    ERIC Educational Resources Information Center

    Goette, Tanya

    2000-01-01

    Presents results from a field study of individuals with disabilities who used voice recognition technology (VRT). Results indicated that task-technology fit, training, the environment, and disability limitations were the differentiating items, and that using VRT for a trial period may be the major factor in successful adoption of the technology.…

  19. Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye

    PubMed Central

    Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael

    2017-01-01

    Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847

  20. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    PubMed Central

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and

  1. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  2. Plant pattern recognition receptor complexes at the plasma membrane.

    PubMed

    Monaghan, Jacqueline; Zipfel, Cyril

    2012-08-01

    A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the activation of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) elicits a defense programme known as PAMP-triggered immunity (PTI). Although only a handful of PAMP-PRR pairs have been defined, all known PRRs are modular transmembrane proteins containing ligand-binding ectodomains. It is becoming clear that PRRs do not act alone but rather function as part of multi-protein complexes at the plasma membrane. Recent studies describing the molecular interactions and protein modifications that occur between PRRs and their regulatory proteins have provided important mechanistic insight into how plants avoid infection and achieve immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Rapid detection of malignant bio-species using digital holographic pattern recognition and nano-photonics

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn

    2013-03-01

    There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.

  4. Structural Pattern Recognition Techniques for Data Retrieval in Massive Fusion Databases

    NASA Astrophysics Data System (ADS)

    Vega, J.; Murari, A.; Rattá, G. A.; Castro, P.; Pereira, A.; Portas, A.

    2008-03-01

    Diagnostics of present day reactor class fusion experiments, like the Joint European Torus (JET), generate thousands of signals (time series and video images) in each discharge. There is a direct correspondence between the physical phenomena taking place in the plasma and the set of structural shapes (patterns) that they form in the signals: bumps, unexpected amplitude changes, abrupt peaks, periodic components, high intensity zones or specific edge contours. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behavior, i.e. discharges with "similar" patterns. Pattern recognition techniques are efficient tools to search for similar structural forms within the database in a fast an intelligent way. To this end, classification systems must be developed to be used as indexation methods to directly fetch the more similar patterns.

  5. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    NASA Astrophysics Data System (ADS)

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  6. [Study on molecular recognition technology in active constituents extracted and isolated from Aconitum pendulum].

    PubMed

    Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu

    2011-03-01

    To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.

  7. System integration of pattern recognition, adaptive aided, upper limb prostheses

    NASA Technical Reports Server (NTRS)

    Lyman, J.; Freedy, A.; Solomonow, M.

    1975-01-01

    The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.

  8. Rotation, scale, and translation invariant pattern recognition using feature extraction

    NASA Astrophysics Data System (ADS)

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  9. Laser Opto-Electronic Correlator for Robotic Vision Automated Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville

    1995-01-01

    A compact laser opto-electronic correlator for pattern recognition has been designed, fabricated, and tested. Specifically it is a translation sensitivity adjustable compact optical correlator (TSACOC) utilizing convergent laser beams for the holographic filter. Its properties and performance, including the location of the correlation peak and the effects of lateral and longitudinal displacements for both filters and input images, are systematically analyzed based on the nonparaxial approximation for the reference beam. The theoretical analyses have been verified in experiments. In applying the TSACOC to important practical problems including fingerprint identification, we have found that the tolerance of the system to the input lateral displacement can be conveniently increased by changing a geometric factor of the system. The system can be compactly packaged using the miniature laser diode sources and can be used in space by the National Aeronautics and Space Administration (NASA) and ground commercial applications which include robotic vision, and industrial inspection of automated quality control operations. The personnel of Standard International will work closely with the Jet Propulsion Laboratory (JPL) to transfer the technology to the commercial market. Prototype systems will be fabricated to test the market and perfect the product. Large production will follow after successful results are achieved.

  10. Hand biometric recognition based on fused hand geometry and vascular patterns.

    PubMed

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  11. Holographic memory for high-density data storage and high-speed pattern recognition

    NASA Astrophysics Data System (ADS)

    Gu, Claire

    2002-09-01

    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  12. DESIGN OF A PATTERN RECOGNITION DIGITAL COMPUTER WITH APPLICATION TO THE AUTOMATIC SCANNING OF BUBBLE CHAMBER NEGATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, B.H.; Narasimhan, R.

    1963-01-01

    The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)

  13. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  14. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    PubMed Central

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  15. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  16. HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger.

    PubMed

    Feng, Xu; Kong, Weijun; Wei, Jianhe; Ou-Yang, Zhen; Yang, Meihua

    2014-03-01

    Ginger, the fresh rhizome of Zingiber officinale Rosc. (Zingiberaceae), has been used worldwide; however, for a long time, there has been no standard approbated internationally for its quality control. To establish an efficacious and combinational method and pattern recognition technique for quality control of ginger. A simple, accurate and reliable method based on high-performance liquid chromatography with photodiode array (HPLC-PDA) detection was developed for establishing the chemical fingerprints of 10 batches of ginger from different markets in China. The method was validated in terms of precision, reproducibility and stability; and the relative standard deviations were all less than 1.57%. On the basis of this method, the fingerprints of 10 batches of ginger samples were obtained, which showed 16 common peaks. Coupled with similarity evaluation software, the similarities between each fingerprint of the sample and the simulative mean chromatogram were in the range of 0.998-1.000. Then, the chemometric techniques, including similarity analysis, hierarchical clustering analysis and principal component analysis were applied to classify the ginger samples. Consistent results were obtained to show that ginger samples could be successfully classified into two groups. This study revealed that HPLC-PDA method was simple, sensitive and reliable for fingerprint analysis, and moreover, for pattern recognition and quality control of ginger.

  17. Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation

    PubMed Central

    Fernández-Llatas, Carlos; Meneu, Teresa; Traver, Vicente; Benedi, José-Miguel

    2013-01-01

    Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized. PMID:24185841

  18. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  19. Geometry Of Discrete Sets With Applications To Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Sinha, Divyendu

    1990-03-01

    In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.

  20. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  1. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  2. Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)

    1987-01-01

    The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.

  3. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  4. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  5. Robust Indoor Human Activity Recognition Using Wireless Signals.

    PubMed

    Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang

    2015-07-15

    Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  6. A Monitoring System for Laying Hens That Uses a Detection Sensor Based on Infrared Technology and Image Pattern Recognition.

    PubMed

    Zaninelli, Mauro; Redaelli, Veronica; Luzi, Fabio; Bontempo, Valentino; Dell'Orto, Vittorio; Savoini, Giovanni

    2017-05-24

    In Italy, organic egg production farms use free-range housing systems with a big outdoor area and a flock of no more than 500 hens. With additional devices and/or farming procedures, the whole flock could be forced to stay in the outdoor area for a limited time of the day. As a consequence, ozone treatments of housing areas could be performed in order to reduce the levels of atmospheric ammonia and bacterial load without risks, due by its toxicity, both for hens and workers. However, an automatic monitoring system, and a sensor able to detect the presence of animals, would be necessary. For this purpose, a first sensor was developed but some limits, related to the time necessary to detect a hen, were observed. In this study, significant improvements, for this sensor, are proposed. They were reached by an image pattern recognition technique that was applied to thermografic images acquired from the housing system. An experimental group of seven laying hens was selected for the tests, carried out for three weeks. The first week was used to set-up the sensor. Different templates, to use for the pattern recognition, were studied and different floor temperature shifts were investigated. At the end of these evaluations, a template of elliptical shape, and sizes of 135 × 63 pixels, was chosen. Furthermore, a temperature shift of one degree was selected to calculate, for each image, a color background threshold to apply in the following field tests. Obtained results showed an improvement of the sensor detection accuracy that reached values of sensitivity and specificity of 95.1% and 98.7%. In addition, the range of time necessary to detect a hen, or classify a case, was reduced at two seconds. This result could allow the sensor to control a bigger area of the housing system. Thus, the resulting monitoring system could allow to perform the sanitary treatments without risks both for animals and humans.

  7. A Monitoring System for Laying Hens That Uses a Detection Sensor Based on Infrared Technology and Image Pattern Recognition

    PubMed Central

    Zaninelli, Mauro; Redaelli, Veronica; Luzi, Fabio; Bontempo, Valentino; Dell’Orto, Vittorio; Savoini, Giovanni

    2017-01-01

    In Italy, organic egg production farms use free-range housing systems with a big outdoor area and a flock of no more than 500 hens. With additional devices and/or farming procedures, the whole flock could be forced to stay in the outdoor area for a limited time of the day. As a consequence, ozone treatments of housing areas could be performed in order to reduce the levels of atmospheric ammonia and bacterial load without risks, due by its toxicity, both for hens and workers. However, an automatic monitoring system, and a sensor able to detect the presence of animals, would be necessary. For this purpose, a first sensor was developed but some limits, related to the time necessary to detect a hen, were observed. In this study, significant improvements, for this sensor, are proposed. They were reached by an image pattern recognition technique that was applied to thermografic images acquired from the housing system. An experimental group of seven laying hens was selected for the tests, carried out for three weeks. The first week was used to set-up the sensor. Different templates, to use for the pattern recognition, were studied and different floor temperature shifts were investigated. At the end of these evaluations, a template of elliptical shape, and sizes of 135 × 63 pixels, was chosen. Furthermore, a temperature shift of one degree was selected to calculate, for each image, a color background threshold to apply in the following field tests. Obtained results showed an improvement of the sensor detection accuracy that reached values of sensitivity and specificity of 95.1% and 98.7%. In addition, the range of time necessary to detect a hen, or classify a case, was reduced at two seconds. This result could allow the sensor to control a bigger area of the housing system. Thus, the resulting monitoring system could allow to perform the sanitary treatments without risks both for animals and humans. PMID:28538654

  8. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  9. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.

    PubMed

    Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping

    2017-08-01

    Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.

  10. VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,

    In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less

  11. Pattern recognition as a concept for multiple-choice questions in a national licensing exam.

    PubMed

    Freiwald, Tilo; Salimi, Madjid; Khaljani, Ehsan; Harendza, Sigrid

    2014-11-14

    Multiple-choice questions (MCQ) are still widely used in high stakes medical exams. We wanted to examine whether and to what extent a national licensing exam uses the concept of pattern recognition to test applied clinical knowledge. We categorized all 4,134 German National medical licensing exam questions between October 2006 and October 2012 by discipline, year, and type. We analyzed questions from the four largest disciplines: internal medicine (n = 931), neurology (n = 305), pediatrics (n = 281), and surgery (n = 233), with respect to the following question types: knowledge questions (KQ), pattern recognition questions (PRQ), inverse PRQ (IPRQ), and pseudo PRQ (PPRQ). A total 51.1% of all questions were of a higher taxonomical order (PRQ and IPRQ) with a significant decrease in the percentage of these questions (p <0.001) from 2006 (61.5%) to 2012 (41.6%). The proportion of PRQs and IPRQs was significantly lower (p <0.001) in internal medicine and surgery, compared to neurology and pediatrics. PRQs were mostly used in questions about diagnoses (71.7%). A significantly higher (p <0.05) percentage of PR/therapy questions was found for internal medicine compared with neurology and pediatrics. The concept of pattern recognition is used with different priorities and to various extents by the different disciplines in a high stakes exam to test applied clinical knowledge. Being aware of this concept may aid in the design and balance of MCQs in an exam with respect to testing clinical reasoning as a desired skill at the threshold of postgraduate medical education.

  12. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  13. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    PubMed

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  14. Number Sense Made Simple Using Number Patterns

    ERIC Educational Resources Information Center

    Su, Hui Fang Huang; Marinas, Carol; Furner, Joseph

    2011-01-01

    This article highlights investigating intriguing number patterns utilising an emerging technology called the Square Tool. Mathematics teachers of grades K-12 will find the Square Tool useful in making connections and bridging the gap from the concrete to the abstract. Pattern recognition helps students discover various mathematical concepts. With…

  15. Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity.

    PubMed

    Kafkas, Alexandros; Montaldi, Daniela

    2011-10-01

    Thirty-five healthy participants incidentally encoded a set of man-made and natural object pictures, while their pupil response and eye movements were recorded. At retrieval, studied and new stimuli were rated as novel, familiar (strong, moderate, or weak), or recollected. We found that both pupil response and fixation patterns at encoding predict later recognition memory strength. The extent of pupillary response accompanying incidental encoding was found to be predictive of subsequent memory. In addition, the number of fixations was also predictive of later recognition memory strength, suggesting that the accumulation of greater visual detail, even for single objects, is critical for the creation of a strong memory. Moreover, fixation patterns at encoding distinguished between recollection and familiarity at retrieval, with more dispersed fixations predicting familiarity and more clustered fixations predicting recollection. These data reveal close links between the autonomic control of pupil responses and eye movement patterns on the one hand and memory encoding on the other. Moreover, the data illustrate quantitative as well as qualitative differences in the incidental visual processing of stimuli, which are differentially predictive of the strength and the kind of memory experienced at recognition.

  16. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  17. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  18. On damage diagnosis for a wind turbine blade using pattern recognition

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  19. Application of syntactic methods of pattern recognition for data mining and knowledge discovery in medicine

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2000-04-01

    This paper presents and discusses possibilities of application of selected algorithms belonging to the group of syntactic methods of patten recognition used to analyze and extract features of shapes and to diagnose morphological lesions seen on selected medical images. This method is particularly useful for specialist morphological analysis of shapes of selected organs of abdominal cavity conducted to diagnose disease symptoms occurring in the main pancreatic ducts, upper segments of ureters and renal pelvis. Analysis of the correct morphology of these organs is possible with the application of the sequential and tree method belonging to the group of syntactic methods of pattern recognition. The objective of this analysis is to support early diagnosis of disease lesions, mainly characteristic for carcinoma and pancreatitis, based on examinations of ERCP images and a diagnosis of morphological lesions in ureters as well as renal pelvis based on an analysis of urograms. In the analysis of ERCP images the main objective is to recognize morphological lesions in pancreas ducts characteristic for carcinoma and chronic pancreatitis, while in the case of kidney radiogram analysis the aim is to diagnose local irregularities of ureter lumen and to examine the morphology of renal pelvis and renal calyxes. Diagnosing the above mentioned lesion has been conducted with the use of syntactic methods of pattern recognition, in particular the languages of description of features of shapes and context-free sequential attributed grammars. These methods allow to recognize and describe in a very efficient way the aforementioned lesions on images obtained as a result of initial image processing of width diagrams of the examined structures. Additionally, in order to support the analysis of the correct structure of renal pelvis a method using the tree grammar for syntactic pattern recognition to define its correct morphological shapes has been presented.

  20. Dance recognition system using lower body movement.

    PubMed

    Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C

    2014-02-01

    The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.

  1. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    PubMed

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  2. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  3. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  4. A novel thermal face recognition approach using face pattern words

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2010-04-01

    A reliable thermal face recognition system can enhance the national security applications such as prevention against terrorism, surveillance, monitoring and tracking, especially at nighttime. The system can be applied at airports, customs or high-alert facilities (e.g., nuclear power plant) for 24 hours a day. In this paper, we propose a novel face recognition approach utilizing thermal (long wave infrared) face images that can automatically identify a subject at both daytime and nighttime. With a properly acquired thermal image (as a query image) in monitoring zone, the following processes will be employed: normalization and denoising, face detection, face alignment, face masking, Gabor wavelet transform, face pattern words (FPWs) creation, face identification by similarity measure (Hamming distance). If eyeglasses are present on a subject's face, an eyeglasses mask will be automatically extracted from the querying face image, and then masked with all comparing FPWs (no more transforms). A high identification rate (97.44% with Top-1 match) has been achieved upon our preliminary face dataset (of 39 subjects) from the proposed approach regardless operating time and glasses-wearing condition.e

  5. Designing Clinical Examples To Promote Pattern Recognition: Nursing Education-Based Research and Practical Applications.

    ERIC Educational Resources Information Center

    Welk, Dorette Sugg

    2002-01-01

    Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…

  6. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  7. Effects of Cooperative Group Work Activities on Pre-School Children's Pattern Recognition Skills

    ERIC Educational Resources Information Center

    Tarim, Kamuran

    2015-01-01

    The aim of this research is twofold; to investigate the effects of cooperative group-based work activities on children's pattern recognition skills in pre-school and to examine the teachers' opinions about the implementation process. In line with this objective, for the study, 57 children (25 girls and 32 boys) were chosen from two private schools…

  8. Accurate, fast, and secure biometric fingerprint recognition system utilizing sensor fusion of fingerprint patterns

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy

    2011-04-01

    Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.

  9. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-04-28

    A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...

  10. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    USDA-ARS?s Scientific Manuscript database

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  11. Sequential Learning and Recognition of Comprehensive Behavioral Patterns Based on Flow of People

    NASA Astrophysics Data System (ADS)

    Gibo, Tatsuya; Aoki, Shigeki; Miyamoto, Takao; Iwata, Motoi; Shiozaki, Akira

    Recently, surveillance cameras have been set up everywhere, for example, in streets and public places, in order to detect irregular situations. In the existing surveillance systems, as only a handful of surveillance agents watch a large number of images acquired from surveillance cameras, there is a possibility that they may miss important scenes such as accidents or abnormal incidents. Therefore, we propose a method for sequential learning and the recognition of comprehensive behavioral patterns in crowded places. First, we comprehensively extract a flow of people from input images by using optical flow. Second, we extract behavioral patterns on the basis of change-point detection of the flow of people. Finally, in order to recognize an observed behavioral pattern, we draw a comparison between the behavioral pattern and previous behavioral patterns in the database. We verify the effectiveness of our approach by placing a surveillance camera on a campus.

  12. Image Description with Local Patterns: An Application to Face Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ahrary, Alireza; Kamata, Sei-Ichiro

    In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.

  13. Background characterization techniques for target detection using scene metrics and pattern recognition

    NASA Astrophysics Data System (ADS)

    Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.

    1990-09-01

    The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.

  14. Structural basis of recognition of pathogen-associated molecular patterns and inhibition of proinflammatory cytokines by camel peptidoglycan recognition protein.

    PubMed

    Sharma, Pradeep; Dube, Divya; Singh, Amar; Mishra, Biswajit; Singh, Nagendra; Sinha, Mau; Dey, Sharmistha; Kaur, Punit; Mitra, Dipendra K; Sharma, Sujata; Singh, Tej P

    2011-05-06

    Peptidoglycan recognition proteins (PGRPs) are involved in the recognition of pathogen-associated molecular patterns. The well known pathogen-associated molecular patterns include LPS from Gram-negative bacteria and lipoteichoic acid (LTA) from Gram-positive bacteria. In this work, the crystal structures of two complexes of the short form of camel PGRP (CPGRP-S) with LPS and LTA determined at 1.7- and 2.1-Å resolutions, respectively, are reported. Both compounds were held firmly inside the complex formed with four CPGRP-S molecules designated A, B, C, and D. The binding cleft is located at the interface of molecules C and D, which is extendable to the interface of molecules A and C. The interface of molecules A and B is tightly packed, whereas that of molecules B and D forms a wide channel. The hydrophilic moieties of these compounds occupy a common region, whereas hydrophobic chains interact with distinct regions in the binding site. The binding studies showed that CPGRP-S binds to LPS and LTA with affinities of 1.6 × 10(-9) and 2.4 × 10(-8) M, respectively. The flow cytometric studies showed that both LPS- and LTA-induced expression of the proinflammatory cytokines TNF-α and IL-6 was inhibited by CPGRP-S. The results of animal studies using mouse models indicated that both LPS- and LTA-induced mortality rates decreased drastically when CPGRP-S was administered. The recognition of both LPS and LTA, their high binding affinities for CPGRP-S, the significant decrease in the production of LPS- and LTA-induced TNF-α and IL-6, and the drastic reduction in the mortality rates in mice by CPGRP-S indicate its useful properties as an antibiotic agent.

  15. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    ERIC Educational Resources Information Center

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  16. Automatic Speech Recognition Technology as an Effective Means for Teaching Pronunciation

    ERIC Educational Resources Information Center

    Elimat, Amal Khalil; AbuSeileek, Ali Farhan

    2014-01-01

    This study aimed to explore the effect of using automatic speech recognition technology (ASR) on the third grade EFL students' performance in pronunciation, whether teaching pronunciation through ASR is better than regular instruction, and the most effective teaching technique (individual work, pair work, or group work) in teaching pronunciation…

  17. Intelligent Facial Recognition Systems: Technology advancements for security applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g.,more » fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.« less

  18. Infrared target recognition based on improved joint local ternary pattern

    NASA Astrophysics Data System (ADS)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  19. Pattern-Recognition Receptors and Gastric Cancer

    PubMed Central

    Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O.; Mitchell, Hazel M.

    2014-01-01

    Chronic inflammation has been associated with an increased risk of several human malignancies, a classic example being gastric adenocarcinoma (GC). Development of GC is known to result from infection of the gastric mucosa by Helicobacter pylori, which initially induces acute inflammation and, in a subset of patients, progresses over time to chronic inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are critical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that dysfunction within genes of this arm of the immune system could modulate the host response against H. pylori infection, and subsequently influence the emergence of GC. Current evidence suggests that Toll-like receptors (TLRs) (TLR2, TLR3, TLR4, TLR5, and TLR9), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric carcinogenesis. In addition, polymorphisms in genes involved in the TLR (TLR1, TLR2, TLR4, TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) signaling pathways have been shown to modulate the risk of H. pylori infection, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been suggested to suppress H. pylori-induced inflammation and enhance GC cell apoptosis, highlighting their potential relevance in GC therapeutics. In this review, we present current advances in our understanding of the role of the TLR and NLR signaling pathways in the pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and discuss the potential implications of PRRs in GC immunotherapy

  20. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition.

    PubMed

    Basati, Zahra; Jamshidi, Bahareh; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-05-30

    The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R 2  = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques

  1. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    ERIC Educational Resources Information Center

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  2. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  3. New Ideas for Speech Recognition and Related Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J F

    The ideas relating to the use of organ motion sensors for the purposes of speech recognition were first described by.the author in spring 1994. During the past year, a series of productive collaborations between the author, Tom McEwan and Larry Ng ensued and have lead to demonstrations, new sensor ideas, and algorithmic descriptions of a large number of speech recognition concepts. This document summarizes the basic concepts of recognizing speech once organ motions have been obtained. Micro power radars and their uses for the measurement of body organ motions, such as those of the heart and lungs, have been demonstratedmore » by Tom McEwan over the past two years. McEwan and I conducted a series of experiments, using these instruments, on vocal organ motions beginning in late spring, during which we observed motions of vocal folds (i.e., cords), tongue, jaw, and related organs that are very useful for speech recognition and other purposes. These will be reviewed in a separate paper. Since late summer 1994, Lawrence Ng and I have worked to make many of the initial recognition ideas more rigorous and to investigate the applications of these new ideas to new speech recognition algorithms, to speech coding, and to speech synthesis. I introduce some of those ideas in section IV of this document, and we describe them more completely in the document following this one, UCRL-UR-120311. For the design and operation of micro-power radars and their application to body organ motions, the reader may contact Tom McEwan directly. The capability for using EM sensors (i.e., radar units) to measure body organ motions and positions has been available for decades. Impediments to their use appear to have been size, excessive power, lack of resolution, and lack of understanding of the value of organ motion measurements, especially as applied to speech related technologies. However, with the invention of very low power, portable systems as demonstrated by McEwan at LLNL researchers

  4. Adaptive remote sensing technology for feature recognition and tracking

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Sivertson, W. E., Jr.; Bullock, G. F.

    1979-01-01

    A technology development plan designed to reduce the data load and data-management problems associated with global study and monitoring missions is described with a heavy emphasis placed on developing mission capabilities to eliminate the collection of unnecessary data. Improved data selectivity can be achieved through sensor automation correlated with the real-time needs of data users. The first phase of the plan includes the Feature Identification and Location Experiment (FILE) which is scheduled for the 1980 Shuttle flight. The FILE experiment is described with attention given to technology needs, development plan, feature recognition and classification, and cloud-snow detection/discrimination. Pointing, tracking and navigation received particular consideration, and it is concluded that this technology plan is viewed as an alternative to approaches to real-time acquisition that are based on extensive onboard format and inventory processing and reliance upon global-satellite-system navigation data.

  5. Phylogenetic analysis and expression profiling of the pattern recognition receptors: insights into molecular recognition of invading pathogens in Manduca sexta

    PubMed Central

    Zhang, Xiufeng; He, Yan; Cao, Xiaolong; Gunaratna, Ramesh T.; Chen, Yun-ru; Blissard, Gary; Kanost, Michael R.; Jiang, Haobo

    2015-01-01

    Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect. PMID:25701384

  6. Folk Dance Pattern Recognition Over Depth Images Acquired via Kinect Sensor

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Grammatikopoulou, A.; Doulamis, A.; Grammalidis, N.

    2017-02-01

    The possibility of accurate recognition of folk dance patterns is investigated in this paper. System inputs are raw skeleton data, provided by a low cost sensor. In particular, data were obtained by monitoring three professional dancers, using a Kinect II sensor. A set of six traditional Greek dances (without their variations) consists the investigated data. A two-step process was adopted. At first, the most descriptive skeleton data were selected using a combination of density based and sparse modelling algorithms. Then, the representative data served as training set for a variety of classifiers.

  7. Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.

    PubMed

    Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya

    2018-01-01

    One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the

  8. Recognition of complex human behaviours using 3D imaging for intelligent surveillance applications

    NASA Astrophysics Data System (ADS)

    Yao, Bo; Lepley, Jason J.; Peall, Robert; Butler, Michael; Hagras, Hani

    2016-10-01

    We introduce a system that exploits 3-D imaging technology as an enabler for the robust recognition of the human form. We combine this with pose and feature recognition capabilities from which we can recognise high-level human behaviours. We propose a hierarchical methodology for the recognition of complex human behaviours, based on the identification of a set of atomic behaviours, individual and sequential poses (e.g. standing, sitting, walking, drinking and eating) that provides a framework from which we adopt time-based machine learning techniques to recognise complex behaviour patterns.

  9. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  10. Adoption of Speech Recognition Technology in Community Healthcare Nursing.

    PubMed

    Al-Masslawi, Dawood; Block, Lori; Ronquillo, Charlene

    2016-01-01

    Adoption of new health information technology is shown to be challenging. However, the degree to which new technology will be adopted can be predicted by measures of usefulness and ease of use. In this work these key determining factors are focused on for design of a wound documentation tool. In the context of wound care at home, consistent with evidence in the literature from similar settings, use of Speech Recognition Technology (SRT) for patient documentation has shown promise. To achieve a user-centred design, the results from a conducted ethnographic fieldwork are used to inform SRT features; furthermore, exploratory prototyping is used to collect feedback about the wound documentation tool from home care nurses. During this study, measures developed for healthcare applications of the Technology Acceptance Model will be used, to identify SRT features that improve usefulness (e.g. increased accuracy, saving time) or ease of use (e.g. lowering mental/physical effort, easy to remember tasks). The identified features will be used to create a low fidelity prototype that will be evaluated in future experiments.

  11. The Affordance of Speech Recognition Technology for EFL Learning in an Elementary School Setting

    ERIC Educational Resources Information Center

    Liaw, Meei-Ling

    2014-01-01

    This study examined the use of speech recognition (SR) technology to support a group of elementary school children's learning of English as a foreign language (EFL). SR technology has been used in various language learning contexts. Its application to EFL teaching and learning is still relatively recent, but a solid understanding of its…

  12. Effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication.

    PubMed

    Dhir, L; Habib, N E; Monro, D M; Rakshit, S

    2010-06-01

    The purpose of this study was to investigate the effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication. Prospective non-comparative cohort study. Images of 15 subjects were captured before (enrolment), and 5, 10, and 15 min after instillation of mydriatics before routine cataract surgery. After cataract surgery, images were captured 2 weeks thereafter. Enrolled and test images (after pupillary dilation and after cataract surgery) were segmented to extract the iris. This was then unwrapped onto a rectangular format for normalization and a novel method using the Discrete Cosine Transform was applied to encode the image into binary bits. The numerical difference between two iris codes (Hamming distance, HD) was calculated. The HD between identification and enrolment codes was used as a score and was compared with a confidence threshold for specific equipment, giving a match or non-match result. The Correct Recognition Rate (CRR) and Equal Error Rates (EERs) were calculated to analyse overall system performance. After cataract surgery, perfect identification and verification was achieved, with zero false acceptance rate, zero false rejection rate, and zero EER. After pupillary dilation, non-elastic deformation occurs and a CRR of 86.67% and EER of 9.33% were obtained. Conventional circle-based localization methods are inadequate. Matching reliability decreases considerably with increase in pupillary dilation. Cataract surgery has no effect on iris pattern recognition, whereas pupil dilation may be used to defeat an iris-based authentication system.

  13. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  14. Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity.

    PubMed

    Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm

    2008-01-01

    There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.

  15. Research of Daily Conversation Transmitting System Based on Mouth Part Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Watanabe, Mutsumi; Nishi, Natsuko

    The authors are developing a vision-based intension transfer technique by recognizing user’s face expressions and movements, to help free and convenient communications with aged or disabled persons who find difficulties in talking, discriminating small character prints and operating keyboards by hands and fingers. In this paper we report a prototype system, where layered daily conversations are successively selected by recognizing the transition in shape of user’s mouth parts using camera image sequences settled in front of the user. Four mouth part patterns are used in the system. A method that automatically recognizes these patterns by analyzing the intensity histogram data around the mouth region is newly developed. The confirmation of a selection on the way is executed by detecting the open and shut movements of mouth through the temporal change in intensity histogram data. The method has been installed in a desktop PC by VC++ programs. Experimental results of mouth shape pattern recognition by twenty-five persons have shown the effectiveness of the method.

  16. Evaluation of Speech Recognition of Cochlear Implant Recipients Using Adaptive, Digital Remote Microphone Technology and a Speech Enhancement Sound Processing Algorithm.

    PubMed

    Wolfe, Jace; Morais, Mila; Schafer, Erin; Agrawal, Smita; Koch, Dawn

    2015-05-01

    Cochlear implant recipients often experience difficulty with understanding speech in the presence of noise. Cochlear implant manufacturers have developed sound processing algorithms designed to improve speech recognition in noise, and research has shown these technologies to be effective. Remote microphone technology utilizing adaptive, digital wireless radio transmission has also been shown to provide significant improvement in speech recognition in noise. There are no studies examining the potential improvement in speech recognition in noise when these two technologies are used simultaneously. The goal of this study was to evaluate the potential benefits and limitations associated with the simultaneous use of a sound processing algorithm designed to improve performance in noise (Advanced Bionics ClearVoice) and a remote microphone system that incorporates adaptive, digital wireless radio transmission (Phonak Roger). A two-by-two way repeated measures design was used to examine performance differences obtained without these technologies compared to the use of each technology separately as well as the simultaneous use of both technologies. Eleven Advanced Bionics (AB) cochlear implant recipients, ages 11 to 68 yr. AzBio sentence recognition was measured in quiet and in the presence of classroom noise ranging in level from 50 to 80 dBA in 5-dB steps. Performance was evaluated in four conditions: (1) No ClearVoice and no Roger, (2) ClearVoice enabled without the use of Roger, (3) ClearVoice disabled with Roger enabled, and (4) simultaneous use of ClearVoice and Roger. Speech recognition in quiet was better than speech recognition in noise for all conditions. Use of ClearVoice and Roger each provided significant improvement in speech recognition in noise. The best performance in noise was obtained with the simultaneous use of ClearVoice and Roger. ClearVoice and Roger technology each improves speech recognition in noise, particularly when used at the same time

  17. A Fuzzy Logic Prompting Mechanism Based on Pattern Recognition and Accumulated Activity Effective Index Using a Smartphone Embedded Sensor.

    PubMed

    Liu, Chung-Tse; Chan, Chia-Tai

    2016-08-19

    Sufficient physical activity can reduce many adverse conditions and contribute to a healthy life. Nevertheless, inactivity is prevalent on an international scale. Improving physical activity is an essential concern for public health. Reminders that help people change their health behaviors are widely applied in health care services. However, timed-based reminders deliver periodic prompts suffer from flexibility and dependency issues which may decrease prompt effectiveness. We propose a fuzzy logic prompting mechanism, Accumulated Activity Effective Index Reminder (AAEIReminder), based on pattern recognition and activity effective analysis to manage physical activity. AAEIReminder recognizes activity levels using a smartphone-embedded sensor for pattern recognition and analyzing the amount of physical activity in activity effective analysis. AAEIReminder can infer activity situations such as the amount of physical activity and days spent exercising through fuzzy logic, and decides whether a prompt should be delivered to a user. This prompting system was implemented in smartphones and was used in a short-term real-world trial by seventeenth participants for validation. The results demonstrated that the AAEIReminder is feasible. The fuzzy logic prompting mechanism can deliver prompts automatically based on pattern recognition and activity effective analysis. AAEIReminder provides flexibility which may increase the prompts' efficiency.

  18. Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta.

    PubMed

    Zhang, Xiufeng; He, Yan; Cao, Xiaolong; Gunaratna, Ramesh T; Chen, Yun-ru; Blissard, Gary; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGES

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; ...

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  20. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  1. Line-based logo recognition through a web-camera

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolu; Wang, Yangsheng; Feng, Xuetao

    2007-11-01

    Logo recognition has gained much development in the document retrieval and shape analysis domain. As human computer interaction becomes more and more popular, the logo recognition through a web-camera is a promising technology in view of application. But for practical application, the study of logo recognition in real scene is much more difficult than the work in clear scene. To cope with the need, we make some improvements on conventional method. First, moment information is used to calculate the test image's orientation angle, which is used to normalize the test image. Second, the main structure of the test image, which is represented by lines patterns, is acquired and modified Hausdorff distance is employed to match the image and each of the existing templates. The proposed method, which is invariant to scale and rotation, gives good result and can work at real-time. The main contribution of this paper is that some improvements are introduced into the exiting recognition framework which performs much better than the original one. Besides, we have built a highly successful logo recognition system using our improved method.

  2. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  3. Finger vein recognition based on finger crease location

    NASA Astrophysics Data System (ADS)

    Lu, Zhiying; Ding, Shumeng; Yin, Jing

    2016-07-01

    Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.

  4. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  5. Differential theory of learning for efficient neural network pattern recognition

    NASA Astrophysics Data System (ADS)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  6. Differential theory of learning for efficient neural network pattern recognition

    NASA Astrophysics Data System (ADS)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-08-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generalize well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  7. Iris recognition via plenoptic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J.; Boehnen, Chris Bensing; Bolme, David S.

    Iris recognition can be accomplished for a wide variety of eye images by using plenoptic imaging. Using plenoptic technology, it is possible to correct focus after image acquisition. One example technology reconstructs images having different focus depths and stitches them together, resulting in a fully focused image, even in an off-angle gaze scenario. Another example technology determines three-dimensional data for an eye and incorporates it into an eye model used for iris recognition processing. Another example technology detects contact lenses. Application of the technologies can result in improved iris recognition under a wide variety of scenarios.

  8. The Poetics of "Pattern Recognition": William Gibson's Shifting Technological Subject

    ERIC Educational Resources Information Center

    Wetmore, Alex

    2007-01-01

    William Gibson's 1984 cyberpunk novel "Neuromancer" continues to be a touchstone in cultural representations of the impact of new information and communication technologies on the self. As critics have noted, the posthumanist, capital-driven, urban landscape of "Neuromancer" resembles a Foucaultian vision of a panoptically engineered social space…

  9. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  10. Control chart pattern recognition using RBF neural network with new training algorithm and practical features.

    PubMed

    Addeh, Abdoljalil; Khormali, Aminollah; Golilarz, Noorbakhsh Amiri

    2018-05-04

    The control chart patterns are the most commonly used statistical process control (SPC) tools to monitor process changes. When a control chart produces an out-of-control signal, this means that the process has been changed. In this study, a new method based on optimized radial basis function neural network (RBFNN) is proposed for control chart patterns (CCPs) recognition. The proposed method consists of four main modules: feature extraction, feature selection, classification and learning algorithm. In the feature extraction module, shape and statistical features are used. Recently, various shape and statistical features have been presented for the CCPs recognition. In the feature selection module, the association rules (AR) method has been employed to select the best set of the shape and statistical features. In the classifier section, RBFNN is used and finally, in RBFNN, learning algorithm has a high impact on the network performance. Therefore, a new learning algorithm based on the bees algorithm has been used in the learning module. Most studies have considered only six patterns: Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift and Downward Shift. Since three patterns namely Normal, Stratification, and Systematic are very similar to each other and distinguishing them is very difficult, in most studies Stratification and Systematic have not been considered. Regarding to the continuous monitoring and control over the production process and the exact type detection of the problem encountered during the production process, eight patterns have been investigated in this study. The proposed method is tested on a dataset containing 1600 samples (200 samples from each pattern) and the results showed that the proposed method has a very good performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Multiresolution pattern recognition of small volcanos in Magellan data

    NASA Technical Reports Server (NTRS)

    Smyth, P.; Anderson, C. H.; Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice.

  12. Using Pattern Recognition and Discriminance Analysis to Predict Critical Events in Large Signal Databases

    NASA Astrophysics Data System (ADS)

    Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang

    2009-09-01

    Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.

  13. Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams

    NASA Astrophysics Data System (ADS)

    Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge

    This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.

  14. Arrogance analysis of several typical pattern recognition classifiers

    NASA Astrophysics Data System (ADS)

    Jing, Chen; Xia, Shengping; Hu, Weidong

    2007-04-01

    Various kinds of classification methods have been developed. However, most of these classical methods, such as Back-Propagation (BP), Bayesian method, Support Vector Machine(SVM), Self-Organizing Map (SOM) are arrogant. A so-called arrogance, for a human, means that his decision, which even is a mistake, overstates his actual experience. Accordingly, we say that he is a arrogant if he frequently makes arrogant decisions. Likewise, some classical pattern classifiers represent the similar characteristic of arrogance. Given an input feature vector, we say a classifier is arrogant in its classification if its veracity is high yet its experience is low. Typically, for a new sample which is distinguishable from original training samples, traditional classifiers recognize it as one of the known targets. Clearly, arrogance in classification is an undesirable attribute. Conversely, a classifier is non-arrogant in its classification if there is a reasonable balance between its veracity and its experience. Inquisitiveness is, in many ways, the opposite of arrogance. In nature, inquisitiveness is an eagerness for knowledge characterized by the drive to question, to seek a deeper understanding. The human capacity to doubt present beliefs allows us to acquire new experiences and to learn from our mistakes. Within the discrete world of computers, inquisitive pattern recognition is the constructive investigation and exploitation of conflict in information. Thus, we quantify this balance and discuss new techniques that will detect arrogance in a classifier.

  15. Connectivity strategies for higher-order neural networks applied to pattern recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1990-01-01

    Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.

  16. Optimizing pattern recognition-based control for partial-hand prosthesis application.

    PubMed

    Earley, Eric J; Adewuyi, Adenike A; Hargrove, Levi J

    2014-01-01

    Partial-hand amputees often retain good residual wrist motion, which is essential for functional activities involving use of the hand. Thus, a crucial design criterion for a myoelectric, partial-hand prosthesis control scheme is that it allows the user to retain residual wrist motion. Pattern recognition (PR) of electromyographic (EMG) signals is a well-studied method of controlling myoelectric prostheses. However, wrist motion degrades a PR system's ability to correctly predict hand-grasp patterns. We studied the effects of (1) window length and number of hand-grasps, (2) static and dynamic wrist motion, and (3) EMG muscle source on the ability of a PR-based control scheme to classify functional hand-grasp patterns. Our results show that training PR classifiers with both extrinsic and intrinsic muscle EMG yields a lower error rate than training with either group by itself (p<0.001); and that training in only variable wrist positions, with only dynamic wrist movements, or with both variable wrist positions and movements results in lower error rates than training in only the neutral wrist position (p<0.001). Finally, our results show that both an increase in window length and a decrease in the number of grasps available to the classifier significantly decrease classification error (p<0.001). These results remained consistent whether the classifier selected or maintained a hand-grasp.

  17. MCAW-DB: A glycan profile database capturing the ambiguity of glycan recognition patterns.

    PubMed

    Hosoda, Masae; Takahashi, Yushi; Shiota, Masaaki; Shinmachi, Daisuke; Inomoto, Renji; Higashimoto, Shinichi; Aoki-Kinoshita, Kiyoko F

    2018-05-11

    Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The

  18. Biometrics: A Look at Facial Recognition

    DTIC Science & Technology

    a facial recognition system in the city’s Oceanfront tourist area. The system has been tested and has recently been fully implemented. Senator...Kenneth W. Stolle, the Chairman of the Virginia State Crime Commission, established a Facial Recognition Technology Sub-Committee to examine the issue of... facial recognition technology. This briefing begins by defining biometrics and discussing examples of the technology. It then explains how biometrics

  19. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.

    PubMed

    Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A

    2017-11-01

    Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.

  20. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  1. Efficient Spatio-Temporal Local Binary Patterns for Spontaneous Facial Micro-Expression Recognition

    PubMed Central

    Wang, Yandan; See, John; Phan, Raphael C.-W.; Oh, Yee-Hui

    2015-01-01

    Micro-expression recognition is still in the preliminary stage, owing much to the numerous difficulties faced in the development of datasets. Since micro-expression is an important affective clue for clinical diagnosis and deceit analysis, much effort has gone into the creation of these datasets for research purposes. There are currently two publicly available spontaneous micro-expression datasets—SMIC and CASME II, both with baseline results released using the widely used dynamic texture descriptor LBP-TOP for feature extraction. Although LBP-TOP is popular and widely used, it is still not compact enough. In this paper, we draw further inspiration from the concept of LBP-TOP that considers three orthogonal planes by proposing two efficient approaches for feature extraction. The compact robust form described by the proposed LBP-Six Intersection Points (SIP) and a super-compact LBP-Three Mean Orthogonal Planes (MOP) not only preserves the essential patterns, but also reduces the redundancy that affects the discriminality of the encoded features. Through a comprehensive set of experiments, we demonstrate the strengths of our approaches in terms of recognition accuracy and efficiency. PMID:25993498

  2. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  3. Searching for pulsars using image pattern recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selectionmore » programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  4. Searching for Pulsars Using Image Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  5. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition

    NASA Astrophysics Data System (ADS)

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-01

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  6. Comparison of speech recognition with adaptive digital and FM remote microphone hearing assistance technology by listeners who use hearing aids.

    PubMed

    Thibodeau, Linda

    2014-06-01

    The purpose of this study was to compare the benefits of 3 types of remote microphone hearing assistance technology (HAT), adaptive digital broadband, adaptive frequency modulation (FM), and fixed FM, through objective and subjective measures of speech recognition in clinical and real-world settings. Participants included 11 adults, ages 16 to 78 years, with primarily moderate-to-severe bilateral hearing impairment (HI), who wore binaural behind-the-ear hearing aids; and 15 adults, ages 18 to 30 years, with normal hearing. Sentence recognition in quiet and in noise and subjective ratings were obtained in 3 conditions of wireless signal processing. Performance by the listeners with HI when using the adaptive digital technology was significantly better than that obtained with the FM technology, with the greatest benefits at the highest noise levels. The majority of listeners also preferred the digital technology when listening in a real-world noisy environment. The wireless technology allowed persons with HI to surpass persons with normal hearing in speech recognition in noise, with the greatest benefit occurring with adaptive digital technology. The use of adaptive digital technology combined with speechreading cues would allow persons with HI to engage in communication in environments that would have otherwise not been possible with traditional wireless technology.

  7. Correlation-based pattern recognition for implantable defibrillators.

    PubMed Central

    Wilkins, J.

    1996-01-01

    An estimated 300,000 Americans die each year from cardiac arrhythmias. Historically, drug therapy or surgery were the only treatment options available for patients suffering from arrhythmias. Recently, implantable arrhythmia management devices have been developed. These devices allow abnormal cardiac rhythms to be sensed and corrected in vivo. Proper arrhythmia classification is critical to selecting the appropriate therapeutic intervention. The classification problem is made more challenging by the power/computation constraints imposed by the short battery life of implantable devices. Current devices utilize heart rate-based classification algorithms. Although easy to implement, rate-based approaches have unacceptably high error rates in distinguishing supraventricular tachycardia (SVT) from ventricular tachycardia (VT). Conventional morphology assessment techniques used in ECG analysis often require too much computation to be practical for implantable devices. In this paper, a computationally-efficient, arrhythmia classification architecture using correlation-based morphology assessment is presented. The architecture classifies individuals heart beats by assessing similarity between an incoming cardiac signal vector and a series of prestored class templates. A series of these beat classifications are used to make an overall rhythm assessment. The system makes use of several new results in the field of pattern recognition. The resulting system achieved excellent accuracy in discriminating SVT and VT. PMID:8947674

  8. Voice recognition technology implementation in surgical pathology: advantages and limitations.

    PubMed

    Singh, Meenakshi; Pal, Timothy R

    2011-11-01

    Voice recognition technology (VRT) has been in use for medical transcription outside of laboratories for many years, and in recent years it has evolved to a level where it merits consideration by surgical pathologists. To determine the feasibility and impact of making a transition from a transcriptionist-based service to VRT in surgical pathology. We have evaluated VRT in a phased manner for sign out of general and subspecialty surgical pathology cases after conducting a pilot study. We evaluated the effect on turnaround time, workflow, staffing, typographical error rates, and the overall ability of VRT to be adapted for use in surgical pathology. The stepwise implementation of VRT has resulted in real-time sign out of cases and improvement in average turnaround time from 4 to 3 days. The percentage of cases signed out in 1 day improved from 22% to 37%. Amendment rates for typographical errors have decreased. Use of templates and synoptic reports has been facilitated. The transcription staff has been reassigned to other duties and is successfully assisting in other areas. Resident involvement and exposure to complete case sign out has been achieved resulting in a positive impact on resident education. Voice recognition technology allows for a seamless workflow in surgical pathology, with improvements in turnaround time and a positive impact on competency-based resident education. Individual practices may assess the value of VRT and decide to implement it, potentially with gains in many aspects of their practice.

  9. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  10. Gene expression pattern recognition algorithm inferences to classify samples exposed to chemical agents

    NASA Astrophysics Data System (ADS)

    Bushel, Pierre R.; Bennett, Lee; Hamadeh, Hisham; Green, James; Ableson, Alan; Misener, Steve; Paules, Richard; Afshari, Cynthia

    2002-06-01

    We present an analysis of pattern recognition procedures used to predict the classes of samples exposed to pharmacologic agents by comparing gene expression patterns from samples treated with two classes of compounds. Rat liver mRNA samples following exposure for 24 hours with phenobarbital or peroxisome proliferators were analyzed using a 1700 rat cDNA microarray platform. Sets of genes that were consistently differentially expressed in the rat liver samples following treatment were stored in the MicroArray Project System (MAPS) database. MAPS identified 238 genes in common that possessed a low probability (P < 0.01) of being randomly detected as differentially expressed at the 95% confidence level. Hierarchical cluster analysis on the 238 genes clustered specific gene expression profiles that separated samples based on exposure to a particular class of compound.

  11. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria

    PubMed Central

    Das, Soumita; Owen, Katherine A.; Ly, Kim T.; Park, Daeho; Black, Steven G.; Wilson, Jeffrey M.; Sifri, Costi D.; Ravichandran, Kodi S.; Ernst, Peter B.; Casanova, James E.

    2011-01-01

    Bacterial recognition by host cells is essential for initiation of infection and the host response. Bacteria interact with host cells via multiple pattern recognition receptors that recognize microbial products or pathogen-associated molecular patterns. In response to this interaction, host cell signaling cascades are activated that lead to inflammatory responses and/or phagocytic clearance of attached bacteria. Brain angiogenesis inhibitor 1 (BAI1) is a receptor that recognizes apoptotic cells through its conserved type I thrombospondin repeats and triggers their engulfment through an ELMO1/Dock/Rac1 signaling module. Because thrombospondin repeats in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1 may also mediate the recognition and clearance of pathogenic bacteria. We found that preincubation of bacteria with recombinant soluble BAI1 ectodomain or knockdown of endogenous BAI1 in primary macrophages significantly reduced binding and internalization of the Gram-negative pathogen Salmonella typhimurium. Conversely, overexpression of BAI1 enhanced attachment and engulfment of Salmonella in macrophages and in heterologous nonphagocytic cells. Bacterial uptake is triggered by the BAI1-mediated activation of Rac through an ELMO/Dock-dependent mechanism, and inhibition of the BAI1/ELMO1 interaction prevents both Rac activation and bacterial uptake. Moreover, inhibition of ELMO1 or Rac function significantly impairs the proinflammatory response to infection. Finally, we show that BAI1 interacts with a variety of Gram-negative, but not Gram-positive, bacteria through recognition of their surface lipopolysaccharide. Together these findings identify BAI1 as a pattern recognition receptor that mediates nonopsonic phagocytosis of Gram-negative bacteria by macrophages and directly affects the host response to infection. PMID:21245295

  12. Object/Shape Recognition Technology: An Assessment of the Feasibility of Implementation at Defense Logistics Agency Disposition Services

    DTIC Science & Technology

    2015-02-25

    provide efficiency and effectively manufacture or inventory items. The industries that benefit from Cognex technology are automotive, food and beverage ...recognition tedmology, Tedmology Readiness Level, PAGES Cost Benefit Analysis, Tedmology Commercialization, Technology Transition 139 16. PRICE CODE 17...Technology Development & Transition Strategy Guidebook xvii UD Ultimate Disposal U.S. United States USAF United States Air Force xviii THIS

  13. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  14. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  15. The Boundaries of Hemispheric Processing in Visual Pattern Recognition

    DTIC Science & Technology

    1989-11-01

    Allen, M. W. (1968). Impairment in facial recognition in patients cerebral disease. Cortex, 4, 344-358. Bogen, J. E. (1969). The other side of the brain...effects on a facial recognition task in normal subjects. Cortex, 9, 246-258. tliscock, M. (1988). Behavioral asymmetries in normal children. In D. L... facial recognition . Neuropsychologia, 22, 471-477. Ross-Kossak, P., & Turkewitz, G. (1986). A micro and macro developmental view of the nature of changes

  16. Dermoscopic patterns of Melanoma Metastases: inter-observer consistency and accuracy for metastases recognition

    PubMed Central

    Costa, J.; Ortiz-Ibañez, K.; Salerni, G.; Borges, V.; Carrera, C.; Puig, S.; Malvehy, J.

    2013-01-01

    Background Cutaneous metastases of malignant melanoma (CMMM) can be confused with other skin lesions. Dermoscopy could be helpful in the differential diagnosis. Objective To describe distinctive dermoscopic patterns that are reproducible and accurate in the identification of CMMM Methods A retrospective study of 146 dermoscopic images of CMMM from 42 patients attending a Melanoma Unit between 2002 and 2009 was performed. Firstly, two investigators established six dermoscopic patterns for CMMM. The correlation of 73 dermoscopic images with their distinctive patterns was assessed by four independent dermatologists to evaluate the reproducibility in the identification of the patterns. Finally, 163 dermoscopic images, including CMMM and non-metastatic lesions, were evaluated by the same four dermatologists to calculate the accuracy of the patterns in the recognition of CMMM. Results Five CMMM dermoscopic patterns had a good inter-observer agreement (blue nevus-like, nevus-like, angioma like, vascular and unspecific). When CMMM were classified according to these patterns, correlation between the investigators and the four dermatologists ranged from κ = 0.56 to 0.7. 71 CMMM, 16 angiomas, 22 blue nevus, 15 malignant melanoma, 11 seborrheic keratosis, 15 melanocytic nevus with globular pattern and 13 pink lesions with vascular pattern were evaluated according to the previously described CMMM dermoscopy patterns, showing an overall sensitivity of 68% (between 54.9–76%) and a specificity of 81% (between 68.6–93.5) for the diagnosis of CMMM. Conclusion Five dermoscopic patterns of CMMM with good inter-observer agreement obtained a high sensitivity and specificity in the diagnosis of metastasis, the accuracy varying according to the experience of the observer. PMID:23495915

  17. Technologies for developing an advanced intelligent ATM with self-defence capabilities

    NASA Astrophysics Data System (ADS)

    Sako, Hiroshi

    2010-01-01

    We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.

  18. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  19. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    NASA Astrophysics Data System (ADS)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed

  20. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available

  1. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.

    PubMed

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-04-15

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.

  2. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies

    PubMed Central

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-01-01

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller. PMID:28420135

  3. Robust kernel representation with statistical local features for face recognition.

    PubMed

    Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David

    2013-06-01

    Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.

  4. The Characteristics of Binary Spike-Time-Dependent Plasticity in HfO2-Based RRAM and Applications for Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2017-04-01

    A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.

  5. Developing and Evaluating an Oral Skills Training Website Supported by Automatic Speech Recognition Technology

    ERIC Educational Resources Information Center

    Chen, Howard Hao-Jan

    2011-01-01

    Oral communication ability has become increasingly important to many EFL students. Several commercial software programs based on automatic speech recognition (ASR) technologies are available but their prices are not affordable for many students. This paper will demonstrate how the Microsoft Speech Application Software Development Kit (SASDK), a…

  6. Face Recognition Vendor Test 2000: Evaluation Report

    DTIC Science & Technology

    2001-02-16

    The biggest change in the facial recognition community since the completion of the FERET program has been the introduction of facial recognition products...program and significantly lowered system costs. Today there are dozens of facial recognition systems available that have the potential to meet...inquiries from numerous government agencies on the current state of facial recognition technology prompted the DoD Counterdrug Technology Development Program

  7. Chinese character recognition based on Gabor feature extraction and CNN

    NASA Astrophysics Data System (ADS)

    Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan

    2018-03-01

    As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.

  8. Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Feng, Cong; Cui, Mingjian

    Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less

  9. Pattern Recognition in Optical Remote Sensing Data Processing

    NASA Astrophysics Data System (ADS)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  10. Use of Handwriting Recognition Technologies in Tablet-Based Learning Modules for First Grade Education

    ERIC Educational Resources Information Center

    Yanikoglu, Berrin; Gogus, Aytac; Inal, Emre

    2017-01-01

    Learning through modules on a tablet helps students participate effectively in learning activities in classrooms and provides flexibility in the learning process. This study presents the design and evaluation of an application that is based on handwriting recognition technologies and e-content for the developed learning modules. The application…

  11. Automatic speech recognition technology development at ITT Defense Communications Division

    NASA Technical Reports Server (NTRS)

    White, George M.

    1977-01-01

    An assessment of the applications of automatic speech recognition to defense communication systems is presented. Future research efforts include investigations into the following areas: (1) dynamic programming; (2) recognition of speech degraded by noise; (3) speaker independent recognition; (4) large vocabulary recognition; (5) word spotting and continuous speech recognition; and (6) isolated word recognition.

  12. Phoneme Error Pattern by Heritage Speakers of Spanish on an English Word Recognition Test.

    PubMed

    Shi, Lu-Feng

    2017-04-01

    Heritage speakers acquire their native language from home use in their early childhood. As the native language is typically a minority language in the society, these individuals receive their formal education in the majority language and eventually develop greater competency with the majority than their native language. To date, there have not been specific research attempts to understand word recognition by heritage speakers. It is not clear if and to what degree we may infer from evidence based on bilingual listeners in general. This preliminary study investigated how heritage speakers of Spanish perform on an English word recognition test and analyzed their phoneme errors. A prospective, cross-sectional, observational design was employed. Twelve normal-hearing adult Spanish heritage speakers (four men, eight women, 20-38 yr old) participated in the study. Their language background was obtained through the Language Experience and Proficiency Questionnaire. Nine English monolingual listeners (three men, six women, 20-41 yr old) were also included for comparison purposes. Listeners were presented with 200 Northwestern University Auditory Test No. 6 words in quiet. They repeated each word orally and in writing. Their responses were scored by word, word-initial consonant, vowel, and word-final consonant. Performance was compared between groups with Student's t test or analysis of variance. Group-specific error patterns were primarily descriptive, but intergroup comparisons were made using 95% or 99% confidence intervals for proportional data. The two groups of listeners yielded comparable scores when their responses were examined by word, vowel, and final consonant. However, heritage speakers of Spanish misidentified significantly more word-initial consonants and had significantly more difficulty with initial /p, b, h/ than their monolingual peers. The two groups yielded similar patterns for vowel and word-final consonants, but heritage speakers made significantly

  13. Online and Offline Pattern Recognition in PANDA

    NASA Astrophysics Data System (ADS)

    Boca, Gianluigi

    2016-11-01

    PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV). The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1) must be fast, since it has to be validated up to 20MHz interaction rate; 2) must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR) of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs) and, when available, I will report the performances.

  14. Contact patterning strategies for 32nm and 28nm technology

    NASA Astrophysics Data System (ADS)

    Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan

    2011-04-01

    As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.

  15. Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices

    PubMed Central

    Liu, Wei; Kulin, Merima; Kazaz, Tarik; De Poorter, Eli

    2017-01-01

    Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals’ modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI’s probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access. PMID:28895879

  16. Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices.

    PubMed

    Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli

    2017-09-12

    Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.

  17. Foundations for a syntatic pattern recognition system for genomic DNA sequences. [Annual] report, 1 December 1991--31 March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  18. Reduction of the dimension of neural network models in problems of pattern recognition and forecasting

    NASA Astrophysics Data System (ADS)

    Nasertdinova, A. D.; Bochkarev, V. V.

    2017-11-01

    Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.

  19. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  20. Pattern Recognition Protein Binds to Lipopolysaccharide and β-1,3-Glucan and Activates Shrimp Prophenoloxidase System*

    PubMed Central

    Amparyup, Piti; Sutthangkul, Jantiwan; Charoensapsri, Walaiporn; Tassanakajon, Anchalee

    2012-01-01

    The prophenoloxidase (proPO) system is activated upon recognition of pathogens by pattern recognition proteins (PRPs), including a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP). However, shrimp LGBPs that are involved in the proPO system have yet to be clarified. Here, we focus on characterizing the role of a Penaeus monodon LGBP (PmLGBP) in the proPO system. We found that PmLGBP transcripts are expressed primarily in the hemocytes and are increased at 24 h after pathogenic bacterium Vibrio harveyi challenge. The binding studies carried out using ELISA indicated that recombinant (r)PmLGBP binds to β-1,3-glucan and LPS with a dissociation constant of 6.86 × 10−7 m and 3.55 × 10−7 m, respectively. Furthermore, we found that rPmLGBP could enhance the phenoloxidase (PO) activity of hemocyte suspensions in the presence of LPS or β-1,3-glucan. Using dsRNA interference-mediated gene silencing assay, we further demonstrated that knockdown of PmLGBP in shrimp in vivo significantly decreased the PmLGBP transcript level but had no effect on the expression of the other immune genes tested, including shrimp antimicrobial peptides (AMPs). However, suppression of proPO expression down-regulated PmLGBP, proPO-activating enzyme (PmPPAE2), and AMPs (penaeidin and crustin). Such PmLGBP down-regulated shrimp showed significantly decreased total PO activity. We conclude that PmLGBP functions as a pattern recognition protein for LPS and β-1,3-glucan in the shrimp proPO activating system. PMID:22235126

  1. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  2. Emotion recognition pattern in adolescent boys with attention-deficit/hyperactivity disorder.

    PubMed

    Aspan, Nikoletta; Bozsik, Csilla; Gadoros, Julia; Nagy, Peter; Inantsy-Pap, Judit; Vida, Peter; Halasz, Jozsef

    2014-01-01

    Social and emotional deficits were recently considered as inherent features of individuals with attention-deficit hyperactivity disorder (ADHD), but only sporadic literature data exist on emotion recognition in adolescents with ADHD. The aim of the present study was to establish emotion recognition profile in adolescent boys with ADHD in comparison with control adolescents. Forty-four adolescent boys (13-16 years) participated in the study after informed consent; 22 boys had a clinical diagnosis of ADHD, while data were also assessed from 22 adolescent control boys matched for age and Raven IQ. Parent- and self-reported behavioral characteristics were assessed by the means of the Strengths and Difficulties Questionnaire. The recognition of six basic emotions was evaluated by the "Facial Expressions of Emotion-Stimuli and Tests." Compared to controls, adolescents with ADHD were more sensitive in the recognition of disgust and, worse in the recognition of fear and showed a tendency for impaired recognition of sadness. Hyperactivity measures showed an inverse correlation with fear recognition. Our data suggest that adolescent boys with ADHD have alterations in the recognition of specific emotions.

  3. Analog Front-Ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition EMBC 2015.

    PubMed

    Mastinu, Enzo; Ortiz-Catalan, Max; Hakansson, Bo

    2015-01-01

    Compact and low-noise Analog Front-Ends (AFEs) are becoming increasingly important for the acquisition of bioelectric signals in portable system. In this work, we compare two popular AFEs available on the market, namely the ADS1299 (Texas Instruments) and the RHA2216 (Intan Technologies). This work develops towards the identification of suitable acquisition modules to design an affordable, reliable and portable device for electromyography (EMG) acquisition and prosthetic control. Device features such as Common Mode Rejection (CMR), Input Referred Noise (IRN) and Signal to Noise Ratio (SNR) were evaluated, as well as the resulting accuracy in myoelectric pattern recognition (MPR) for the decoding of motion intention. Results reported better noise performances and higher MPR accuracy for the ADS1299 and similar SNR values for both devices.

  4. An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

    PubMed

    Yang, Yifei; Tan, Minjia; Dai, Yuewei

    2017-01-01

    A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.

  5. Space Technology: A study of the significance of recognition for innovators of spinoff technologies. A case study on the impact of the space technology hall of fame award

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report represents the preliminary effort in studying the significance of recognition for innovators of spinoff technologies. The purpose of this initial year's effort in this area was to gather preliminary data and define the direction for the remainder of the research. This report focuses on the most recent recipients of the Hall of Fame Award, the developers of liquid-cooled garments. Liquid-cooled garments technology and its spinoffs were used as a case study to define and explore the factors involved in technology transfer and to consider the possible incentives in developing commercial applications including the Hall of Fame Award. Through interviews, views of award recipients were obtained on factors encouraging spinoffs as well as impediments to spinoffs. The researchers observed complex inter-relationships among the significant entities (government, individuals, large and small business), the importance of people, the importance of resource availability, and the significance of intrinsic motivation; drew preliminary conclusions pertaining to the direct and indirect influence of recognition like the Hall of Fame Award; and planned the direction for next year's follow-on research.

  6. Bio-recognition and functional lipidomics by glycosphingolipid transfer technology

    PubMed Central

    TAKI, Takao

    2013-01-01

    Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced. PMID:23883610

  7. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    PubMed Central

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  8. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  9. Pattern Recognition Of Blood Vessel Networks In Ocular Fundus Images

    NASA Astrophysics Data System (ADS)

    Akita, K.; Kuga, H.

    1982-11-01

    We propose a computer method of recognizing blood vessel networks in color ocular fundus images which are used in the mass diagnosis of adult diseases such as hypertension and diabetes. A line detection algorithm is applied to extract the blood vessels, and the skeleton patterns of them are made to analyze and describe their structures. The recognition of line segments of arteries and/or veins in the vessel networks consists of three stages. First, a few segments which satisfy a certain constraint are picked up and discriminated as arteries or veins. This is the initial labeling. Then the remaining unknown ones are labeled by utilizing the physical level knowledge. We propose two schemes for this stage : a deterministic labeling and a probabilistic relaxation labeling. Finally the label of each line segment is checked so as to minimize the total number of labeling contradictions. Some experimental results are also presented.

  10. Emotion Recognition Pattern in Adolescent Boys with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Bozsik, Csilla; Gadoros, Julia; Inantsy-Pap, Judit

    2014-01-01

    Background. Social and emotional deficits were recently considered as inherent features of individuals with attention-deficit hyperactivity disorder (ADHD), but only sporadic literature data exist on emotion recognition in adolescents with ADHD. The aim of the present study was to establish emotion recognition profile in adolescent boys with ADHD in comparison with control adolescents. Methods. Forty-four adolescent boys (13–16 years) participated in the study after informed consent; 22 boys had a clinical diagnosis of ADHD, while data were also assessed from 22 adolescent control boys matched for age and Raven IQ. Parent- and self-reported behavioral characteristics were assessed by the means of the Strengths and Difficulties Questionnaire. The recognition of six basic emotions was evaluated by the “Facial Expressions of Emotion-Stimuli and Tests.” Results. Compared to controls, adolescents with ADHD were more sensitive in the recognition of disgust and, worse in the recognition of fear and showed a tendency for impaired recognition of sadness. Hyperactivity measures showed an inverse correlation with fear recognition. Conclusion. Our data suggest that adolescent boys with ADHD have alterations in the recognition of specific emotions. PMID:25110694

  11. Automated Detection of Selective Logging in Amazon Forests Using Airborne Lidar Data and Pattern Recognition Algorithms

    NASA Astrophysics Data System (ADS)

    Keller, M. M.; d'Oliveira, M. N.; Takemura, C. M.; Vitoria, D.; Araujo, L. S.; Morton, D. C.

    2012-12-01

    Selective logging, the removal of several valuable timber trees per hectare, is an important land use in the Brazilian Amazon and may degrade forests through long term changes in structure, loss of forest carbon and species diversity. Similar to deforestation, the annual area affected by selected logging has declined significantly in the past decade. Nonetheless, this land use affects several thousand km2 per year in Brazil. We studied a 1000 ha area of the Antimary State Forest (FEA) in the State of Acre, Brazil (9.304 ○S, 68.281 ○W) that has a basal area of 22.5 m2 ha-1 and an above-ground biomass of 231 Mg ha-1. Logging intensity was low, approximately 10 to 15 m3 ha-1. We collected small-footprint airborne lidar data using an Optech ALTM 3100EA over the study area once each in 2010 and 2011. The study area contained both recent and older logging that used both conventional and technologically advanced logging techniques. Lidar return density averaged over 20 m-2 for both collection periods with estimated horizontal and vertical precision of 0.30 and 0.15 m. A relative density model comparing returns from 0 to 1 m elevation to returns in 1-5 m elevation range revealed the pattern of roads and skid trails. These patterns were confirmed by ground-based GPS survey. A GIS model of the road and skid network was built using lidar and ground data. We tested and compared two pattern recognition approaches used to automate logging detection. Both segmentation using commercial eCognition segmentation and a Frangi filter algorithm identified the road and skid trail network compared to the GIS model. We report on the effectiveness of these two techniques.

  12. A new pattern associative memory model for image recognition based on Hebb rules and dot product

    NASA Astrophysics Data System (ADS)

    Gao, Mingyue; Deng, Limiao; Wang, Yanjiang

    2018-04-01

    A great number of associative memory models have been proposed to realize information storage and retrieval inspired by human brain in the last few years. However, there is still much room for improvement for those models. In this paper, we extend a binary pattern associative memory model to accomplish real-world image recognition. The learning process is based on the fundamental Hebb rules and the retrieval is implemented by a normalized dot product operation. Our proposed model can not only fulfill rapid memory storage and retrieval for visual information but also have the ability on incremental learning without destroying the previous learned information. Experimental results demonstrate that our model outperforms the existing Self-Organizing Incremental Neural Network (SOINN) and Back Propagation Neuron Network (BPNN) on recognition accuracy and time efficiency.

  13. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  14. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  15. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Beran; John Christenson; Dragos Nica

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  16. [Research on the application of grey system theory in the pattern recognition for chromatographic fingerprints of traditional Chinese medicine].

    PubMed

    Wei, Hang; Lin, Li; Zhang, Yuan; Wang, Lianjing; Chen, Qinqun

    2013-02-01

    A model based on grey system theory was proposed for pattern recognition in chromatographic fingerprints (CF) of traditional Chinese medicine (TCM). The grey relational grade among the data series of each testing CF and the ideal CF was obtained by entropy and norm respectively, then the principle of "maximal matching degree" was introduced to make judgments, so as to achieve the purpose of variety identification and quality evaluation. A satisfactory result in the high performance liquid chromatographic (HPLC) analysis of 56 batches of different varieties of Exocarpium Citrus Grandis was achieved with this model. The errors in the chromatographic fingerprint analysis caused by traditional similarity method or grey correlation method were overcome, as the samples of Citrus grandis 'Tomentosa' and Citrus grandis (L.) Osbeck were correctly distinguished in the experiment. Furthermore in the study on the variety identification of Citrus grandis 'Tomentosa', the recognition rates were up to 92.85%, although the types and the contents of the chemical compositions of the samples were very close. At the same time, the model had the merits of low computation complexity and easy operation by computer programming. The research indicated that the grey system theory has good applicability to pattern recognition in the chromatographic fingerprints of TCM.

  17. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    PubMed

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  18. Perceptrons and Pattern Recognition

    DTIC Science & Technology

    1967-09-01

    invariant ~isual patterns. Rosenblatt, F •. , !t_i~ip_les of Neurodynamics , Spartan Books, 1962. Introg~ces and discusses many parallel-network...classification ;of the patterns -th~selves, and their r~ cognition by per~eptrons. It· would b~ too much to ask for an absolute classification of "patt~’""’ls...function-of the level of existing cognitive structure. 0.5 Seductive Aspects of Perceptro~a, II: Parallel Computation The perceptron was conceived

  19. Imbalanced learning for pattern recognition: an empirical study

    NASA Astrophysics Data System (ADS)

    He, Haibo; Chen, Sheng; Man, Hong; Desai, Sachi; Quoraishee, Shafik

    2010-10-01

    The imbalanced learning problem (learning from imbalanced data) presents a significant new challenge to the pattern recognition and machine learning society because in most instances real-world data is imbalanced. When considering military applications, the imbalanced learning problem becomes much more critical because such skewed distributions normally carry the most interesting and critical information. This critical information is necessary to support the decision-making process in battlefield scenarios, such as anomaly or intrusion detection. The fundamental issue with imbalanced learning is the ability of imbalanced data to compromise the performance of standard learning algorithms, which assume balanced class distributions or equal misclassification penalty costs. Therefore, when presented with complex imbalanced data sets these algorithms may not be able to properly represent the distributive characteristics of the data. In this paper we present an empirical study of several popular imbalanced learning algorithms on an army relevant data set. Specifically we will conduct various experiments with SMOTE (Synthetic Minority Over-Sampling Technique), ADASYN (Adaptive Synthetic Sampling), SMOTEBoost (Synthetic Minority Over-Sampling in Boosting), and AdaCost (Misclassification Cost-Sensitive Boosting method) schemes. Detailed experimental settings and simulation results are presented in this work, and a brief discussion of future research opportunities/challenges is also presented.

  20. The method of parallel-hierarchical transformation for rapid recognition of dynamic images using GPGPU technology

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura

    2016-09-01

    The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.

  1. Altered anatomical patterns of depression in relation to antidepressant treatment: Evidence from a pattern recognition analysis on the topological organization of brain networks.

    PubMed

    Qin, Jiaolong; Wei, Maobin; Liu, Haiyan; Chen, Jianhuai; Yan, Rui; Yao, Zhijian; Lu, Qing

    2015-07-15

    Accumulated evidence has illuminated the topological infrastructure of major depressive disorder (MDD). However, the changes of topological properties of anatomical brain networks in remitted major depressive disorder patients (rMDD) remain an open question. The present study provides an exploratory examination of pattern changes among current major depressive disorder patients (cMDD), rMDD patients and healthy controls (HC) by means of a pattern recognition analysis. Twenty-eight cMDD patients (age range: 22-54, mean age: 39.57), 15 rMDD patients (age range: 23-53, mean age: 38.40) and 30 HC (23-54, mean age: 35.57) were enrolled. For each subject, we computed five kinds of weighted white matter (WM) networks via employing five physiological parameters (i.e. fractional anisotropy, mean diffusivity, λ1, λ2 and λ3) and then calculated three network measures of these weighted networks. We treated these measures as features and fed into a feature selection mechanism to choose the most discriminative features for linear support vector machine (SVM) classifiers. Linear SVM could excellently distinguish the three groups with the 100% classification accuracy of recognizing cMDD/rMDD from HC, and 97.67% classification accuracy of recognizing cMDD from rMDD. The further pattern analysis found two types of discriminative patterns among cMDD, rMDD and HC. (i) Compared with HC, both cMDD and rMDD exhibited the similar deficit patterns of node strength primarily involving the salience network (SN), default mode network (DMN) and frontoparietal network (FPN). (ii) Compared with cMDD and rMDD showed the altered pattern of intra-communicability within DMN and inter-communicability between DMN and the other sub-networks including the visual recognition network (VRN) and SN. The present study had a limited sample size and a lack of larger independent data set to validate the methods and confirm the findings. These findings implied that the impairment of MDD was closely associated

  2. Scene Context Dependency of Pattern Constancy of Time Series Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2008-01-01

    A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.

  3. Songbirds use spectral shape, not pitch, for sound pattern recognition

    PubMed Central

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2016-01-01

    Humans easily recognize “transposed” musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  4. 64 x 64 thresholding photodetector array for optical pattern recognition

    NASA Astrophysics Data System (ADS)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  5. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  6. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  7. Automated real-time structure health monitoring via signature pattern recognition

    NASA Astrophysics Data System (ADS)

    Sun, Fanping P.; Chaudhry, Zaffir A.; Rogers, Craig A.; Majmundar, M.; Liang, Chen

    1995-05-01

    Described in this paper are the details of an automated real-time structure health monitoring system. The system is based on structural signature pattern recognition. It uses an array of piezoceramic patches bonded to the structure as integrated sensor-actuators, an electric impedance analyzer for structural frequency response function acquisition and a PC for control and graphic display. An assembled 3-bay truss structure is employed as a test bed. Two issues, the localization of sensing area and the sensor temperature drift, which are critical for the success of this technique are addressed and a novel approach of providing temperature compensation using probability correlation function is presented. Due to the negligible weight and size of the solid-state sensor array and its ability to sense incipient-type damage, the system can eventually be implemented on many types of structures such as aircraft, spacecraft, large-span dome roof and steel bridges requiring multilocation and real-time health monitoring.

  8. License plate recognition.

    DOT National Transportation Integrated Search

    2008-01-01

    License Plate Recognition (LPR) technology has been used for off-line automobile enforcement purposes. The technology has seen mixed success with correct reading rate around 60 to 70% depending on the specific application and environment. This limita...

  9. The use of open and machine vision technologies for development of gesture recognition intelligent systems

    NASA Astrophysics Data System (ADS)

    Cherkasov, Kirill V.; Gavrilova, Irina V.; Chernova, Elena V.; Dokolin, Andrey S.

    2018-05-01

    The article is devoted to reflection of separate aspects of intellectual system gesture recognition development. The peculiarity of the system is its intellectual block which completely based on open technologies: OpenCV library and Microsoft Cognitive Toolkit (CNTK) platform. The article presents the rationale for the choice of such set of tools, as well as the functional scheme of the system and the hierarchy of its modules. Experiments have shown that the system correctly recognizes about 85% of images received from sensors. The authors assume that the improvement of the algorithmic block of the system will increase the accuracy of gesture recognition up to 95%.

  10. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  11. Voice Recognition: A New Assessment Tool?

    ERIC Educational Resources Information Center

    Jones, Darla

    2005-01-01

    This article presents the results of a study conducted in Anchorage, Alaska, that evaluated the accuracy and efficiency of using voice recognition (VR) technology to collect oral reading fluency data for classroom-based assessments. The primary research question was as follows: Is voice recognition technology a valid and reliable alternative to…

  12. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  13. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  14. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Leucine-rich Repeats of Bacterial Surface Proteins Serve as Common Pattern Recognition Motifs of Human Scavenger Receptor gp340*

    PubMed Central

    Loimaranta, Vuokko; Hytönen, Jukka; Pulliainen, Arto T.; Sharma, Ashu; Tenovuo, Jorma; Strömberg, Nicklas; Finne, Jukka

    2009-01-01

    Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340. PMID:19465482

  16. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  17. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    Treesearch

    Alphus D. Wilson

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition...

  18. Identification of cloud fields by the nonparametric algorithm of pattern recognition from normalized video data recorded with the AVHRR instrument

    NASA Astrophysics Data System (ADS)

    Protasov, Konstantin T.; Pushkareva, Tatyana Y.; Artamonov, Evgeny S.

    2002-02-01

    The problem of cloud field recognition from the NOAA satellite data is urgent for solving not only meteorological problems but also for resource-ecological monitoring of the Earth's underlying surface associated with the detection of thunderstorm clouds, estimation of the liquid water content of clouds and the moisture of the soil, the degree of fire hazard, etc. To solve these problems, we used the AVHRR/NOAA video data that regularly displayed the situation in the territory. The complexity and extremely nonstationary character of problems to be solved call for the use of information of all spectral channels, mathematical apparatus of testing statistical hypotheses, and methods of pattern recognition and identification of the informative parameters. For a class of detection and pattern recognition problems, the average risk functional is a natural criterion for the quality and the information content of the synthesized decision rules. In this case, to solve efficiently the problem of identifying cloud field types, the informative parameters must be determined by minimization of this functional. Since the conditional probability density functions, representing mathematical models of stochastic patterns, are unknown, the problem of nonparametric reconstruction of distributions from the leaning samples arises. To this end, we used nonparametric estimates of distributions with the modified Epanechnikov kernel. The unknown parameters of these distributions were determined by minimization of the risk functional, which for the learning sample was substituted by the empirical risk. After the conditional probability density functions had been reconstructed for the examined hypotheses, a cloudiness type was identified using the Bayes decision rule.

  19. Smartphone based face recognition tool for the blind.

    PubMed

    Kramer, K M; Hedin, D S; Rolkosky, D J

    2010-01-01

    The inability to identify people during group meetings is a disadvantage for blind people in many professional and educational situations. To explore the efficacy of face recognition using smartphones in these settings, we have prototyped and tested a face recognition tool for blind users. The tool utilizes Smartphone technology in conjunction with a wireless network to provide audio feedback of the people in front of the blind user. Testing indicated that the face recognition technology can tolerate up to a 40 degree angle between the direction a person is looking and the camera's axis and a 96% success rate with no false positives. Future work will be done to further develop the technology for local face recognition on the smartphone in addition to remote server based face recognition.

  20. International Collaboration Patterns and Effecting Factors of Emerging Technologies

    PubMed Central

    Bai, Xu; Liu, Yun

    2016-01-01

    With the globalization of the world economy, international innovation collaboration has taken place all over the world. This study selects three emerging technologies (3D printing, big data and carbon nanotubes and graphene technology) among 20 countries as the research objects, using three patent-based indicators and network relationship analysis to reflect international collaboration patterns. Then we integrate empirical analyses to show effecting factors of international collaboration degrees by using panel data. The results indicate that while 3D printing technology is associated with a “balanced collaboration” mode, big data technology is more accurately described by a radial pattern, centered on the United States, and carbon nanotubes and graphene technology exhibits “small-world” characteristics in this respect. It also shows that the factors GDP per capita (GPC), R&D expenditure (RDE) and the export of global trade value (ETV) negatively affect the level of international collaboration. It could be useful for China and other developing countries to make international scientific and technological collaboration strategies and policies in the future. PMID:27911926

  1. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  2. Using Assistive Technology to Teach Emotion Recognition to Students With Asperger Syndrome: A Pilot Study

    ERIC Educational Resources Information Center

    Lacava, Paul G.; Golan, Ofer; Baron-Cohen, Simon; Myles, Brenda Smith

    2007-01-01

    Many individuals with autism spectrum conditions (ASC) have difficulty recognizing emotions in themselves and others. The present pilot study explored the use of assistive technology to teach emotion recognition (ER) to eight children with ASC. Participants were between the ages of 8 and 11 years and had a diagnosis of Asperger syndrome (AS). ER…

  3. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models.

    PubMed

    Misra, Dharitri; Chen, Siyuan; Thoma, George R

    2009-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.

  4. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models

    PubMed Central

    Misra, Dharitri; Chen, Siyuan; Thoma, George R.

    2010-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386

  5. Gait recognition based on integral outline

    NASA Astrophysics Data System (ADS)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  6. Document recognition serving people with disabilities

    NASA Astrophysics Data System (ADS)

    Fruchterman, James R.

    2007-01-01

    Document recognition advances have improved the lives of people with print disabilities, by providing accessible documents. This invited paper provides perspectives on the author's career progression from document recognition professional to social entrepreneur applying this technology to help people with disabilities. Starting with initial thoughts about optical character recognition in college, it continues with the creation of accurate omnifont character recognition that did not require training. It was difficult to make a reading machine for the blind in a commercial setting, which led to the creation of a nonprofit social enterprise to deliver these devices around the world. This network of people with disabilities scanning books drove the creation of Bookshare.org, an online library of scanned books. Looking forward, the needs for improved document recognition technology to further lower the barriers to reading are discussed. Document recognition professionals should be proud of the positive impact their work has had on some of society's most disadvantaged communities.

  7. Recognition and Management of Sepsis in Children: Practice Patterns in the Emergency Department.

    PubMed

    Thompson, Graham C; Macias, Charles G

    2015-10-01

    Pediatric sepsis remains a leading cause of morbidity and mortality. Understanding current practice patterns and challenges is essential to inform future research and education strategies. Our aim was to describe the practice patterns of pediatric emergency physicians (PEPs) in the recognition and management of sepsis in children and to identify perceived priorities for future research and education. We conducted a cross-sectional, internet-based survey of members of the American Academy of Pediatrics, Section on Emergency Medicine and Pediatric Emergency Research Canada. The survey was internally derived, externally validated, and distributed using a modified Dillman methodology. Rank scores (RS) were calculated for responses using Likert-assigned frequency values. Tachycardia, mental-status changes, and abnormal temperature (RS = 83.7, 80.6, and 79.6) were the highest ranked clinical measures for diagnosing sepsis; white blood cell count, lactate, and band count (RS = 73.5, 70.9, and 69.1) were the highest ranked laboratory investigations. The resuscitation fluid of choice (85.5%) was normal saline. Dopamine was the first-line vasoactive medication (VAM) for cold (57.1%) and warm (42.2%) shock with epinephrine (18.5%) and norepinephrine (25.1%) as second-line VAMs (cold and warm, respectively). Steroid administration increased with complexity of presentation (all-comers 3.8%, VAM-resistant shock 54.5%, chronic steroid users 72.0%). Local ED-specific clinical pathways, national emergency department (ED)-specific guidelines, and identification of clinical biomarkers were described as future priorities. While practice variability exists among clinicians, PEPs continue to rely heavily on clinical metrics for recognizing sepsis. Improved recognition through clinical biomarkers and standardization of care were perceived as priorities. Our results provide a strong framework to guide future research and education strategies in pediatric sepsis. Copyright © 2015 Elsevier

  8. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping

    PubMed Central

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-01-01

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work. PMID:26225994

  9. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.

    PubMed

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-07-27

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  10. An Intelligent Pattern Recognition System Based on Neural Network and Wavelet Decomposition for Interpretation of Heart Sounds

    DTIC Science & Technology

    2001-10-25

    wavelet decomposition of signals and classification using neural network. Inputs to the system are the heart sound signals acquired by a stethoscope in a...Proceedings. pp. 415–418, 1990. [3] G. Ergun, “An intelligent diagnostic system for interpretation of arterpartum fetal heart rate tracings based on ANNs and...AN INTELLIGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF HEART SOUNDS I. TURKOGLU1, A

  11. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  12. Activity Recognition in Social Media

    DTIC Science & Technology

    2015-12-29

    AFRL-AFOSR-JP-TR-2016-0044 Activity Recognition in Social Media Subhasis Chaudhuri INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Final Report 05/09/2016...DATES COVERED (From - To) 12 Aug 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Activity Recognition in Social Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI MUMBAI, 400076 IN 8. PERFORMING ORGANIZATION REPORT NUMBER

  13. Pattern recognition of visible and near-infrared spectroscopy from bayberry juice by use of partial least squares and a backpropagation neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen Haiyan; Bao Yidan; He Yong

    2006-10-10

    Visible and near-infrared reflectance (visible-NIR) spectroscopy is applied to discriminate different varieties of bayberry juices. The discrimination of visible-NIR spectra from samples is a matter of pattern recognition. By partial least squares (PLS), the spectrum is reduced to certain factors, which are then taken as the input of the backpropagation neural network (BPNN). Through training and prediction, three different varieties of bayberry juice are classified based on the output of the BPNN. In addition, a mathematical model is built and the algorithm is optimized. With proper parameters in the training set,100% accuracy is obtained by the BPNN. Thus it ismore » concluded that the PLS analysis combined with the BPNN is an alternative for pattern recognition based on visible and NIR spectroscopy.« less

  14. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  15. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    PubMed

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  16. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees

    PubMed Central

    Geng, Yanjuan; Wei, Yue

    2017-01-01

    Previous studies have showed that arm position variations would significantly degrade the classification performance of myoelectric pattern-recognition-based prosthetic control, and the cascade classifier (CC) and multiposition classifier (MPC) have been proposed to minimize such degradation in offline scenarios. However, it remains unknown whether these proposed approaches could also perform well in the clinical use of a multifunctional prosthesis control. In this study, the online effect of arm position variation on motion identification was evaluated by using a motion-test environment (MTE) developed to mimic the real-time control of myoelectric prostheses. The performance of different classifier configurations in reducing the impact of arm position variation was investigated using four real-time metrics based on dataset obtained from transradial amputees. The results of this study showed that, compared to the commonly used motion classification method, the CC and MPC configurations improved the real-time performance across seven classes of movements in five different arm positions (8.7% and 12.7% increments of motion completion rate, resp.). The results also indicated that high offline classification accuracy might not ensure good real-time performance under variable arm positions, which necessitated the investigation of the real-time control performance to gain proper insight on the clinical implementation of EMG-pattern-recognition-based controllers for limb amputees. PMID:28523276

  17. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2012-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions

  18. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2011-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.

  19. Design of coupled mace filters for optical pattern recognition using practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Khan, Ajmal

    1993-01-01

    Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.

  20. Consistent melanophore spot patterns allow long-term individual recognition of Atlantic salmon Salmo salar.

    PubMed

    Stien, L H; Nilsson, J; Bui, S; Fosseidengen, J E; Kristiansen, T S; Øverli, Ø; Folkedal, O

    2017-12-01

    The present study shows that permanent melanophore spot patterns in Atlantic salmon Salmo salar make it possible to use images of the operculum to keep track of individual fish over extended periods of their life history. Post-smolt S. salar (n = 246) were initially photographed at an average mass of 98 g and again 10 months later after rearing in a sea cage, at an average mass of 3088 g. Spots that were present initially remained and were the most overt (largest) 10 months later, while new and less overt spots had developed. Visual recognition of spot size and position showed that fish with at least four initial spots were relatively easy to identify, while identifying fish with less than four spots could be challenging. An automatic image analysis method was developed and shows potential for fast match processing of large numbers of fish. The current findings promote visual recognition of opercular spots as a welfare-friendly alternative to tagging in experiments involving salmonid fishes. © The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  1. Spectral ’Fingerprinting’ of Phytoplankton Populations by Two-Dimensional Fluorescence and Fourier-Transform-Based Pattern Recognition.

    DTIC Science & Technology

    1985-07-08

    comparison to a library of known spectra. A preliminary study (Warner et al., 1984) of the application of this method to the pattern recognition of...case, the spectra from two blue-green algae are shown. Figure 3A indicates phycocyanin as the major fluorophore and 3B indicates phycoerythrin. Except...445. Ho, C.H., G.D. Christian, and E.R. Davidson, 1978. Application of the method of rank annihilation to quantitative analyses of multicomponent

  2. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  3. Restoration of Pattern Recognition Receptor Costimulation to Treat Chromoblastomycosis, a Chronic Fungal Infection of the Skin

    PubMed Central

    da Glória Sousa, Maria; Reid, Delyth M.; Schweighoffer, Edina; Tybulewicz, Victor; Ruland, Jürgen; Langhorne, Jean; Yamasaki, Sho; Taylor, Philip R.; Almeida, Sandro R.; Brown, Gordon D.

    2011-01-01

    Summary Chromoblastomycosis is a chronic skin infection caused by the fungus Fonsecaea pedrosoi. Exploring the reasons underlying the chronic nature of F. pedrosoi infection in a murine model of chromoblastomycosis, we find that chronicity develops due to a lack of pattern recognition receptor (PRR) costimulation. F. pedrosoi was recognized primarily by C-type lectin receptors (CLRs), but not by Toll-like receptors (TLRs), which resulted in the defective induction of proinflammatory cytokines. Inflammatory responses to F. pedrosoi could be reinstated by TLR costimulation, but also required the CLR Mincle and signaling via the Syk/CARD9 pathway. Importantly, exogenously administering TLR ligands helped clear F. pedrosoi infection in vivo. These results demonstrate how a failure in innate recognition can result in chronic infection, highlight the importance of coordinated PRR signaling, and provide proof of the principle that exogenously applied PRR agonists can be used therapeutically. PMID:21575914

  4. Face Recognition in Humans and Machines

    NASA Astrophysics Data System (ADS)

    O'Toole, Alice; Tistarelli, Massimo

    The study of human face recognition by psychologists and neuroscientists has run parallel to the development of automatic face recognition technologies by computer scientists and engineers. In both cases, there are analogous steps of data acquisition, image processing, and the formation of representations that can support the complex and diverse tasks we accomplish with faces. These processes can be understood and compared in the context of their neural and computational implementations. In this chapter, we present the essential elements of face recognition by humans and machines, taking a perspective that spans psychological, neural, and computational approaches. From the human side, we overview the methods and techniques used in the neurobiology of face recognition, the underlying neural architecture of the system, the role of visual attention, and the nature of the representations that emerges. From the computational side, we discuss face recognition technologies and the strategies they use to overcome challenges to robust operation over viewing parameters. Finally, we conclude the chapter with a look at some recent studies that compare human and machine performances at face recognition.

  5. A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting

    NASA Astrophysics Data System (ADS)

    Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle

    2017-10-01

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

  6. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    PubMed Central

    2012-01-01

    Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure. PMID:22776377

  7. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation.

    PubMed

    Erdely, Aaron; Antonini, James M; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Simeonova, Petia P; Kashon, Michael L; Li, Shengqiao; Gu, Ja K; Stone, Samuel; Chen, Bean T; Frazer, David G; Zeidler-Erdely, Patti C

    2012-07-09

    Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc - stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  8. [Creating language model of the forensic medicine domain for developing a autopsy recording system by automatic speech recognition].

    PubMed

    Niijima, H; Ito, N; Ogino, S; Takatori, T; Iwase, H; Kobayashi, M

    2000-11-01

    For the purpose of practical use of speech recognition technology for recording of forensic autopsy, a language model of the speech recording system, specialized for the forensic autopsy, was developed. The language model for the forensic autopsy by applying 3-gram model was created, and an acoustic model for Japanese speech recognition by Hidden Markov Model in addition to the above were utilized to customize the speech recognition engine for forensic autopsy. A forensic vocabulary set of over 10,000 words was compiled and some 300,000 sentence patterns were made to create the forensic language model, then properly mixing with a general language model to attain high exactitude. When tried by dictating autopsy findings, this speech recognition system was proved to be about 95% of recognition rate that seems to have reached to the practical usability in view of speech recognition software, though there remains rooms for improving its hardware and application-layer software.

  9. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  10. Diffraction-based overlay metrology for double patterning technologies

    NASA Astrophysics Data System (ADS)

    Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy

    2009-03-01

    The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.

  11. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  12. Transformative Learning: Patterns of Psychophysiologic Response and Technology-Enabled Learning and Intervention Systems

    DTIC Science & Technology

    2008-09-01

    Psychophysiologic Response and Technology -Enabled Learning and Intervention Systems PRINCIPAL INVESTIGATOR: Leigh W. Jerome, Ph.D...NUMBER Transformative Learning : Patterns of Psychophysiologic Response and Technology - Enabled Learning and Intervention Systems 5b. GRANT NUMBER...project entitled “Transformative Learning : Patterns of Psychophysiologic Response in Technology Enabled Learning and Intervention Systems.” The

  13. Primary EFL Teachers' Technology Use in China: Patterns and Perceptions

    ERIC Educational Resources Information Center

    Li, Guofang; Ni, Xiaopeng

    2011-01-01

    Drawing on survey data, this paper examines the patterns and perceptions of technology use by primary EFL teachers in China. Findings suggest that although Chinese EFL teachers hold positive attitudes toward the value of technology for teaching and learning, they use technology mainly for teacher-centered purposes, such as teaching preparation and…

  14. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.

  15. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system

    PubMed Central

    Kaplan, Bernhard A.; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures. PMID

  16. Time-Frequency Analysis And Pattern Recognition Using Singular Value Decomposition Of The Wigner-Ville Distribution

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem; Lovell, Brian; White, Langford

    1988-01-01

    Time-Frequency analysis based on the Wigner-Ville Distribution (WVD) is shown to be optimal for a class of signals where the variation of instantaneous frequency is the dominant characteristic. Spectral resolution and instantaneous frequency tracking is substantially improved by using a Modified WVD (MWVD) based on an Autoregressive spectral estimator. Enhanced signal-to-noise ratio may be achieved by using 2D windowing in the Time-Frequency domain. The WVD provides a tool for deriving descriptors of signals which highlight their FM characteristics. These descriptors may be used for pattern recognition and data clustering using the methods presented in this paper.

  17. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  18. DNA-polymer micelles as nanoparticles with recognition ability.

    PubMed

    Talom, Renée Mayap; Fuks, Gad; Kaps, Leonard; Oberdisse, Julian; Cerclier, Christel; Gaillard, Cédric; Mingotaud, Christophe; Gauffre, Fabienne

    2011-11-25

    The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  20. Pattern of Cleanliness with Technology Intervention for Innovation Life

    NASA Astrophysics Data System (ADS)

    Hutari Mulyani, Sitti; Hendrik, Billy; Andhika Putra, Rio; Masril, Mardhiah

    2017-12-01

    Environmental solutions around the world today are making people dependent on technological developments. However, the technology cannot be separated from the community either in the form or its influence, therefore the pattern of behavior of society must also get arrangements for technology to occur as an acceleration of life done properly. This study aims to obtain patterns of community behavior on non-organic waste by using technology intervention. Gap exploration is essential for theoretical and experimental analysis of humans who dispose of unorganic and organic waste out of place. But the field of behavior analysis is uniquely tailored to contribute to this body of work. Sustainable development depends on changing technology to achieve its goals. We report on data collected form an on-line survey, which possible solutions for trash problems. In this paper we present an integrated waste management system with IT that we called I-BSC (Indonesia Bersih (Clean), Sehat (Healty) and Cerdas (Smart)). This I-BSC is not only for deposit bottles and systems but the system aims also to create awareness of waste production and management, which serves as an educational platform in urban environments for further life innovation.

  1. Super-recognition in development: A case study of an adolescent with extraordinary face recognition skills.

    PubMed

    Bennetts, Rachel J; Mole, Joseph; Bate, Sarah

    2017-09-01

    Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.

  2. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.

    PubMed

    Polur, Prasad D; Miller, Gerald E

    2006-10-01

    Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients requires a robust technique that can handle conditions of very high variability and limited training data. In this study, application of a 10 state ergodic hidden Markov model (HMM)/artificial neural network (ANN) hybrid structure for a dysarthric speech (isolated word) recognition system, intended to act as an assistive tool, was investigated. A small size vocabulary spoken by three cerebral palsy subjects was chosen. The effect of such a structure on the recognition rate of the system was investigated by comparing it with an ergodic hidden Markov model as a control tool. This was done in order to determine if this modified technique contributed to enhanced recognition of dysarthric speech. The speech was sampled at 11 kHz. Mel frequency cepstral coefficients were extracted from them using 15 ms frames and served as training input to the hybrid model setup. The subsequent results demonstrated that the hybrid model structure was quite robust in its ability to handle the large variability and non-conformity of dysarthric speech. The level of variability in input dysarthric speech patterns sometimes limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor impaired individuals holds sufficient promise.

  3. The Effect of Involuntary Motor Activity on Myoelectric Pattern Recognition: A Case Study with Chronic Stroke Patients

    PubMed Central

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping

    2013-01-01

    This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192

  4. Speech recognition: how good is good enough?

    PubMed

    Krohn, Richard

    2002-03-01

    Since its infancy in the early 1990s, the technology of speech recognition has undergone a rapid evolution. Not only has the reliability of the programming improved dramatically, the return on investment has become increasingly compelling. The author describes some of the latest health care applications of speech-recognition technology, and how the next advances will be made in this area.

  5. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  6. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2015-01-01

    In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method. PMID:26528985

  7. Diffraction-based overlay for spacer patterning and double patterning technology

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Hoon; Park, JeongSu; Lee, Jongsu; Park, Sarohan; Lim, ChangMoon; Yim, Dong-Gyu; Park, Sungki; Ryu, Chan-Ho; Morgan, Stephen; van de Schaar, Maurits; Fuchs, Andreas; Bhattacharyya, Kaustuve

    2011-03-01

    Overlay performance will be increasingly important for Spacer Patterning Technology (SPT) and Double Patterning Technology (DPT) as various Resolution Enhancement Techniques are employed to extend the resolution limits of lithography. Continuous shrinkage of devices makes overlay accuracy one of the most critical issues while overlay performance is completely dependent on exposure tool. Image Based Overlay (IBO) has been used as the mainstream metrology for overlay by the main memory IC companies, but IBO is not suitable for some critical layers due to the poor Tool Induced Shift (TIS) values. Hence new overlay metrology is required to improve the overlay measurement accuracy. Diffraction Based Overlay (DBO) is regarded to be an alternative metrology to IBO for more accurate measurements and reduction of reading errors. Good overlay performances of DBO have been reported in many articles. However applying DBO for SPT and DPT layers poses extra challenges for target design. New vernier designs are considered for different DPT and SPT schemes to meet overlay target in DBO system. In this paper, we optimize the design of the DBO target and the performance of DBO to meet the overlay specification of sub-3x nm devices which are using SPT and DPT processes. We show that the appropriate vernier design yields excellent overlay performance in residual and TIS. The paper also demonstrated the effects of vernier structure on overlay accuracy from SEM analysis.

  8. Familiar Person Recognition: Is Autonoetic Consciousness More Likely to Accompany Face Recognition Than Voice Recognition?

    NASA Astrophysics Data System (ADS)

    Barsics, Catherine; Brédart, Serge

    2010-11-01

    Autonoetic consciousness is a fundamental property of human memory, enabling us to experience mental time travel, to recollect past events with a feeling of self-involvement, and to project ourselves in the future. Autonoetic consciousness is a characteristic of episodic memory. By contrast, awareness of the past associated with a mere feeling of familiarity or knowing relies on noetic consciousness, depending on semantic memory integrity. Present research was aimed at evaluating whether conscious recollection of episodic memories is more likely to occur following the recognition of a familiar face than following the recognition of a familiar voice. Recall of semantic information (biographical information) was also assessed. Previous studies that investigated the recall of biographical information following person recognition used faces and voices of famous people as stimuli. In this study, the participants were presented with personally familiar people's voices and faces, thus avoiding the presence of identity cues in the spoken extracts and allowing a stricter control of frequency exposure with both types of stimuli (voices and faces). In the present study, the rate of retrieved episodic memories, associated with autonoetic awareness, was significantly higher from familiar faces than familiar voices even though the level of overall recognition was similar for both these stimuli domains. The same pattern was observed regarding semantic information retrieval. These results and their implications for current Interactive Activation and Competition person recognition models are discussed.

  9. STATUS OF THE SYSTEM OF SIGNALING PATTERN RECOGNITION RECEPTORS OF MONOCYTES AND GRANULOCYTES IN COSMONAUTS' PERIPHERAL BLOOD BEFORE AND AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION.

    PubMed

    Ponomarev, S A; Berendeeva, T A; Kalinin, S A; Muranova, A V

    The system of signaling pattern recognition receptors was studied in 8 cosmonauts aged 35 to 56 years before and after (R+) long-duration missions to the International space station. Peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll- like (TLR) receptors localized as on cell surface (TLR1, TLR2, TLR4, TLR5, TLR6), so inside cells (TLR3, TLR8, TLR9). In parallel, serum concentrations of TLR2 (HSP60) and TLR4 ligands (HSP70, HMGB1) were measured. The results of investigations showed growth of HSP60, HSP70 and HMGB1 concentrations on R+1. In the;majority of cosmonauts increases in endogenous ligands were followed by growth in the number of both monocytes and granulocytes that express TLR2 1 TLR4. This consistency gives ground to assume that changes in the system of signaling pattern recognition receptors can stem .from the predominantly endogenous ligands' response to the effects of long-duration space flight on human organism.

  10. General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins.

    PubMed

    Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash; Dawidziak, Daria M; Roganowicz, Marcin D; Wan, Yueping; Pumroy, Ruth A; Demeler, Borries; Ivanov, Dmitri N; Ganser-Pornillos, Barbie K; Sundquist, Wesley I; Pornillos, Owen

    2018-02-15

    Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( K D of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( K D of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly

  11. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    PubMed

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside.

  12. Infrared target simulation environment for pattern recognition applications

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas E.; George, Nicholas

    1994-07-01

    The generation of complete databases of IR data is extremely useful for training human observers and testing automatic pattern recognition algorithms. Field data may be used for realism, but require expensive and time-consuming procedures. IR scene simulation methods have emerged as a more economical and efficient alternative for the generation of IR databases. A novel approach to IR target simulation is presented in this paper. Model vehicles at 1:24 scale are used for the simulation of real targets. The temperature profile of the model vehicles is controlled using resistive circuits which are embedded inside the models. The IR target is recorded using an Inframetrics dual channel IR camera system. Using computer processing we place the recorded IR target in a prerecorded background. The advantages of this approach are: (1) the range and 3D target aspect can be controlled by the relative position between the camera and model vehicle; (2) the temperature profile can be controlled by adjusting the power delivered to the resistive circuit; (3) the IR sensor effects are directly incorporated in the recording process, because the real sensor is used; (4) the recorded target can embedded in various types of backgrounds recorded under different weather conditions, times of day etc. The effectiveness of this approach is demonstrated by generating an IR database of three vehicles which is used to train a back propagation neural network. The neural network is capable of classifying vehicle type, vehicle aspect, and relative temperature with a high degree of accuracy.

  13. Uncovering patterns of technology use in consumer health informatics

    PubMed Central

    Hung, Man; Conrad, Jillian; Hon, Shirley D.; Cheng, Christine; Franklin, Jeremy D.; Tang, Philip

    2014-01-01

    Internet usage and accessibility has grown at a staggering rate, influencing technology use for healthcare purposes. The amount of health information technology (Health IT) available through the Internet is immeasurable and growing daily. Health IT is now seen as a fundamental aspect of patient care as it stimulates patient engagement and encourages personal health management. It is increasingly important to understand consumer health IT patterns including who is using specific technologies, how technologies are accessed, factors associated with use, and perceived benefits. To fully uncover consumer patterns it is imperative to recognize common barriers and which groups they disproportionately affect. Finally, exploring future demand and predictions will expose significant opportunities for health IT. The most frequently used health information technologies by consumers are gathering information online, mobile health (mHealth) technologies, and personal health records (PHRs). Gathering health information online is the favored pathway for healthcare consumers as it is used by more consumers and more frequently than any other technology. In regard to mHealth technologies, minority Americans, compared with White Americans utilize social media, mobile Internet, and mobile applications more frequently. Consumers believe PHRs are the most beneficial health IT. PHR usage is increasing rapidly due to PHR integration with provider health systems and health insurance plans. Key issues that have to be explicitly addressed in health IT are privacy and security concerns, health literacy, unawareness, and usability. Privacy and security concerns are rated the number one reason for the slow rate of health IT adoption. PMID:24904713

  14. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway.

    PubMed

    Iatsenko, Igor; Kondo, Shu; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2016-11-15

    Activation of the innate immune response in Metazoans is initiated through the recognition of microbes by host pattern-recognition receptors. In Drosophila, diaminopimelic acid (DAP)-containing peptidoglycan from Gram-negative bacteria is detected by the transmembrane receptor PGRP-LC and by the intracellular receptor PGRP-LE. Here, we show that PGRP-SD acted upstream of PGRP-LC as an extracellular receptor to enhance peptidoglycan-mediated activation of Imd signaling. Consistent with this, PGRP-SD mutants exhibited impaired activation of the Imd pathway and increased susceptibility to DAP-type bacteria. PGRP-SD enhanced the localization of peptidoglycans to the cell surface and hence promoted signaling. Moreover, PGRP-SD antagonized the action of PGRP-LB, an extracellular negative regulator, to fine-tune the intensity of the immune response. These data reveal that Drosophila PGRP-SD functions as an extracellular receptor similar to mammalian CD14 and demonstrate that, comparable to lipopolysaccharide sensing in mammals, Drosophila relies on both intra- and extracellular receptors for the detection of bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Speech Recognition Technology for Disabilities Education

    ERIC Educational Resources Information Center

    Tang, K. Wendy; Kamoua, Ridha; Sutan, Victor; Farooq, Omer; Eng, Gilbert; Chu, Wei Chern; Hou, Guofeng

    2005-01-01

    Speech recognition is an alternative to traditional methods of interacting with a computer, such as textual input through a keyboard. An effective system can replace or reduce the reliability on standard keyboard and mouse input. This can especially assist dyslexic students who have problems with character or word use and manipulation in a textual…

  16. Higher education technological knowledge and patterns of technology adoptions in undergraduate STEM courses

    NASA Astrophysics Data System (ADS)

    Ali, Zarka Asghar

    Identifying, examining, and understanding faculty members' technological knowledge development and the process of technology adoption in higher education is a multifaceted process. Past studies have used Rogers (1995, 2003) diffusion of innovation theoretical framework to delineate the technology adoption process. These studies, however, have frequently reported the influencing factors based on the statistical analysis such as regression analysis-based approach, and have not focused on the emerging process of technology adoptions or the developing process of technological knowledge and pedagogical knowledge. A mixed method study was designed to see how faculty members acquire different technologies and develop technological knowledge that might help them adopt technologies in their classrooms and online using different pedagogies. A sample of STEM teaching faculty members with different ranks, tenure, teaching experience, and varied degree of experience in the use of educational technologies participated in the study. A survey was designed to identify internal and external factors affecting technology adoption and its effective use in different teaching activities. To elaborate survey results, the study also included class observations as well as pre- and post-observation interviews. Online classrooms used by the faculty via Blackboard learning management system, online flipped classrooms, or other websites such as Piazza were also examined for data triangulation. The findings of the study indicate that faculty members are influenced by their own professional motivations and student learning to improve their teaching methods and to enhance student interactions and learning through the use of different educational technologies. The adoption process was identified as spreading over a period of time and it looked at how faculty members' developed their technological knowledge and pedagogical knowledge. With the recognition of the social, organizational, and

  17. Multi-sensor physical activity recognition in free-living.

    PubMed

    Ellis, Katherine; Godbole, Suneeta; Kerr, Jacqueline; Lanckriet, Gert

    Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].

  18. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes

    PubMed Central

    Degn, Søren E.; Kjaer, Troels R.; Kidmose, Rune T.; Jensen, Lisbeth; Hansen, Annette G.; Tekin, Mustafa; Jensenius, Jens C.; Andersen, Gregers R.; Thiel, Steffen

    2014-01-01

    Defining mechanisms governing translation of molecular binding events into immune activation is central to understanding immune function. In the lectin pathway of complement, the pattern recognition molecules (PRMs) mannan-binding lectin (MBL) and ficolins complexed with the MBL-associated serine proteases (MASP)-1 and MASP-2 cleave C4 and C2 to generate C3 convertase. MASP-1 was recently found to be the exclusive activator of MASP-2 under physiological conditions, yet the predominant oligomeric forms of MBL carry only a single MASP homodimer. This prompted us to investigate whether activation of MASP-2 by MASP-1 occurs through PRM-driven juxtaposition on ligand surfaces. We demonstrate that intercomplex activation occurs between discrete PRM/MASP complexes. PRM ligand binding does not directly escort the transition of MASP from zymogen to active enzyme in the PRM/MASP complex; rather, clustering of PRM/MASP complexes directly causes activation. Our results support a clustering-based mechanism of activation, fundamentally different from the conformational model suggested for the classical pathway of complement. PMID:25197071

  19. RIG-I in RNA virus recognition

    PubMed Central

    Kell, Alison M.; Gale, Michael

    2015-01-01

    Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy. PMID:25749629

  20. Target Recognition Using Neural Networks for Model Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hibler, David L.

    1999-01-01

    Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.

  1. A motivational determinant of facial emotion recognition: regulatory focus affects recognition of emotions in faces.

    PubMed

    Sassenrath, Claudia; Sassenberg, Kai; Ray, Devin G; Scheiter, Katharina; Jarodzka, Halszka

    2014-01-01

    Two studies examined an unexplored motivational determinant of facial emotion recognition: observer regulatory focus. It was predicted that a promotion focus would enhance facial emotion recognition relative to a prevention focus because the attentional strategies associated with promotion focus enhance performance on well-learned or innate tasks - such as facial emotion recognition. In Study 1, a promotion or a prevention focus was experimentally induced and better facial emotion recognition was observed in a promotion focus compared to a prevention focus. In Study 2, individual differences in chronic regulatory focus were assessed and attention allocation was measured using eye tracking during the facial emotion recognition task. Results indicated that the positive relation between a promotion focus and facial emotion recognition is mediated by shorter fixation duration on the face which reflects a pattern of attention allocation matched to the eager strategy in a promotion focus (i.e., striving to make hits). A prevention focus did not have an impact neither on perceptual processing nor on facial emotion recognition. Taken together, these findings demonstrate important mechanisms and consequences of observer motivational orientation for facial emotion recognition.

  2. A fast, robust pattern recognition asystem for low light level image registration and its application to retinal imaging

    NASA Astrophysics Data System (ADS)

    Wade, Alex Robert; Fitzke, Frederick W.

    1998-08-01

    We describe an image processing system which we have developed to align autofluorescence and high-magnification images taken with a laser scanning ophthalmoscope. The low signal to noise ratio of these images makes pattern recognition a non-trivial task. However, once n images are aligned and averaged, the noise levels drop by a factor of n and the image quality is improved. We include examples of autofluorescence images and images of the cone photoreceptor mosaic obtained using this system.

  3. Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis.

    PubMed

    Valentini, Davide; Ferrara, Giovanni; Advani, Reza; Hallander, Hans O; Maeurer, Markus J

    2015-07-01

    Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies ('the reactome') induced by whooping cough and B. pertussis (Bp) vaccines from a case-control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349-355). Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n=10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n=3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p<0.05), DTPa2 and DT (p<0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in

  4. Initial results on fault diagnosis of DSN antenna control assemblies using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smyth, P.; Mellstrom, J.

    1990-01-01

    Initial results obtained from an investigation using pattern recognition techniques for identifying fault modes in the Deep Space Network (DSN) 70 m antenna control loops are described. The overall background to the problem is described, the motivation and potential benefits of this approach are outlined. In particular, an experiment is described in which fault modes were introduced into a state-space simulation of the antenna control loops. By training a multilayer feed-forward neural network on the simulated sensor output, classification rates of over 95 percent were achieved with a false alarm rate of zero on unseen tests data. It concludes that although the neural classifier has certain practical limitations at present, it also has considerable potential for problems of this nature.

  5. License plate recognition (phase B).

    DOT National Transportation Integrated Search

    2010-06-01

    License Plate Recognition (LPR) technology has been used for off-line automobile enforcement purposes. The technology has seen mixed success with correct reading rate as high as 60 to 80% depending on the specific application and environment. This li...

  6. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  7. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  8. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    NASA Astrophysics Data System (ADS)

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  9. A framework for the recognition of 3D faces and expressions

    NASA Astrophysics Data System (ADS)

    Li, Chao; Barreto, Armando

    2006-04-01

    Face recognition technology has been a focus both in academia and industry for the last couple of years because of its wide potential applications and its importance to meet the security needs of today's world. Most of the systems developed are based on 2D face recognition technology, which uses pictures for data processing. With the development of 3D imaging technology, 3D face recognition emerges as an alternative to overcome the difficulties inherent with 2D face recognition, i.e. sensitivity to illumination conditions and orientation positioning of the subject. But 3D face recognition still needs to tackle the problem of deformation of facial geometry that results from the expression changes of a subject. To deal with this issue, a 3D face recognition framework is proposed in this paper. It is composed of three subsystems: an expression recognition system, a system for the identification of faces with expression, and neutral face recognition system. A system for the recognition of faces with one type of expression (happiness) and neutral faces was implemented and tested on a database of 30 subjects. The results proved the feasibility of this framework.

  10. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  11. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Tan, J; Kavanaugh, J

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in

  12. The software peculiarities of pattern recognition in track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkov, N.

    The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.

  13. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

  14. Speaker normalization for chinese vowel recognition in cochlear implants.

    PubMed

    Luo, Xin; Fu, Qian-Jie

    2005-07-01

    Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.

  15. Investigation of an expert health monitoring system for aeronautical structures based on pattern recognition and acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Tibaduiza-Burgos, Diego Alexander; Torres-Arredondo, Miguel Angel

    2015-08-01

    Aeronautical structures are subjected to damage during their service raising the necessity for periodic inspection and maintenance of their components so that structural integrity and safe operation can be guaranteed. Cost reduction related to minimizing the out-of-service time of the aircraft, together with the advantages offered by real-time and safe-life service monitoring, have led to a boom in the design of inexpensive and structurally integrated transducer networks comprising actuators, sensors, signal processing units and controllers. These kinds of automated systems are normally referred to as smart structures and offer a multitude of new solutions to engineering problems and multi-functional capabilities. It is thus expected that structural health monitoring (SHM) systems will become one of the leading technologies for assessing and assuring the structural integrity of future aircraft. This study is devoted to the development and experimental investigation of an SHM methodology for the detection of damage in real scale complex aeronautical structures. The work focuses on each aspect of the SHM system and highlights the potentialities of the health monitoring technique based on acousto-ultrasonics and data-driven modelling within the concepts of sensor data fusion, feature extraction and pattern recognition. The methodology is experimentally demonstrated on an aircraft skin panel and fuselage panel for which several damage scenarios are analysed. The detection performance in both structures is quantified and presented.

  16. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    PubMed

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015

  17. Fifty years of progress in speech and speaker recognition

    NASA Astrophysics Data System (ADS)

    Furui, Sadaoki

    2004-10-01

    Speech and speaker recognition technology has made very significant progress in the past 50 years. The progress can be summarized by the following changes: (1) from template matching to corpus-base statistical modeling, e.g., HMM and n-grams, (2) from filter bank/spectral resonance to Cepstral features (Cepstrum + DCepstrum + DDCepstrum), (3) from heuristic time-normalization to DTW/DP matching, (4) from gdistanceh-based to likelihood-based methods, (5) from maximum likelihood to discriminative approach, e.g., MCE/GPD and MMI, (6) from isolated word to continuous speech recognition, (7) from small vocabulary to large vocabulary recognition, (8) from context-independent units to context-dependent units for recognition, (9) from clean speech to noisy/telephone speech recognition, (10) from single speaker to speaker-independent/adaptive recognition, (11) from monologue to dialogue/conversation recognition, (12) from read speech to spontaneous speech recognition, (13) from recognition to understanding, (14) from single-modality (audio signal only) to multi-modal (audio/visual) speech recognition, (15) from hardware recognizer to software recognizer, and (16) from no commercial application to many practical commercial applications. Most of these advances have taken place in both the fields of speech recognition and speaker recognition. The majority of technological changes have been directed toward the purpose of increasing robustness of recognition, including many other additional important techniques not noted above.

  18. Facial recognition in education system

    NASA Astrophysics Data System (ADS)

    Krithika, L. B.; Venkatesh, K.; Rathore, S.; Kumar, M. Harish

    2017-11-01

    Human beings exploit emotions comprehensively for conveying messages and their resolution. Emotion detection and face recognition can provide an interface between the individuals and technologies. The most successful applications of recognition analysis are recognition of faces. Many different techniques have been used to recognize the facial expressions and emotion detection handle varying poses. In this paper, we approach an efficient method to recognize the facial expressions to track face points and distances. This can automatically identify observer face movements and face expression in image. This can capture different aspects of emotion and facial expressions.

  19. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a

  20. Recognition without Awareness: Encoding and Retrieval Factors

    ERIC Educational Resources Information Center

    Craik, Fergus I. M.; Rose, Nathan S.; Gopie, Nigel

    2015-01-01

    The article reports 4 experiments that explore the notion of recognition without awareness using words as the material. Previous work by Voss and associates has shown that complex visual patterns were correctly selected as targets in a 2-alternative forced-choice (2-AFC) recognition test although participants reported that they were guessing. The…

  1. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  2. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  3. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  4. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  5. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    PubMed Central

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-01-01

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features. PMID:25333290

  6. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  7. Inflammation in Alzheimer's disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors.

    PubMed

    Salminen, Antero; Ojala, Johanna; Kauppinen, Anu; Kaarniranta, Kai; Suuronen, Tiina

    2009-02-01

    The inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease (AD). Recent studies indicate that inflammation is not merely a bystander in neurodegeneration but a powerful pathogenetic force in the disease process. Increased production of amyloid-beta peptide species can activate the innate immunity system via pattern recognition receptors (PRRs) and evoke Alzheimer's pathology. We will focus on the role of innate immunity system of brain in the initiation and the propagation of inflammatory process in AD. We examine here in detail the significance of amyloid-beta oligomers and fibrils as danger-associated molecular patterns (DAMPs) in the activation of a wide array of PRRs in glial cells and neurons, such as Toll-like, NOD-like, formyl peptide, RAGE and scavenger receptors along with complement and pentraxin systems. We also characterize the signaling pathways triggered by different PRRs in evoking inflammatory responses. In addition, we will discuss whether AD pathology could be the outcome of chronic activation of the innate immunity defence in the brain of AD patients.

  8. Demonstration of Removal, Separation, and Recovery of Heavy Metals from Industrial Wastestreams Using Molecular Recognition Technology (MRT)

    DTIC Science & Technology

    2002-11-01

    Treatment Plant”, TM-2123-ENV, April 1995. 3. Ford, K.H., 1996, “ Heavy Metal Adsorption/ Biosorption Studies for Zero Discharge Industrial Wastewater...SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTESTREAMS USING MOLECULAR RECOGNITION TECHNOLOGY (MRT) Final Report by Dr. Katherine...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER DEMONSTRATION OF REMOVAL, SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTEWATERS USING

  9. Transfer-appropriate processing in recognition memory: perceptual and conceptual effects on recognition memory depend on task demands.

    PubMed

    Parks, Colleen M

    2013-07-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which suggest that the extent to which perceptual fluency matters on a recognition test depends in large part on the task demands. A test that recruits perceptual processing for discrimination should show greater perceptual effects and smaller conceptual effects than standard recognition, similar to the pattern of effects found in perceptual implicit memory tasks. This idea was tested in the current experiment by crossing a levels of processing manipulation with a modality manipulation on a series of recognition tests that ranged from conceptual (standard recognition) to very perceptually demanding (a speeded recognition test with degraded stimuli). Results showed that the levels of processing effect decreased and the effect of modality increased when tests were made perceptually demanding. These results support the idea that surface-level features influence performance on recognition tests when they are made salient by the task demands. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Huang, Mengmeng; Yi, Qilin; Guo, Ying; Gai, Yunchao; Wang, Hao; Zhang, Huan; Song, Linsheng

    2016-08-01

    Galectins are a family of β-galactoside binding lectins that function as pattern recognition receptors (PRRs) in innate immune system of both vertebrates and invertebrates. The cDNA of Chinese mitten crab Eriocheir sinensis galectin (designated as EsGal) was cloned via rapid amplification of cDNA ends (RACE) technique based on expressed sequence tags (ESTs) analysis. The full-length cDNA of EsGal was 999 bp. Its open reading frame encoded a polypeptide of 218 amino acids containing a GLECT/Gal-bind_lectin domain and a proline/glycine rich low complexity region. The deduced amino acid sequence and domain organization of EsGal were highly similar to those of crustacean galectins. The mRNA transcripts of EsGal were found to be constitutively expressed in a wide range of tissues and mainly in hepatopancreas, gill and haemocytes. The mRNA expression level of EsGal increased rapidly and significantly after crabs were stimulated by different microbes. The recombinant EsGal (rEsGal) could bind various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (GLU), and exhibited strong activity to agglutinate Escherichia coli, Vibrio anguillarum, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Pichia pastoris, and such agglutinating activity could be inhibited by both d-galactose and α-lactose. The in vitro encapsulation assay revealed that rEsGal could enhance the encapsulation of haemocytes towards agarose beads. These results collectively suggested that EsGal played crucial roles in the immune recognition and elimination of pathogens and contributed to the innate immune response against various microbes in crabs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Patterns of Mobile Technology Use in Teaching: The Teacher Perspective

    ERIC Educational Resources Information Center

    Seifert, Tami

    2016-01-01

    The use of mobile learning spaces is an opportunity to break the boundaries of the classroom and to prepare teacher-educators and pre-service teachers for future school classes. The purpose of this study is to examine the implementation of mobile technology and usage patterns in the mobile technology space among lecturers in a teacher education…

  12. Optical pattern recognition algorithms on neural-logic equivalent models and demonstration of their prospects and possible implementations

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Zaitsev, Alexandr V.; Voloshin, Victor M.

    2001-03-01

    Historic information regarding the appearance and creation of fundamentals of algebra-logical apparatus-`equivalental algebra' for description of neuro-nets paradigms and algorithms is considered which is unification of theory of neuron nets (NN), linear algebra and the most generalized neuro-biology extended for matrix case. A survey is given of `equivalental models' of neuron nets and associative memory is suggested new, modified matrix-tenzor neurological equivalental models (MTNLEMS) are offered with double adaptive-equivalental weighing (DAEW) for spatial-non- invariant recognition (SNIR) and space-invariant recognition (SIR) of 2D images (patterns). It is shown, that MTNLEMS DAEW are the most generalized, they can describe the processes in NN both within the frames of known paradigms and within new `equivalental' paradigm of non-interaction type, and the computing process in NN under using the offered MTNLEMs DAEW is reduced to two-step and multi-step algorithms and step-by-step matrix-tenzor procedures (for SNIR) and procedures of defining of space-dependent equivalental functions from two images (for SIR).

  13. Neonatal Recognition Processes and Attachment: The Masking Experiment.

    ERIC Educational Resources Information Center

    Cassel, Thomas Z. K.; Sander, Louis W.

    This research project was designed to determine whether 1-week-old neonates would indicate biological recognition of their mothers. Biological recognition is defined as the particular configuration of sensory, kinesthetic, and motor cues and the temporal patterning of these cues which characterizes infants' exchange processes with their…

  14. A new approach for cancelable iris recognition

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Sui, Yan; Zhou, Zhi; Du, Yingzi; Zou, Xukai

    2010-04-01

    The iris is a stable and reliable biometric for positive human identification. However, the traditional iris recognition scheme raises several privacy concerns. One's iris pattern is permanently bound with him and cannot be changed. Hence, once it is stolen, this biometric is lost forever as well as all the applications where this biometric is used. Thus, new methods are desirable to secure the original pattern and ensure its revocability and alternatives when compromised. In this paper, we propose a novel scheme which incorporates iris features, non-invertible transformation and data encryption to achieve "cancelability" and at the same time increases iris recognition accuracy.

  15. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  16. Terrain type recognition using ERTS-1 MSS images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1973-01-01

    For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.

  17. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  18. The MITLL NIST LRE 2015 Language Recognition System

    DTIC Science & Technology

    2016-05-06

    The MITLL NIST LRE 2015 Language Recognition System Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson...most recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission...Task The National Institute of Science and Technology ( NIST ) has conducted formal evaluations of language detection algorithms since 1994. In

  19. The MITLL NIST LRE 2015 Language Recognition system

    DTIC Science & Technology

    2016-02-05

    The MITLL NIST LRE 2015 Language Recognition System Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson...recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission features a...National Institute of Science and Technology ( NIST ) has conducted formal evaluations of language detection algorithms since 1994. In previous

  20. Teacher-Directed Student Use of Technology and Mathematics Achievement: Examining Trends in International Patterns

    ERIC Educational Resources Information Center

    Wang, Yang; O'Dwyer, Laura

    2011-01-01

    Using data from the Trends in International Mathematics and Science Study (TIMSS) 2003 and 2007 administrations, this study examines international trends in technology use and explores the international patterns in how teacher-directed, student-use of technology is related to eighth grade mathematics achievement. Descriptive patterns in…